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A global ocean model with 1/12° horizontal resolution is used to assess the
seasonal cycle of surface Eddy Kinetic Energy (FK E). The model reproduces
the salient features of the observed mean surface FK FE, including amplitude
and phase of its seasonal cycle in most parts of the ocean. In all subtropi-
cal gyres of the Pacific and Atlantic, FK E peaks in summer down to a depth
of ~350 m, below which the seasonal cycle is weak. Investigation of the pos-
sible driving mechanisms reveals the seasonal changes in the thermal inter-
actions with=the atmosphere to be the most likely cause of the summer max-
imum of KK Ex The development of the seasonal thermocline in spring and
summer is‘aeeompanied by stronger mesoscale variations in the horizontal
temperattire gradients near the surface which corresponds, by thermal wind
balance, to an intensification of mesoscale velocity anomalies towards the sur-

face.
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1. Introduction

Since the advance of satellite altimetry and eddy-resolving ocean general circulation
models the global view of mesoscale Eddy Kinetic Energy (FKE) and its statistics is
constantly improving. Recent advances include the documentation of temporal variations
in FKFE which have spurred new consideration of the sources and sinks of the ocean
eddy field.. Using satellite altimetry Zhai et al. [2008] and Scharffenberg and Stammer
[2010] obtained the striking result that surface EKE peaks in summer over most of the
subtropical*gyres and Western Boundary Current regions (WBCs) in both hemispheres,
while it peaks in winter in the Pacific’s subpolar gyre and the Labrador Sea, and has no
significant.seasenal cycle in most of the eastern basins and the Southern Ocean. Regional
studies eonfirm this for the North [Qiu, 1999] and South Pacific [Qiu and Chen, 2004]
subtropical gyres.

Local maxima in FKFE in the vicinity of strong currents and fronts can easily be ex-
plained by'baroclinic and barotropic instabilities caused by sharp gradients in velocity.
Interannual changes in these instabilities, driven by either meridional shifts of the asso-
ciated currents,[Hakkinen and Rhines, 2009] or indirect effects of the wind forcing (pre-
conditioning;through Sverdrup flow [Garnier and Schopp, 1999], Ekman convergence and
frontogenesis [Qiu and Chen, 2010; Volkov and Fu, 2011]), are thought to drive EKFE
variability on“interannual timescales. However the generation of FKE in the interior of
the midlatitude oceans is not well understood [Xu et al., 2011] and several theories exist
to explaint EK F variability on seasonal timescales. Neither local wind forcing [Stammer,

1997] nor remote sources that radiate FKE into the interior of the subtropical gyres
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[Stammer et al., 2001] were found to satisfactorily explain the observed energy levels and
spectra. It has been shown that the interior of the subtropical gyres can favor local
generation of FK E by baroclinic instability, at least in regions where weak currents are
present [Beckmann et al., 1994; Arbic, 2000]. Qiu [1999] and Qiu and Chen [2004] argue
that seasonally varying baroclinic instabilities between subtropical countercurrents and
underlying, equatorial currents are the cause for the observed seasonal cycle of surface
EKFE in parts of the North and South Pacific. Additionally, when considering temporal
variability, "dissipation of surface EKE through wind work [Zhai and Greatbatch, 2007]
and heat fluxes [Zhai and Greatbatch, 2006a, b] has to be taken into account. These dis-
sipation preeesses were suggested to be driving the seasonal variability of surface FKFE
in the Gulf Stream region, with weaker dissipation in summer [Zhai et al., 2008].

Here, we report on high-resolution model simulations that shed new light onto the mech-
anisms of geasonal variability of surface EKE. We use a global ocean-sea ice model with
1/12° resolttion to assess the spatial pattern of the annual cycle of EKE in comparison
to surface altimetry. We inspect the vertical structure of the annual cycle and discuss the
roles of severalypossible driving mechanisms with a focus on the subtropical gyres of the

Atlantic and; Pacific Oceans.

