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ABSTRACT

Intrinsic oscillations of stable geophysical surface frontal currents of the unsteady, nonlinear, reduced-gravity
shallow-water equations on an f plane are investigated analytically and numerically. For frictional (Rayleigh)
currents characterized by linear horizontal velocity components and parabolic cross sections, the primitive
equations are reduced to a set of coupled nonlinear ordinary differential equations. In the inviscid case, two
periodic analytical solutions of the nonlinear problem describing 1) the inertially reversing horizontal displace-
ment of a surface frontal current having a fixed parabolic cross section and 2) the cross-front pulsation of a
coastal current emerging from a motionless surface frontal layer are presented. In a linear and in a weakly
nonlinear context, analytical expressions for field oscillations and their frequency shift relative to the inertial
frequency are presented. For the fully nonlinear problem, solutions referring to a surface frontal coastal current
are obtained analytically and numerically. These solutions show that the currents oscillate always superinertially,
the frequency and the amplitude of their oscillations depending on the magnitude of the initial disturbance and
on the squared current Rossby number. In a linear framework, it is shown that disturbances superimposed on
the surface frontal current are standing waves within the bounded region, the frequencies of which are inertial/
superinertial for the first mode/higher modes. In the same frame, a zeroth mode, which could be interpreted as
the superposition of an inertial wave on a background vorticity field, would formally yield subinertial frequencies.
For surface frontal currents affected by Rayleigh friction, it is shown that the magnitude of the mean current
decays according to a power law and that the oscillations decay faster, because this decay follows an exponential
law. Implications of the intrinsic oscillations and of their rapid dissipation for the near-inertial motion in an
active ambient ocean are discussed.

1. Introduction

Almost one-half of the energy contained in the oce-
anic internal-wave band belongs to near-inertial waves
(Munk 1981). Because these disturbances, mostly gen-
erated in the upper ocean by the action of the wind, can
transfer a consistent part of their energy downward, they
represent one of the major sources of energy available
for the production of mixing and turbulence in the in-
terior ocean (e.g., Kunze 1985; Balmforth et al. 1998;
Garrett 2001). In this energy transmission from the near-
surface layers to the abyss, equatorward propagation
and interaction with oceanic mesoscale features play
fundamental roles (e.g., Kunze 1985, 1986; Wang 1991;
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Klein and Treguier 1993; Lee and Eriksen 1997; Young
and Jelloul 1997; Chant 2001; Garrett 2001). On the f
plane, the transformation of oceanic near-inertial dis-
turbances having similar spatial scales as the generating
atmospheric fronts into smaller-scale near-inertial
waves, which are able to propagate their energy down-
ward rapidly, is attributed to the interactions of these
long near-inertial waves with background inhomoge-
neities in the flow field such as those associated with
mesoscale fronts and vortices (e.g., Kunze and Sanford
1984; Kunze 1985; Mied et al. 1986; Wang 1991; Zer-
vakis and Levine 1995; Lee and Eriksen 1997; van
Meurs 1998; Chant 2001). Near-inertial internal waves
are in fact affected by variations in the background rel-
ative vorticity, buoyancy, and divergence: variations in
the background fluid relative vorticity are able to induce
variations in the lower bound of the internal-wave fre-
quency band, because they force variations in the wave
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FIG. 1. Schematic representation of a surface frontal current in the
framework of the reduced-gravity theory. The current is bounded by
the outcropping lines located at x 5 x1 and x 5 x2.

vector and modulations in the wave amplitude (Mooers
1975; Kunze 1985); variations in the horizontal density
structure experienced by near-inertial internal waves
during their evolution can produce variations in the up-
per bound of their wave band, because they affect the
density contrast experienced by water particles along
their orbits (Lee and Eriksen 1997); and background
divergent or convergent flows can cause wave decay or
growth (Kunze 1985; Rubenstein and Roberts 1986; Lee
and Eriksen 1997).

