
Geophysical Research Letters

Synoptic-scale behavior of the extratropical
tropopause inversion layer

Robin Pilch Kedzierski1, Katja Matthes1,2, and Karl Bumke1

1Marine Meteorology Department, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 2Faculty of
Mathematics and Natural Sciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Abstract High-resolution GPS radio occultation temperature profiles from the COSMIC satellite mission
(2007–2013) are used to obtain daily snapshots of the strength of the extratropical tropopause inversion
layer (TIL). Its horizontal structure and day-to-day variability are linked to the synoptic situation at
near-tropopause level. The strength of the TIL in cyclonic as well as anticyclonic conditions is investigated
by separating relative vorticity into curl and shear terms. The analysis shows that the TIL has high zonal
variability, and its strength is instantaneously adjusted to the synoptic situation at near-tropopause level.
Our key finding is that the TIL within midlatitude ridges in winter is as strong as or stronger than the TIL in
polar summer. The strongest TIL in anticyclonic conditions is related to the shear term, while the weaker
TIL in cyclonic conditions is enhanced by the curl term.

1. Introduction

The extratropical tropopause inversion layer (TIL) is characterized by enhanced static stability and a strong
temperature inversion in a thin layer of about 1 km depth right above the extratropical tropopause. The TIL
was discovered via tropopause-based averaging [Birner et al., 2002] and is a ubiquitous global phenomenon
from high vertically resolved radiosonde observations [Birner, 2006] and satellite GPS radio occultation
(GPS-RO) temperature profiles [Grise et al., 2010].

The TIL receives increasing attention because its enhanced stability has implications for the vertical prop-
agation of Rossby and small-scale gravity waves. Since a number of refraction indexes and wave theory
approximations make use of static stability in their formulas, higher static stability would act to inhibit vertical
wave propagation [see Birner, 2006, and references therein].

TIL seasonality, vertical structure, and strength are strongly correlated with observed gradients of strato-
spheric and tropospheric trace gases from aircraft [Kunz et al., 2009; Schmidt et al., 2010] and satellite
measurements [Hegglin et al., 2009]. Therefore, it is argued that the TIL plays an important role in stratosphere-
troposphere exchange (STE), which determines stratospheric chemical composition and affects the radiation
budget for surface climate. The relation is as follows: higher static stability inhibits vertical motion and
correlates with sharper trace gas gradient which in turn inhibits STE.

Climatological studies have shown that the TIL is strongest in polar summer and also has a relative maximum in
midlatitude winter [Birner, 2006; Randel et al., 2007; Randel and Wu, 2010; Grise et al., 2010]. The TIL is enhanced
under anticyclonic conditions based on GPS-RO observations [Randel et al., 2007; Randel and Wu, 2010]. Given
that the temperature decreases with height up to the tropopause where the gradient is reversed, a dipole
of cooling below the tropopause and warming above the tropopause is needed for the enhancement of the
gradient right above the tropopause. Several hypotheses have been proposed about what mechanisms can
produce this dipole and thus form and maintain the TIL:

1. Radiative effects: These involve longwave water vapor cooling below the tropopause and shortwave ozone
warming above the tropopause due to their decreasing (increasing) concentration with height. This mech-
anism was first proposed by Randel et al. [2007]. Later the role of water vapor was found to be dominant
[Hegglin et al., 2009; Kunz et al., 2009; Randel and Wu, 2010]. However, modeling studies by Birner [2010] and
Miyazaki et al. [2010a] suggest that radiative effects are only important during summer.

2. Dynamics: The dipole consists of dynamical heating above the tropopause driven by the downwelling
branch of the large-scale stratospheric residual circulation and cooling below the tropopause due to
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tropopause lifting by upper tropospheric eddies. Birner [2010] showed a TIL formation by including the
dynamical effects of stratospheric residual circulation in a chemistry climate model, and a number of ide-
alized modeling studies pointed to the importance of synoptic-scale dynamics alone: baroclinic waves and
their embedded cyclones and anticyclones [Wirth, 2003, 2004; Wirth and Szabo, 2007; Son and Polvani, 2007]
and specially baroclinic wave breaking events [Erler and Wirth, 2011] in the formation and enhancement of
the TIL. Yet this dipole only explains the magnitude of the TIL found at midlatitudes, and the only observa-
tional studies making a direct link between TIL variability and dynamics are Randel et al. [2007] and Randel
and Wu [2010] on the relationship between the TIL and near-tropopause cyclonic-anticyclonic relative
vorticity. At small scales, a baroclinic life cycle experiment by Kunkel et al. [2014] showed transient enhance-
ment of the TIL in the presence of gravity waves, which could persistently enhance/maintain the TIL via
wave-mean flow interaction.

