


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cover photo is taken at the experimental site (Bülk, outer Kiel Fjord) showing the two 

study organisms Fucus serratus (left) and Fucus vesiculosus (right). In the background 

of the photo appears one of the logger/settlement panel stations used during the 

experiment to record the field parameters. 
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Abstract 

In this doctoral project, I investigated the putative seasonal fluctuating chemical fouling 

control of the perennial macroalgae Fucus vesiculosus and Fucus serratus from the 

Baltic Sea under in situ conditions as well as potential links between the chemical 

fouling control and different abiotic and biotic factors. 

To investigate these potential relations, it was first necessary to examine if and how 

abiotic and biotic parameters and the antifouling control of the two Fucus species 

fluctuate with season. To this end, a field experiment running for one year, combined 

with laboratory work, was designed. During the field experiment, the abiotic parameters 

light, temperature and salinity were continuously recorded and nutrient concentrations 

were analysed weekly. The actual micro- and macrofouling pressure was recorded by 

means of artificial settlement substrate and the fouling pressure was quantified by 

enumeration of settled foulers via epifluorescence microscopy or stereomicroscopy. 

Furthermore, 15 Fucus individuals per species were collected monthly at the same site 

to quantify the ‘fouling status’ via enumeration of associated prokaryotic and diatom 

cells (microfouler species) as well as of attached Amphibalanus improvisus and Mytilus 

edulis (macrofouler species) and the ‘energy status’ via mannitol analysis. Moreover, 

associated metabolites were harvested from each Fucus individual surface by means 

of surface extraction. Surface extracts were investigated for their seasonal fouling 

control strength by means of an in situ settlement bioassay. Fouling control strength 

was determined by quantification of settled prokaryotic and diatoms cells and the two 

predominant macrofouler species A. improvisus and M. edulis. Furthermore, surface 

extracts were analysed via GC-MS to identify possible seasonal variance in the 

composition.  

The examination of the abiotic and biotic parameters revealed seasonal 

fluctuations. Light, temperature, salinity and nutrient concentrations exhibited the 

expected seasonal pattern typical for the temperate Baltic Sea. Fouling pressure also 

varied with season. Microfouling pressure mainly attributable to prokaryotic and diatom 

fouling was highest during spring and summer months. Macrofouling pressure was 

most intense in summer, whereby A. improvisus and M. edulis were the dominant 

epizoan fouler species. The fouling status of both Fucus species also varied with 

season. Microfouling on both Fucus species was highest in summer. Prokaryotic 

fouling reached maximal densities in June and August (F. vesiculosus) and in June (F. 

serratus). Diatom fouling on F. vesiculosus showed peak densities in April and 

September, whereby diatoms on F. serratus were very rare and only present in April 
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and June. In general, F. vesiculosus was more densely fouled than F. serratus and 

prokaryotic fouling quantitatively dominated on both Fucus species compared to diatom 

fouling. Macrofouling on F. vesiculosus by epizoans was most intense in July and 

October and on F. serratus between November and February, with a maximum in 

January. The barnacle A. improvisus was found on F. vesiculosus in July and August in 

low numbers. M. edulis (juvenile life stages) was maximal in July and August and the 

most common fouling species on F. vesiculosus. On F. serratus, A. improvisus was 

only present in May, while M. edulis (juvenile life stages) occurred at lower densities 

throughout the year. Tissue mannitol of both Fucus species showed a clear seasonal 

variation with increasing concentrations from February to October, followed by a 

reduction to half the summer values until December. Regarding the microfouling control 

strength, extracts from both Fucus species tended to be less attractive for microfoulers 

during seasons when field microfouling pressure was highest, suggesting a deployment 

of defensive metabolites. In contrast to this, F. vesiculosus surface extracts revealed a 

general pro-fouling effect on prokaryotes, compared to solvent blanks. Additionally, 

microfouling control strength seems to be assisted by periodical cuticula shedding. 

Macrofouling control strength against the barnacle A. improvisus varied with season 

and matches the seasonal fluctuations in fouling pressure of this species, showing 

strong control in periods of intensive fouling. For the mussel and transient fouler M. 

edulis, a corresponding pattern was not found. The observed seasonal patterns of 

micro- and macrofouling control seem not to be linked with the ‘energy status’ of both 

Fucus species. Surface metabolite analysis revealed differences between 

spring/summer and autumn/winter months for both Fucus species. The seasonal 

variance was best explained by the abiotic variables light and temperature. GC-MS 

analysis showed an up-regulation of mono- and disaccharides and of three hydroxy 

acids in F. vesiculosus summer extracts and an up-regulation of saturated fatty acids 

and three saccharides in F. serratus summer extracts compared to winter extracts.  

My thesis highlights the seasonal dynamics of the chemical micro- and 

macrofouling control of F. vesiculosus and F. serratus from the Baltic Sea tested under 

in situ conditions as well as the impact of environmental variables on the fouling control 

strength. Further, this work demonstrates that both Fucus species exhibit pro- and 

antifouling properties during summer when fouling pressure is highest indicating a 

complex regulation of biofouling control. The study thus provides new insides into the 

complex algae-environment-fouler interactions and their seasonal dynamics. 
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Zusammenfassung 

In dieser Doktorarbeit wurde die vermeintlich saisonal fluktuierende chemische 

Fouling-Kontrolle der mehrjährigen Makroalgen Fucus vesiculosus und Fucus serratus 

aus der Ostsee unter in situ Bedingungen sowie mögliche Zusammenhänge zwischen 

der chemischen Foulingkontrolle und verschiedenen abiotischen und biotischen 

Faktoren untersucht.  

Zunächst wurde untersucht, ob und wie die Foulingkontrolle der zwei Fucus-Arten 

sowie die abiotischen und biotischen Parameter saisonal fluktuieren. Zu diesem Zweck 

wurde ein einjähriges Feldexperiment kombiniert mit Laboranalysen durchgeführt. 

Während des Feldexperiments wurden die abiotischen Parameter Licht, Temperatur 

und Salzgehalt kontinuierlich aufgezeichnet und die Nährstoffkonzentrationen 

wöchentlich analysiert. Der in situ  Mikro- und Makrofoulingdruck wurde mit Hilfe 

künstlicher Siedlungssubstrate erfasst und durch direkte Auszählung mittels 

Epifluoreszenz- bzw. Stereomikroskopie aller gesiedelten Fouler quantifiziert. Darüber 

hinaus wurden monatlich 15 Fucus-Individuen pro Art am selben Standort gesammelt, 

um den Foulingstatus mittels Auszählung assoziierter Prokaryoten und Diatomeen-

Zellen (Mikrofouler-Arten) sowie festsitzender Amphibalanus improvisus und Mytilus 

edulis (Makrofouler-Arten) zu beziffern und den Energiestatus mittels Mannitol-Analyse 

zu quantifizieren. Außerdem wurden von jedem Fucus-Individuum oberflächen- 

assoziierte Metabolite mittels Oberflächenextraktion geerntet. Die Oberflächenextrakte 

wurden auf ihre saisonale Fouling-Kontrollstärke mit Hilfe von in situ Siedlung-

Bioassays untersucht. Die Fouling-Kontrollstärke wurde mittels Quantifizierung 

gesiedelter Prokaryoten und Diatomeen-Zellen sowie der zwei vorherrschenden 

Makrofouler-Arten A. improvisus und M. edulis bestimmt. Außerdem wurden die 

Oberflächenextrakte mittels Gaschromatographie mit Massenspektrometrie-Kopplung 

(GC-MS) analysiert, um mögliche saisonale Schwankungen in der Zusammensetzung 

zu identifizieren. 

Die abiotischen und biotischen Parameter zeigten saisonale Fluktuationen. Licht, 

Temperatur, Salinität und Nährstoffkonzentrationen wiesen die erwarteten saisonalen 

Muster typisch für die temperierte Ostsee auf. Der Fouling-Druck variierte ebenfalls mit 

der Jahreszeit: Der Mikrofouling-Druck, hauptsächlich geprägt durch Prokaryoten- und 

Diatomeen, war während der Frühjahrs- und Sommermonate am stärksten.  Der 

Makrofouling-Druck, vor allem durch die dominanten Arten A. improvisus und M. edulis, 

war im Sommer am intensivsten. Der Fouling-Status auf beiden Fucus-Arten variierte 

ebenfalls mit der Jahreszeit: Mikrofouling auf beiden Fucus-Arten war im Sommer am 
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höchsten. Prokaryotisches Fouling erreichte im Juni und August maximale Dichten auf 

F. vesiculosus bzw. im Juni auf F. serratus. Diatomeen-Fouling auf F. vesiculosus 

zeigte höchste Dichten im April und September, wobei Diatomeen auf F. serratus sehr 

selten waren und nur im April und Juni  auftraten. Im Allgemeinen war F. vesiculosus 

dichter besiedelt als F. serratus und prokaryotisches Fouling dominierte quantitativ auf 

beiden Fucus-Arten verglichen mit Diatomeen-Fouling. Makrofouling auf F. vesiculosus 

durch Epizoa war im Juli und Oktober am intensivsten und auf F. serratus zwischen 

November und Februar, mit einem Maximum im Januar. Die Seepocke A. improvisus 

wurde auf F. vesiculosus im Juli und August in geringer Anzahl gefunden. M. edulis 

(juvenile Lebensstadien) waren am häufigsten im Juli und August und die häufigste 

Fouler-Art auf F. vesiculosus. Auf F. serratus war A. improvisus nur im Mai anwesend, 

während M. edulis (juvenile Lebensstadien) in geringen Dichten das ganze Jahr 

hindurch auftraten. Der Mannitolgehalt beider Fucus-Arten zeigte eine klare saisonale 

Variabilität mit ansteigenden Konzentrationen von Februar bis Oktober, gefolgt von 

einer Reduzierung um die Hälfte der Sommerwerte bis zum Dezember. Bezüglich der 

Mikrofouling-Kontrollstärke, tendierten die Extrakte beider Fucus-Arten dazu, in 

Jahreszeiten, in denen der Mikrofouling-Druck im Feld am höchsten war weniger 

attraktiv zu sein. Das deutet den Einsatz von Abwehrmetaboliten an. Im Gegensatz 

hierzu zeigten die Oberflächenextrakte von F. vesiculosus einen allgemeinen 

profouling Effekt auf Prokaryoten verglichen zu den Lösungsmittel-Blanks. Zusätzlich 

variierte die Mikrofouling Kontrollstärke gegen die Seepocke A. improvisus mit der 

Jahreszeit und stimmte mit den jahreszeitlichen Fluktuationen im Fouling-Druck dieser 

Arten überein, ein Hinweis auf starke Kontrolle in Zeiträumen intensivem Foulings. Für 

die Muschel und vorrübergehenden Fouler M. edulis wurde kein entsprechendes 

Muster gefunden. Die beobachteten jahreszeitlichen Muster von Mikro- und 

Makrofouling-Kontrollstärke scheinen nicht mit dem Energiestatus beider Fucus Arten 

verbunden zu sein. Die Analyse der Oberflächenmetabolite zeigte Unterschiede 

zwischen Frühjahr/Sommer und Herbst/Winter für beide Fucus- Arten. Die 

jahreszeitlichen Varianzen erklären sich am besten durch die abiotischen Variablen 

Licht und Temperatur. GC-MS Analysen zeigten eine Hochregulierung von Mono- und 

Disacchariden und von drei Hydroxysäuren in F. vesiculosus Sommer-Extrakten und 

eine Hochregulierung von gesättigten Fettsäuren und drei Sacchariden in F. serratus 

Sommer-Extrakten verglichen mit Winter- Extrakten. 