On the other hand, the same coherent mesoscale fron-
tal features involved in the transformation of the spatial
scales of oceanic near-inertial internal waves are known
to possess intrinsic near-inertial modes of oscillations.
For instance, circular nonlinear frontal (warm core) vor-
tices of the reduced-gravity shallow-water equations
characterized by different structures of their velocity and
thickness fields pulsate inertially: shoaling and expan-
sions, deepenings and contractions, alternate during an
exact inertial period (Cushman-Roisin 1987; Rogers
1989; Rubino et al. 1998). The robustness of these os-
cillations has been recently demonstrated in the frame
of a theoretical study carried out by Rubino et al. (2002)
for nonlinear geophysical circular frontal vortices evolv-
ing on an f plane under the influence of harmonic hor-
izontal eddy viscosity, linear and quadratic interfacial
friction, and linear water entrainment; Rubino and
Brandt (2003) reported, in the frame of an experimental
investigation carried out using the large-scale turntable
of the Laboratory of Geophysical and Industrial Fluid
Flows (LEGI) (Grenoble, France), that the same oscil-
lations emerge for similar mesoscale frontal features gen-
erated by the impulsive release of a motionless cylindrical
body of lighter water on an f plane. Elliptical nonlinear
frontal (warm core) vortices of the reduced-gravity shal-
low-water equations having parabolic sections and ve-
locity components linearly dependent on the horizontal
coordinates show a more complex, intriguing oscillatory
behavior: subinertial, superinertial, and inertial oscilla-
tions can in fact coexist (Young 1986; Cushman-Roisin
1987). Thus, if, on the one hand, these mesoscale features
influence the preexisting, wind-generated large-scale
near-inertial wave field, on the other hand, they act, ac-
cording to their intrinsic modes of oscillations, as gen-
erators of smaller-scale near-inertial waves when, as a
response to larger-scale disturbances, they are forced to
oscillate in a stratified ocean. Extending our knowledge
on possible intrinsic oscillations inherent in oceanic me-
soscale frontal features may contribute to a better un-
derstanding of the intricate dynamic interactions leading
to the observed near-inertial wave field in the ocean. As
a condition, a deeper comprehension of the intrinsic os-
cillations of such frontal features in a simplified context
may be important.

In this investigation, we present analytical and nu-
merical results that describe aspects of the near-inertial,
inviscid and frictional intrinsic oscillations of stable
geophysical surface frontal currents of special shapes

and velocity structures in the framework of the nonlin-
ear, reduced-gravity shallow-water equations.

The paper is organized as follows. In section 2, the
reduction of the nonlinear, reduced-gravity model to a
system of ordinary differential equations (ODEs) for
special horizontal structures is performed. Two exact
analytical solutions are presented in section 3. In section
4, linear and weakly nonlinear solutions for the inviscid
case are presented and the attenuation of a coastal cur-
rent and its near-inertial oscillations caused by linear
friction is investigated. In section 5, the frequency of
disturbances superimposed on the surface frontal current
is analyzed in a linear context and the results are com-
pared with the results of Kunze (1985). In section 6,
the results of the study are summarized and a discussion
is presented.

2. The governing equations

The plane motion of a surface frontal layer (Fig. 1)
on an f plane in the frame of the nonlinear, reduced-
gravity, frictional shallow-water model is governed, in
a nondimensional form, by the equations

]u ]u ]h
1 u 2 y 5 2 2 su,

]t ]x ]x

]y ]y
1 u 1 u 5 2sy , and

]t ]x

]h ](hu)
1 5 0, (1)

]t ]x

where x is the horizontal coordinate, t is the time, and
(u, y) and h are the components of the horizontal ve-
locity and the thickness of the surface layer, respec-
tively. The first two equations of (1) include a linear
Rayleigh friction with a constant friction coefficient s.

The scales for x, t, and s are the internal Rossby radius
of deformation Ro 5 f 21c, the inertial period f 21 (di-
vided by 2p), and the inertial frequency f , respectively.
The value c 5 is the phase velocity of the linear1Ïg9h
internal gravitational long waves, g9 5 g(1 2 r1/r2) is
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FIG. 2. Schematic representation of a surface frontal coastal current
in the framework of the reduced-gravity theory. The current is bound-
ed by the coast at x 5 0 and by the outcropping line at x 5 x2.

the reduced gravity, g is the acceleration due to gravity,
r1 and r2 are the densities of the fluid within the front
and in its surroundings respectively, and h1 is the max-
imum surface layer thickness at the initial stage. This
thickness is scaled by h1, and the horizontal velocity
components are scaled by c. It is assumed that h . 0
within the strip x1 , x , x2, and h 5 0 at x 5 x1(t)
and x 5 x2(t) (see Fig. 1).

We assume now that the fields are characterized by
the following horizontal structure:

u 5 a (t) 1 a (t)x, y 5 b (t) 1 b (t)x, and0 1 0 1

2h 5 c (t) 1 c (t)x 1 c (t)x . (2)0 1 2

Substitution of (2) into (1) yields the following system
of seven nonlinear, coupled ODEs in the unknown var-
iables a0, a1, b0, b1, c0, c1, and c2:

ȧ 1 a a 2 b 1 c 1 sa 5 0,0 0 1 0 1 0

2ȧ 1 a 2 b 1 2c 1 sa 5 0,1 1 1 2 1

ḃ 1 a b 1 a 1 sb 5 0,0 0 1 0 0

ḃ 1 a b 1 a 1 sb 5 0,1 1 1 1 1

ċ 1 a c 1 a c 5 0,0 0 1 1 0

ċ 1 2a c 1 2a c 5 0, and1 0 2 1 1

ċ 1 3a c 5 0. (3)2 1 2

Note that the dots indicate temporal derivation. For ev-
ery time, two conditions constraining the variables that
describe the layer thickness have to be met: The first is
c2 , 0, required to ensure the existence of two out-
cropping lines; the second is m 5 2 4c0c2 . 0,2c1

required to ensure that h . 0 for x1 , x , x2. From
(3) we find

ċ 5 23a c and ṁ 5 24a m, i.e.,2 1 2 1

23I(t) 24I(t)c (t) 5 c (0)e and m(t) 5 m(0)e ,2 2

where I 5 a1(t) dt. Thus, if the surface frontal currentt#0

has a finite width at t 5 0, it will not expand to infinity
or degenerate into a line for t . 0.

We specify now the velocity field and the surface
layer thickness expressed by (2) for the description of
a surface frontal coastal current; that is, we consider a
lateral wall located at x 5 0 (see Fig. 2). We thus impose
u 5 0 along this line, that is, a0 [ 0, and hence

2b 2 c 5 0, ȧ 1 a 2 b 1 2c 1 sa 5 0,0 1 1 1 1 2 1

ḃ 1 sb 5 0, ḃ 1 a b 1 a 1 sb 5 0,0 0 1 1 1 1 1

ċ 1 a c 5 0, ċ 1 2a c 5 0,0 1 0 1 1 1

and

ċ 1 3a c 5 0. (4)2 1 2

From the first, the third, and the sixth equation of (4)
we find c1(a1 2 s/2) 5 0. There are two possibilities.

In the first case is a1 5 s/2, and, to avoid contradictions
between the equations of (4), it must be s 5 0, which
implies a1 5 0. Allowed solutions are thus stationary,
geostrophic frictionless currents:

u 5 0, y 5 c 1 2c x 5 ]h /]x, and1 2

2h 5 c 1 c x 1 c x .0 1 2

The second case (c1 5 0) implies b0 5 0, which means
that the model represented by (1) and (2) is applicable
to unsteady surface frontal coastal currents constrained
by a straight wall if the fields (2) are written as

u 5 A(t)x, y 5 B(t)x, and
2h 5 C(t)x 1 D(t). (5)

The unknown functions in (5) satisfy the initial-value
problem:

2Ȧ 5 2sA 1 B 2 2C 2 A ,

Ḃ 5 2A 2 sB 2 AB,

˙ ˙C 5 23AC, D 5 2AD,

A(0) 5 A , B(0) 5 B , C(0) 5 C , and0 0 0

D(0) 5 D , (6)0

with C0 , 0 and D0 . 0.

3. Analytical solutions of surface frontal current
oscillations

In the inviscid case, two exact analytical solutions of
the nonlinear models (3) and (6) can be found. The first
resembles a solution describing steady rotations of el-
liptical vortices (Cushman-Roisin et al. 1985; Young
1986); the second is similar to solutions used to describe
1) pulsations of an infinitely long ribbon at the sea bot-
tom (Frei 1993) and 2) barotropic oscillations in a chan-
nel of parabolic cross section (Shapiro 1996). In the
frame of our investigation, exact analytical solutions of
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(3) and (6) represent oscillations of mesoscale surface
frontal features.

a. The motion of a surface frontal current of
invariant form

We search for a solution of (3) describing the inviscid,
unsteady dynamics of a surface frontal current of in-
variant form. The surface frontal layer width and max-
imum thickness (see Fig. 1) are

1/2 21 1 21x 2 x 5 2m c and h 5 20.25mc ,2 1 2 2

respectively. Because, for a surface frontal current of
invariant form, c2 must be constant, we can define c2

5 2k, where k is a positive constant. From (3) we find

a 5 0 and b 5 22k,1 1 (7)

which allows us to replace (3) with the simplified system
of ODEs:

ȧ 2 b 1 c 5 0, ḃ 2 (2k 2 1)a 5 0,0 0 1 0 0

ċ 2 2ka 5 0, and ċ 1 a c 5 0. (8)1 0 0 0 1

Introducing the obtained solution of (8) in (2) yields

u 5 A sinF,0

y 5 B 2 (2k 2 1)A cosF 2 2kx, and0 0

2h 5 C 2 k[x 2 x (t)] , (9)0 0

where

B0F 5 t 1 w and x 5 2 A cosF.0 02k

Note that A0, B0, C0 . 0, k . 0, and w are arbitrary
constants. In (9), all fields oscillate exactly inertially.
This behavior differs from that of elliptical vortices with
a fixed shape, for which the rotation frequency can be
either subinertial or superinertial (Cushman-Roisin et
al. 1985; Young 1986). Note that, in both cases, the
center of mass oscillates exactly inertially (Ball 1963;
Young 1986; Cushman-Roisin 1987).