2. Data, Model and Methods

The observational data of geostrophic surface currents used in this study were obtained
from Sea Surface Height (SSH) measurements by satellite altimetry and distributed by
Archiving, Validation and Interpretation of Satellite Oceanographic Data (AVISO). It

combines altimetry measurements from TOPEX/Poseidon, Jason-1, ERS-1/2 and Envisat
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onto a 1/4° x 1/4° grid, provided with a time step of one day, spanning the period from
01.01.1993-31.12.2012. More information on AVISO data and associated errors are found
in Le Traon et al. [1998], Ducet et al. [2000] and SSALTO/DUACS [2011].

The model output is from a high-resolution global ocean-sea ice simulation using a model
configuration (ORCA12) based on the NEMO code [Madec et al., 1998], developed as part
of the DRAKKAR collaboration. The various ORCA12 configurations developed in recent
years [DRAKKAR Group, 2014] share the same global, orthogonal, curvilinear, tripolar
Arakawa-C*type grid with a nominal resolution of 1/12° in longitude. An ensemble of
simulations from the ORCA12-suite has been used previously to examine the freshwater
transport inthe South Atlantic [Deshayes et al., 2013] and the salt transport in the global
ocean |Tréguier et al., 2014]. The particular (Kiel) version of ORCA12 uses 46 vertical
levels with 6 m thickness at the surface, increasing towards ~250 m in the deep ocean
and a partial-cell formulation at the bottom [cf. Barnier et al., 2006]. The atmospheric
forcing for“the 30-year hindcast simulation (1978-2007) utilizes the bulk formulations
and data products comprised in the CORE.v2 [Griffies et al., 2009; Large and Yeager,
2009]. The model analysis focuses on the years after 1981 when the upper ocean EKE
is in a quasi-equilibrium state, using 5-day mean model fields. For the calculation of
EKE = 0.5(u” + v"?), the zonal and meridional surface velocity fluctuations (u’,v') =
(u — @,v —"B) represent the deviations from the annual-mean surface velocities (u, ),
obtained by.averaging the velocities (u, v) over each individual calendar year. Calculating
(v, v") with respect to a moving average (u,v), i.e. a yearly or 3-month (removing the

seasonal and interannual variability of the mean) average centered at the same time as
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the 5-day average, did not change amplitude and phase of the annual cycle of FKFE
significantly. The deviations of 5-day means from a yearly mean horizontal velocity are
found to be more appropriate for seasonal EKE calculations [cf. Penduff et al., 2004;
Rieck, 2014] (Figure S1) than using the long time mean as in some previous studies
le.g. Zhai et al., 2008]. EKFE from surface velocities (u,v) includes a contribution from
ageostrophic, e.g. Ekman, currents, which are not represented by FK E calculated from
altimetry products. However, the mean, amplitude and seasonal cycle of FK F calculated
from (u,v)*de not differ significantly from EKFE calculated from geostrophic currents
from the model simulation in the subtropical gyres (cf. Figure S1). We thus use (u,v) for

our analysisgas no further data processing is required.

3. Results

3.1. The annual cycle of EKE

The model realistically reproduces the spatial distribution of mean surface EK E com-
pared to observations (Figure la and b) [e.g. Zhai et al., 2008; Scharffenberg and Stammer,
2010]. All'major currents are indicated by elevated FK E and the minima are located in
the interiorsef‘the subtropical and subpolar gyres. Highest EK E levels are found in the
vicinity ofithe northern hemisphere (NH) WBCs and the Agulhas Retroflection, reaching
1000-3000{cm?/s®. These values are comparable to the EKE values inferred from satel-
lite altimetry [e.g. Zhai et al., 2008; Xu et al., 2011]. Other regions with EKE of up
to 1000 cm?/s*include the southern hemisphere (SH) WBCs, equatorial regions and the
Antarctic Cireumpolar Current (200-500 cm?/s?), where ORCA12, in some parts, simu-

lates E K E somewhat higher than found in observations. In the interior subtropical gyres
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EKE ranges between 5 and 50 cm?/s?, the SH generally shows lower values. Near current
bands, e.g. subtropical countercurrents, EK E can be as high as ~300 cm?/s?.