The current state of research suggests that the TIL, though a global phenomenon, has different formation
processes which depend on latitude and season. The relative contribution of each was studied in a high-
resolution model [Miyazaki et al., 2010a, 2010b] and supports the idea that radiative effects are of importance
only in polar summer while dynamics dominate otherwise.

The main goals of our study are to provide a first detailed observational picture of the TIL’s real-time behavior
and to gain insight into the role of synoptic-scale dynamics on the TIL formation and maintenance. We will
contrast the polar summer TIL to the TIL found within baroclinic waves in winter. The high number of tem-
perature profiles from GPS-RO observations from the COSMIC satellite mission [Anthes et al., 2008] allows to
derive daily snapshots of TIL properties at a sufficient horizontal resolution to be compared to the synoptic
situation at near-tropopause level from ERA-Interim reanalysis [Dee et al., 2011]. Also, we investigate the rela-
tionship between the TIL and cyclonic versus anticyclonic conditions by splitting relative vorticity into curl and
shear terms. Shear represents pure horizontal wind gradient as from balanced adiabatic dynamics. Curl, an air
parcel’s spin, becomes important during the high-amplitude and breaking stages of a baroclinic wave
[Bell and Keyser, 1993], and high values indicate flow imbalance [Plougonven and Zhang, 2014; Kunkel
et al., 2014]. Our interest is which term and its associated flow type enhances the TIL at different relative
vorticity conditions.

In sections 2.1 and 2.2 we will explain, respectively, the methods to obtain TIL daily snapshots and to
split relative vorticity into curl and shear terms. In section 3 the synoptic-scale behavior of the TIL will be
analyzed; section 4 will discuss the relative contributions of curl and shear on the TIL relationship with
cyclonic-anticyclonic relative vorticity; and section 5 will discuss and summarize the main findings.

2. Data and Methods

To derive TIL properties, we use temperature profiles from GPS-RO observations (COSMIC satellite mission
[Anthes et al., 2008]). The high vertical resolution of the GPS-RO temperature profiles (100 m spacing from
the ground up to 40 km altitude) is comparable to that of high-resolution radiosondes, with the advantage
of having weather independency and global coverage at a rate of ∼2000 profiles per day. The wet tem-
perature profiles we use (the “wetPrf” product) include the water vapor effect when retrieving temperature
from the refractivity measured by the satellites, based on a 1D variational analysis using European Centre
for Medium-Range Weather Forecasts (ECMWF) data. Higher concentrations or gradients of water vapor near
the tropopause are not an error source this way. The “wetPrf” and dry temperature “atmPrf” profiles agree
extremely well in a validation study by Das and Pan [2014], with absolute zero difference above the 200 hPa
level. Less than 1% of the profiles is rejected by a preliminary quality control. Profiles with temperatures
>150∘C or <−150∘C and those where the tropopause cannot be detected are not used to avoid unrealistic
temperature gradients and/or TIL location.

The tropopause height (TPz) is defined by the lapse-rate tropopause (LR TP) World Meteorological Organization
[1957] criterion, unless stated otherwise. The near-TP synoptic situation is obtained from ERA-Interim reanaly-
sis [Dee et al., 2011]. The 200 hPa level was selected for comparison with earlier work about the TIL relationship
with relative vorticity [Randel et al., 2007; Randel and Wu, 2010]. Daily, 12 UTC fields of geopotential height and
winds are retrieved from ERA-Interim on a 2.5∘ × 2.5∘ longitude-latitude grid. Relative vorticity and its curl and
shear terms are calculated from the wind fields. Our study was conducted for the time period 2007–2013.
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2.1. TIL Strength and Mapping
Static-stability vertical profiles are obtained from the COSMIC temperature data, calculating the Brunt-Väisälä
frequency squared (N2 [s−2]) with the following formula:

N2 = g∕Θ ⋅ 𝜕Θ∕𝜕z

where g is the gravitational acceleration and Θ the potential temperature. As a measure of TIL strength, we
use the maximum of the Brunt-Väisälä frequency squared (N2

max) above the LR TP, following Birner et al. [2006],
Wirth and Szabo [2007], and Erler and Wirth [2011].

