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S U M M A R Y
This paper applies nonlinear Bayesian inversion to marine controlled source electromagnetic
(CSEM) data collected near two sites of the Integrated Ocean Drilling Program (IODP) Ex-
pedition 311 on the northern Cascadia Margin to investigate subseafloor resistivity structure
related to gas hydrate deposits and cold vents. The Cascadia margin, off the west coast of
Vancouver Island, Canada, has a large accretionary prism where sediments are under pressure
due to convergent plate boundary tectonics. Gas hydrate deposits and cold vent structures have
previously been investigated by various geophysical methods and seabed drilling. Here, we
invert time-domain CSEM data collected at Sites U1328 and U1329 of IODP Expedition 311
using Bayesian methods to derive subsurface resistivity model parameters and uncertainties.
The Bayesian information criterion is applied to determine the amount of structure (number
of layers in a depth-dependent model) that can be resolved by the data. The parameter space
is sampled with the Metropolis–Hastings algorithm in principal-component space, utilizing
parallel tempering to ensure wider and efficient sampling and convergence. Nonlinear inver-
sion allows analysis of uncertain acquisition parameters such as time delays between receiver
and transmitter clocks as well as input electrical current amplitude. Marginalizing over these
instrument parameters in the inversion accounts for their contribution to the geophysical model
uncertainties. One-dimensional inversion of time-domain CSEM data collected at measure-
ment sites along a survey line allows interpretation of the subsurface resistivity structure. The
data sets can be generally explained by models with 1 to 3 layers. Inversion results at U1329,
at the landward edge of the gas hydrate stability zone, indicate a sediment unconformity as
well as potential cold vents which were previously unknown. The resistivities generally in-
crease upslope due to sediment erosion along the slope. Inversion results at U1328 on the
middle slope suggest several vent systems close to Bullseye vent in agreement with ongoing
interdisciplinary observations.

Key words: Probability distributions; Marine electromagnetics; Continental margins:
convergent; North America; Pacific Ocean.

1 I N T RO D U C T I O N

Marine controlled source electromagnetic (CSEM) methods are ap-
plied to evaluate the electrical properties of marine sediments. The
electrical resistivity of seafloor sediments, and its reciprocal, con-
ductivity, depend mainly on the sediment porosity and the electrical
resistivity of the pore fluid. Therefore, marine CSEM is sensitive
to resistive material in the pore spaces such as free gas, oil and
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gas hydrates. Marine CSEM methods have become a promising
tool for offshore hydrocarbon exploration (Ellingsrud et al. 2002;
Constable & Srnka 2007; Constable 2010). Edwards (1997) pro-
posed the use of marine CSEM for the evaluation of submarine
gas hydrates, and the first surveys were conducted on the Northern
Cascadia Margin using a time-domain, electric dipole–dipole sys-
tem (Yuan & Edwards 2000; Schwalenberg et al. 2005). Other case
studies followed to evaluate gas hydrates at, among others, Hydrate
Ridge offshore Oregon, USA, (Weitemeyer et al. 2011), the Hiku-
rangi margin offshore New Zealand (Schwalenberg et al. 2010a,b),
the Gulf of Mexico (Weitemeyer & Constable 2010) and offshore
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Svalbard (Goswami et al. 2013) using both frequency- and time-
domain CSEM systems.

The marine CSEM method is based on the diffusion of elec-
tromagnetic fields through the resistive subsurface and conductive
seawater. Direct interpretation is only possible to a limited extent.
To estimate a multilayer resistivity model of the subsurface from
CSEM data requires advanced inversion algorithms. Most of the
studies mentioned above invert CSEM data with linearized tech-
niques (e.g. Occam’s inversion, Constable et al. 1987). However, to
rigorously estimate uncertainties for model parameters and address
the non-uniqueness of CSEM data, we apply a nonlinear Bayesian
inversion. Bayesian methods have been implemented by, for exam-
ple, Hoversten et al. (2006) and Chen et al. (2007), who jointly
inverted CSEM and seismic (amplitude variation with angle of in-
cidence) data for oil and gas saturation, and Buland & Kolbjørnsen
(2012), who inverted inline as well as broadside electric and mag-
netic components of CSEM and magnetotelluric data to solve for
resistivities of hydrocarbon reservoirs. Bayesian inversion can be
implemented to estimate model parameter uncertainties, and to in-
clude additional information (e.g. electric and magnetic compo-
nents, prior knowledge about subsurface parameters, joint inver-
sion with other geophysical data) to decrease the uncertainties. This
is important to interpret the subsurface model accurately. A chal-
lenge is to estimate the number of parameters (e.g. resistivity layers)
that can be resolved with the data. Too many unknowns cause the
problem to be underdetermined and spurious structure might be
introduced, while including too few parameters into the inversion
may cause model structure to stay unresolved, and uncertainties
to be underestimated. Recently, Ray & Key (2012) and Gehrmann
et al. (2015) have implemented a trans-dimensional Bayesian inver-
sion for marine CSEM data where the number of layers that can be
resolved with the data is an unknown in the inversion. Alternatively,
Gunning et al. (2010) considered effective correlation lengths, a
Bayesian smoothing similar to regularization in linearized methods
and the Laplace approximation to the Bayesian evidence to estimate
the maximum a posteriori model (which maximizes the posterior
probability density, PPD, and represents the most probable model).
Here, we determine the optimal number of subsurface layers using

the Bayesian information criterion (BIC) which can be a simpler and
less-computationally expensive approach. Computation efficiency
is further improved carrying out sampling of the PPD over the
model space using the Metropolis–Hastings algorithm in principal-
component space (i.e. the parameter space is rotated to minimize the
effects of interparameter correlations) to estimate the PPD. Corre-
lated data errors, which are important when estimating the amount
of subsurface structure, are addressed here with a non-diagonal data
covariance matrix estimated from residual analysis (e.g. Dosso &
Dettmer 2011), which has been shown to be appropriate for CSEM
data inversion (e.g. Ray et al. 2013b; Gehrmann et al. 2015).

The marine time-domain CSEM data sets analysed in this study
were acquired in the late summers of 2005 and 2006 with a seafloor-
towed, horizontal, electric dipole-dipole system (Schwalenberg
et al. 2005). The two survey areas are located on the middle and
upper slope of the continental margin off Vancouver Island, Canada
(see Fig. 1). The Northern Cascadia margin is an active subduc-
tion zone, where the oceanic Juan de Fuca plate subducts beneath
the North American plate. Most of the oceanic sediments are ac-
creted onto the continental margin, pressurized and faulted (Davis
& Hyndman 1989). Ongoing fluid flow and localized cold vents
have been investigated using heat flow, seismic and borehole data
(Davis et al. 1990; Hyndman et al. 1993; Riedel et al. 2009). Gas
hydrate occurrences have been detected during various expeditions
with geophysical and geochemical techniques (Hyndman & Spence
1992; Yuan et al. 1999; Riedel et al. 2006b; Dash & Spence 2011).
For example, a distinct seismic signature of sediments containing
gas hydrates is the bottom simulating reflector (BSR). The BSR
generally results from an impedance contrast at the base of the gas
hydrate stability zone (GHSZ) caused by free gas beneath the base
of the GHSZ (Hyndman & Spence 1992). Seismic surveys and deep
sea drilling have indicated possible ways of gas hydrate distributions
in marine sediments. For example, gas hydrates have been found to
accumulate at the base of the GHSZ (possible mechanism: gas hy-
drate recycling) as well as in sand layers. Gas hydrates have also been
found laterally variable, accumulating within fractures along major
fluid conduits (Riedel et al. 2006a; Haacke et al. 2007; Zühlsdorff
& Spiess 2004). While drilling provides very localized, fine-scaled

Figure 1. Overview of the Northern Cascadia margin offshore Vancouver Island with multichannel seismic line 89-08 (black line), CSEM survey areas (black
rectangles) and location of IODP X311 Sites.