The simulated seasonal variability of EK FE is compared globally to FK E derived from
altimeter products by fitting a function of the form A cos(w — ¢) to monthly climatological
EKE, with w = 27t/12, t = 1,..,12 (representing the months) and ¢ being the phase
of the annual eycle. The distribution of the amplitude of the annual cycle of surface
EKE closely follows the mean EKE (Figure la and b). Areas with a high mean FKE
exhibit a high“amplitude of the annual cycle. Amplitudes of 200 cm?/s? and more can be
found in_some parts of the WBCs. Away from the WBCs amplitudes up to 100 cm?/s?
are commonsin=the western Pacific, while in the eastern Pacific and Atlantic subtropical
gyres, amplitudes are generally lower than 30 cm?/s? with minima <5 cm?/ 2.

The phase of the annual cycle of surface FKE (the month with highest FKFE) is in
summer in all subtropical gyres (Figure 1lc), in agreement with previous observational
studies [Zhai et al., 2008; Scharffenberg and Stammer, 2010] and analysis of AVISO data
(Figure 1d). The phase from AVISO leads the simulated phase by one month in the
interior subtropical gyres. This becomes especially apparent in the North and South
Pacific, where,more areas exhibit maximum FKF in May and October, respectively, in
the obersational data.

A closer investigation of the simulated phase of the annual cycle reveals, that in the
North Pacifiesthe Kuroshio Extension represents a transition zone between the subtropical
and subpolar regimes. Maximum EKFE is found in summer as far north as the axis of

the Kuroshio Extension (indicated by highest FKE in Figure la). On the northern

DRAFT October 26, 2015, 10:42am DRAFT

©2015 American Geophysical Union. All rights reserved.



122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

X-8 RIECK ET AL.: SEASONAL VARIABILITY OF EDDY KINETIC ENERGY

flank, the phase is gradually shifted towards winter. In the North Atlantic, the summer
maximum of FKF extends farther north, winter maxima are restricted to regions on
the continental shelf. It has to be noted though, that at higher latitudes, as well as at
eastern boundaries at all extratropical latitudes, and in the Southern Ocean, the spatial
distribution of the phase is heterogeneous [cf. Zhai et al., 2008] with amplitudes <25 %
of the mean (indicated by the hatched areas in Figure 1lc), not allowing for a detailed
comparison to observations (Figure 1d). A specific regional feature appearing in the
model simulation is the winter maximum in FKE at, and close to, the points where the
Kuroshio and Gulf Stream separate from the coasts. These are probably associated with
highest bareelinic instability and thus £ K E generation in winter [Zhai et al., 2008]. These
featuress€ould not be revealed by previous studies based on coarse resolution altimetry
data [e.g. Ducet et al., 2000; Zhai et al., 2008] and indicate, that care has to be taken
when investigating the regionally averaged seasonal cycle of EKE in WBC regions as
one is proné€ toaverage over regions with substantially different variability and underlying
processes.

Further janalysis of seasonal variations focuses on the nature of the summer maximum
of FKFE in«the subtropical gyres by choosing four representative regions characterized
by homogeneous phase and significant amplitude of the annual cycle (Figure 1c). In
the North Atlantic (NA) and South Atlantic (SA), areas in the interior (NA) or eastern
subtropicalsbasins (SA) lack a significant amplitude of the annual cycle, restricting the
choice t@*western subtropical gyre regions. In the North Pacific (NP) and South Pacific