Meine Doktorarbeit verdeutlicht die jahreszeitliche Dynamik der chemischen Mikro- 

und Makrofouling-Kontrolle von F. vesiculosus und F. serratus aus der Ostsee unter in 

situ Bedingungen sowie den Einfluss von Umweltvariablen auf die Fouling 

Kontrollstärke. Zusätzlich zeigt diese Arbeit, dass beide Fucus Arten pro- und 
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antifouling Eigenschaften im Sommer aufweisen, wenn der Fouling-Druck am höchsten 

ist, was eine komplexe Regulierung der Biofouling-Kontrolle andeutet. Diese Studie 

liefert somit neue Einsichten in die komplexe Algen-Umwelt-Fouler Interaktion und ihre 

jahreszeitliche Dynamik. 
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1. General Introduction 

In the euphotic zone of the sea, submerged surfaces in general become densely 

covered by a variety of different organisms sooner or later, ranging from microscopic 

prokaryotic cells, diatoms and ciliates to macroscopic barnacles, mussels, small 

filamentous macroalgae and large macrophyte species. Since many marine 

organisms reproduce seasonally, their juvenile life forms also occur and many of 

them strive to settle on free surfaces seasonally. Consequently, the colonisation of 

submerged surfaces also underlies a seasonal variability. Humans try to prevent 

these colonisation processes on man-made structures by periodical cleaning or by 

applying toxic paints. Natural structures, especially the functional outer body surface 

of many marine organisms, such as ascidians or macroalgae, mostly remain visibly 

free from macroscopic organisms. The reason for this phenomenon lies in the 

evolution of a natural fouling control based on physical and chemical mechanisms.  

In this doctoral thesis, I investigate the seasonal dynamics of the chemical fouling 

control of the brown macroalgae Fucus vesiculosus and Fucus serratus from the 

Baltic Sea as well as possible links to abiotic and biotic factors.  

 

Hereafter, I will use the term ‘fouling control’ instead of the commonly used term 

‘antifouling defense’, since previous studies and my thesis have shown that Fucus 

surface extracts have not only deterring but also attracting effects, so-called 

profouling effects, on fouler species. 

1.1 Sessile mode of life and marine epibiosis  

In the marine environment, the sessile mode of live is widespread (Harder 2008). 

The reasons lie in the special physical features of water. First, water is denser than 

air and has a relatively high viscosity, causing a reduced weight and increased drag 

on particles. This situation entails the need for some attachment for organisms to 

avoid drift. Second, the universal solvent and vector character of water supplies 

ions, nutrients and particles to attached organisms making a permanent sessile 

mode of life possible (Wahl 2009). Seawater can contain up to 107 viruses, 106 

bacteria cells, 103 fungal cells and between 10 to 100 microscopic larvae and 
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spores per millilitre depending on season (Harder 2008). Most of these organisms 

strive to settle on hard substrate. For example, alga spores (Fletcher & Callow 1992) 

and larvae (own observation for Spirorbis sp. larvae) need to attach for successful 

development and bacteria are known to perform best when living on surfaces 

associated in so-called biofilm communities (Grossart 2010). Considering the 

amount of potential settlers in one millilitre of seawater and the fact that their 

preferred sessile life-style requires stable hard substrate, it becomes obvious that 

available settlement surface in the marine environment, especially in the euphotic 

zone, is limited (Harder 2008). Established adult sessile organisms and young 

motile life forms compete for free available settlement substratum, which leads to an 

immense competition for space in the benthic environment (Wahl 1989, Harder 

2008). The emergence of “epibiosis” (epi “on top” and “bios” life), the close 

association between organisms, is a typical phenomenon in the marine environment 

and the consequence of limited settlement substratum (Harder 2008). Epibiosis is 

the mainly facultative association (Wahl & Mark 1999) between one or more 

organisms growing attached to the outer surface of a substratum organism (Wahl 

1989). The overgrown or “fouled” organism is termed the “basibiont” or host and the 

organism growing on top of it is termed the “epibiont” (Wahl 1989, Harder 2008). 

The development of such epibiotic communities on living and non-living surfaces is 

termed “biofouling” or “fouling” (Wahl 1989, Harder 2008). The colonisation of 

unoccupied hard substrate in general follows a basic pattern of four colonisation 

phases: (1) adsorption of organic molecules, such as proteins and polysaccharides, 

also called molecular biofouling (2) colonisation by prokaryotic cells, (3) colonization 

of unicellular eukaryotes, such as diatoms, ciliates and (4) colonisation by larvae 

and spores (Wahl 1989, Dobretsov 2009). The different colonisation phases can 

occur successively, in parallel or in overlapping order (Cooksey & Wigglesworth-

Cooksey 1995, Maki & Mitchell 2002).  

1.2 Consequences of epibiosis 

Epibiosis can have significant consequences for the host and for the epibiont, 

entailing benefits and disadvantages for both parties (summarized by (Wahl 1989, 

Harder 2008, Goecke et al. 2010, Wahl et al. 2012).  
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Microfoulers 

Host-microbe associations can have a positive impact on the host. For example, 

it has been demonstrated that symbiotic bacteria can deliver vitamin B12 (cobalamin) 

as exogenous source to their cobalamin auxotroph algae host (Croft et al. 2005). 

Further, it has been shown that epi-bacteria that form a dense coverage at the 

surface of shrimp and lobster embryos have the potential to protect their host from 

fungal infection by production of an antifungal compound (Gil-Turnes et al. 1989, 

Gil-Turnes & Fenical 1992). Additionally, marine bacteria are known to mediate 

further fouling by macrofouler species. Marine bacterial isolates showed inhibitory 

effects against barnacle larvae (Balanus amphitrite) and ascidian larvae (Ciona 

intestinalis) (Holmström et al. 1992). A study on biofilm assemblages revealed that 

monospecies bacterial biofilms as well as natural microbial assemblages isolated 

from the macroalgae Fucus vesiculosus repel barnacle larvae (Nasrolahi et al. 

2012). Additionally, epibiotic bacteria isolated from the surface of different brown 

macroalgae showed high or moderate antibacterial activity against common fouling 

bacteria, like Vibrio and Photobacterium species (Kanagasabhapathy et al. 2006).  

Besides the beneficial impact, microfouling can be detrimental for the host (Wahl 

1989, Hollants et al. 2013, Egan et al. 2014). For example, surface associated 

microfoulers could compete for vital nutrient resources with the host (Hollants et al. 

2013). Further, dense microfouling coverages can shade and insulate the host, 

leading to an inhibited gas exchange and reduced light absorption (for illustration 

see Figure 1) (Costerton et al. 1987, Gil-Turnes & Fenical 1992, Hollants et al. 

2013). In a study by Sand-Jensen (1977), a crust of epiphytic diatoms on eelgrass 

leaves led to a reduced photosynthesis up to 31 % and a decrease of HCO3
- 

diffusion. 

 
Figure 1. Scanning electron microphotographs of the surface of Fucus vesiculosus showing 
(A) a patchy prokaryotic assemblage consisting of cocci, diplococci and tetrads embedded 
in a matrix and (B) a dense microfouling cover consisting mainly of filamentous cells. 
Photos made by Nadja Stärck. 
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In addition, many bacteria are potential pathogens (Egan et al. 2014). For 

example, surface associated Alteromonas sp. from the Japanese kelp Laminaria 

religiosa have been shown to cause the bleaching disease in this kelp species 

during spring, when seawater temperature rises (Vairappan et al. 2001). 

Furthermore, bacterial biofilms have been shown to mediate macrofouling. Bacterial 

biofilms are recognized by zoospore of the green seaweed Ulva by means of 

released quorum sensing signal molecules (AHLs, N-acylhomoserine lactones) 

leading to an increase in zoospore settlement (Joint et al. 2000, Joint et al. 2007, 

Qian et al. 2007). Bacterial strains isolated from marine biofilms induced larval 

settlement of the serpulid polychaete Hydroides elegans, an early colonist of new 

substrata (Unabia & Hadfield 1999). 

Macrofoulers 

Host-macrofouler associations are mainly detrimental for the host (Wahl 1989). 

Epibiosis leads to a modification of the outer body surface of the host (Wahl 2008). 

Since for many marine organisms the outer surfaces serve as interface for all 

interactions with the environment such as light absorption, gas exchange, nutrient 

uptake, release of gametes or chemical signalling, a functional body surface is 

essential for the performance and ultimately for the host’s survival (Wahl 1989). 

 

 

 

 

 

For example, heavy colonisation on the cephalothorax and rostrum of the prawn 

Macrobrachium acanthurus by barnacles, bryozoans and hydrozoans leads to an 

increased drag and higher energy costs of movement as well as a disturbed 

Figure 2. Macrofouling on macroalgae thallus surfaces. (A) A dense bryozoan layer partly 
blocking the receptacles of Fucus vesiculosus. (B) A dense macrofouling assemblage 
consisting of different macrofouler species associated with the older thallus parts of Fucus 
serratus. Photos made by Esther Rickert. 
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coordination of movements. Moreover, such a reduced performance makes the 

prawn more vulnerable to predators (Farrapeira and dos Santos Calado 2010). 

Furthermore, it could, for instance, be demonstrated that epiphytised Ascophyllum 

nodosum had a reduced reproduction effort due to the physical blockage of 

receptacles (for illustration see Figure 2A) (Kraberg & Norton 2007). Further, it has 

been shown that the mortality of the kelp Saccharina latissima coincided with heavy 

epiphytism (80-100 %) during summer (Andersen et al. 2011). The authors argued 

that accumulated epiphytic load led to light limitation, increased drag and finally to 

thallus destruction resulting in defoliation and mortality. Typical epiphytised 

macroalgae are exposed to an increased drag leading to an increased risk of 

dislodgment (Anderson & Martone 2014) (for illustration see Figure 2). Furthermore, 

it has been shown that uncontrolled fouling by an epiphytic bryozoan species on 

kelp could cause a reduced nutrient uptake and photosynthesis leading to a lowered 

resilience followed loss of the meristematic region  (Scheibling & Gagnon 2009) (for 

illustration see Figure 2 A). Reduced photosynthesis caused by encrusting 

bryozoans has been also reported form the brown algae Fucus serratus (Oswald et 

al. 1984). 

1.3 Macroalgal fouling control mechanism 

Thalli of macroalgae consist of relatively undifferentiated tissues representing the 

interface for vital interactions with the environment such as light absorption, gas 

exchange and nutrient uptake (da Gama et al. 2014). Moreover, macroalgal fitness 

and survival inter alia depend on incident light and photosynthesis (da Gama et al. 