Bayesian inversion of CSEM data off Vancouver Island 23

Figure 2. Bathymetry of Area 1 with CSEM way points (black crosses), IODP X311 Site U1329 (red cross), MCS line PGC89-08 and SCS line CAS05C-line3
(grey lines), and estimated landward edge of the GHSZ (black curved line). Grey area on the lower right indicates missing bathymetry data.

information and seismic data are usually sensitive to impedance
contrasts associated with velocity and/or density changes, electro-
magnetic studies allow the evaluation of bulk volumes of sediments
containing gas hydrates and/or free gas (Edwards et al. 2010). Yuan
& Edwards (2000) and Schwalenberg et al. (2005) have shown that
the CSEM method may detect gas hydrate on the slope (even in
absence of a BSR) and at vent systems.

2 G E O L O G Y O F T H E S U RV E Y A R E A S

A geological interpretation of the survey areas is drawn from the
Integrated Ocean Drilling Program (IODP) Expedition 311 (X311)
by Expedition 311 Scientists (2005) and Riedel et al. (2006a). The
two CSEM survey areas are located on the upper slope around X311
Site U1329 (Area 1), and on the middle slope, around the Bullseye
vent and Site U1328 (Area 2) as shown in Fig. 1.

2.1 Area 1: upper slope near U1329

Site U1329 is situated 65 km from the west coast of Vancouver
Island, Canada, at the upslope edge of the GHSZ. The area is marked
with multiple canyons and topographic changes from 500 to 1300 m
water depth along a 7.5 km track with an average slope of 6◦.
Reflection seismic data reveal turbidite sequences and erosional
surfaces (Expedition 311 Scientists 2005; Scherwath et al. 2006).
The detailed analyses at Site U1329 [drilled to ∼220 meters below
seafloor (mbsf)] reveal three main lithostratigraphic units (Riedel
et al. 2006a). Units 1 and 2 consist of Holocene to Pleistocene
clay to silty clay to ∼140 mbsf. Diatoms in Unit 2 were dated
between >0.3 and 2 Ma. However, Unit 3 consists of late Miocene
material (>6.7 Ma) marking the boundary between Units 2 and 3
as an erosional unconformity (Expedition 311 Scientists 2006b),
which can also be observed on MCS line 89-08 (see Section 5.3).
Resistivities (measured downhole with the in situ GeoVISION high-
resolution button deep averaging tool) increase from ∼1 �m above
∼170 mbsf to >4 �m due to a reduction in sediment porosity.

A BSR is observed on MCS line 89-08 and on single channel
seismic (SCS) line CAS05C-3 (which runs perpendicular to MCS
line 89-08, see Fig. 2), but does not continue upslope of X311
Site U1329. Borehole data through the GHSZ suggest only a few
accumulations of gas hydrates at the base of the GHSZ at Site U1329
at 126 mbsf. Estimates of the gas hydrate saturation at this site based
on biogenic gas production incorporating paleo-sedimentation rates
also suggest a thin gas hydrate occurrence zone at the bottom of the
GHSZ (Malinverno et al. 2008).

Four CSEM lines around U1329, which were collected in 2005
and 2006, are shown on Fig. 2, one line perpendicular to the slope
(Aug1105) and across the drill site, and three lines parallel to the
slope (Aug1205, Sep0806, Sep0906). One slope-parallel line inter-
sects at U1329, the other two lines are located further up the slope
at the landward edge of the GHSZ.

2.2 Area 2: middle slope, Bullseye vent

Bullseye vent is an extensively studied cold vent site on the mid-
dle slope of the Northern Cascadia margin. Massive gas hydrates
were recovered in piston cores in the upper 8 mbsf (Riedel et al.
2006b). The vent site, one of a series of blank zones observed
in reflection seismic data over a wide range of frequencies (Riedel
et al. 2002), is characterized by a prominent seismic diffraction pro-
duced by a shallow gas hydrate cap. CSEM data collected in 2004
prior to X311 revealed highly anomalous electrical resistivities over
Bullseye vent which have been interpreted as sediments with high
gas hydrate concentrations (Schwalenberg et al. 2005). Local gas
plumes were observed in 2006 in the water column with an 18 kHz
echo sounder (Willoughby et al. 2008), and in 2013 with the multi-
beam system EM710 (Römer, private communication, 2014). The
borehole analysis of U1328 revealed three major lithostratigraphic
units down to 300 mbsf. Units 1 to 3 contain Pleistocene sediments
(<1.6 Ma) that consist of clay and silty clay interbedded with thin
sand layers, with few microfossils. Unit 2 (130–200 mbsf) stands
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Figure 3. Overview of Area 2 with detailed bathymetry of Bullseye vent in inset (black rectangle) by Paull et al. (2009), X311 Site U1328 (black cross), MCS
line GeoB00-142 (black line), CSEM WPs (black plus signs) of line Jul3105, Ocean Networks Canada (ONC) platform at Clayoquot Slope (red cross), fixed
CSEM system (red line), observed blanking on high-frequency AUV data from Paull et al. (2009) (grey lines), observed gas plumes in 2006 on CCGS John
P. Tully (orange circles) and in 2013 on RV Falkor (yellow circles) and bacterial mats observed in 2013 on RV Falkor (light grey line on inset). Grey area at
lower left indicates missing bathymetry data.

out with a higher abundance of microfossils and smaller content of
sand.

Analysis of pore-water chlorinity of sediment cores from U1328
provides information about hydrate formation within the sediment
column. Gas hydrate dissociation during recovery causes freshening
of the pore water and low chlorinity values, as observed between
150 and 220 mbsf above the base of the GHSZ (especially in the
10 m above the assumed base of the GHSZ at 220 mbsf). However,
between 5 and 20 mbsf, high chlorinity values indicate a recent and
rapid formation of gas hydrates, faster than the assumed diffusion
rate of 5 × 10−6 cm2 s−1 (Riedel et al. 2006a). Rapid gas hydrate
formation is possible in scenarios of high methane supply, for ex-
ample, along fractures (Nimblett & Ruppel 2003). Accumulations
of resistive material such as gas hydrates are also supported by
logging-while drilling (LWD) resistivities of 1 to 20 �m between 5
and 50 mbsf (Expedition 311 Scientists 2006a). A strong reflector,
possibly related to the top of a solid hydrate cap, is observed on seis-
mic lines just below the seafloor reflection. Chlorinity values and
on-board infrared thermal imaging suggest little to no gas hydrate
between 60 and 150 mbsf. The lack of gas hydrate at intermediate
depths is also supported by low resistivities, which increase with
depth from 1 to 2 �m between 50 and 150 mbsf. One exception
is a thin interval with elevated resistivity of up to 3 �m between
90 and 100 mbsf. Hydrates were discovered at 92 mbsf in one core
(maximum 38 per cent), but do not seem to be laterally continuous,
suggesting hydrate formation along fractures. Free gas concentra-
tions of 58 per cent below the GHSZ were found in one pressure
core, but could not be confirmed by wireline acoustic logging or

by vertical seismic profiling (Riedel et al. 2006a; Expedition 311
Scientists 2006a).