N2
max represents TP sharpness better than the temperature difference between TPz and 2 km above used

in Randel et al. [2007] and Randel and Wu [2010] in terms of physical meaning: it captures the maximum
gradient of potential temperature, and N2 is used in wave propagation/refraction indexes and wave theory
approximations. Instead of averaging the N2 profiles with respect to the tropopause, the simple mean of all
their N2

max is made directly for two reasons: (1) the N2
max is not always located at the exact same distance

from the tropopause and therefore gets diluted in the TP-based average profile; and (2) there exists
a cyclone-anticyclone asymmetry between the LR TP (based on temperature gradient) and dynamical
tropopause (based on a potential vorticity threshold) [Wirth, 2001], with increasing differences toward
stronger cyclonic circulation. Taking the mean of N2

max avoids these sources of indeterminacy. We allow our
algorithm to find the N2

max up to 3 km above the tropopause, although it is almost always found in the
first 1–2 km.

TIL strength maps are displayed daily on a polar stereographic grid covering the area of 30∘–90∘N (41 × 41
grid points with∼3∘ spacing). All GPS-RO profiles of the corresponding day within a 1000 km radius from each
grid point are used to obtain the grid’s value. The 1000 km radius is chosen to minimize the number of gaps
in our TIL strength maps and for smoothing purposes since it avoids small-scale structures that cannot be
resolved with the COSMIC mission sampling density. These settings are well below the size of troughs/ridges
that form within baroclinic waves at near-TP level in winter and therefore sufficient to follow their synoptic
development.

2.2. Relative Vorticity and Split Into Curl and Shear
Relative vorticity (𝜁 ) and its curl and shear terms are obtained by applying the notation developed in Bell and
Keyser [1993] on ERA-Interim (daily 12 UTC 200 hPa) wind fields. Curl𝜁 and Shear𝜁 are calculated as follows:

Curl𝜁 = 1∕V2[u2vx − v2uy − uv(ux − vy)] (1)

Shear𝜁 = −1∕V2[u2uy − v2vx − uv(ux − vy)] (2)

where V2 = (u2 + v2) and the subscripts of u and v denote their partial derivatives with respect to x or y. This
notation is very convenient since the sum of (1) and (2) gives (vx − uy) = 𝜁 .

The 200 hPa relative vorticity and geopotential height fields are interpolated from the original ERA-Interim
longitude-latitude grid onto the polar stereographic projection used in our analysis. Examples of the spatial
distribution of Curl𝜁 and Shear𝜁 compared to 𝜁 are given in the supporting information (Figure S1).

When making diagrams of TIL strength versus relative vorticity, we follow the method by Randel et al. [2007]
and Randel and Wu [2010], binning TIL properties regarding their collocated 200 hPa relative vorticity. We
use 12 UTC daily ERA-Interim [Dee et al., 2011] instead of daily National Centers for Environmental Prediction
(NCEP) reanalysis fields [Kalnay et al., 1996] and N2

max as the measure of TIL strength instead of the temperature
difference between the TPz and 2 km above. For each value of 𝜁 , a distribution of N2

max from all GPS-RO profiles
collocated with such relative vorticity is computed. The Curl𝜁 and Shear𝜁 terms are also binned for comparison.
In each case 𝜁 , Curl𝜁 and Shear𝜁 are binned alone, regardless of what value the other terms have.