2014). As photosynthetic organisms, macroalgae grow in the euphotic zone where 

the density of potential colonisers and competition for settlement space is high (da 

Gama et al. 2014). Under these circumstances, macroalgae become a settlement 

substrate for potential colonisers (da Gama et al. 2014). Further, the thallus surface 

provides nutritious compounds favourable for bacterial settlement and reproduction 

(Sieburth 1969, Abdullah & Fredriksen 2004, Haas & Wild 2010). The special 

importance of a functional thallus surface and the constant threat of overgrowth by 

micro- and macrofoulers have resulted in the evolution of a wide variety of control 

mechanisms against epibiosis (Pohnert 2004, Harder 2008, Paul & Ritson-Williams 

2008, de Nys et al. 2009, da Gama et al. 2014). 
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The following paragraph gives a few examples of different fouling control 

strategies found in macroalgae. A physical fouling control mechanism, reported from 

some macroalgae species, represents the periodically removal of their cuticula, thus 

eliminating surface associated epiphytes temporarily (Filion-Myklebust & Norton 

1981, Sieburth & Tootle 1981, Russell & Veltkamp 1984, Nylund et al. 2005, 

Yamamoto et al. 2013). 

Besides this physical control of fouler species, many macroalgae exhibit chemical 

fouling control mechanisms (Steinberg et al. 2002, Pohnert 2004, Paul & Ritson-

Williams 2008). One fouling control strategy used by green, brown and red 

macroalgae to prevent or control colonisation by epibacteria is the formation and 

release of reactive oxygen species (ROS) named “oxidative burst” (Potin 2008, 

summerised by Goecke et al. 2010 and da Gama et al. 2014). The red macroalga 

Gracilaria conferta, for example, responded with an oxidative burst when oligoagars, 

analoguous to cell wall degradation products released by degrading bacteria, were 

added to the algae leading to a reduction of epibacteria (Weinberger & Friedlander 

2000).  

Another form of chemical fouling control represents the deployment of active 

secondary metabolites on macroalgal surfaces to control fouler species. This form of 

chemical fouling control has often been reported from macroalga species belonging 

to the division Rhodophyta (da Gama et al. 2014). For example, the red macroalga 

Delisea pulchra produces halogenated furanones with antifouling activities (De Nys 

et al. 1995). Furanones isolated from D. pulchra inhibited settlement of Balanus 

amphitrite cyprid larvae, settlement and growth of Ulva lactuca algal gametes as 

well as growth of a marine bacterial strain (De Nys et al. 1995). The red macroalga 

Bonnemaisonia hamifera uses the surface associated secondary metabolite 1,1,3,3-

tetrabromo-2-heptanon to inhibit epibacterial growth (Nylund et al. 2005, Nylund et 

al. 2008). Phlorotannins exuded from the brown alga Fucus vesiculosus inhibited the 

settlement of cyprid larvae from the barnacle Amphibalanus improvisus (Brock et al. 

2007). 

Besides elaborate secondary metabolites, primary metabolites also play a role in 

chemical fouling control strategies (Pohnert 2012). It has been shown that the 

pigment fucoxanthin, the amino acid proline and the osmolyte DMSP, isolated from 

the surface of the brown macroalgae Fucus vesiculosus, inhibit bacterial attachment 

(Saha et al. 2011, Saha et al. 2012). Polyunsaturated fatty acids exuded from the 
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green alga Ulva fasciata exhibited algicidal effects active against different microalgal 

species (Alamsjah et al. 2008).  

1.4 Seasonality of fouling control 

One fundamental aspect regarding chemical fouling control is the question of its 

regulation. It is conceivable that, in analogy to the antifeeding defences in 

macroalgae (Rohde et al. 2004), chemical fouling control is active when needed, 

meaning highest fouling control strength during season of high fouling pressure, 

thus regulated ‘on demand’. Seasonal fluctuations in fouling control strength (Hellio 

et al. 2004, Marechal et al. 2004, Stirk et al. 2007, Wahl et al. 2010, Saha & Wahl 

2013) as well as seasonally variable levels of bioactive metabolites (Amade & 

Lemee 1998, Abdala-Diaz et al. 2006) have been reported in different species of 

macroalgae. For example, the phenolic phlorotannins in the brown alga Cystoseira 

tamariscifolia (Abdala-Diaz et al. 2006), the antifouling sesquiterpene caulerpenyne 

from Caulerpa taxifolia (Amade & Lemee 1998) showed annual cycles regulated by 

light intensity. The tissue content of caulerpenyne (Amade & Lemee 1998) and the 

sesquiterpene elatol from the red alga Laurencia dendroidea (Sudatti et al. 2011) 

also showed a temperature dependency. A seasonal fluctuating microfouling control 

of F. vesiculosus has been demonstrated by testing, via in vitro assays, surface 

extracts on their activity against different marine bacteria strains in two previous 

studies (Wahl et al. 2010, Saha & Wahl 2013).  

Furthermore, temperate macroalgae, including F. vesiculosus, have been shown 

to exhibit a seasonally fluctuating chemical fouling control synchronised with in situ 

fouling pressure and influenced by the abiotic factors irradiance and seawater 

temperature (Hellio et al. 2004, Marechal et al. 2004, Wahl et al. 2010). 

1.5 Costs of fouling control 

Another basic aspect regarding macroalgal fouling and herbivory control is the 

question of costs. Most hypotheses in plant defence assume that defence causes 

metabolic costs (Strauss et al. 2002, Stamp 2003) originating from synthesis, 

transport, and storage of secondary metabolites (Hay & Fenical 1988, Purrington 
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2000). Further, it has been hypothesised that the required energy has to be 

allocated and is thus probably missing for other life processes like growth (Cronin 

2001). Regarding herbivory control, phlorotannin synthesis, inter alia an herbivory 

deterrent, has been found to be negatively correlated with growth of the brown 

macroalga Fucus vesiculosus (Jormalainen & Ramsay 2009). However, there are 

several studies, where no costs of herbivory fouling control were detected (Pansch 

et al. 2009, Appelhans et al. 2010). One study that analysed the metabolic costs of 

biofouling control found a significant inverse relationship between fecundity and the 

level of the bioactive compounds furanones as well as significantly higher growth 

rates for algae unable to produce furanones, indicating a cost of furanone 

production (Dworjanyn et al. 2006). In general, however, metabolic costs of 

chemical fouling control in macroalgae are hardly studied so far (Pavia et al. 2012). 

If the deployment of fouling control metabolites is costly, this may not be relevant 

when the macroalga is not resource limited (Cronin 2001) or they may be reduced 

when primary metabolites are used as cost effective chemical fouling control 

metabolites (Pohnert 2012). 

1.6 Study organisms 

The rockweeds Fucus vesiculosus Linnaeus (Phaeophyceae) also known as 

bladder wrack  and Fucus serratus Linnaeus (Phaeophyceae) also called serrated 

wrack, are classified as vegetation determining species of the North Atlantic 

(Lünning 1985). F. vesiculosus has its northern distribution border in the southern 

Arctic at approx. 73° of northern latitude and its southern borders on the coasts of 

North Africa (Europe) and North Carolina (North America) at approx. 34° of southern 

latitude (Lünning 1985). F. serratus has its northern distribution limits in the Arctic 

Ocean (Nowaja Semlja, approx. 73° of northern latit ude) and its southern borders on 

the coasts of Northern Portugal (Europe) and Gulf of Saint Lawrence (North 

America) at approx. 42° of southern latitude (Lünni ng 1985).  

Both species produce one diploid macrothallus during their life cycle. The thallus is 

flat and strap-like approx. 2 cm wide and parts of the thalli are pock-marked with 

cryptostomata (van den Hoek et al. 1995). Thallus growth is apical through 

meristematic cells (van den Hoek et al. 1995). F. vesiculosus and F. serratus thalli 

are flat thalli approx. 2 cm wide. F. vesiculosus thalli are characterized by bladders 
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and rounded thalli borders, whereas F. serratus thalli have no bladders and serrated 

thalli borders (Figure 3). Both Fucus species are dioecious. Mature Fucus 

individuals develop conceptacles, depressions located in the distal fertile thallus 

parts named receptacles. From the conceptacles oogonia and antheridia (depending 

on the sex of the Fucus individual) are released followed by the release of 64 sperm 

cells from the antheridia and the release of eight eggs from the oogonia. After 

fertilisation diploid zygotes attach and grow to a new Fucus individual (van den Hoek 

et al. 1995).  

 

 

 

 

 

Both Fucus species are two common perennial brown macroalgae species in the 

Baltic Sea. F. vesiculosus is often referred to as keystone species in the Baltic Sea 

due to its wide distribution and habitat forming characteristic (Kautsky et al. 1992). 

Today F. vesiculosus grows between 0 - 3 m water depth, whereas F. serratus 

occurs from approx. 2 m downwards in the Western Baltic Sea (Malm et al. 2001).In 

the resent years F. vesiculosus showed a reduced depth distribution along with 

reduced abundance in the Baltic Sea (Rohde et al. 2008, Wahl et al. 2011) and 

references therein). The shifts in depth distribution have been attributed directly and 

indirectly to the eutrophication of the Baltic Sea (Wahl et al. 2011) and references 

therein).  

 

Figure 3.  The perennial brown macroalgae Fucus vesiculosus (left) and Fucus serratus 
(right). Photo made by Esther Rickert. 
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1.7 Thesis outline 

At the beginning of my research in 2012, it was known that (a) F. vesiculosus 

surface extracts are active against micro- and macrofoulers with the capacity to 

modulate fouler abundance and composition, that (b) the chemical antifouling 

defence against bacteria seasonally fluctuates, that (c) F. vesiculosus hosts a 

characteristic and seasonally variable bacterial community, that (d) the F. 

vesiculosus associated bacterial community is affected by abiotic and biotic factors 

and that (e) the associated bacterial community has the potential to affect further 

fouling by important macrofoulers. Even though former studies investigated the 

seasonal aspects as well as the effects of abiotic and biotic factors on the antifouling 

defence of F. vesiculosus in parts, possible relations between naturally variable 

abiotic and biotic factors and the putative synchronised fouling control of Fucus was 

virtually unstudied, especially under in situ conditions.  

Therefore, the aim of my research was to investigate the putative seasonal 

variability in fouling control of F. vesiculosus and F. serratus from the Baltic Sea on 

micro- and macrofouler species and how the fouling control relates to the natural 

seasonal variations of abiotic and biotic factors. To this end, the following research 

questions were formulated and investigated within a 12-months field experiment 

complemented by laboratory work (work-flow overview Figure 4).  

 

1. Main study questions: 

1.1 Does the chemical fouling control strength of Fucus vary with season?  

The putative seasonal variability of the fouling control was investigated on a 

monthly basis. For this purpose, Fucus individuals from both species were sampled 

at the experimental site from August 2012 to July 2013 and subsequently surface-

extracted. For the sake of comparability, all monthly surface extracts were exposed 

to the natural fouler pool at one time point (Aug/Sep 2013) by means of an in situ 

settlement bioassay to determine their fouling control strength. Fouling control 

strength was quantified by direct enumeration of the total cell number of settled 

prokaryotes and diatoms and by quantification of the two dominant macrofouler 

species Amphibalanus improvisus and Mytilus edulis (Paper I  ‘Microfouling’ and 

Paper II  ‘Macrofouling’). 
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1.2 Does the surface metabolite composition of Fucus  vary with season and 
which metabolites are up- or down-regulated during seasons of high or low 
fouling pressure? 