Four CSEM lines were collected across Bullseye vent in 2004
and 2005 (Schwalenberg et al. 2005; Schwalenberg 2007). The line
analysed here is shown in Fig. 3 and runs in a NE to SW direction
intersecting the Bullseye vent and overlaps partly with seismic line
GeoB00-142. The insert map in Fig. 3 also shows the location of the
CSEM experiment that was installed at the Ocean Networks Canada
(ONC) node at Bullseye vent. Analyses of CSEM data collected
here indicate a resistivity of ∼5 �m in a ∼40-m thick overburden
layer underlain by a less resistive half-space of ∼0.7 �m suggesting
shallow gas hydrate and/or free gas occurrences (Mir 2011).

3 M A R I N E C S E M M E T H O D A N D
I N S T RU M E N TAT I O N

Marine CSEM is a geophysical exploration method to investigate
the electrical resistivity distribution of the subseafloor. The method
is based on the propagation of electromagnetic fields through the
subseafloor and seawater, which are generated by an electric or mag-
netic source dipole close to or on the seafloor. The signals recorded
by one or more electric or magnetic receivers can be analysed to
yield estimates of the subseafloor resistivity. The electrical resis-
tivity of marine sediments is mainly controlled by the porosity and
the pore fluid (typically conductive seawater). The presence of gas
hydrate and free gas may increase the bulk resistivity where it re-
places the pore fluid in the sediment matrix (e.g. Edwards et al.
2010). Marine CSEM measurements presented here were carried
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Figure 4. Configuration of the seafloor-towed horizontal dipole–dipole CSEM instrument with transmitter (Tx)–receiver (Rx) spacing TxRx (Schwalenberg
et al. 2005; Yuan & Edwards 2000). Figure not to scale.

out with the time-domain electrical dipole-dipole system shown in
Fig. 4. The system was developed at the University of Toronto for
the investigation of marine gas hydrates (Edwards 1997; Yuan &
Edwards 2000). When deployed on the seafloor the system consists
of a 123-m long electrical transmitter dipole (Tx) followed by two
14-m long electrical receiving dipoles at offsets of 174 m and 292 m
from the Tx measuring the inline-component of the ambient elec-
trical fields with a pair of silver/silver chloride electrodes. A heavy,
plough-shaped weight, called a ‘pig’, is attached to the front end of
the array to keep it on the seafloor. The array is connected to the
research vessel with a coaxial tow cable, and the receiver units and
dipoles are connected to the Tx unit with simple rope of sufficient
tensile strength. The current signal is a square waveform with a
period of 6.6 s and a peak-to-peak amplitude of 20 A at maximum
which is generated by a custom-made current transverter situated on
board the research vessel. The current signal is sent to the transmit-
ter dipole on the seafloor via the coaxial tow cable. The autonomous
seafloor receiver units (Rx) are each equipped with a data logger,
a high-precision clock, analog electronics and batteries inside alu-
minum pressure cylinders. An identical unit was used on the ship
to record the source current signal. CSEM data are collected by
aligning the CSEM system on the seafloor where it is towed along
lines making stops to record data at a series of way points (WP).
Due to limited data storage at the time of the experiments, data
processing was carried out in two steps. The first processing step
was carried out during data recording. The raw analog time series
recorded with both receiver units and the unit recording the source
current were band-pass filtered to remove high-frequency noise
and low-frequency electrode drifts, stacked during recording and
stored in equal-length data sets. The second processing step was
carried out after the experiment. The step-on response and its stan-
dard deviation, which are used as input in the inversion described
in Section 4, were obtained when stacking periodic half periods
recorded at each WP. Fig. 5 shows a set of step-on responses and
source signals (inset) measured on August 11th 2005. The data are
generally of moderate quality. Differences in the electrical field
responses may indicate variations in the seafloor resistivity along
the profile, for example, earlier arrival and higher amplitude of the

step-on response are related to a higher resistivity in the subsurface.
Table 1 gives an overview of the survey lines analysed in this study.

4 I N V E R S I O N M E T H O D S

Inversion methods can be applied to estimate a model of the sub-
seafloor resistivity structure from observed CSEM data. Commonly,
linearized inversion methods have been applied to CSEM data,
which move down the data misfit gradient from an initial model
and converge to a global or local minimum. Linearized inversion
methods commonly use regularization to stabilize the inversion in
case of ill-conditioned and singular problems. When carrying out
multilayer inversions, a fundamental issue is that the amount of
vertical structure resolved by the data is not known a priori. The
most widely used linearized inversion method for CSEM is Oc-
cam’s inversion (Constable et al. 1987) that aims for a minimum
structure solution. When applied to a multilayer problem the model
is intentionally overparametrized, but constrained by minimizing
an L2-norm of the second depth-derivative of the model resistivity.
However, linearized inversion algorithms utilizing regularization
are not well suited to quantitatively estimate model uncertainties.

This study addresses the question how much vertical structure
can be resolved with the CSEM data assuming a 1-D model at each
way point, and aims for a rigorous uncertainty estimation for the
chosen parametrization. The overall choice of model, in this case
a 1-D layered (blocky) model requires deliberate consideration of
how the expected geological structure (inferred from, e.g. logging
or seismic data) may be linked to the distribution of the geophysi-
cal parameter of interest (here, electrical resistivity). While blocky
models are a common parametrization in geophysical inverse prob-
lems, the resistivity could also vary continuously with depth in
gradients (e.g. due to compaction), and the choice of model type
(blocky vs. gradient) could affect the number of layers required. For
example, Steininger et al. (2014) used polynomial-spline models in
seabed geoacoustic inversion to represent general gradients. How-
ever, gradient models can have difficulty matching abrupt structural
changes. For the inversions in this paper, we adopted layered models
to represent the relatively sharp resistivity contrast expected for gas
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Figure 5. Observed data at two receivers with error bars (stacking standard deviation) and source signal (step-on function) for five adjacent WPs (9-11) of
CSEM line Aug1105. Although the source signal, which was measured on board, is constant, the variation in late-time amplitude measured at the receivers
suggests that the actual current injected at the transmitter electrodes varied (for this profile only). However, the difference in arrival time suggests that the
subsurface is more resistive at WPs 10 and 10a than at the neighbouring WPs.

Table 1. CSEM data from 2005 to 2006 that were analysed for this paper.

Line Date Comments

Area 1 Aug1105 11 Aug. 2005 Parallel to slope
Tx electrode corroded

Aug1205 12 Aug. 2005 Perpendicular to slope
only data for Rx2

Sep0806 8 Sept. 2006 Perpendicular to slope
Sep0906 9 Sept. 2006 Perpendicular to slope

(not inverted with Bayesian inversion)

Area 2 Jul3105 31 July 2005 Across Bullseye vent

hydrate accumulations and lithological changes to older and denser
accretionary sediments.