(SP), the regions have been chosen to be comparable to the NA and SA boxes. In the NH
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boxes, FK F in the model is two to three times lower than F K FE from observations, partly
attributable to a northward shift of the WBC extensions by roughly 2°-3° in the model
(Figure S2), so that while the regions chosen contain elevated EKE levels influenced by
the WBC regions in the AVISO data, these areas with higher FK E are excluded from
averaging in the model output. Despite this bias in the mean of the simulated seasonal
cycle, surface FKFE peaks in the summer months in all four subtropical gyres in the
Atlantic and Pacific Oceans (Figure 2). On average, EKE is higher in the Pacific, with
highest valwes'in the NP box. The seasonal cycles, though shifted towards later in the
year by ~1 month, are similar in phase and have an amplitude of ~50-60 % of the annual
mean in thesmeodel, compared to 30-50 % in AVISO.

An interesting feature of the FK E variability not accessible from satellite observations
is its vertical structure (Figure 3). The model simulation shows, that the seasonal cycle is
markedly surface intensified with values of up to ~50 cm?/s? (~25 cm?/s?) at the surface
in the NP and"SP boxes (NA and SA boxes), decreasing rapidly within the upper 150-200
m, while the phase of the seasonal cycle is similar over this depth range (cf. Figure 4). As
at the surface, "W K F in the upper 350 m is about two to three times higher in the Pacific
boxes, compared to the Atlantic boxes (Figure 4). Strong variations on a seasonal time
scale are only observed in the upper 100 m of the water column; below ~350 m FKFE is
~10 cm?/s%*#n all four regions (Figure 4) and the amplitude of the seasonal cycle is <5

cm? /2.
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3.2. Possible mechanisms

Several possible mechanisms have been proposed to explain the observed seasonal vari-
ations of surface intensified FK FE in the interior subtropical gyres. In the following, we
use the model to test these hypotheses.

First, EK FE together with its seasonal cycle could be advected or radiated from regions
with strong currents into less energetic regions [Pedlosky, 1977; Chester et al., 1994; Xu
et al., 2014]. Although advection of FKE cannot be ruled out in general, it is clearly
not the cause*for the observed seasonal variations. In particular, there is no phase shift
observed from regions of higher £ K F towards the interior gyres, as is the case e.g. in the
Indian Ocean’s:Leeuwin Current [Scharffenberg and Stammer, 2010], the California Cur-
rent andeoff the Peruvian coast (Figure 1c), where EKE is produced near the continents
and then propagates towards the interior, shifting the phase of the seasonal cycle towards
later in the year (~0.5-1 months/°longitude) in agreement with eddy propagation speeds
of ~3-5 knt/day [e.g. Fu, 2009].

Next, wind work could damp the FKE at the surface, imprinting the seasonal varia-
tions of the wind field onto the EKE [Zhai and Greatbatch, 2007]. The monthly mean
climatology-of.wind stress amplitude 7 from the model is depicted in Figure 2. The wind
stress amplitude shows significantly different behavior in the different gyres. While the
SA box has"a’clear winter maximum (>0.05 N/m? compared to 0.03 N/m? in summer),
the NA boxeshows a winter and a summer maximum with comparable amplitudes (0.06
N/m?). he NP box wind stress amplitude (in the range 0.04-0.08 N/m?) does not exhibit

any clear seasonal cycle and the SP box has a weak fall minimum (0.04 N/m?) but no
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clear maximum (0.05-0.06 N/m?). These findings suggest the wind stress to be of minor
importance for FKE dissipation in the subtropical gyres, compared to the role it could
play in the WBC regimes [Zhai et al., 2008].

A third hypothesis proposed to induce a seasonal cycle of surface EKFE, is through
dissipation of Sea Surface Temperature (SST') anomalies due to surface heat fluxes [Zhai
and Greatbatch, 2006a, b]. This is found to be consistent with the model simulation, where
in winter, downward heat flux anomalies in the mesoscale are larger for the same change
in SST tham=in summer (-58.1 W/m?/°C in DJF, -40.9 W/m?/°C in JJA, as calculated
for part ofithe western NA subtropical gyre). This means that the damping due to surface
heat flux applied to the depth of the seasonal thermocline is less in summer than it is in
winter.