Seasonal variability of Fucus surface metabolite composition was investigated by 

analysing the monthly extracted surface metabolites (sub-samples from extracts 

tested for fouling control) via GC-MS. Obtained GC-MS data was checked for 

seasonal variability using multi-dimensional scaling (MDS). Regulated metabolites in 

summer (high fouling pressure) and winter (low fouling pressure) extracts were 

detected by Simper analysis (Paper III  ‘Chemical landscape).  

 

1.3 Do seasonal fluctuations of Fucus  fouling control correlate with (a) fouling 
pressure and / or (b) the energy status of Fucus ? 

To investigate the possible relations between these two seasonally fluctuating 

variables and the putative seasonally varying fouling control of Fucus, correlation 

tests were performed (Paper I  ‘Microfouling’ and Paper II  ‘Macrofouling’). 

 

1.4 Does the surface metabolite composition of Fucus  correlate with abiotic 
and biotic variables? 

To investigate possible relationships between light intensity, seawater 

temperature, nutrient concentration, prokaryotic fouling pressure and the putative 

seasonally variable composition of metabolites on the surface of both Fucus 

species, a distance based linear model (DistLM) was performed (Paper III  ‘Chemical 

landscape’).  

 

2. Minor study questions:  

To understand the seasonal patterns and possible links of the seasonal 

fluctuating fouling control system of Fucus it was necessary to investigate the 

seasonal fluctuations of the following abiotic and biotic factors:  

2.1 How do light, temperature, salinity and nutrients vary with season?  

The seasonal variability of light, temperature, salinity and nutrient concentrations 

at the experimental site were continuously recorded via light/temperature and 

salinity data loggers deployed at the field site of the monthly surveys. Nutrient 

concentrations were determined from water samples taken weekly (abiotic data 
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were used in Paper I  ‘Microfouling’, Paper II ‘Macrofouling’ and in Paper III 

‘Chemical Landscape’).  

2.2 How does in situ fouling pressure vary with season?  

The seasonal variability of the in situ fouling pressure at the experimental site 

was studied by deploying glass slides for microfoulers for seven days each month 

and PVC panels for macrofoulers for four weeks each month as artificial settlement 

substrate. Fouling pressure was quantified by direct enumeration of settled 

prokaryotic and diatom cells (microfouling pressure) and of all settled macrofouler 

species by means of epifluorescence microscopy and stereomicroscopy, 

respectively (Paper I ‘Microfouling’, Paper II  ‘Macrofouling’, microfouling pressure 

data was used in Paper III  ‘Chemical Landscape’). 

2.3 Does the fouling status of Fucus  vary with season?  

The potential seasonal variations of cumulative micro- and macrofouling densities 

on both Fucus species, termed as ‘fouling status’, were investigated by direct 

enumeration of micro- and macrofouling individuals on apical thallus tips via 

epifluorescence microscopy or on one thallus branch via stereomicroscopy, 

respectively (Paper I  ‘Microfouling’ and Paper II  ‘Macrofouling’). 

2.4 Does the energy status of Fucus  vary with season? 

The potential seasonal variations of the storage compound mannitol, probably an 

energy reserve and therefore used as general proxy for available energy in both 

Fucus species (termed as ‘energy status’), were analysed using a HPLC (Paper I  

‘Microfouling’ and Paper II  ‘Macrofouling’).  
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Figure 4. Work flow diagram of the performed field experiment and laboratory analysis to 
answer the formulated research questions of my doctoral project. The field experiment 
lasted from August 2012 until July 2013, performed in the outer Kiel Fjord. During the field 
experiment, light, temperature and salinity were constantly recorded and nutrient 
concentrations weekly. Further, the actual micro- and macrofouling pressure at the 
experimental site was recorded in monthly intervals. Also in monthly intervals, 15 Fucus 
individuals per species were collected at the site to harvest surface associated metabolites 
via surface extraction. The same Fucus plants were used to quantify their ‘fouling status’ 
(cumulative densities of settled micro- and macrofoulers) and ‘energy status’ (total mannitol 
tissue conc.). To assess the putative seasonal variable fouling control of both Fucus 
species, obtained surface extracts were exposed by means of an in situ settlement 
bioassay to the natural fouler pool at one point in time in Aug/Sep 2013. Furthermore, the 
chemical composition of surface extracts obtained was analysed by GC-MS to identify 
potential seasonal differences in the metabolite composition. 
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Paper I  

Submitted to Marine Biology 

Seasonally fluctuating chemical microfouling contro l in 
Fucus vesiculosus and Fucus serratus from the Baltic Sea 

 

E. Rickert  1, S. N. Gorb 2, and M. Wahl 1 

1 GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany 
2 University of Kiel, Department of Functional Morphology and Biomechanics, 

Germany 

 

Abstract  

Microfouling in temperate seas underlies seasonal variations and, thus, perennial 

macroalgae are exposed to fluctuating fouling pressure. Only few studies have 

examined the link between fouling pressure and algal fouling control. In a one-year 

field survey, we assessed whether microfouling control of F. vesiculosus and F. 

serratus against prokaryotes and pennate diatoms fluctuates with season and 

correlates with fouling pressure. Monthly microfouler recruitment on glass (reference 

surface) and on Fucus, microfouling control strength of Fucus surface metabolites 

(tested by an in situ bioassay approach) and Fucus tissue mannitol content (used as 

proxy for energy availability) were determined. Microfouling pressure and 

microfouling control of Fucus varied seasonally but generally did not correlate with 

the fouling pressure or with the mannitol content of Fucus. Both Fucus species 

exhibited cuticula shedding during all seasons. We conclude that microfouling 

control in both Fucus species was not fine-tuned to microfouling pressure and was 

not energy-limited. 

 

Keywords Fucus, chemical microfouling control, prokaryotic fouling, diatom 

fouling, cuticula shedding 
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Introduction 

Macroalgae are exposed to an omnipresent, but spatially and temporally variable 

fouling pressure generated from a wide diversity of pro- and eukaryotes mainly 

bacteria, microalgae as well as propagules of invertebrates and macroalgae (Harder 

2008; Qian et al. 2007; Wahl et al. 2012). Seawater can contain cell densities up to 

106 bacteria, 103 fungi, 103 microalgae and 10-100 larvae and spores per ml (Harder 

2008). Most of these life forms strive to settle on solid surfaces and especially 

bacteria perform best when living within biofilms (Grossart 2010). Macroalgal thalli 

are particularly susceptible to biofilm formations since the algal thallus represents 

free space for settlement and a rich source of exuded organic matter suitable as 

nutrients for bacteria (Brylinsky 1977; Khailov and Burlakov 1969; Pregnall 1983). 

Macroalgae-associated biofilms are usually dominated by bacteria, often the first 

colonizers (Goecke et al. 2010; Wahl 1989), but can also contain microalgae, fungi, 

spores and larvae (Goecke et al. 2010; Sieburth and Tootle 1981; Staufenberger et 

al. 2008). Furthermore, it has been shown that macroalgae-associated bacteria 

communities can differ between algal species (Lachnit et al. 2009). Alga-associated 

bacterial strains or communities may mediate further colonization by other bacteria, 

diatoms or spores (reviewed by Dobretsov et al. (2006)). In some cases macroalgae 

hosts may be protected from further epiphytic fouling by their epi-bacterial films 

(Egan et al. 2001; Kumar et al. 2011). However, uncontrolled microfouling of a 

macroalgae surface can lead to several detrimental effects like hindered trans-

epidermal exchange (Wahl 2008; Wahl et al. 2012) or increased shading (Rohde et 

al. 2008) along with a reduced photosynthesis. Furthermore, pathogenic bacteria in 

algal-associated biofilms can cause infections followed by tissue loss or even cause 

mortality (Sawabe et al. 1998; Steinberg et al. 1997). Since the algae outer body 

surface represents its only interface for all physiological interactions with the 

environment, an intact thallus surface is essential for growth, reproduction and 

finally for survival (Wahl et al. 2012).  

To control fouling quantitatively and qualitatively, macroalgae have developed 

chemical antifouling defence systems (da Gama et al. 2014; Nylund et al. 2008). For 

example the perennial brown alga Fucus vesiculosus expresses surface-associated 

metabolites with antifouling activities (DMSP, proline and fucoxanthin) as well as 

metabolites with profouling activities (unidentified polar compounds) to control 
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fouling bacteria (Lachnit et al. 2013; Saha et al. 2012; Saha et al. 2011; Saha et al. 

2014).  

Additionally, it has been shown that extracts from several different macroalgae 

species were active against bacteria, fungi, diatoms and macroalgae spores. In 

some cases, the anti-fouling activity was shown to be seasonally variable (Hellio et 

al. 2004; Saha and Wahl 2013; Wahl et al. 2010). 

If the production of antifouling metabolites is costly and competes with other 

metabolic functions for limited resources (Coley et al. 1985; Dworjanyn et al. 2006; 

Strauss et al. 2002) and if the microfouling pressure, in temperate climate zones, 

varies with season (Hellio et al. 2004; Wahl et al. 2010), a tuning of microfouling 

control to the in situ microfouling pressure would seem to be of selective advantage 

for the algae. 

A few studies have focused on the relationship between the anti-microfouling 

defence strength and season (Hellio et al. 2004; Saha and Wahl 2013; Wahl et al. 

2010). Regarding the chemical anti-microfouling defence of Fucus, previous studies 

have shown that F. vesiculosus exhibits seasonal fluctuating defence strength 

against bacteria (Saha and Wahl 2013; Wahl et al. 2010), but the hypothesis about 

a real-time correlation to fouling pressure or resource availability was not tested yet.  

The aim of this study was to investigate (1) if prokaryotic and diatom fouling 

pressure in the field varies with season, (2) if F. vesiculosus and F. serratus fouling 

control against prokaryotic and diatom fouling varies with season, (3) if the fouling 

control strength of F. vesiculosus and F. serratus relates directly to the relative in 

situ fouling pressure (demand driven control) or (4) to the availability of energy 

chemically stored in the form of mannitol (resource driven control). 

 

Material and methods 

Sampling site and collection of alga material 

Fucus vesiculosus Linnaeus (1753) and F. serratus Linnaeus (1753), two 

perennial brown algae species, were collected in the outer Kiel Fjord, Germany 

(54°27'21" N; 10°11'57" E) at depths from 0.5 m und er mid water level from August 

2012 to July 2013. At the same site seawater temperature, salinity and light intensity 

were recorded hourly and nutrients were quantified weekly in water samples. A 

detailed description of recorded abiotic data can be found in Rickert et al. (2015). 
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Monthly, 15 individuals of both Fucus species were sampled from mixed stands. 

Collected algae were individually stored in 3 l plastic bags (maintaining a humid 

atmosphere) and transported to the laboratory in a cooler box. Within 3 to 4 h after 

sampling, all algae were surface-extracted (see paragraph below). After surface 

extraction, total tissue mannitol content was measured. Mannitol quantification is 

described in detail in Rickert et al. (2015). From non-extracted Fucus material the 

apical thallus region (upper 1-2 cm) was used to quantify seasonal variations of 

Fucus associated microfoulers (see paragraph below). 