As a first inversion step in this study a nonlinear hybrid opti-
mization (adaptive simplex simulated annealing, ASSA, which is
described in Section 4.2) is implemented. We use the optimal so-
lutions from ASSA and the BIC to determine the optimal number
of layers resolved by the data, and subsequently apply Metropolis–
Hastings sampling (MHS, Hastings 1970) with parallel tempering
(Dosso et al. 2012) for this number of layers to sample the PPD over
the parameter space. Parallel tempering improves the efficiency of
geophysical parameter sampling (see e.g. Sambridge et al. 2014),
especially when addressing nonlinear and multimodal behaviour,
and has shown to be effective for marine CSEM data inversion
(Ray et al. 2013a). In this approach, the parameters are perturbed in
principal-component space (Dosso & Dettmer 2011) to sample more
efficiently. Principal components consist of uncorrelated parameter
combinations. Perturbation in principal-component space is advan-
tageous for CSEM inversion as combinations of model parameters
can often be better resolved than model parameters individually
(e.g. resistivity-thickness product, Edwards 1997).

The nonlinear, numerical approach allows additional experimen-
tal parameters to be included in the inversion. Marginalizing over
these additional parameters includes the effect of their uncertainties
in the total uncertainty of the resistivity model. A multiplicative
calibration factor (CF) is also included which scales the predicted
step-on response (Scholl 2005). Amplifiers and electrode calibra-
tion values are already incorporated in the processing. However, the
CF is implemented here to compensate for possible errors of sur-
vey parameters such as array geometry and amplitude recordings of
the source signal. Another unknown included in the inversion is a
small time delay representing drift of the Tx/Rx oven-heated crystal
clocks that were synchronized on board but found to have drifted
by up to 3 ms after instrument recovery (after ∼12 hours).

4.1 Bayesian formulation

Bayesian inversion seeks a statistical description of the model pa-
rameters by treating them as random variables. The distribution of
the model parameters is given by the PPD, which combines prior
knowledge about the parameters and information from the observed
data vector d (Gelman et al. 2000). Bayes’ rule can be written as

P(m|d, H ) = P(d|m, H )P(m|H )

P(d|H )
, (1)

where H is the model parametrization (here, depending on an un-
known number of subseafloor layers). The left side of eq. (1) rep-
resents the PPD, P(m|d, H). The term P(d|m, H) is the conditional
probability of the data given the model parameters and parametriza-
tion. However, for fixed observed data and a specific choice of
parametrization we interpret this term as the likelihood of the model
parameters L(m). The likelihood function implemented in this paper
assumes Gaussian distributed errors and is explained in Section 4.4.
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The term P(m|H) is the prior density of the model parameters given
H, independent from the observed data. We treat priors as uniformly
distributed between physically realistic upper and lower bounds for
each model parameter. Resistivities are inverted in log10-domain
and prior bounds are log10(0.2 �m) and log10(200 �m). The choice
of the prior bounds is consistent with observed resistivity values.
At X311 Site U1328 (Expedition 311 Scientists 2006a) resistivity
values are locally as low as ∼0.2 �m (probably due to rapid gas
hydrate formation). Also, resistivity values observed at marine cold
vent systems worldwide have not been shown to exceed ∼200 �m
(e.g. Collett et al. 2008; Kim et al. 2011). The probability for the
observed data P(d|H) is the Bayesian evidence and can be con-
sidered the likelihood of the parametrization H given the observed
data. The evidence can be approximated with the BIC (e.g. Schwarz
1978), which is used in this study to estimate the number of layers
that can be resolved by the data (see Section 4.2). Bayes’ rule can
then be simplified for a fixed model parametrization H and written
as

P(m|d) ∝ L(m)P(m). (2)

Since the PPD is a multidimensional distribution, it is generally
interpreted in terms of properties representing parameter estimates,
uncertainties and interrelationships. In this study, parameter uncer-
tainties are expressed as marginal probability densities and cred-
ibility intervals. Parameter estimates are analysed in terms of the
median estimate of the marginal probability density profile of re-
sistivity over depth. Parameter inter-relationships are examined in
terms of joint marginal densities (see e.g. Dosso et al. 2006).

4.2 Bayesian information criterion

The BIC is derived from Bayes’ rule (1) and can be used to estimate
the most appropriate number of model parameters (here, resistivi-
ties and thicknesses for subseafloor layers) that can be resolved by
the data. The misfit E(m̂) = −lnL(m̂) of the maximum-likelihood
model estimate m̂ decreases when additional layers are added, but
at some point the model becomes over parametrized with uncon-
strained structure which can be geologically meaningless (an arte-
fact of fitting the noise on the data). The BIC balances the data
misfit with a penalty term which increases linearly with the number
of parameters:

BIC = 2E(m̂) + M ln(N ), (3)

where M is the number of parameters and N the number of data.
To compute the maximum-likelihood model for different

parametrizations, the data misfit is minimized over the parame-
ter space using a nonlinear optimization, ASSA. ASSA is a hybrid
algorithm which adaptively combines components of the global
search method of fast simulated annealing (SA) with local down-
hill simplex (DHS) optimization. The algorithm minimizes the
data misfit over a large, nonlinear parameter space and perturbs
model parameters with dominantly stochastic perturbations (for a
wide search) at early stages of the optimization, and with dom-
inantly gradient-based perturbations based on the DHS method
(for efficiency) at later stages. At all stages perturbations are ac-
cepted probabilistically as in SA. ASSA is an efficient method
for strongly nonlinear problems with multiple local minima, corre-
lated parameters and a wide range of parameter sensitivities (Dosso
et al. 2001).

4.3 Metropolis–Hastings sampling

Markov-Chain Monte Carlo (MCMC) methods are typically em-
ployed to sample the parameter space in a random walk that con-
verges in the long-run to sample the PPD. Here, MHS is applied
(Metropolis et al. 1953; Hastings 1970). In this process the param-
eters of the current model are perturbed from m → m′ using a pro-
posal density Q(m′|m), here, a Gaussian distribution about m. The
proposed model is accepted according to the Metropolis–Hastings
criterion with probability

α = min

[
1,

P(m′)
P(m)

(
L(m′)
L(m)

)1/T Q(m|m′)
Q(m′|m)

]
, (4)

where T is a relaxation term, taken to be unity for unbiased sam-
pling, but non-unity for parallel tempering (described below). The
proposed model is accepted if a random number ξ < α, where ξ ∈
[0, 1]. For uniform bounded priors and a symmetric proposal den-
sity, Q(m′|m) = Q(m|m′), eq. (4) simplifies to the likelihood ratio
that we evaluate in terms of the misfit

α = min[1, e−(E(m′)−E(m))/T ]. (5)

In this study, MHS initially draws from a proposal distribution based
on the linearized approximation to the PPD at an optimal model de-
rived earlier with ASSA. The covariance of the proposal distribution
is updated with sampled values as the inversion proceeds (Dosso &
Dettmer 2011).

