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Measuring nitrous oxide (N2O) in the top 10 meters of the Peruvian upwelling
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Vertical N>O gradients exist and are associated with a shallow stratified layer
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Vertical concentration gradients in top layer exist and vary regionally. Stronger N,O gradients are associated with higher Hypothesis:
Shape of concentration profiles resembles density profiles at night. N,O concentrations and night time stratification
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Simple 1-D two layer model Region 1 - multidiurnal stratification causes distinct gradient Region 3 - diurnal stratification not sufficient for strong gradient
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