Transport of halogenated VSLS from the Indian Ocean to the stratosphere through the Asian monsoon circulation

Alina Fiehn

Helmke Hepach, Elliot Atlas (RSMAS), Birgit Quack,

Susann Tegtmeier, Kirstin Krüger (UiO)

ACAM Workshop, 10.06.2015

Asian monsoon transport to the stratosphere

Are oceanic VSLS entrained via the Asian monsoon circulation ?

Suggested VSLS transport

OASIS cruise

- July and August 2014
- West Indian Ocean
- Trace gas concentrations measured in air and water every 3 h
- Emissions calculated

$$F = k \cdot \Delta C$$

Strong source region for VSLS.

FLEXPART

- Lagrangian transport model with convection scheme
- Input: 6 hourly ERA-Interim fields
- Forward or backward trajectories
- Output every 6 hours for 3 months

Simulations

Stohl et al. 2005

- 1. Bromoform emissions from OASIS cruise 10,000 forward trajectories from measurement sites Atmospheric lifetime profile for emitted VSLS
- General transport from Indian Ocean
 Forward trajectories from 1°x1° grid over West Indian Ocean surface
 1404 trajectories released every day in July 2014
- 3. Source regions of monsoon anticyclone

Backward trajectories from 1°x1° grid at 17 km 27,000 trajectories released on July 31st, 2014

ERA Interim input

Strong anticyclone in July at 100 hPa Upward movement above Bay of Bengal, Tibetan Plateau, Southeast Asia, and China

1. Simulation: OASIS

OASIS transport regimes

1. Simulation: OASIS

Entrainment of bromoform at 17km

the West Pacific (3-10 %, Tegtmeier et al. 2012).

2. Simulation: Indian Ocean Entrainment of air masses from the Indian Ocean

Trajectory distribution at 17 km

Main entrance region to the stratosphere is above India, Bangladesh, and Myanmar.

Median age: 35 days

3. Simulation: Anticyclone

Anticyclone at 17 km

70% from boundary layer.48% origin from oceanicboundary layer, 52% from land.

Median age: 25 days

3. Simulation: Anticyclone

Oceanic source regions

Anticyclonic entrainment from Bay of Bengal and West Pacific is even greater than from Tropical West Indian Ocean.

Conclusions

- Tropical Indian Ocean is a strong source region for VSLS.
- Monsoon transport is fast enough for VSLS from the Indian Ocean to reach the stratosphere.
- ≈50% of the tropospheric air masses in the anticyclone have oceanic boundary layer source region.
- Expected high entrainment from Bay of Bengal during Asian monsoon season.

Potential temperature

50⁰N

40°N

30⁰N

20⁰N

10⁰N

0⁰

Indian Ocean transport

Month of release	Run	Reach 17 km	Median age [d]
June 2012	18	6.0 %	28.5
June 2013	19	5.9 %	
June 2014	20	5.9 %	

Anticyclone source regions

Month in 2014	Boundary layer	Land	Ocean	Arabic Sea	Bay of Bengal	West Pacific	Middle America
July	70	52	48	15	21	53	11
August	69	52	48	9	16	61	13
September	71	34	66	5	13	70	12

Emissions and entrainment

Campaign	Ocean	Mean CHBr ₃ emissions (pmol m ⁻² h ⁻¹)	Mean CHBr ₃ entrainment	
OASIS	West Indian	1520	12.3 nmol	2-3 %
TransBrom	Open West Pacific	463	≈15 nmol	3-10 %
SHIVA	Coastal West Pacific	1338	≈50 nmol	5-10 %
DRIVE	Northeast Atlantic	≈700	10 nmol	2 %
MSM 18-3	Equatorial Atlantic	643	2.9 nmol	1%