b. Oscillation of a surface frontal coastal current

The initial-value problem (6) can be solved analyti-
cally (Frei 1993; Shapiro 1996). Consider a surface
frontal coastal current emerging from a motionless ini-
tial state—that is, A0 5 B0 5 0, and C0 , 0. In this
case, the exact solution of (6) can be written as

c(m , m) if ṁ $ 0 and m , m # m ,2 2 3t 5 (10)52c(m , m ) 2 c(m , m) if ṁ # 0 and m # m , m ,2 3 2 2 3

m 2j 2m m2 2c(m , m) 5 dj 5 P a, 1 2 , b ,2 E 1 2!(j 2 m )(j 2 m )(j 2 m ) mÏm (m 2 m )1 2 3 3m 3 2 12

(m 2 m )m m (m 2 m )2 3 1 2 3a 5 arcsin , and b 5 , (11)! !m(m 2 m ) (m 2 m )m3 2 2 1 3

where the function m 5 m(t) is defined as A 5 m21ṁ,
where m 5 m1,2,3(m1 , 0 , m2 , m3) are real roots of
the cubic equation m3 1 p1m2 2 p2m 1 1 5 0, with
p1 5 22(24C0)21/3 and p2 5 2(1 1 4C0)(24C0)22/3.
The function P(a, k, b) in (11) is known as the elliptic
integral of the third kind (Gradshteyn and Ryzhik 1980).
From (10) it follows that the oscillations characterizing
this solution have period T 5 2c(m2, m3). The esti-
mation

m3 dj
c(m , m ) ,2 3 E Ï(j 2 m )(m 2 j)m 2 32

1 dj
5 2 5 pE

2Ï1 2 j0

implies that a surface frontal coastal current of any am-
plitude oscillates always superinertially, that is, T , 2p.
In another context (i.e., an infinitely long ribbon at the

sea bottom), a similar behavior was found numerically
by Frei (1993). Although this result gives a limit for
the oscillation frequency, from the solution (10) and (11)
the quantification of other characteristics of the surface
frontal dynamics is not straightforward. For this reason,
in the next section we will quantify these characteristics
in the frame of a linear and a weakly nonlinear theory,
as well as numerically.

4. Linear and weakly nonlinear oscillations, and
frictional decay of surface frontal coastal
currents

a. Linear and weakly nonlinear oscillations around
geostrophy

We now consider small-amplitude oscillations around
geostrophy: u 5 0, y 5 22gx 5 ]h/]x, and h 5 1 2
gx2 for 0 # x # x2, where g is the squared current
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Rossby number. To this purpose, let us introduce the
coefficients a, b, c, and d defined by

A 5 a(t), B 5 22g 1 b(t),

C 5 2g 1 c(t), and D 5 1 1 d(t). (12)

Substitution of (12) into (6) leads to the following sys-
tem of ODEs:

2ȧ 5 b 2 2c 2 a , ḃ 5 (2g 2 1)a 2 ab,

ċ 5 3ga 2 3ac, and ḋ 5 2a 2 ad, (13)

with a(0) 5 a0, b(0) 5 b0, c(0) 5 c0, and d(0) 5 d0.

1) LINEAR OSCILLATIONS AROUND GEOSTROPHY

In the linear case, the initial-value problem (13) takes
the form

2ä 1 v a 5 0, a(0) 5 a , and0

ȧ(0) 5 b 2 2c . (14)0 0

It represents the harmonic oscillations
21a 5 (b 2 2c )v sinvt 1 a cosvt0 0 0 (15)

with superinertial frequency

v 5 Ï1 1 4g. (16)

It results also in

b 5 2c 2 (1 2 2g)p(t), c 5 c 1 3gp(t), and1 1

d 5 d 2 p(t),1 (17)

where p 5 2ȧ/v2, and in
22c 5 v [3gb 1 (1 2 2g)c ] and1 0 0

22 2d 5 v [v d 2 (b 2 2c )]. (18)1 0 0 0

The conditions c0 , g and d0 . 21 (the satisfaction
of which ensures that the thickness of the surface frontal
coastal current is positive) and maxt{c(t)} , g and
mint{d(t)} . 21 must be satisfied for any time. These
restrictions, in fact, ensure that the current will not ex-
pand to infinity or degenerate into a line. The solution
(15)–(18) shows that infinitesimal disturbances of sur-
face frontal coastal currents in geostrophic equilibrium
yield always superinertial oscillations [see (16)] around
this equilibrium.