3. Synoptic-Scale Behavior of the TIL From Daily Snapshots

The synoptic-scale behavior of the TIL strength (sTIL) is analyzed based on snapshots of different summer and
winter days. To take near-TP synoptic variability into account, the examples chosen for this section are repre-
sentative of a range of situations that can be found in summer and winter: stronger/weaker N2

max peaks and
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Figure 1. Polar stereographic maps of (first and third columns) daily TIL strength (N2
max) and (second and fourth columns) 200 hPa relative vorticity, at different

summer days. Corresponding color scales are at the bottom. Contour lines show 200 hPa geopotential height (in km with 150 m interval).

the presence of various zonal structures such as troughs and ridges of different wavelenghts and amplitudes.
The results of this section are compared to earlier observational studies and climatologies [Birner, 2006; Randel
et al., 2007; Randel and Wu, 2010; Grise et al., 2010], unless referred otherwise.

3.1. Summer Examples
Figure 1 shows four examples of sTIL daily snapshots during summer and the corresponding near-tropopause
(12 UTC, 200 hPa) 𝜁 and geopotential height fields of the same day. Note that due to our definition of sTIL
via N2

max, the magnitude of the sTIL is higher than in previous studies [Birner, 2006; Randel et al., 2007; Randel
and Wu, 2010; Grise et al., 2010], differing about 2 × 10−4s−2.

In summer, the polar TIL is stronger than in midlatitudes. Randel and Wu [2010] showed that water vapor radia-
tive effects dominate TIL formation in polar summer, since the highest upper tropospheric concentrations
and cross-TP gradients are found then. The daily snapshots in Figure 1 reveal that the sTIL has high zonal and
day-to-day variability, showing sTIL maxima collocated with anticyclonic relative vorticity. This is also in agree-
ment with Randel and Wu [2010] who suggested that synoptic-scale dynamics shape the horizontal structure
of the already strong polar summer TIL.

sTIL ranges typically between 8–10 × 10−4s−2 at polar regions and 6–7 × 10−4s−2 at midlatitudes. This is far
away from typical stratospheric values (∼4×10−4s−2) and supports the TIL as an absolutely ubiquitous feature
in Northern Hemisphere (NH) summer. The weakest TIL found in some cases (Figure 1c, blue) has still values
above 5× 10−4s−2. In rare cases, the sTIL reaches more than 11× 10−4s−2 (Figure 1c, red). Such events happen
once per month on average and last 1–2 days.

3.2. Winter Examples
Figure 2 shows more sTIL snapshots from winter to compare with Figure 1 (summer). The geopotential
height fields now show a stronger jet with larger-amplitude oscillations: well-defined troughs and ridges at
midlatitudes. Due to the enhanced dynamic activity in midlatitude winters, we separated example days where
the sTIL had very strong peaks (Figures 2a, 2c, 2e, and 2g) from days when it was weaker (Figures 2b, 2d, 2f,
and 2h). The magnitude of N2

max suggests that the TIL in NH winter is always present. Values below 5×10−4s−2

are only found in SH winter in the polar vortex region (see supporting information Figure S3).

In winter midlatitudes, the TIL is, in general, stronger than near the pole in agreement with previous
climatologies [Birner, 2006; Randel et al., 2007; Randel and Wu, 2010; Grise et al., 2010] due to the increased
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Figure 2. Same as Figure 1, but for different winter days. Separated are examples of situations with (a, c, e, and g) stronger N2
max peaks and (b, d, f, and h) weaker

N2
max peaks.

stratospheric circulation in the winter hemisphere and upper tropospheric baroclinic wave activity at
midlatitudes. The TIL adjusts to the synoptic circulation, showing a big trough-ridge contrast. Lower values
of 6–7 × 10−4s−2 are found within troughs and peaks of at least 8–10 × 10−4s−2 within ridges (Figures 2b,
2d, 2f, and 2h), while the sTIL at polar regions is about 5–7 × 10−4s−2. The sTIL quite often reaches more than
12 × 10−4s−2 within midlatitude ridges, and depending on the wave structure of the jet, one (Figure 2a) or
multiple strong peaks (Figures 2c, 2e, and 2g) can appear. As in summer, those strong peaks last for 1–2 days
but are present more often: about 25% of all days. The trough-ridge contrast from Figure 2 is coherent with
the TIL zonal structures derived from reanalysis by Gettelman and Wang [2015].