To ensure wide and efficient sampling of the parameter space,
including isolated regions (modes) of high probability in the PPD,
parallel tempering is applied here. Parallel tempering runs a series of
MCMC chains at an increasing sequence of sampling temperatures
T ≥ 1. In comparison, SA (as used in ASSA) reduces tempera-
tures towards zero to narrow down to an optimal model estimate.
Higher temperatures, on the other hand, result in the acceptance
of suboptimal models to sample the parameters space more widely
in the search of new misfit minima. In parallel tempering, the var-
ious chains interchange models probabilistically (again following
the Metropolis–Hastings acceptance criterion). The chain(s) sam-
pled at T = 1 provide unbiased sampling of the PPD. However,
interchange with higher-temperature chains provides efficient wide
sampling (Earl & Deem 2005; Dosso et al. 2012; Sambridge 2014).

4.4 Likelihood

In this study, the likelihood function is based on the assumption
that the data errors are zero-mean and Gaussian distributed with
data covariance matrix Cd, which is estimated from the data. These
assumptions are verified a posteriori by applying statistical tests
(Dosso et al. 2006). The joint likelihood function for a number of
independent data sets with different covariance matrices (in this
study, data sets for each receiver), becomes

L(m, Cdi , ai , i = 1, NRx) =
NRx∏
i=1

{
1

(2π )Ni /2
∣∣Cdi

∣∣1/2

· exp

[
−1

2
(di − ai di (m))T C−1

di
(di − ai di (m))

] }
, (6)

where NRx is the number of receivers, T indicates transpose, Ni is
the number of data for the ith receiver, ai is the CF for the ith
receiver and di(m) are the predicted data for the ith receiver given
model parameters m and a physical theory for the forward problem.
The CF parameters are sampled implicitly within the inversion by
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maximizing the likelihood with respect to ai (for readability the i
will be dropped in the following). Setting ∂L(m, Cd, a)/∂a = 0
leads to

a = dT C−1
d d(m)

dT (m)C−1
d d(m)

, (7)

which provides a closed form expression for the maximum-
likelihood a estimate in terms of the model parameters m which
are sampled explicitly (Dosso et al. 2006).

The inversion approach estimates both the optimal number of
layers, using the BIC, and the data covariance matrices from residual
analysis. An issue here is that the BIC requires an estimate of the
data covariance matrix, while estimating this data covariance matrix
requires knowledge of the number of layers (which is estimated
using the BIC). Therefore, the approach applied here cycles twice
through a set of inversions.

The first inversion with ASSA implements the standard devia-
tions of the mean obtained from stacking the half periods of recorded
CSEM data sets at each WP. The data covariance matrices Cdi con-
sist of variable variances (squared standard deviations) along the
main diagonal and zero covariances. However, standard deviations
from stacking represent data measurement errors (including elec-
tronic and ambient noise), which make up only one part of the
data misfit in the inversion. Standard deviations from stacking do
not represent theory errors due to model assumptions (e.g. 1-D
parametrization), approximations in the physical theory and other
uncertainties such as in the CSEM array geometry. Theory errors
can dominate measurement errors and are often correlated. Here,
as a first step, a scale factor δ2

i is included as an unknown that mul-
tiplies Cdi of the ith receiver to account for larger errors (correlated
errors are addressed in the second inversion cycle). This factor is
inverted implicitly with ASSA by maximizing the likelihood with
respect to δ2

i (setting ∂L/∂δ2
i = 0), where L is rewritten as

L(m, Cdi , ai , δ
2
i , i = 1, NRx) = 1∏NRx

i=1 (2π )Ni /2

· exp

[
−1

2

NRx∑
i=1

{
(di − ai di (m))T (δ2

i Cdi )
−1(di − ai di (m))

}

−1

2

NRx∑
i=1

{
ln

∣∣δ2
i Cdi

∣∣}] , (8)

leading to (i is dropped for readability)

δ2 = 1

N

(
dT C−1

d d − (dT C−1
d d(m))2

dT (m)C−1
d d(m)

)
, (9)

which is substituted back into eq. (8). ASSA is applied for three
models with 1 to 3 layers. The model with the smallest BIC value
is selected as the model with the optimal number of layers. The
residual errors for this optimal model estimate m̂, defined as

ri = di − ai di (m̂), (10)

are considered one realization of the underlying error process (rep-
resenting measurement and theory errors). Variances from the stack-
ing process are not constant along the main diagonal (e.g. standard
deviations from stacking have been shown to be higher when the
electric fields are close to zero), and error correlations are especially
large for early, closely spaced data samples, but decline quickly.
While we consider correlation over time, Ray et al. (2013b) only
used a small number of frequencies, but a denser grid of trans-
mitter and receiver spacings, and considered spatial correlation in-

stead. To account for correlated errors over time, we estimate a
non-diagonally constant (non-Toeplitz) matrix from residual errors.
As a first step, residual errors are standardized by their estimated
standard deviation to r̃i = ri/σ̂ i with (i is dropped for readability)

σ̂ 2
j = 1

n

j+n/2∑
l= j−n/2

r 2
l (11)

for a window of data samples of width n centred at the current
data point j to accommodate standard deviations which vary slowly
across the data set. The non-Toeplitz data covariance matrix is es-
timated by computing the autocorrelation of the residuals for each
receiver, analogously to Dosso et al. (2006), with (i is dropped for
readability)

Ĉd jl = 1

N

N−| j−l|∑
k=1

(r̃k − ¯̃r)(r̃k+| j−l| − ¯̃r) cosp π | j − l|
2(N − 1)

, (12)

where j = 1, N, l = 1, N, ¯̃r is the mean of the standardized resid-
uals, and cosp π | j−l|

2(N−1) is a damping function which drops off more
sharply for higher p values (here, p = 16). Damping is applied to
suppress correlation values for widely spaced data samples as these
covariances are expected to be small, and the available number of
samples (N − |j − l|) may be insufficient to meaningfully estimate
the covariance values. Correlated errors can also be addressed using
an hierarchical scheme based on sampling over first-order autore-
gressive parameters as additional unknowns (see e.g. Dettmer et al.
2012; Steininger et al. 2013). However, additional inversion param-
eters may not be constrained by the data and introduce spurious
structure, and fixed data covariance matrices were found to produce
more stable inversion results in this work. Further, first-order autore-
gressive processes are not as general as the non-Toeplitz covariance
matrices.

The updated non-Toeplitz covariance matrix is implemented into
ASSA for a second inversion cycle. The final estimate for the most
probable number of layers is determined by minimizing the BIC.
MHS is then carried out starting at the optimal model after the
second inversion with ASSA and BIC, and uses the non-Toeplitz
covariance matrix (Dosso et al. 2006) to calculate the misfit with
eq. (6). Standardized residuals are estimated and examined for the
median model estimate of the resulting PPD by r̃ = C−1/2

d (d −
ad(m)), where C−1/2

d is the Cholesky decomposition of C−1
d . The

inversion procedure is illustrated in Fig. 6.