2) WEAKLY NONLINEAR OSCILLATIONS AROUND

GEOSTROPHY EMERGING FROM A CROSS-FRONT

DISTURBANCE

We now consider weakly nonlinear oscillations
caused by a disturbance that, initially, is merely cross
frontal (i.e., a0 ± 0, b0 5 c0 5 d0 5 0). From the
second and third equation of (13), we find

b(t) 5 (1 2 2g)[E(t) 2 1] and
3c(t) 5 g[1 2 E (t)], (19)

where E 5 exp[2 a(j) dj]. This allows replacementt#0

of (13) with

2 2 2 3ȧ 5 v d 2 a 1 6gd 1 2gd , ḋ 5 2a 2 ad,

a(0) 5 «, and d(0) 5 0, (20)

where d(t) 5 E(t) 2 1 is a new unknown function and
« 5 a0 is a small parameter.

To find the solution of (20) we apply a perturbation
method in « (e.g., Nayfen 1981). First we replace the
independent variable t by a new variable t using the
following expansion:

2 3t 5 t(1 1 a « 1 a « 1 a « 1 · · ·),1 2 3 (21)

which contains the unknown constants aj. Note that (21)
describes the nonlinear frequency distortion of the fre-
quency of the linear solutions (16). We then write the
unknown functions a(t) and d(t) as power series in «:

` `

j ja 5 a (t)« and d 5 d (t)« . (22)O Oj j
j51 j51

Substitution of (21) and (22) into (20) leads to a set of
equations in aj and dj for the corresponding powers of
«. We have solved analytically this problem for the first
three orders:

21 1 g 2 67g 4g
2 2a 5 « 1 1 « cosVt 1 « sinVt

6 31 24v v

1 1 8g 8g
22« sin2Vt 2 « cos2Vt

3 31 22v v

21 1 17g 1 61g
3 42 « cos3Vt 1 O(« ) and

64v

21
3g(1 2 g)

2 4V 5 v 1 2 « 1 O(« ). (23)
6[ ]v

Because the periodic oscillations of the frontal coastal
current described by (13) are nonsinusoidal, a spectral
analysis of its exact solution would reveal the presence
of the fundamental oscillation frequency V together
with all of its higher harmonics. In the second-order
approximation, instead, the front oscillation is com-
posed of a superposition of first and second harmonics
only. Every successive order of weakly nonlinear so-
lutions leads to the appearance of an additional har-
monic of the fundamental oscillation frequency V. Note
that, in the range of geophysical coastal currents (g ,
1), the second-order correction to the linear oscillation
frequency results in an increase of the oscillation fre-
quency.

A comparison among asymptotic solution (23), linear
solution (15), and exact solution (obtained numerically
using a fourth-order Runge–Kutta method; e.g., Abra-
mowitz and Stegun 1972) of (13) is shown in Fig. 3.
Note that, although the asymptotic solution (23) is very
close to the exact solution, a mismatch between linear
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FIG. 3. Temporal evolution of a(t) between 18 and 20 inertial pe-
riods for the inviscid case. Presented are different solutions of (13):
the exact (numerical) solution, the weakly nonlinear third-order so-
lution (23), and the linear solution (15). The initial values used in
(13) are a0 5 0.2, b0 5 c0 5 d0 5 0, and g 5 0.347.

FIG. 4. Amplitude of cross-frontal velocity oscillations as function
of the initial squared current Rossby number g for different current
deviations from geostrophy. The values of the parameter m vary from
0 to 1, which corresponds to consideration of currents whose initial
structures range from quiescence (m 5 0) to geostrophy (m 5 1).

and nonlinear solution is visible and results from the
neglect of the amplitude dependence of the oscillation
frequency in the linear solution.

3) WEAKLY NONLINEAR OSCILLATIONS AROUND

GEOSTROPHY EMERGING FROM AN ALONGFRONT

DISTURBANCE

We now consider nonlinear oscillations caused by ini-
tial alongfront disturbances perturbing a surface frontal
coastal current in geostrophic equilibrium—that is, we
assume that, in (13), a0 5 c0 5 d0 5 0 and b0 5 «,
where « is a small parameter. In this case, (20) may be
replaced with

2 2 2 3ȧ 5 v d 1 « 1 «d 2 a 1 6gd 1 2gd ,

ḋ 5 2a 2 ad, and a(0) 5 d(0) 5 0. (24)

Substitution of (21) and (22) into (24) leads to a set of
equations in aj and dj for the corresponding powers of
«. We have solved analytically this problem for the first
three orders and found the expression for the oscillation
frequency:

v
V 5 , (25)

2 31 1 a « 1 a « 1 O(« )1 2

where

6g 15g(21 1 3g)
a 5 and a 5 .1 24 8v v

From (25) it can be evinced that the frequency shift due
to nonlinearity may be both positive (b0 . 0) and neg-

ative (b0 , 0). On the contrary, in the case of a mere
cross-front initial disturbance, only frequencies that are
larger than in the linear case can be obtained, because
the frequency shift depends in that case on «2 only. Thus,
in our solutions, nonharmonic oscillations depend on
the kind of initial disturbances, and their frequency is
always larger than the inertial one.