Why is the TIL within ridges in midlatitude winter of the same magnitude or stronger than in polar summer?
During winter the stratospheric residual circulation is strongest (producing dynamical heating above the TP),
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Figure 3. Histogram with relative frequencies of TIL strength (N2
max),

comparing Northern Hemisphere polar summer (red line, JJAS
70∘ –90∘N) with midlatitude winter (blue line, DJFM 30∘ –60∘N).

tropopause lifting and cooling by upper-

tropospheric eddies are strongest at mid-

latitudes (and especially within ridges

since they have higher and colder TP),

and even radiative cooling from cirrus

clouds or high humidity at near-TP level

is possible. Taylor et al. [2011] showed a

case study of a nonconvective cirrus cloud

associated with a negative temperature

anomaly, and Biondi et al. [2012] stud-

ied the temperature inversion generally

found at cloud tops with GPS-RO data.

While all three mechanisms can act
together in ridges, this is not the case in
troughs (lower TP, no high cirrus clouds)

or polar summer (upper tropospheric eddies and stratospheric circulation are both weaker despite the
stronger water vapor radiative cooling).

3.3. Polar Summer Versus Midlatitude Winter
Figure 3 summarizes the results from sections 3.1 and 3.2, showing the relative frequency of N2

max in polar
summer (red line) and midlatitude winter (blue line). The N2

max occurrence is computed relative to all grid
boxes (from maps as in Figures 1 and 2) within the selected latitudes and time. The seasonal mean state of
the sTIL in polar summer (8.5 × 10−4s−2) is stronger than in midlatitude winter (7.6 × 10−4s−2). Note that the
distributions are shown on a log-y scale, and due to the large sample size (2007–2013, daily for each season,
multiple grid points, less area/grids in polar regions), this difference is very significant: 100 standard deviations
of the distributions’ means are 0.25 × 10−4s−2 for summer and 0.12 × 10−4s−2 for winter.

The midlatitude winter distribution (though having a lower mean) is much broader and skewed toward higher
N2

max values, which only occur within ridges as shown in the previous section. sTIL values surpassing the
summer mean (8.5 × 10−4s−2) represent an integrated relative frequency of 19.14% in the midlatitude winter
distribution. Values above 10 × 10−4s−2 amount for a 3.24%, and the strongest peaks above 11 × 10−4s−2 are
more frequent in midlatitude winter than in polar summer.

In summary, the synoptic-scale features shown in this section reveal that the strongest TIL is found in
midlatitude winter, within ridges. Even in the weakest cases, the sTIL within midlatitude ridges in winter
(Figure 2) is of the same magnitude (8–10×10−4s−2) as in polar summer (Figure 1), and the strongest sTIL peaks
are more frequent and reach higher values within winter ridges compared to polar summer (Figure 3). Due
to the big trough-ridge contrast (weak-strong TIL), the zonal mean sTIL in midlatitude winter is weaker than
in polar summer (Figure 3), in agreement with earlier climatologies [Birner, 2006; Randel et al., 2007; Randel
and Wu, 2010; Grise et al., 2010].

All results from this section are also applicable to the Southern Hemisphere extratropical TIL. Plots similar to
Figures 1–3 can be found in the supporting information (Figures S2–S4).

4. The Role of Curl and Shear Relative Vorticity

Figures 4a and 4b show diagrams of TIL strength (N2
max) related to relative vorticity for polar summer and

midlatitude winter, respectively. Thick lines show the mean N2
max for each relative vorticity bin, while the

vertical thin lines show one standard deviation of the bin’s N2
max distribution’s mean. The black lines (total

relative vorticity) in Figure 4b correspond to the results from Randel et al. [2007] and those in Figure 4a to
the ones from Randel and Wu [2010]. Even using different reanalysis data and a different measure for the sTIL,
its relationship with 𝜁 is in very good agreement with those earlier studies: sTIL increases toward anticyclonic
conditions in a very similar manner. Due to the larger sample size, high measure density by COSMIC mission
[Anthes et al., 2008] and a longer time period (2007–2013), a wider range of 𝜁 can be explored.

PILCH KEDZIERSKI ET AL. TIL SYNOPTICS 10,023
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Figure 4. Diagrams of TIL strength (N2
max) versus relative vorticity. (a) Polar summer (JAS 70∘ –90∘N) and (b) midlatitude

winter (JFM 30∘ –60∘N). Blue, red, and black lines denote, respectively, shear, curl, and total relative vorticity. Dashed
lines correspond to Southern Hemisphere seasons (summer JFM and winter JAS). Vertical bars denote one standard
deviation of the mean value.