 

Assessment of microfouler recruitment 

Prokaryotic and pennate diatom cells were assessed as the dominant 

microfoulers on Fucus and on glass reference substrate. Cyanobacteria were also 

detected but not quantified systematically. To quantify the relative in situ 

microfouling pressure in the field, glass microscope slides (n = 9 per month) were 

vertically exposed (to avoid sedimentation) at the sampling site at a depth of 0.5 m 

under mid water level for the seven days preceding the monthly sampling of algae. 

Glass slides were used as settlement substrate to quantify microfoulers directly on 

the recruitment surface to avoid additional transfer steps along with possible cell 

losses. The hydrophilic surface of in seawater immersed glass is levelled through 

molecular fouling after approx. 48 hours (Becker and Wahl 1991). After exposure 

the slides were fixated in sterile filtered 3.7 % formaldehyde solution at 4 °C 

overnight. Fixated slides were rinsed with sterile filtered 1x PBS buffer and stored in 

an ethanol-PBS solution (96 % ethanol:1x PBS, 1:1) at -20 °C until further analysis.  

For quantification of prokaryotic and pennate diatom cells approx. 1 cm2 at the 

centre of the slides were stained with 10 µl of a ready-to-use DAPI (4'.6-diamidino-2-

phenylindole) containing mounting medium (Roti®-Mount FluorCare DAPI, Roth, 

Karlsruhe, Germany).  Subsequently, slip-covered slides were observed using an 

epifluorescence microscope (Axio Scope.A1, Carl Zeiss Microscopy GmbH, 

Göttingen, Germany; objective lens EC Plan-NEO FLUAR, 100x/1.3 oil, Carl Zeiss 

Microscopy GmbH, Göttingen, Germany) and five randomly chosen visual fields of 

0.02 mm² were photographed (ProgRes® CF, Jenoptik AG, Jena, Germany). On the 

screen, each captured visual field was overlain with a grid using the image 

processing free software ImageJ (Schneider et al. 2012) and prokaryotic and 
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pennate diatom cells in 20 randomly chosen squares (each 50 µm2) were manually 

counted.  

To quantify the microfouling status of Fucus directly on the thallus surface, one 

thallus piece (approx. 0.2 cm2) from the young apical thallus region (the distal 1 cm) 

per alga individual (n = 9 per month and Fucus species) was punched out with a 

cork borer and fixated with sterile filtered 3.7 % formaldehyde solution. It should be 

mentioned that F. vesiculosus exhibits vegetative growth throughout the year with 

highest growth rate in summer and the lowest one during winter (approx. one third of 

the summer growth rate) (Lehvo et al. 2001). Therefore, when cut at distance from 

the meristem Fucus, the thalli pieces have a slightly older mean age in winter than in 

summer. Fixated thallus pieces were rinsed with sterile filtered 1x PBS buffer and 

stored in an ethanol-PBS solution (96 % ethanol:1x PBS, 1:1) at -20 °C until further 

analysis. Three thallus pieces were put on a microscope slide side-by-side. The up-

facing thallus sides were stained with 10 µl of a ready-to-use DAPI (4'.6-diamidino-

2-phenylindole) containing mounting medium (Roti®-Mount FluorCare DAPI, Roth, 

Karlsruhe, Germany) and covered with long glass coverslips. To stabilize both the 

sample and the coverslip during microscopy the coverslip was fixed laterally with an 

adhersive tape on the microscope slide. Quantification of Fucus-associated 

microfoulers was carried out by epifluoreszence microscopy (AxioImager.Z1 with a 

motorized z-axis lifting table, Carl Zeiss Microscopy GmbH, Göttingen, Germany). In 

order to capture all surface associated cells in the different focal planes, 5 randomly 

chosen z-stack images per replicate were taken with a focal distance of 0.24 µm 

(AxioCam MRm, Carl Zeiss Microscopy GmbH, Göttingen, Germany and objective 

lens Plan-Apochromat / 63x / 1.4 oil DIC, Carl Zeiss Microscopy GmbH, Göttingen, 

Germany). The use of a monochromatic and highly sensitive camera was essential 

to obtain a discernible fluorescence dye signal against the bright algal background 

auto-fluorescence. Recorded z-stack consisted of single image numbers ranging 

from below 10 up to over 100, depending on the algal surface structure. For cell 

enumeration each z-stack was combined to a 2D image following the method 

described by Stratil et al. (2013). Enumeration of cells on 2D images was performed 

manually as described above (see previous paragraph).  
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Surface screening 

To screen the thallus surface of Fucus for cuticula shedding in a scanning 

electron microscope (SEM), Fucus pieces were dehydrated by transferring them 

serially from ethanol-PBS solution (96 % ethanol:1x PBS, 1:1) across an ascending 

gradient ethanol series (50%, 70%, 90%, and 100%; v/v). This was followed by 

critical point drying with carbon dioxide (CPD 030, Optics Balzers, Balzers, 

Liechtenstein) and sputter-coating with gold-palladium (SCD 004, Optics Balzers, 

Balzers, Liechtenstein). To analyse the surface condition of Fucus for cuticula 

shedding on a random basis, one to two thallus samples originating from different 

month throughout all seasons (February, March, June, July, October, November) 

were examined with a SEM Hitachi TM 3000 (Hitachi High Technologies, Tokyo, 

Japan).  

 

Surface extraction 

For surface extraction, per Fucus replicate (n = 15 per months and species) 

approx. 50 g of apparently epiphyte-free thallus tips (distal 5 - 10 cm) were cut off. 

Fucus material was extracted by following the protocol described by de Nys et al. 

(1998), with minor modifications. Before extraction thallus tips were spin dried in a 

salad spinner for 30 s to get rid of remaining seawater. Extraction time was reduced 

to 4 s, since previous extractions tests have shown that after 7 to 8 s of surface 

extraction the thallus material turned from normal brownish colour to light greenish-

brown, indicating the loss of pigments (and other metabolites). During extraction, 

thallus tips were held with steel tweezers in a 100 ml stirred n-hexane : methanol 

(1:1) emulsion at room temperature for 4 s. Solvent contact with the cutting edge of 

the thallus tips was avoided during extraction procedure to prevent a contamination 

with intercellular compounds. After extraction the extract was filtered through a 

paper filter (MN 615 ¼, Ø 150 mm, Macherey-Nagel, Düren, Germany) to remove 

particles. Extracts were reduced under vacuum at 35 °C by using a rotation 

evaporator followed by re-dissolution with 2 ml n-hexane and 2 ml methanol. 

Extracts were dried under a constant nitrogen flow at 35 °C and dry stored at -20 °C 

until further analysis.  

Extracted thallus material was rinsed with seawater and scanned for surface area 

determination with the free analysis software Fiji (Schindelin et al. 2012). The 
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surface extracted Fucus material was also used to analyse the total mannitol 

contents.  

 

Mannitol analysis 

Total mannitol tissue content was determined in surface extracted Fucus 

material. Algal material was freeze-dried and ground into a fine powder. 10 to 20 mg 

dry weight of alga powder per sample was used for analysis. For detailed method 

descriptions see Rickert et al. (2015) 

 

In situ bioassays 

In situ bioassays were performed to test the seasonal fouling control strength of 

F. vesiculosus and F. serratus surface extracts. Tested surface extracts (n = 6 per 

month and Fucus species) originated from all month of a year. For bioassay 

preparation surface extracts were redissolved in 2 ml n-hexane : methanol (1:1) and 

applied in a two-fold mean boundary layer concentration on 12.56 cm2 cellulose filter 

paper (MN 616, Ø 40 mm, Macherey-Nagel, Düren, Germany). Since living algae 

release metabolites and thus generate and maintain a strong metabolic 

concentration gradient, the concentrations near the thallus surface (where bacteria 

settle and grow) are substantially higher than the mean boundary layer 

concentrations (Grosser et al. 2012). Consequently, the “natural” (i.e. average) 

concentration calculated for the boundary layer was up-concentrated two-fold to 

better simulate the conditions in the stratum most relevant for microfoulers (Grosser 

et al. 2012). Impregnated filter papers were freeze-dried to remove all solvents 

residues. Cellulose filter papers were covered with 500 µl of a 1 % low melt agarose 

(Roth, Karlsruhe, Germany) to prolong the residence time of the extracts. Low melt 

agarose was used to allow working below 35 °C which  avoids potential thermal 

degradation of the extracts. To provide a suitable settlement surface for fouling 

organisms the impregnated and embedded cellulose filter was then covered with a 

polycarbonate membrane (track-etch membrane, Ø 47 mm, pore size 0.2 µm, 

Sartorius Stedim Biotech, Göttingen, Germany) which had been aged, to allow 

molecular fouling and contact angle modification (Becker and Wahl 1991), for 10 

days in sterile filtered seawater. Bioassays were assembled in a holder devise as 

described by Nasrolahi et al. (2012). To facilitate the homogeneous distribution (by 
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diffusion) of extracts bioassays throughout filter and agarose, the holder device was 

kept in a humid atmosphere at 4 °C for 24 h before exposure to the sea. Always 12 

bioassay devices were screw tight on a PVC (polyvinyl chloride) retaining plate and 

hung in random arrangement at a depth of -0.5 m from a floating dock in the Kiel 

fjord. In this way they were exposed to the natural fouling organism pool for five 

days during August/September 2013. Due to the sample size, F. vesiculosus 

bioassays and F. serratus bioassays were deployed in succession and thus 

exposed to different fouler intensities. Therefore a direct comparison of the results 

was not possible. After five days of exposure, the polycarbonate membranes were 

removed, rinsed with sterile filtered seawater and fixed with 3.7 % formaldehyde at 4 

°C overnight. For microfouling analysis a 0.25 cm 2 (0.5 x 0.5 cm) piece of the centre 

of the polycarbonate membrane was cut out with a scalpel and tagged in the corner 

with a pencil to identify the side of the membrane which had been exposed to 

fouling. Membrane pieces were stored in 1x PBS and 96 % ethanol (1:1) at - 20 °C 

until further analysis. For fouling quantification, polycarbonate membrane pieces 

were carefully rinsed with sterile filtered seawater to remove remaining buffer and 

non-attached material, then placed with the fouled side upwards on a microscope 

slide and stained with 10 µml of a ready-to-use DAPI (4'.6-diamidino-2-phenylindole) 

containing mounting medium (Roti®-Mount FluorCare DAPI, Roth, Karlsruhe, 

Germany) and covered with a coverslip. Quantification of microfoulers was 

assessed by epifluorescence microscopy (Axio Scope.A1, Carl Zeiss Microscopy 

GmbH, Göttingen, Germany; objective lens EC Plan-NEO FLUAR®, 100x/1.3 oil, 

Carl Zeiss Microscopy GmbH, Göttingen, Germany). Per replicate 10 randomly 

chosen visual fields were photographed (ProgRes® CF, Jenoptik AG, Jena, 

Germany) and later analysed with the free software ImageJ (Schneider et al. 2012). 

For cell enumeration each visual field was overlayed with a grid and in each of 20 

randomly chosen squares (each 50 µm2) prokaryotic and pennate diatom cells were 

quantified by manual counting.  