For currents characterized by different current Rossby
numbers, the amplitude of the current oscillations and
the deviation of the oscillation periods from the inertial
period can be investigated by considering initial devi-
ations from geostrophy. To this purpose, we define b0

5 2g(1 2 m), and we vary the parameter m in the range
of 0 # m # 1. The value m 5 0 refers to an initially
motionless surface frontal layer; for m 5 1, the current
is in exact geostrophic equilibrium. Figure 4 shows that
the oscillation amplitudes increase with increasing ini-
tial deviation from geostrophy. The dependence of the
oscillation period on the initial squared current Rossby
number for different initial deviations from geostrophy
in the frame of the fully nonlinear theory described
above and in the frame of the weakly nonlinear theory
is depicted in Fig. 5. Note that, for the selected range
of m, the smaller the initial current deviation from geos-
trophy is, the larger is the deviation of the oscillation
period from the inertial period.

b. Oscillation and mean current decay

In the linear case, the equations in (6) take the form
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FIG. 5. Period of current oscillations T as a function of the initial
current squared Rossby number g for different current deviations
from geostrophy (solid lines). The values of the parameter m vary
from 0 to 1, which corresponds to consideration of currents whose
initial structures range from quiescence (m 5 0) to geostrophy (m 5
1). The black dots refer to the linear solution (16); the squares refer
to the second-order weakly nonlinear solution (25).

˙ ˙A 5 2sA 1 B 2 2C, B 5 2A 2 sB,

˙ ˙C 5 0, and D 5 0,

with

A(0) 5 A , B(0) 5 B , C(0) 5 C , and0 0 0

D(0) 5 D .0

The solution of this problem is
2st 2stA 5 a e sinF 2 sp , B 5 a e cosF 1 p ,0 0 0 0

C [ C , and D [ D , (26)0 0

where F 5 t 1 w0, p0 5 2(1 1 s2)21C0, and a0 and
w0 are constants that depend on A0 and B0. If we assume
that, in the nonlinear case, amplitude and phase of the
oscillations are almost constant during an inertial period,
we can conjecture that, also in that case, a solution
formally similar to (26) but characterized by time-de-
pendent coefficients a0, w0, and C0 held. We thus replace
the functions A and B in (6) by

A sinF(t) 2s
2st5 a(t)e 1 p, (27)5 6 5 6 5 6B cosF(t) 1

where

2C(t)
p 5 ,

21 1 s

with F 5 t 1 w(t), where now a, w, and C are functions

of time. Substitution of (27) into (6) yields the following
system of ODEs in the unknown time-dependent vari-
ables a, w, C, and D:

ȧ 1 (*) sinF 1 (*) cosF 2 (*) sin2F

2 (*) cos2F 5 0,

ẇ 1 ap 2 (*) sinF 2 (*) cosF 1 (*) sin2F

2 (*) cos2F 5 0,

Ċ 2 3spC 1 (*) sinF 5 0, and

Ḋ 2 spD 1 (*) sinF 5 0, (28)

with a(0) 5 a0, w(0) 5 w0, C(0) 5 C0, and D(0) 5
D0. Here (*) are slowly varying functions of time. To
find an approximate solution of (28) under the assump-
tions mentioned above, we apply the method of aver-
aging (e.g., Nayfen 1981)—that is, we average all dif-
ferential equations of (28) over the temporal interval [0,
2p]. Thus all oscillating terms vanish:

2 21ȧ 5 0, ẇ 5 22(1 1 s ) C,

2 21 2 2 21˙ ˙C 5 6s(1 1 s ) C , D 5 2s(1 1 s ) CD,

a(0) 5 a , w(0) 5 w , C(0) 5 C , and0 0 0

D(0) 5 D . (29)0

The solution of (29) reads
21a 5 a , w 5 w 1 (3s) ln(1 2 3sp t),0 0 0

21C 5 C (1 2 3sp t) , and0 0

21/3D 5 D (1 2 3sp t) . (30)0 0

The expressions (5), (27), and (29) describe the tran-
sition of a surface frontal coastal current from an initial
stage characterized by intensive superinertial oscilla-
tions toward a nonoscillating stage characterized by a
decaying mean current. While, as time elapses, the su-
perinertial oscillations decay exponentially the mean
current decays potentially, that is, essentially more slow-
ly than the superinertial oscillations. Similar estimates
may be also found by replacing the first two equations
of (1) with mere geostrophy. This approach was pro-
posed by Matsuura (1980), who investigated numeri-
cally the decay of circular frontal vortices. In Fig. 6, an
example of frictional decay of different parameters of
a surface frontal coastal current is depicted. The fast
attenuation of the near-inertial oscillations found in this
section accounts for a rapid decay of near-surface os-
cillatory energy.