5 I N V E R S I O N R E S U LT S A N D
D I S C U S S I O N

5.1 Number of subseafloor layers

As mentioned previously, the optimal number of subseafloor layers
is estimated by minimizing the BIC, which requires minimizing the
data misfit for different numbers of layers using ASSA. A repre-
sentative example of this procedure is given in Fig. 7 for WP 11
from CSEM line Aug1105 where two layers are resolved. The num-
ber of layers that can be resolved generally varies between WPs
and between CSEM lines. Over 50 per cent of the WPs are inter-
preted with half-space (1-layer) models, while about 40 per cent
of the WPs can be represented by 2-layer models according to
the information in the data, and the remaining ∼10 per cent are
made up of 3-layer models. The relatively small number of lay-
ers is due to the lack of resolution inherent to diffusion methods,
the lack of strong resistivity contrast in the shallow penetration
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Figure 6. Inversion flow: < 1 > ASSA inversion for three models with 1 to 3 subsurface layers and a diagonal data covariance matrix from data stacking.
Number of subsurface layers that can be resolved with the data is selected with BIC. A full non-Toeplitz data covariance matrix is estimated from residual error
analysis. < 2 > ASSA inversion for three models with 1 to 3 subsurface layers and non-Toeplitz data covariance matrices. Number of subsurface layers that
can be resolved with the data is selected with BIC. MHS samples the parameter space for this number of layers to obtain the PPD.

Figure 7. Bayesian information criterion (BIC) to evaluate the number of
layers that are resolved with the data for WP 11 from line Aug1105. Here,
two layers are resolved.

depth of the CSEM array (to ∼200 m depth), and the relatively
low signal-to-noise ratio of the CSEM system used in these surveys
(compared to more recently developed systems by Schwalenberg &
Engels 2012).

5.2 Marginal probability profiles

After the number of layers is determined, MHS is applied to sample
the parameter space. We demonstrate the characteristics of the re-

sulting PPD of WP 11 from line Aug1105 at X311 Site U1329. The
sampled PPD is shown in Fig. 8 in the form of marginal probabil-
ity densities (bottom), joint-marginal probability densities (middle)
for resistivities ρ, thicknesses th, calibration factors a and time de-
lays dt, and a marginal probability density profile (top right) that
represents the PPD as a function of depth and resistivity. Marginal
probability densities represent uncertainty distributions for indi-
vidual parameters, while joint marginals indicate relationships be-
tween parameters. Parameter relationships show some nonlinear
behaviour, and parameters are both positively and negatively corre-
lated. Taking into account parameter relationships may improve the
interpretation, as, for example, done by Ray et al. (2014) who eval-
uate the resistivity–thickness (RT) product at gas-reservoir depth.
While resistivities from inversion alone are generally underesti-
mated compared to drill-hole resistivities, the RT product yields
better agreement and can be converted to resistivities with seismic
depth constraints. Joint marginals yield RT relationships other than
the RT product, as, for example, illustrated by Minsley (2011) and
in our work in Fig. 8. For instance, ρ2 increases as th1 increases,
indicating the data are sensitive to a resistivity increase with depth,
but cannot resolve the depth or the resistivity individually. Critical
are the relationships between additional parameters such as the cal-
ibration factor a and time delay dt to the subseafloor parameters,
which increase ambiguity and model uncertainty. For instance, ρ1

is negatively correlated with dt1 and dt2; hence, not knowing the
time delays exactly increases the uncertainty for ρ1. On the other
hand, knowing dt1 better would reduce bimodality and constrain th1

and ρ2.
Parameter uncertainties are quantified with 95 per cent-credibility

intervals (CI), which represent the narrowest interval containing
95 per cent of all model samples. Credibility intervals are shown as
dashed black lines in all panels of Fig. 8. In the bottom panels it
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Figure 8. Inversion results for WP 11 from line Aug1105 in Area 1 close to X311 Site U1329. Bottom: marginal probability densities for each parameter
(thickness thl and resistivity ρl for the lth layer, as well as calibration factor ai and time delay dti for the ith receiver). Middle: joint marginal probability
densities (normalized to unit maximum) showing relationships between parameters. Top right corner: marginal probability density profile with posterior median
model estimate and deep button average resistivities from U1329A. In all panels, dotted lines indicate 95 per cent credibility intervals.

can be observed that the CIs for ρ1 are by two orders of magnitudes
smaller than for ρ2 as the resolution of the data is limited at greater
depths. The probability density as a function of depth for WP 11
indicates an increase in resistivity between 220 to 250 mbsf. Within
the first 150 m depth the inversion results match well with the mea-
sured LWD-resistivity (deep button average) at X311 Site U1329.
The LWD measurements show an increase in resistivity starting at
about 175 m depth due to the lower porosity of lithological Unit
3. However, this depth is not well resolved in the CSEM inversion
results. The width of the CIs for the 2-layer model may underesti-
mate the actual range of resistivities in the subseafloor, because we
do not include uncertainty on the number of layers. Recent studies
which include the number of layers as an unknown in the inversion
(trans-dimensional CSEM inversion, Ray & Key 2012; Gehrmann
et al. 2015) show uncertainties that generally increase quickly with
depth.

Residual errors are calculated from predicted data of a 2-layer
model that is similar to the posterior median model (red line, top

right panel in Fig. 8) and has a high likelihood. Observed and pre-
dicted data for both receivers as well as standardized residuals are
shown in Fig. 9. The standardized residual errors are examined with
statistical tests (Dosso et al. 2006) for Gaussianity (Kolmogorov–
Smirnov test, Massey 1951) and randomness (runs test). Standard-
ized residual errors pass statistical tests if resulting p-values are
larger than a significance level of 0.025, which is generally the case
here. Histograms for standardized residuals at WP 11 compared to
a standard Gaussian are shown in the bottom row of Fig. 9.

5.3 Area 1: inversion results and implications

Three CSEM lines around X311 Site U1329 were inverted with
the Bayesian algorithm. Line Aug1105 (Fig. 10) along MCS line
89-08 is perpendicular to line Aug1205 (Fig. 11) along SCS line
CAS05C-3, and perpendicular to line Sep0806 (Fig. 13) which in-
tersects with line Aug1105 on the upper slope (see Fig. 2). Median
posterior models for each WP (locations merged with the seismic
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Figure 9. Top: step-on response for WP 11 from Aug1105 with observed data with standard deviations from Cd (crosses with error bars) and predicted data
(black line) and standardized residuals. Bottom: histograms of standardized residuals compared to a standard Gaussian distribution with p-values for runs and
KS test (title) and their standard deviation σ and mean μ (legend).

lines) are plotted in Figs 10 and 11 (upper panel) as coloured bars
to represent the resistivity values. The bar widths correspond to
the Tx-Rx2 offset. The coloured bars overlap where WPs are close
(generally ∼500 m apart with exception of the central part around
X311 Site U1329 where they are ∼250 m apart). At each WP the
credibility intervals are plotted as black lines which horizontal po-
sition represents the width of the credibility interval as a fraction
of the prior resistivity bound width (log10(200) − log10(0.2)). We
have chosen to show median models because they generally repre-
sent high probability regions of the marginal probability profiles.
However, the reader is referred to Fig. 8 where the uncertainty in-
formation is displayed in terms of the marginal probability density
profile, as well as marginal and joint marginal probability densities.
More detailed display options have been used to image the PPD for
2-D profiles, for example, by Ray et al. (2014). Additional inver-
sion parameters, shown in the bottom panels of Figs 10 and 11, are
calibration factor a and time delay dt.