 

Data analysis 

For each Fucus species together with every fouler type a separate one-way 

analysis of variance (ANOVA, p ≤ 0.05) was used to assess differences among 

Fucus extracts regarding the fouling densities of the two fouler groups. Data were 

tested for normality using the Shapiro-Wilks test (p ≤ 0.05) and histograms, while 
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homogeneity of variance was verified with residual plots. In addition to ANOVA, 

Tukey’s honest significant difference (HSD) post hoc test (p ≤ 0.05) identified 

significant differences in the mean fouling control strength between Fucus surface 

extracts that were collected in the different months of the year (including extract free 

solvent blanks).  

Relative monthly fouling pressure on Fucus by the respective microfouler was 

calculated by dividing the monthly recorded fouling pressure (i.e. microbial foulers 

per unit area of glass slide per week) by the annual mean fouling pressure. The 

obtained monthly fouling factors were used to calculate the expected fouling on 

Fucus under the null-hypothesis that the alga did not control in any way the fouling 

on its thallus. To this end, the annual mean fouling on Fucus was multiplied by the 

monthly fouling factor. Any substantial differences between expected and observed 

fouling on Fucus could be interpreted as a hint for pro- or anti-microfouling activity of 

the host algae. 

Seasonal patterns in fouling control strength were identified by fitting a sinusoidal 

function (free software CurveExpert 1.4) to the data obtained from the in situ 

bioassays (including all mean data points, n = 6) (Hyams 2010).  

Correlations between (1) Fucus tissue mannitol content and bioassay results and 

(2) relative field fouling pressure and bioassay results were analysed with 

Spearman’s rank-order correlations for non-normally distributed data. Normality of 

data was tested by Shapiro-Wilks test (p ≤ 0.05) and by histograms. A Bonferroni 

correction was applied for multiple correlated data sets to avoid the increase of the 

type-I error (Dunn 1961). All statistical analyses, despite the non-linear regression, 

were performed using the free statistical software R (R 2010).  

 

Results 

Environmental parameters 

Recorded environmental parameters exhibited a pattern typical for the western 

Baltic Sea. Surface seawater temperature reached a minimum on 26 January (-0.8 

°C) and maximum on 26 July (23.5 °C). Average noon photon flux densities 

increased during spring and summer and reached peak irradiance in August (750 

µmol photons m-2 s-1) followed by a decrease in autumn and winter (see Rickert et 

al. 2015). Seawater surface salinity was low during spring and summer with 
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minimum values at the end of May (around 12) and increased toward autumn and 

winter with maximum values in October (19.38 on 10 October 2012) along with 

decreasing seawater temperatures (see Rickert et al. 2015). Dissolved nutrients 

were elevated in surface sea water during autumn and winter (mean concentration 

from January to March and from October to December: nitrate + nitrite 5.2 ± 0.8 

µmol l−1, ammonium 2.0 ± 0.3 µmol l−1, silicate 23.4 ± 2.0 µmol l−1, and phosphate 

0.9 ± 0.1 µmol l−1) and depleted during spring and summer month (mean 

concentration from April to September: nitrate + nitrite 0.4 ± 0.2 µmol l−1 (mean 

concentration ± SE), ammonium 1.4 ± 0.3 µmol l−1 (mean concentration ± SE), 

silicate 13.6 ± 2.4 µmol l−1 (mean concentration ± SE), phosphate 0.6 ± 0.2 µmol 

l−1 (mean concentration ± SE) (see Rickert et al. 2015). For a detailed description of 

environmental parameters see Rickert et al. (2015). 

 

Mannitol tissue concentration 

Tissue mannitol concentrations of both Fucus species increased from February 

onwards, interrupted by a distinct decrease in April for F. serratus and in June for F. 

vesiculosus, reaching maximum concentrations in October (F. vesiculosus: 83.30 

mg/g dry weight ± SE 2.58; F. serratus: 76.19 mg/g dry weight ± SE 4.35). Both 

Fucus species reached minimum tissue mannitol concentrations in December (F. 

vesiculosus: 40.39 mg/g dry weight ± SE 2.00; F. serratus: 28.46 mg/g dry weight ± 

SE 1.32). F. serratus revealed all along a slightly lower mannitol concentration 

compared to F. vesiculosus. However, none of the two species showed a fully 

depletion in mannitol throughout the year (see Rickert et al. 2015). For a detailed 

description of mannitol concentration see Rickert et al. (2015). 

 

Seasonal fouling in the field  

On reference substrate (glass slides) the most intense microfouling, attributable 

to prokaryotic and diatom fouling, occurred during spring and summer whereby 

prokaryotic fouling quantitatively dominated (Fig. 1a-d, suppl. Table S1).  

Prokaryotic fouling on reference substrate exhibited maximum settlement rates 

during August (8.02 x 106cells cm-2 week-1; ±SE 1.37 x 106) and minimum settlement 

rates during December (2.51 x 105 cells cm-2 week-1; ±SE 3.85 x 104) with an annual 
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mean weekly settlement of 1.98 x 106 cells cm-2 week-1 (±SE 3.32 x 105, Fig. 1a, b, 

suppl. Table S1).  

Diatom fouling on glass slides exhibited two separate peak densities in April and 

August and showed an annual mean weekly settlement of 3.66 x 104 ± 1.17 x 104 

cells per cm2 glass surface (±SE between replicated slides, Fig. 1c, d, suppl. Table 

S1). 

 

 

 

 

 

 

 

 

 

On Fucus spp. microfouling densities by prokaryotes and diatoms reached a 

maximum in summer and F. vesiculosus was more densely fouled than F. serratus. 

F. serratus associated prokaryotes showed a sudden decline from July on, whereas 

F. vesiculosus associated prokaryotes decreased gradually from August on. 

Prokaryotic fouling quantitatively dominated on both Fucus species compared to 

diatom fouling (Fig. 1a-d, suppl. Table S1). 

On F. vesiculosus prokaryotic fouling increased from March to June with a 

sudden drop in the cell number in July. Peak cell densities were found in June and 

Fig. 1a-d Seasonal settlement patterns in mean total cell and species number 
(±SE) per cm2 of F. vesiculosus (black solid lines) and F. serratus (grey solid lines) 
thallus surface and glass slides (dotted line) as reference substrates (n = 9, for all 
substrates). Prokaryotes (a, b) and diatoms (c, d) are shown together with the 
expected fouling (dashed lines) for each Fucus species. ‘Expected fouling’ on 
Fucus was derived from the monthly recorded fouling pressure (glass slides) 
divided by the annual mean fouling pressure. The resulting microfouling pressure 
factor was multiplied with the annual mean fouling density of Fucus and plotted as 
‘expected fouling’. Considerable differences between expected and recorded 
microfouling on Fucus could be interpreted as pro- or anti-microfouling activity of 
Fucus. 
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August (4.00 x 107± 2.52 x 106 and 3.78 x 107 ± 2.99 x 106 cell number per cm2 

thallus surface ± SE between replicated algae individuals, resp.) (Fig. 1a, suppl. 

Table S1). Prokaryotic fouling on F. vesiculosus reached an annual mean cell 

density of 2.43 x 107 ± 3.52 x 106 cells per cm2 thallus surface (±SE between 

replicated algae individuals) (suppl. Table S1). Diatoms on F. vesiculosus occurred 

from April to September (except in May) and again in November and reached peak 

cell densities in April and September (6.67 x 103 ± 6.67 x 103 and 7.78 x 103 ± 5.72 x 

103 cell numbers per cm2 thallus surface ±SE between replicated algae individuals, 

respectively) (Fig. 1c, suppl. Table S1). 

On F. serratus, microfouling was most intense during spring and summer and 

quantitatively dominated by prokaryotic fouling. Diatom fouling was scarce. 

Prokaryotic fouling on F. serratus increased from March to June with a maximum 

cell density in June (2.87 x 107 ± 2.32 x 106 cells per cm2 thallus surface ± SE 

between replicated algae individuals) (Fig. 1b, suppl. Table S1). Prokaryotic fouling 

on F. serratus thalli showed an annual mean cell number of 1.07 x 107 ± 1.68 x 106 

cells per cm2 thallus surface (± SE between replicated algae individuals) (suppl. 

Table S1). Diatom fouling on F. serratus was very low and occurred only in April and 

June (4.44 x 103 ± 4.44 x 103 cells per cm2 thallus surface ± SE between replicated 

algae individuals) (Fig. 1d, suppl. Table S1).  

In general, prokaryotic fouling occurred in higher cell numbers on living Fucus 

surfaces throughout the year compared to non-living glass surfaces, whereas 

diatom cells were present in higher number on glass. However, Fucus thalli had a 

longer exposure time than the glass slides (see previous paragraph ‘assessment of 

microfouler recruitment’). 

 

Expected fouling control strength 

The differences between expected and observed microfouling on Fucus 

predicted strongest antifouling control of F. vesiculosus against prokaryotic cells 

during July and August (Fig. 1a) and for F. serratus during August and September 

(Fig. 1b). Strongest antifouling control of both Fucus species against diatoms was 

predicted during April and August (Fig. 1c, d).  

 

 



Paper I  33 
 

 

Seasonal variation in fouling control strength 

Fucus surface extracts exhibited seasonally fluctuating chemical fouling 

modulation against prokaryotic and diatom settlement as illustrated by the relatively 

high portion of the variance explained by a sinusoidal fit (see below). It has been 

described earlier that Fucus (F. vesiculosus, at least) exerts both pro- and 

antifouling effects on microfoulers, depending on metabolite and target species 

considered. 

 

 

 

 

 

 

 

 

 

F. vesiculosus surface extracts showed a net attraction for prokaryotic settlement 

compared to the solvent blanks in all monthly samples, but these activities were just 

marginally significant for extracts originating from March (one-way ANOVA, F = 1.8, 

p = 0.06; Tukey’s HSD test p ≤ 0.05, suppl. Table S2). Lowest settlement (meaning 

Fig. 2a, b Mean number (±SE) of settled (a) prokaryotes and (b) diatoms 
on F. vesiculosus surface extracts (two-fold average boundary layer 
conc.) originating from different months (n = 6, in all cases). Solvent 
blanks are in grey. One-way ANOVA results for prokaryotic settlement F 
= 1.8, p = 0.06 and for diatom settlement F = 1.4, p= 0.2. Tukey’s HSD 
test (p ≤ 0.05) revealed only significant differences between group means 
for prokaryotic settlement (suppl. Table S2). Significant differences are 
illustrated by letter coding (same letters are not significantly different). 
Seasonality in microfouling control strength of F. vesiculosus against 
prokaryotic fouling is illustrated by a sinusoidal function fitted to the data. 
Seasonality in diatom data could not be illustrated by a sinusoidal 
function. 
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weak profouling or strong antifouling activities) against prokaryotic cells were found 

in May, July, October and November (Fig. 2a). The seasonal pattern, modelled as a 

sinusoidal nonlinear regression, explained 84 % of the variation in activities against 

prokaryotic cells (Fig. 2a). F. vesiculosus surface extracts were generally attractive 

for diatom settlement, if compared to the solvent blank, and did not significantly 

deter diatom settlement (one-way ANOVA, F = 1.4, p = 0.2, Fig. 2b). A sinusoidal 

nonlinear regression could not be modelled on the diatom data set (Fig. 2b). 