5. Intrinsic current oscillations versus propagating
waves

As we stressed in our introduction and also demon-
strated in the last sections, the same coherent mesoscale
frontal features involved in the transformation of the
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FIG. 6. Frictional decay of a surface frontal coastal current. The
time series shows the evolution, according to (6), of (a) the position
of the outcropping line, (b) the maximum layer thickness, (c) the
cross-front velocity, and (d) the alongfront velocity. The value used
for the linear interfacial friction is s 5 0.02. The initial state is rest:
A0 5 B0 5 0, C0 5 22g , and D0 5 1, with g 5 0.347.

spatial scales of oceanic near-inertial internal waves pos-
sess intrinsic modes of near-inertial oscillations. Kunze
(1985) found that inertial waves interacting with larger-
scale, anticyclonic geostrophic mesoscale features ex-
perience a decrease in their frequency, that is, they be-
come subinertial. One can ask whether our results are
in contradiction to the results of Kunze (1985). To an-
swer this question, in this section we analyze small-
amplitude disturbances superimposed on a surface fron-
tal current in geostrophic equilibrium:

u 5 0, y 5 V(x) 5 dH/dx, and h 5 H(x) (31)

within the strip x1 , x , x2, where H is the thickness
of the surface frontal layer [with H(x1,2) 5 0] and V is
the alongfront, geostrophic velocity. We impose small
perturbations u1, y1, and h1 on (31):

u 5 u (x, t), y 5 y (x, t) 1 V(x), and1 1

h 5 h (x, t) 1 H(x).1

From (1), we obtain the following system of linearized
equations:

]u ]h1 12 y 5 2 ,1]t ]x

]y dV1 1 1 1 u 5 0, and (32)11 2]t dx

]h ]u1 11 Vu 1 H 5 0. (33)1]t ]x

We now assume that the perturbed fields have the form
h1 5 Z(x)e2iv t , u1 5 U1(x)e2iv t , and y 1 5 V1(x)e2iv t .
Substituting these expressions in (32) and (33) leads
to the boundary-value problem for the unknown var-
iable Z:

d H dZ
1 Z 5 0,

2[ ]dx v 2 1 2 dV(x)/dx dx

x # x # x , and (34)1 2

|Z(x )| , `, (35)1,2

where v2 is the eigenvalue to be found. The boundary
conditions (35) are required to ensure that the solution
is bounded at the outcropping lines x 5 x1,2, which are
singular points for (34). Note that, in our linear as-
sumption, these boundaries have fixed positions. For
surface frontal currents with parabolic cross sections in
geostrophic equilibrium we obtain H 5 1 2 gx2, V 5
22gx, x1 5 2x2, and x2 5 g 21/2. A coordinate trans-
formation according to x 5 jg21/2 allows rewriting of
(34) and (35) as

d dZ
2(1 2 j ) 1 lZ 5 0, 21 # j # 1, and[ ]dj dj

|Z(61)| , `, (36)

where l 5 (v2 2 1 1 2g)/g. Nontrivial solutions of
(36) can be expressed in terms of Legendre polynomials
for l 5 n(n 1 1), n 5 0, 1, . . . (Abramowitz and Stegun
1972). Hence, for n . 0, all cross-front disturbances
are standing waves of the form

nd
2 nh 5 c [(1 2 gx ) ] exp(2iv t) and1 n nndx

v 5 Ï1 1 [n(n 1 1) 2 2]g, (37)n

where cn are arbitrary constants and | x | # g 21/2. The
form of the frontal interface is asymmetric (symmetric)
with respect to the current axis, if n is odd (even). The
frequency vn is exactly inertial for n 5 1 and superi-
nertial for n . 1. Note that, in the case of surface frontal
coastal currents, only symmetric modes (even n) are
allowed. For the lowest symmetric mode of oscillations
(n 5 2), the disturbance is parabolic and the relations
(16) and (37) coincide. For n 5 0 we obtain

1 dV
h 5 const and v 5 Ï1 2 2g ø 1 1 (38)1 0 2 dx

for 0 , g , 0.5. The frequency of the disturbance is
thus subinertial and corresponds to the approximate dis-
persion relation derived by Kunze (1985). The solution
(38) simply results from (32), for vanishing gradient of
the perturbed thickness, but cannot fulfill the continuity
equation in (33), and hence it cannot be considered as
a simple mode of oscillation of the surface frontal cur-
rent. The solution presented here for n 5 0 and that
presented by Kunze (1985) can be seen as a superpo-
sition of inertial oscillations on a background vorticity
field.
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6. Discussion and conclusions