Line Aug1105: Fig. 10 shows results for CSEM line Aug1105
along MCS line 89-08. The seismic data (middle panel) acquired
in 1989 show parallel layering of marine sediments representing
Units 1 and 2 laying on top of highly disturbed, accreted sediments
with a rugged surface (Unit 3). A BSR is observed on the middle
slope (blue dashed line) as far landward as Site U1329, but cannot
be observed further upslope. The base of the GHSZ is calculated
from the observed BSR depths and extrapolated landward of U1329
following Gehrmann et al. (2009).

The Bayesian inversion reveals that a uniform resistivity distri-
bution or half-space interpretation is adequate to explain the data at

most of the measurement sites given the limited penetration depth
of the array geometry (a fraction of the maximum offset, 292 m).
Exceptions on line Aug1105 are WP 16 (possible venting site) and
WPs 7a to 14, where 2 layers with a deep-situated resistive layer are
more probable. This layer may relate to the sediment unconformity
seen on MCS line 89-08 (red dashed line, second panel in Fig. 10),
which is characterized by a decrease in porosity and increase in
resistivity, as seen in the borehole log data of X311 Site U1329.
The deep-situated resistive layer has wide CIs, which reflects the
penetration limit of the CSEM array. The same unconformity lies
relatively close to the seafloor between WP −1 and 2, but only WP
1 resolves two layers with an elevated resistivity below ∼20 mbsf.

The very pronounced resistivity anomaly at WP 16 on line
Aug1105 is located at the landward edge of the GHSZ. This might
be related to gas hydrate or free gas accumulations. MCS line 89-08
reveals a normal fault that may support upward migrating fluids
transporting gases. There are no indications (e.g. diffractions, seis-
mic blanking) of gas hydrate or free gas in the seismic data at
this location. However, several localized venting sites have been de-
tected along the upper slope of the margin (Riedel et al. 2006b). The
main frequencies of MCS line 89-08 were chosen to penetrate the
deeper subsurface structure, and may not resolve the upper 100 m
in detail. Small gas hydrate lenses or along-fault rising gases may
be outside the resolution limits. The resistivity anomaly at WP 16
is localized but consistent: It was observed on two consecutive days
(the profile was repeated due to technical reasons) and also on the
perpendicular line Sep0906 (not shown) where it intersects with
line Aug1105 (see Fig. 2).
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Figure 10. Top: CSEM median resistivity models for line Aug1105 with CI width (black line) normalized so that the maximum width equates to the width of
the coloured bars. Middle: MCS line 89-08 with X311 Site U1329, observed and extrapolated BSR (blue dashed line) and sediment unconformity (red dashed
line). Bottom: calibration factor (a) and time delay (dt) for each receiver, error bars represent 95 per cent CIs.

The CFs for both receivers are about half of the expected value 1,
which might indicate that the current induced into the seafloor while
acquiring CSEM line Aug1105 might have been about half of the
value recorded with a Hall sensor on the ship. This could have been
caused by a corroded connection at one transmitter electrode which
was noticed and repaired after the deployment.

The inverted time delays, which correspond to a drift of the
receiver and transmitter clocks after synchronization, are between
0 to −1 ms for Rx1 and less consistent for Rx2 with a mean value
between −1 to −3 ms. The rugged trend likely relates to correlation
between the subseafloor parameters and dt. However, the total drift
measured on board after the instrument was recovered was −0.2 ms
for Rx1 and −1.2 ms for Rx2, which fall within the inferred time
delay range. We assume that most of the drift occurred due to
temperature and pressure changes at the beginning and end of the
deployment (when the instrument was lowered to or risen from the
seafloor) rather than between WPs. Another reason for the erratic
trend of the experiment parameters between WPs 8 and 11 could
be the topographic change along the profile and perpendicular to it
which we do not account for in the 1-D inversion.

Line Aug1205: CSEM line Aug1205 is perpendicular to line
Aug1105 and coincident with SCS line CAS05C-3. Only the data
sets of WPs 11 to 16a have been inverted with the Bayesian in-

version, and the results are shown in Fig. 11. The seismic data
(middle panel) show a strong BSR that might also coincide with the
unconformity observed on MCS line 89-08. At WP 13 minor seis-
mic blanking is observed, and the CSEM model indicates elevated
resistivity which might be related to gas venting or gas hydrate ac-
cumulations. Other WPs have lower resistivities at shallow depths,
but higher resistivities starting at ∼150 to 200 mbsf which might be
related to resistive material of geological Unit 3. The inferred time
delay for Rx2 is between −1 and −2 ms.

The southeastern part of Aug1205, WP 3 to 11, has only been
inverted with a linearized Marquardt inversion (Scholl 2010) for
half-space resistivities due to the rough topography, and is shown
in Fig. 12 on top of the 3.5-kHz sub-bottom profiler data. The
pronounced resistivity anomaly at WP 6 is located on the edge of a
shell-shaped topographic depression. The anomaly could be caused
by free gas rising along a fault plane that might also have caused
the depression to form during a slide event. If this is the case, this
feature would be of interest for further studies of the stability of
the upper slope. The 3.5-kHz sub-bottom (chirp) profiler data show
elevated amplitudes and a reflector that might relate to an erosional
surface that was refilled (black arrow in bottom panel of Fig. 12).
The resistivity anomaly at WP 6 is significantly larger than others
in this area, and is unlikely caused by topographic effects alone,
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Figure 11. Top: CSEM median resistivity models with 95 per cent CI width (black lines) for line Aug1205. Middle: SCS line Cas05C-3 with Site U1329 (black
line). Bottom: CF and time delay between Tx and Rx (error bars represent 95 per cent CIs).

Figure 12. Left: bathymetry at the southeast end of line Aug1205 [in two-way-traveltime (s)]. Right, top: apparent resistivities for CSEM data at receiver 2,
black solid lines represent the length of the instrument and position (assuming a flat seafloor). Right, bottom: 3.5-kHz sub-bottom profiler data, arrow pointing
to erosional surface.

whereas elevated apparent resistivities between WP 7 and 11a are
difficult to interpret due to the strong seafloor topography changes
relative to the length of the CSEM array (which may introduce
geometry errors not accounted for in the inversion).

Line Sep0806: Bayesian inversion results for line Sep0806 (see
Fig. 13) reveal that at most WPs only a single layer is resolved
with generally higher resistivities on the upper slope compared to
resistivities down the slope on lines Aug1105 and Aug1205. The
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Figure 13. Top: median resistivity models with uncertainties (black lines) along line Sep0806. Bottom: calibration factor (a) and time delay (dt), error bars
represent 95 per cent CIs.

mean values for the CF for Rx1 are around 1, while mean values for
Rx2 are around 0.8. The inferred time delays are only about −1 ms
for the data set collected in 2006.