However, another and probably a more important aspect of the seasonality in sur-
face heat fluxes and the resulting seasonal thermocline is the associated intensification
of mesoscalée currents towards the surface. A conspicuous aspect of the model results is
the small wvertical penetration of the annual signal: EKFE values below ~350 m depth
are almost constant throughout the year (Figure 3). Thermal wind balance then requires
horizontal mesoscale temperature gradients to support the vertical shear of the mesoscale
velocities associated with the seasonal maximum of EKE in summer. Figure 4 shows
Tyraa = [(0FF0)? + (0T /0y)?]'/%, where T are high-pass filtered temperature anomalies
(wavelengths.< ~450 km). In winter, when the Mixed Layer (ML) is deep, T,qq is small
(4-8x107%°C/m) and the velocities are only weakly sheared towards the surface. This

reduction in 7,4 and the associated velocities is easily explained by large scale surface
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heat loss, inducing a homogenization and deepening of the ML. Contrastingly, when the
ML shoals in spring, Ty,qq associated with the seasonal thermocline increases to 8-14 x 106
°C/m. The reasons behind this reappearance of strong T},.q4, in contrast to the erosion
in fall and winter, is less clear and will be further discussed in the following section.
Nevertheless, these higher gradients require the mesoscale currents from below 350 m to
strongly intensify towards the surface, resulting in a summer maximum of EKFE at the

surface.

4. Summary and Discussion

The ORCA12 model was found to reproduce the observed annual cycle of surface EK FE
on a global and regional scale, especially in our regions of interest, the Atlantic and Pa-
cific subtropical gyres. Surface EK FE, vertical and meridional F K E profiles, and seasonal
cycles weresalso compared to two other models with lower (1/4°) (Figure 3, S2 and S3)
and higher (1/20°) (Figure S3) resolution (see Behrens [2013] for details on the model
configurations). No qualitative differences to the results from the 1/12° model are ob-
served, indicating robustness of the findings, not only at the surface, where a comparison
to observationson a global scale is possible, but also in the sub-surface subtropical ocean,
where only, a wvery limited number of mooring observations have been investigated for
seasonal variations [Wunsch, 1997].

The model simulation aids in the explanation of the observed seasonal variability and
provides a 3-d"perspective of the phenomenon not available from observations on a global
scale. A striking feature is the broad summer maximum in £ K F across both hemispheres

found in both, the model and the observations.
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Advection of FKFE from regions with high EFK E towards the interior ocean basins can
be ruled out as a source for the observed seasonal variability of surface EKFE, as there
is no phase shift in the annual cycle to support such a mechanism. Likewise, the wind
stress and associated dissipation of EKFE is only of minor importance to the subtropical
gyres, as they do not have a common observed wind stress cycle, despite having a similar
seasonal variability in EKE.

The remaining external forcing to contribute to the seasonal cycle of FKE in the
subtropical*gyres are thermal interactions with the atmosphere. In a direct way, surface
heat fluxes exert a damping of mesoscale anomalies [Zhai and Greatbatch, 2006b]. We
have seen that-the net damping over the depth of the seasonal thermocline is weaker in
summergthan in winter. The ML is deeper and the mesoscale surface heat flux anomalies
for the same change in SST are stronger in winter, leading to an enhanced damping,
which is reduced during summer when there is also a strong decoupling of the deeper
layers throtighthe seasonal thermocline from the surface due to the strong stratification.