In this paper we have studied, in the frame of the
nonlinear reduced-gravity theory, intrinsic oscillations
of stable surface frontal currents of special structure. In
particular, we have concentrated our attention on their
inviscid evolution and on their frictional decay. The
motivation for our investigation is the need of gaining
a deeper understanding of fundamental aspects related
to the near-inertial evolution of these oceanic mesoscale
features, as a prerequisite toward a better comprehension
of the physical mechanisms involved in the transfor-
mation of longer, mostly wind-induced near-surface in-
ertial oscillations in shorter near-inertial oscillations that
are able to transfer their energy rapidly to the oceanic
abyss. In fact, the inhomogeneities in the oceanic vor-
ticity field that, on an f plane, are responsible for this
scale transformation often coincide with near-surface
mesoscale frontal features, which are known to possess
intrinsic modes of near-inertial oscillations.

In the case of double-fronted surface currents char-
acterized by parabolic cross sections and linear hori-
zontal velocity structure we were able to reduce the
nonlinear reduced-gravity shallow-water equations to a
set of nonlinear, coupled ordinary differential equations.
In the inviscid case, a periodic analytical solution of the
nonlinear problem describing the inertially reversing
horizontal displacement of a surface frontal current hav-
ing a fixed parabolic cross section was found. The in-
viscid cross-front pulsation of a coastal current emerg-
ing from a motionless surface frontal layer was also
investigated analytically. In this case, it was found that,
for any current size and oscillation amplitude, the os-
cillations are superinertial. In the linear and in the weak-
ly nonlinear approximation, different aspects of the pul-
sating dynamics of surface frontal currents were inves-
tigated. For infinitesimal disturbances imposed on a geo-
strophic current, a simple formula relates oscillation
frequency and squared current Rossby number: v 5

. Whereas disturbances of the geostrophic cur-Ï1 1 4g
rent imposed in the alongfront direction result in oscil-
lation periods shorter or larger than the linear one, dis-
turbances in the cross-front direction yield always short-
er periods than in the linear case. This result is a con-
sequence of the fact that alongfront velocity
disturbances not only generate oscillations but also mod-
ify the current Rossby number. On the contrary, cross-
front velocity disturbances are not able to change sub-
stantially the current Rossby number. The effect of lin-
ear interface friction was also investigated: the current
oscillations decay according to an exponential law,
whereas the intensity of the mean current decays ac-
cording to a power law. Note also that instability mech-
anisms (which have not been considered in this inves-
tigation) can contribute to the energy decay of frontal
mesoscale features (Griffiths et al. 1982; Paldor and
Killworth 1987; Rubino et al. 2002). In a linear context,
it was found that disturbances superimposed on the sur-

face frontal current are standing waves within the
bounded region, whose frequencies are inertial/superi-
nertial for the first mode/higher modes. In the same
frame, a zeroth mode, referring to the superposition of
an inertial wave on a background vorticity field and
hence resembling the situation investigated by Kunze
(1985), would formally yield subinertial frequencies.
Note that the approach used in our investigation—that
is, the reduced-gravity assumption—does not allow one
to study vertical propagation of near-inertial activity
from the upper to the lower ocean. Such propagation
would crucially depend on the properties of an active
ambient ocean such as, for example, density and ve-
locity distribution (Kunze 1985; Wang 1991; Young and
Jelloul 1997; Balmforth et al. 1998). Although we rec-
ognize that an extension of our analytical work to in-
clude an active ambient ocean may be unfeasible, mul-
tilayer numerical models could be used to quantify this
vertical energy transfer (e.g., Wang 1991).

Still, a deeper comprehension of the intrinsic oscil-
lations of geophysical frontal features in a simplified
context may represent a prerequisite for better under-
standing the intricate dynamics leading to the observed
near-inertial wave field in the ocean. In fact, in the upper
ocean, the energy of the wind excites inertial waves
having similar spatial scales as the generating atmo-
spheric fronts. Such waves need to experience a vari-
ation in their frequency to be able to transfer their energy
rapidly downward. Together with their equatorward
propagation (Garrett 2001), interactions of inertial
waves with inhomogeneities of the ambient vorticity
field (Kunze 1985) are able to produce such a frequency
shift. On the other hand, however, and mostly depending
on their specific geometry, many of the same inhomo-
geneities possess intrinsic modes of near-inertial oscil-
lations, which would possibly generate near-inertial
waves in an active ambient ocean. Thus, on an f plane,
the zoo of existing surface frontal mesoscale features
may play a larger role than believed in the past in the
observed rapid propagation of the energy of the wind
toward the abyss.
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