4.1. Curl in Cyclonic Circulation
The red and blue lines in Figure 4 correspond to the Curl𝜁 and Shear𝜁 terms. Figure 4 shows that the general
tendency of decreasing sTIL with stronger cyclonic circulation is not followed by the Curl𝜁 term (red line): the
relation gets inverted at the strongest cyclonic Curl𝜁 with values showing enhanced sTIL.

Nonlinear growth and breaking of baroclinic waves can generate high Curl𝜁 amounts [Bell and Keyser, 1993],
and the behavior of the Curl𝜁 line in Figure 4 is particularly similar to the N2

max versus relative vorticity relation
described by Erler and Wirth [2011] after the anticyclonic breaking (LC1 type) of a baroclinic wave. Our results
suggest that processes related to baroclinic wave growth and breaking (e.g., flow imbalance or gravity wave
presence) [Plougonven and Zhang, 2014; Kunkel et al., 2014] are responsible for the enhancement of the weaker
TIL within cyclones.

4.2. Shear in Anticyclonic Circulation
Curl𝜁 (red) and Shear𝜁 (blue) terms in Figure 4 differ increasingly toward stronger anticyclonic conditions.
Strong anticyclonic Shear𝜁 is related to higher values of N2

max. The difference of the mean sTIL at the same
values of Curl𝜁 and Shear𝜁 is significant in Figure 4a: the blue and red lines are separated by more than one
standard deviation (vertical lines). For midlatitude winter sTIL (Figure 4b) the lines differ less, though having
the same tendency. The same behavior is observed regarding TPz , with anticyclonic shear related to the
highest TPz (see supporting information Figure S5) and differing significantly from the Curl𝜁 term at any
season. Polar winter has a similar behavior as in Figure 4a, and midlatitude summer resembles Figure 4b
(see supporting information Figure S6).

Wirth [2003] explained the stronger TIL in anticyclones by hydrostatic and gradient wind balance. Since the
wind shear dominates this balance, our results for the shear term further support these dynamics in producing
the strong TIL within anticyclonic conditions. Wirth [2004] showed that the same dynamics, apart from making
the tropopause higher and colder in the anticyclone, also form a secondary circulation with downwelling and
convergence of vertical wind above the anticyclone, bringing the isentropes closer, increasing the potential
temperature gradient and thus further stabilizing the TIL region.

As in section 3, the results of this section also apply to the Southern Hemisphere. The roles of the Curl𝜁 and
Shear𝜁 terms are very similar (dashed lines in Figure 4, and supporting information Figures S5 and S6).

5. Concluding Remarks

Our study analyzed the TIL real-time behavior, showing important features adjusted to the synoptic
situation at near-tropopause level, especially a strong trough-ridge contrast in midlatitude winter. The key
finding of our study is that the TIL within midlatitude winter ridges is always as strong or even stronger than
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in polar summer. This means that while the climatological TIL is strongest in polar summer [Birner, 2006;
Randel et al., 2007; Randel and Wu, 2010; Grise et al., 2010], this is no longer the case at the synoptic scale. This
highlights the importance of synoptic-scale dynamics for the formation of the TIL.

We expanded the work by Randel et al. [2007] and Randel and Wu [2010] on the relationship of sTIL with
relative vorticity. Shear relative vorticity is related to the strongest TIL in anticyclonic conditions, especially at
polar latitudes, while the weaker TIL within cyclones is enhanced under the Curl𝜁 term. This suggests that the
processes responsible for the TIL enhancement are different in anticyclones (balanced hydrostatic dynamics)
and cyclones (related to baroclinic wave growth and breaking).

All these findings also apply for the Southern Hemisphere. We are aware that the 200 hPa level chosen as
the near-tropopause synoptic situation is often quite above the tropopause and more representative of the
lowermost stratosphere: there is high variability in TPz at midlatitudes, and TPz at polar regions is typically
below 250 hPa even in summer [Son et al., 2011]. Nevertheless, it is very useful for comparison with earlier
studies about the TIL.
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