F. serratus surface extracts differed significantly in their attractiveness to 

prokaryotic settlement among months and with regard to the solvent blanks (one-

way ANOVA F = 2.0, p = 0.04). Tukey’s HSD test (p ≤ 0.05) failed to detect any 

differences between the means (Fig. 3a).  

 

 

 

 

 

 

Fig. 3a, b Mean number (±SE) of settled (a) prokaryotes and (b) diatoms on F. 
serratus surface extracts (two-fold average boundary layer conc.) originating 
from different months (n = 6, in all cases). Solvent blanks are in grey. One-way 
ANOVA results for prokaryotic settlement: F = 2.0 p = 0.04, whereas for diatom 
settlement: F = 2.3, p= 0.02. Tukey’s HSD test (p ≤ 0.05) revealed significant 
differences between group means for diatom settlement (suppl. Table S2). 
Significant differences are illustrated by letter coding (same letters indicate not 
significantly different samples). Seasonality in microfouling control strength of F. 
serratus against prokaryotic and diatom settlement is illustrated by fitting a 
sinusoidal function to the data. 
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F. serratus surface extracts tended to be less attractive for prokaryotic settlement 

in July and September (Fig. 3a). Seasonal variation in activities of F. serratus 

surface extracts against prokaryotic settlement was explained to 80 % by a 

sinusoidal regression model (Fig. 3a). 

The modulatory activities of F. serratus surface extracts regarding diatom 

settlement differed significantly among months and solvent blanks (one-way 

ANOVA, F = 2.3, p = 0.02, Fig. 3b). Surface extracts originating from October were 

significantly more attractive than extracts obtained during January to June (Tukey’s 

HSD test, p ≤ 0.05; suppl. Table S2). Seasonality of activities can be described by a 

sinusoidal non-linear regression model, explaining 67 % of the variance (Fig. 3b). 

The seasonal fluctuations in the fouling control of F. vesiculosus and F. serratus 

surface extracts were neither correlated with in situ fouling pressure nor with the 

mannitol content of Fucus tissue with the sole exception of F. serratus prokaryotic 

fouling control response (bioassay results) and the mannitol content of F. serratus 

(Table 1). 

Raw data of in situ bioassay results are compiled in suppl. Table S3. 

 

 

 

Origin of tested 
extract 

Fouling species 
in bioassay Potential driver 

rho cor. 
coefficient 

p-
value 

Fucus vesiculosus  prokaryotes mannitol [mg/g dry weight]  0.070 0.834 

Fucus vesiculosus diatoms mannitol [mg/g dry weight] -0.412 0.184 

     

Fucus serratus prokaryotes mannitol [mg/g dry weight] -0.664 0.022 

Fucus serratus diatoms mannitol [mg/g dry weight]  0.308 0.331 

Fucus vesiculosus prokaryotes in situ prokaryotic fouling pressure [cm2] -0.270 0.397 

Fucus vesiculosus diatoms in situ diatom fouling pressure [cm2] -0.051 0.874 

     

Fucus serratus prokaryotes in situ prokaryotic fouling pressure [cm2] -0.536 0.073 

Fucus serratus diatoms in situ diatom fouling pressure [cm2] -0.292 0.357 
 

 

 

 

 

 

Table 1. Summarized results of correlation tests. 
 

The table contains correlation coefficients (rho = Spearman’s cor. coefficient) and p-values for  
each correlation test; significance level after Bonferroni correction p ≤ 0.025; n = 12, for each  
correlation. Significant test results are in bold. 



Paper I  36 
 

 

Surface observation in SEM 

Both Fucus species showed occasional shedding of an exterior cuticula together 

with microfoulers attached to it. This process led to a (temporarily) microfouler-free 

epidermis. Example photos are shown in Fig. 4.  

 

 

 

 

 

 

Fig. 4 Scanning electron microscopy (SEM) images of the young apical thallus 
surface from F. vesiculosus (A, C overview and Aa, Cc selected section in detail) 
and F. serratus (B, overview and Bb, selected section in detail) showing shedding 
of an exterior cuticula layer, overlying epidermis cells, with embedded prokaryotic 
cells (marked by arrows, see A, Aa), associated prokaryotic cells (marked by 
arrows, see B, Bb) and associated diatom cells (see C, Cc). Algae samples were 
taken in March (A, B) and in July (C) 2013. 
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Discussion 

The focus of this study has been on prokaryotes and on pennate diatoms, since 

they are considered key compounds of algal-associated biofilms (Kiirikki 1996; 

Martin et al. 2014; Snoeijs 1994). Prokaryotes and diatoms may be particularly 

important due to their capacity to mediate further biofilm succession (Dobretsov et 

al. 2006; Steinberg and de Nys 2002). Hereafter we summarize these two fouling 

groups under the term microfouling. 

In the present study we assessed (1) whether microfouling pressure shows 

seasonal variation in intensity, (2) whether F. vesiculosus and F. serratus chemically 

control microfouling, (3) whether the chemical fouling control of Fucus vesiculosus 

and Fucus serratus is tuned to in situ microfouling pressure and (4) whether the 

seasonal fluctuations in chemical microfouling controls relate to the relative fouling 

pressure and/or to energy reserves (mannitol).  

Our study revealed that microfouling varied in intensity with season on reference 

substrate (glass slides) and on the thalli of both Fucus species. Further, the 

chemical fouling control also fluctuated seasonally with regard to prokaryotic and 

diatom recruitment, except for F. vesiculosus regarding diatom fouling. Correlation 

between fouling control strength and the two potential drivers (fouling pressure and 

energy availability) were generally not found in either Fucus species. Only the F. 

serratus bioassay response regarding prokaryotic fouling was negatively correlated 

with the mannitol content of F. serratus.  

Additionally, our study could show that both Fucus species exhibited shedding of 

an exterior cuticula layer, removing associated and embedded prokaryotic and 

diatom cells.  

Microfouling in the field 

Prokaryotic fouling 

Our field experiment showed that prokaryotic fouling exhibited a clear seasonal 

pattern with substantially increased cell numbers during spring and summer 

compared to autumn and winter months independently of the substrate (glass slides 

and Fucus). This pattern is explainable with the metabolic promoting conditions 

during spring and summer. Elevated temperatures stimulate microbial enzymatic 

activities and microbial metabolisms (Hoppe et al. 2002; Rao 2010; Zaccone et al. 

2014). Further, increased light intensities lead to an intensified photosynthesis of 
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autotrophic prokaryotes. While heterotrophic prokaryotes profit during spring and 

summer from the utilization of dissolved organic carbon (DOC) and other organic 

exudates (e. g. dissolved organic nitrogen) (Nalewajk.C and Lean 1972; Tyler and 

McGlathery 2006; Tyler et al. 2001) released from macrophytes (Barron et al. 2003; 

Brylinsky 1977; Khailov and Burlakov 1969; Pregnall 1983). All in all this beneficial 

conditions for prokaryotic metabolism lead to higher cell division rates and elevated 

cell numbers in surrounding seawater and consequently on neighbouring surfaces, 

since most planktonic microbes prefer the attached lifestyle (Grossart 2010) during 

spring and summer month.  

However, our findings of increased microbial cells associated with Fucus during 

spring and summer are in contradiction with the results of a previous study from 

Sieburth and Tootle (1981). The authors found highest microbial fouling on 

F. vesiculosus during April, November and December and lowest fouling during May 

and October. This mismatch could be addressed to the different thallus sections 

analysed in the studies (older sections vs. young apical sections) since it is known 

that various thallus regions can host different bacterial assemblages with different 

quantities (Bengtsson et al. 2010; Lachnit et al. 2013; Staufenberger et al. 2008).  

The dominance of prokaryotic fouling, also independently of analysed substrate 

(slides and Fucus), in comparison with diatom fouling is in accordance with findings 

from Sieburth and Tootle (1981) and not surprising considering that prokaryotes are 

a ubiquitous majority in aquatic environments with a density of 104 - 107 cells/ml 

(Whitman et al. 1998) and as mentioned above that most of these planktonic 

microbes favour to change the free-living to a surface-associated lifestyle (Grossart 

2010). Further, the observed cell densities of Fucus associated microbes are in 

accordance with finding from previous studies. The authors reported for 

F. vesiculosus bacterial cell density from 1.5 x 107 to 1.0 x 108 cells per cm2 (Stratil 

et al. 2013) and 7.7 x 106 to 1.9 x 108 cells per cm2 (Wahl et al. 2010).  

The observation that both Fucus species hosted higher prokaryotic cell densities 

as compared to the reference substrate throughout the year is probably due to the 

fact that the very uneven thallus surface represents a suitable settlement ground. 

Additionally, exuded algal compounds, e.g. mannitol a suitable energy source for 

bacteria could have profouling effects and, finally, that the thalli area analysed were 

exposed to fouling longer than the reference substrata. Differences in exposure time 

between the reference substrate (one week at a time) and Fucus (approx. 4-8 
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weeks, depending on sampling season) could have led to this elevated cell densities 

on Fucus. As previously mentioned, F. vesiculosus from the Baltic Sea exhibits a 

seasonal variable length growth with increased growth during spring and summer 

and reduced growth during winter (Lehvo et al. 2001). Thus, it is evident that the 

analysed apical vegetative thallus tips had a variable higher age, depending on the 

sampling date. The reported microfouling status of Fucus reflects therefore the 

density of a recently established microfouling community with a slightly variable age. 

Only the microfouling pressure data obtained from the reference substrate (after one 

week at a time) reflects the exact fouling pressure Fucus is exposed to throughout 

the year.   

The combination of elevated cell numbers on the Fucus thalli (relative to the 

glass slides and the solvent-only bioassay) with the pronounced seasonal fluctuation 

in chemical control suggests that the proportion of attractive or nutritive metabolites 

and the repellent metabolites varies throughout the year in a non-random manner. 

Although not significant, there was a clear trend for the surface extracts of both 

Fucus species to become less attractive (better defended?) in months with elevated 

fouling pressure. Also a strain-specific chemical defense targeting single prokaryotic 

strains in different intensities was described from F. vesiculosus (Lachnit et al. 2013; 

Saha and Wahl 2013) while other desired or tolerated strains are spared and may 

reach elevated cell numbers. Since the present study did not analyse the fouling 

community compositions on a detailed phylogenetic level, which would have been 

far beyond the scope of the study considering the sample quantities, only 

speculations can be made about a strain-specific chemical control. 

 

Diatom fouling 

Our field experiment revealed that diatom fouling on glass and on both Fucus 

species exhibited also a seasonal pattern, reaching high cell densities in spring 

followed by a decline during summer and a second rise in late summer (suppl. Table 

S1). These findings are in accordance with results from previous studies (Munda 

2005; Snoeijs 1994; Wolfstein et al. 2000; Yang et al. 2014). The authors also 

reported a spring maximum and a summer minimum of diatom fouling on artificial 

substrate, whereas Munda (2005) also found peak densities of diatom fouling during 

summer. The observed diatom spring bloom is a common phenomenon among 

benthic diatoms and is explainable with elevated light and nutrients during spring 
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along with the tolerance of many diatom species to low temperatures (Snoeijs 

1994). Low diatom densities during summer are also often described and probably 

caused by an increased invertebrate grazing pressure leading to a reduced diatom 

density despite high diatom growth (Borum 1987; Castenholz 1961). The elevated 

diatom densities during late summer remain unexplained due to missing nutrient 

measurements a connection could not be made. 

