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Multidiurnal shallow stratification
exists in the upwelling regime,

observed by glider fleet.

Nitrous oxide (N2O) observations in top 10 m 
show vertical concentration gradients.

A 1-D model constrained by the
glider timeseries reproduces

 N2O gradients of the observed kind.

Conclusions
  
Multidiurnal shallow stratification (MDSS) with 
persistent mixing inhibition is a plausible cause 
for substantial surface N2O depletion observed.
  

Just diurnal shallow stratification would not be 
sufficient.
  

Bias of N2O emission estimates is highest 
where strongest MDSS and highest concentra-
tions occur, i.e. where impact of bias is highest.

Motivation to look for gas gradients in top 10 meters

Profiles far from ship's influence 
allow detection of shallow gradients

Night time stratifica-
tion, high concentra-
tions and strong gradi-
ents are associated

4 regions of dense hydrographic observations

Found different grades of persistent stratification

HLD is mainly deter-
mined by windspeed

Model schematic

The stratified layer is 
extremely low in mixing

Example run

Modelled gradients 
vs. region and supply

Resulting emission 
overestimation 

when sampling at
a specified depth

  
        model      observation

Hypothetic mechanism:
  

Mixing is inhibited in a thin stratified layer that is not eroded 
for one or more nights. The surface layer (the ’multidiurnal 
warm layer‘) is thus isolated from gas supply from below, 
while the continuing outgassing causes surface depletion.

In the Maurita-
nian upwelling 
regime, N2O 
supply from 
below is much 
lower than the 
calculated N2O 
emissions.
[Kock et al., 2012]

Do we estimate gas emissions from adequate concentrations ?
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Vertical concentration gradients in top layer exist and vary regionally.
Shape of concentration pro�les resembles density pro�les at night.
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strati�cation timeseries HLD and ASCAT wind timeseries
(Homogeneous Layer Depth: N2<10-4)

Exchange across the strati�ed barrier 
layer is only via entrainment. For the 
vertical movement of the barrier the 
observed HLD timeseries are used. 
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N2 of O(10-3) and dissipation rate of O(10-8) result
 in a vertical exchange coe�cient K of O(10-6).

7 gliders, 250 gliderdays in total,
in Jan. and Feb. 2013
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