5.4 Area 2: inversion results and implications

Line Jul3105: We analysed CSEM line Jul3105 in Area 2 in vicinity
of X311 Site U1328 which crosses the Bullseye vent (see Fig. 3)
with the Bayesian inversion. Resistivity median models are shown
in Fig. 14 on top of MCS line GeoB00-142. The CSEM WPs are
projected onto the seismic line with a maximum projection distance
of 1 km at WP 1. The seismic section (middle panel on Fig. 14)
shows several high amplitude reflections and seismic blanking at
X311 Site U1328 which may relate to gas hydrates or free gas in
the sediment. Sediment reflectors at U1328 are seemingly distorted,
which might be caused by a shorter traveltime through sediments
containing massive gas hydrates or by faulting. Seismic amplitudes
increase west of Site U1328 at 1.92 to 1.98 s two-way traveltime
(twt) close to the base of the GHSZ. Older, distorted, accretionary-
wedge sediments are uplifted on both sides of U1328, and are over-
lain with younger, stratified slope deposits. Bullseye vent is the most
dominant feature, centred on CSEM line Jul3105 at WPs 14 and 15
(see Fig. 3). Inversion results at WPs 13 and 14 reveal high resis-
tivities around ∼25 �m within the first 70 to 100 mbsf, and lower
resistivities around 1 �m below. At these WPs the lower bound for
the second layer is set to 0.9 �m to avoid geologically unreasonable
resistivities (likely introduced by 3-D effects). Observed gas plumes
and bacterial mats (see Fig. 3) at the same location support the pres-
ence of shallow gas hydrate or free gas. Inversion results of WP
14 close to Site U1328 match with the high resistivities observed
during drilling (see Fig. 15). We suggest that the high resistivities
are caused by massive gas hydrates, which were found during pis-
ton coring (Riedel et al. 2006b). The inversion at WP 15 introduces
a deeper resistive layer, which might relate to resistive material at
greater depth. The seismic reflector on MCS line GeoB00-142, that
may relate to a gas hydrate cap, is also deeper at WP 15 than at
WP 14. However, we do not account for 3-D effects that are likely

present at the vent site, and therefore need to interpret the inversion
results here with caution. Uncertainties at greater depths are likely
higher than illustrated. At WPs 18 and 25 resistivities of ∼2.5 �m
within the upper 100–150 mbsf were inferred which may be related
to the presence of free gas or gas hydrate underlain by a less resistive
half-space. Comparing the vertical position of the elevated resistiv-
ities at WP 18 within the seismic section suggests that the higher
resistivities are within the shallow, younger sediments, rather than
in the older, accreted sediments. Additionally, sub-bottom profiler
data obtained with an autonomous underwater vehicle (Paull et al.
2009) show seismic blank zones at WP 18 that may indicate the
presence of fluid venting and/or gas hydrate occurrences.

At WP 9 an interval of ∼4 �m at depths of 90 to 200 mbsf is
inferred that might be related to elevated seismic amplitudes and
faults seen on the projected seismic reflection line GeoB00-142.
Again, the possible explanation could be the presence of free gas
or gas hydrate. The CF is around 1 which indicates only small
deviations from the assumed geometry of the CSEM array, and
other survey parameters. The time delay is between −1 and −2 ms
for Rx1 and between −3 and −4 ms for Rx2.

6 C O N C LU S I O N S

Time-domain marine CSEM data were acquired in 2005 and 2006
in two survey areas on the middle and upper continental slope
of the northern Cascadia margin in the vicinity of IODP Ex-
pedition 311 Sites U1328 and U1329. A seafloor-towed electric
dipole-dipole system was used which records the inline electric
field components at two receiver dipoles at offsets of 174 m and
292 m from the source dipole respectively. We used a 1-D nonlinear
Bayesian inversion to estimate model parameters and uncertainties.
Survey parameters, that is, time drift of the receiver clocks and a
calibration factor, have been included as unknown parameters in
the inversion. The BIC was applied to select the number of sub-
surface layers that can be resolved with the data, which was gen-
erally found to be one or two (sometimes three) layers. The pa-
rameters were sampled in principle-component space with MHS
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Figure 14. Top: median resistivity models with uncertainties (black lines) for line Jul3105. Middle: MCS line GeoB00-142 with X311 Site U1328. Bottom:
calibration factor (a) and time delay (dt), error bars represent 95 per cent CIs.

and the resulting PPD contains information about model parame-
ter uncertainties and relationships. Parameter uncertainties increase
significantly for deeper structure, but might be generally underesti-
mated due to the assumption that the number of subsurface layers
is determined exactly. For example, LWD resistivities from drilling
extend the inferred credibility interval for resistivities at greater
depth (see Figs 8 and 15) but they generally match the inferred
resistivity trend. Alternatively, the number of subsurface layers can
be included within a trans-dimensional inversion such as imple-
mented for marine CSEM data by Ray & Key (2012) and Gehrmann
et al. (2015) to better estimate uncertainties (especially in greater
depth). Trans-dimensional inversion has advantages in that it re-
quires less user intervention and accounts for the uncertainty in the
parametrization in the parameter uncertainty estimates. However,
achieving convergence in trans-dimensional sampling can be more

challenging than in fixed-dimensional inversions. The BIC-based
approach for the smallest number of parameters that can be re-
solved by the data enables efficient and stable sampling in principal-
component space with a relatively small number of forward
computations.

The following geological interpretation can be drawn. A major
resistivity contrast found by CSEM inversion is caused by a sedi-
ment unconformity around Site U1329. The sediment unconformity
divides younger marine sediments from denser accreted sediments
(∼5 Ma older). Resistivities of the deeper layer are higher and have
wider credibility intervals ranging from ∼10 to 100 �m. On the
upper slope, on the landward edge of the GHSZ, we infer three sites
(WP 16 on line Aug1105 and WP 6 and 13 on line Aug1205) with
anomalously high resistivities that might be caused by gas hydrate
or free gas occurrences at possible cold vents (although neither gas
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Figure 15. Marginal probability density profile with posterior median model estimate at WP 14 of Jul3105 and deep button average resistivities from U1328A.

hydrate nor gas plumes have been observed at these locations, yet).
Generally elevated resistivity values on the upper slope along line
Aug1105 are probably due to sediment erosion that exposes deeper,
more compacted sediments. At Site U1328 on the middle slope of
the margin, elevated subseafloor resistivity values (>20 �m) were
inferred associated with massive gas hydrates at Bullseye vent. Ad-
ditional gas venting sites on both flanks around the main vent also
cause elevated resistivity values.

Overall, the 1-D nonlinear statistical inversion revealed that the
data sets contain limited information on the vertical resistivity struc-
ture. We believe this is due to the lack of strong resistivity con-
trasts within the penetration depth of the instrument (maximum
offset 292 m), the 1-D assumption in modelling vent structures
which are likely 2-D or 3-D, the relatively low signal-to-noise
ratio compared to recently developed instruments (Schwalenberg
& Engels 2012), and erroneous (uncertain) survey parameters in-
cluding array geometry, source current amplitude and clock drift.
Joint marginal probability densities additionally reveal significant
parameter correlations between unknown experiment parameters
(such as calibration factor and time delay) and subseafloor param-
eters. However, the nonlinear Bayesian inversion defines a range
for unknown acquisition parameters that agree with presumptions
(e.g. observed clock drift after instrument recovery). The Bayesian
inversion also reveals well constrained, one layer models with typi-
cal seafloor resistivities between 1 and 1.5 �m at most sites along
the lines. Other sites, where the resistivity structure correlates with
seismically inferred vent structures, seismic amplitude anomalies,
and a sediment unconformity, are more likely to be explained with
a two- (sometimes three-) layer resistivity model. Parameters and
uncertainties agree at neighbouring way points and with local resis-
tivity data from logging during the IODP Expedition 311.
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