A key new aspect revealed by the model simulation concerns the vertical structure of
the FK E/variation. The surface-trapped nature of the seasonal cycle of EKE implies
an enhanced wertical shear of mesoscale velocity variations in summer, corresponding
to stronger horizontal mesoscale temperature gradients because of thermal wind balance
(cf. Figure4). While the erosion of these gradients in fall and early winter is easy
to understand as a consequence of large scale cooling due to surface heat loss, their
regeneration in spring is less clear. One possibility is that the continuous, year round

production of EK E in combination with the surface heat input generates these mesoscale
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temperature gradients without the need to invoke a seasonal cycle in K E production
from baroclinic instability. Another possibility is a seasonally varying production of FKE
through baroclinic instability in the top 200-300 m [e.g. Beckmann et al., 1994] as proposed
by Qiu [1999] and Qiu and Chen [2004] for parts of the Pacific subtropical gyres. Since
this depends on the presence of vertically sheared currents over the depth range of the
seasonal thermocline that are present in the Pacific but are less pronounced in the Atlantic
subtropical gyres, this might help explain the larger amplitude of the seasonal cycle of
the FKE inethe NP and SP boxes compared to the NA and SA boxes.

The relative importance of the influence from the different mechanisms on the seasonal
cycle of surface FKFE cannot be determined by this analysis. An interesting point in
this regard is that the seasonal cycle of upper ocean EKFE is consistent through simu-
lations with various resolutions. Various previous studies suggested the importance of
submesosdale HK F with scales on the order O(10 km) in modulating the seasonal cycle
of EKE [Hristova et al., 2014; Qiu et al., 2014] and maintaining mesoscale EK E levels
[Sasaki etyal., 2014]. However, since the submesoscale on the order O(10 km) is not re-
solved in models with O(1/4°) meshes, the mechanisms involving these scales can only
be of minor<dmportance to the seasonal cycle of mesoscale surface K FE, possibly adding

small modulations in higher-resolution models and the real ocean.
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Figure 1. a), b): Amplitude of the annual cycle of surface EKE (colors, note the non-linear
scale) and mean surface FKFE (contours at 20, 50, 200 and 500 cm?/s?) for a) ORCA12 and
b) AVISO. ¢), d): Phase of the annual cycle of surface EKE (month with highest EKFE) for
c) ORCA12 and d) AVISO. Both the amplitude and phase are from a fitted annual cycle as
described in the text. Regions used for more detailed investigations are indicated by green boxes
(NP: Noeth/Pacific; SP: South Pacific; NA: North Atlantic; SA: South Atlantic). In ¢) and d),
regions where the amplitude of the annual cycle is <25 % of the mean are masked by hatches.
Figure 2. Monthly climatological FKE from ORCA12 (solid black line; ¢cm?/s?), EKFE
from satellite altimetry (dashed black line; cm?/s?) and wind stress amplitude 7 (dotted red
line; N/m?) for the four regions shown in Figure 1c and d. NP (a); 20°N-30°N; 160°E-175°W),
SP (¢)m25°S-35°S, 150°W-175°W), NA (b); 20°N-30°N, 45°W-65°W) and SA (d); 25°S-35°S,
20°W-40°W). Note the differently scaled y-axis in a).
Figure 8.+ Amplitude of the seasonal cycle of EKFE plotted against depth for a), the 1/12°
model (ORCA12) and b), the 1/4° model (ORCA025) averaged over the NP (solid line), SP
(dashed line), NA (dash-dotted line) and SA (dotted line) boxes.
Figure 4. Monthly climatological square root of the variance of mesoscale, horizontal temper-
ature gradients (7,44 C°/1000 km) plotted against depth in colors for the four regions shown
in Figure 1&; NP (a), SP (c), NA (b) and SA (d). Gray contours depict monthly climatological
EKE, units.are cm?/s2. Contour levels are (20, 40, 60, 80, 100) and (10, 20, 30, 40, 50) for a), c¢)
and b), d) respectively, every other contour is labelled. The white line indicates the mean Mixed

Layer Depth. Note the different color scales for the left and right panels.
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