The field experiment revealed lower diatom cell densities on both Fucus species 

than on the reference substrate. One explanation, that would confirm our notion of a 

chemical fouling control tuned to fouling pressure, could be that Fucus is an 

unattractive settlement surface for diatom cells due to a chemical fouling control of 

Fucus against diatom settlement. The surface extracts of both Fucus species were 

least attractive in the season of most intense diatom settlement (spring), however, 

only the defense activity of F. serratus was significant. 

An additional explanation for the low diatom numbers on apical thalli of Fucus 

could be that Fucus removes, on young apical thallus sections, epiphytes also via 

cuticula shedding. Former studies have described such cuticula shedding for several 

macrophytes as effective antifouling defense mechanism against epiphytic algae 

(Filion-Myklebust and Norton 1981; Harder 2008; Russell and Veltkamp 1984; 

Sieburth and Tootle 1981; Yamamoto et al. 2013).  

Chemical fouling control strength of Fucus 

Comparison between the expected microfouling on Fucus and the relative fouling 

status of Fucus suggests a lowering of the general attractiveness of Fucus for 

prokaryotes and diatoms during spring and summer – possibly due to enhanced 

production of defensive metabolites (Saha et al. 2012; Saha et al. 2011). Our in situ 

bioassay generally showed for both Fucus species a reduced fouling of the tested 

microfouler groups on the extracts from spring and summer. These observations are 

consistent with our expectation that Fucus should more efficiently control fouling in 

times of intense fouling pressure. A similar seasonal fluctuation of the fouling control 

strength of F. vesiculosus has been shown before (Saha and Wahl 2013).  

Why in situ tested F. vesiculosus surface extracts exhibited a general profouling 

effect to the natural fouler pool compared to the solvent blanks remains unclear and 

seems in conflict with earlier results (e.g. Saha and Wahl 2013). One possible 

explanation could be that the complex extract composition contains profouling 
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compounds, such as those previously reported from Lachnit et al. (2013) for the 

polar fractions of F. vesiculosus surface extracts. Another possibility is that in 

contrast to the earlier lab bioassay which used selected bacterial strains from algal 

surface, in the present case the extract were exposed to the entire natural 

community of microfoulers. 

Finally, prokaryotic and diatom fouling is not exclusively controlled by means of 

chemical fouling control, but maybe additionally effected by cuticula shedding.  

Besides in situ fouling pressure as driving force for a tuned fouling control also 

the resource availability for defense metabolite production could shape the seasonal 

defense strength pattern of Fucus (Wahl et al. 2010). To verify this we used the 

storage compound mannitol (Lehvo et al. 2001; Michel et al. 2010) as a proxy for 

energy availability to produce pro- or antifouling metabolites. The fact that we found 

just one negative correlation between Fucus control strength and the tissue mannitol 

content could not really prove the notion of a resource driven anti-microfouling 

control since energy reserves were never depleted.  

In conclusion, this study revealed that relative microfouling pressure in the field 

and microfouling control strength of Fucus varied with season. Furthermore, monthly 

collected surface extracts tended to be least attractive for microfoulers during 

seasons, when in the field microfouling pressure was highest. While this correlation 

was not significant, the trend is suggestive of a pronounced deployment of defensive 

metabolites during these periods as shown earlier (Saha and Wahl 2013). Any 

chemical microfouling control in the two Fucus species seems to be assisted by an 

occasional cuticula shedding that remove attached foulers. 
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Seasonal fluctuations of chemical defenses against 
macrofouling in Fucus vesiculosus and Fucus serratus from 
the Baltic Sea 

Rickert, E. 1, Karsten, U.2, Pohnert, G.3, and Wahl, M.1 

1GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany 
2 University of Rostock, Germany 
3Friedrich-Schiller-University Jena, Germany 

Abstract 

Macroalga, especially perennial species, are exposed to a seasonally variable 

fouling pressure. We hypothesize that macroalgae regulate their antifouling defense 

to fouling pressure. During one year, we assessed macrofouling pressure and 

chemical anti-macrofouling defense strength of the brown algae Fucus vesiculosus 

and Fucus serratus with monthly resolution. Anti-macrofouling defense was 

assessed by means of surface-extracted Fucus metabolites tested at near-natural 

concentrations in a novel in situ bioassay. Additionally, mannitol content of both 

Fucus species was determined to assess resource availability for defense 

production. Surface chemistry of both Fucus species exhibited a seasonal variability 

in attractiveness to Amphibalanus improvisus and Mytilus edulis. 50-60% of this 

variability is explained by a sinusoidal model. Only Fucus vesiculosus extracts 

originating from spring and summer deterred significantly A. improvisus settlement. 

The strength of macroalgal antifouling defense did not correlate with in situ 

macrofouling pressure nor with measured mannitol contents, which, however, were 

never depleted. 

 

Keywords Fucus; seasonal anti-macrofouling defense; chemical defense; in situ 

bioassay; Amphibalanus improvisus; Mytilus edulis 
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Introduction 

Epibiosis - the facultative association between epibionts (colonizer) and 

basibionts (colonized host) - is a widespread phenomenon in the marine 

environment (Wahl 1989, Wahl & Mark 1999, Harder 2008). Epibiosis entails 

advantages as well as disadvantages for the basibiont. On balance, negative effects 

of epibiosis on the basibiont often outweigh the beneficial ones (Wahl 1989). 

Detrimental effects of epibiosis, for example for kelps, comprise increasing weight 

and drag resulting in blade loss often due to heavy calcareous epibionts (Dixon et al. 

1981, Scheibling & Gagnon 2009) or reduced photosynthesis along with disturbance 

in transcutaneous nutrients and gas exchanges (Wahl 1989). Marine macroalgae, 

especially slow-growing perennial species such as fucoids, are often covered by a 

broad spectrum of fouling organisms including micro- and small macroalgae, 

bacteria, fungi, protozoans and multicellular animals (Korpinen et al. 2007). The 

epiphytic load on a macroalgal thallus can reach up to 80 to 100 % coverage 

(Andersen et al. 2011). Epibionts compete with their host for the vital resources of 

light and nutrients (Korpinen et al. 2007). Epiphytes decreased growth of the brown 

alga Fucus vesiculosus (Jormalainen et al. 2003, Honkanen & Jormalainen 2005) 

and may cause a growth reduction of over 25 % (Rohde & Wahl 2008). High 

mortality due to pronounced epiphytisms was reported from kelp species (Scheibling 

& Gagnon 2009, Andersen et al. 2011). Moreover, a reduced reproductive effort, 

due to physical blockage of receptacles by an obligate epiphyte was observed in the 

brown alga Ascophyllum nodosum (Kraberg & Norton 2007). Obviously, the 

consequences of epiphytisms can be dramatic for macroalgae fitness. The 

detrimental effects on marine macroalgae are possibly one driving factor for the 

evolution of antifouling defense mechanisms against epibionts in seaweeds (da 

Gama et al. 2014).  

Macroalgae have developed a variety of physical and chemical antifouling 

defense systems against epibionts (da Gama et al. 2014), such as periodical 

peripheral cell or meristoderm shedding are effective physical antifouling 

mechanisms common among red and brown macroalgae (Filion-Myklebust & Norton 

1981, Russell & Veltkamp 1984, Davis et al. 1989, Nylund et al. 2005, Yamamoto et 

al. 2013). Further mechanical defense systems against macrofouling are, for 

example, the secretion of mucus (reported from Laminaria solidungula) is possibly 

beneficial to inhibit the establishment of algal or animal epibionts (U. Karsten 
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unpublished results, Coll et al. 1987). Seaweeds are known to be protected against 

grazing by chemical defense mechanisms based on secondary metabolites (Hay & 

Fenical 1988, Pohnert 2004, Amsler & Fairhead 2006, Amsler 2008). Studies on the 

anti-herbivory defense of the perennial brown alga Fucus vesiculosus revealed an 

inducible regulation on demand (Rohde et al. 2004, Rohde & Wahl 2008, 

Weinberger et al. 2011).  

Regarding chemical antifouling defense of Fucus, previous studies have focused 

on microfouling rather than on macrofouling. Investigations on chemical anti-

microfouling defense showed that F. vesiculosus can inhibit and modulate 

microfouling by means of surface-associated pro- and antifouling secondary 

metabolites (Lachnit et al. 2010, Wahl et al. 2010, Saha et al. 2011, Saha et al. 

2012, Saha & Wahl 2013). Studies on chemical anti-macrofouling defense revealed 

that F. vesiculosus and F. evanescens exude phlorotannins with the potential to 

deter A. improvisus larvae settlement (Wikstrom & Pavia 2004, Brock et al. 2007). 

Furthermore, it has been shown that F. vesiculosus exhibit significant among-

genotype variations in tolerance and resistance to fouling (Jormalainen et al. 2003, 

Honkanen & Jormalainen 2005).   Nasrolahi et al. (2012) showed that biofilms 

isolated from F. vesiculosus and F. serratus reduced the attachment of A. 

improvisus larvae, whereas a study from Dobretsov (1999) revealed that biofilms 

and water soluble metabolites from F. vesiculosus had no effect on Mytilus edulis 

settlement behavior. These studies demonstrate that Fucus and their associated 

biofilms have the capacity to modulated further fouling but that this capacity may 

vary among target species. Besides these investigations on anti-macrofouling 

defense of Fucus little is known about the anti-macrofouling defense of Fucus and 

even less about its temporal dynamics.  

Macroalgae are exposed to a seasonal fluctuating micro- and macrofouling 

pressure (Sieburth & Tootle 1981, Arrontes 1990, Lachnit et al. 2010, Wahl et al. 

2010) which is defined as substratum colonization per time unit (Wahl et al. 2011). 

In general micro- and macrofouling in the field is elevated during spring and summer 

reflecting reproduction cycles, rising temperatures, light and nutrient availability 

(Thomsen et al. 2010, Wahl et al. 2010, Pansch et al. 2012).  

If production of defense metabolites is costly and competes with other metabolic 

functions for limited resources (Coley et al. 1985, Strauss et al. 2002, Dworjanyn et 

al. 2006) and that fouling pressure in the field varies with season and with 
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environmental factors (Borum 1985, Jormalainen et al. 2003, Korpinen et al. 2007, 

Wahl et al. 2010) it should be of selective advantage to adapt the chemical 

antifouling defense to the actual fouling pressure. So far, a seasonal variation in 

antifouling defense has been only reported from F. vesiculosus against microfoulers 

(Wahl et al. 2010, Saha & Wahl 2013) but was never directly related to the current 

fouling threat. Thus, investigations on Fucus anti-macrofouling defense in relation to 

season and actual macrofouling pressure in the field are lacking.   

The perennial brown algae F. vesiculosus and F. serratus are structurally 

important belt-forming macroalgal species in the Baltic Sea (Kautsky 1992, 

Ronnback et al. 2007). Fucus vesiculosus mainly occurs on hard substrate in 0 - 3 

meter shallow coastal waters (Torn et al. 2006) while F. serratus extends to deeper 

waters. At between 1 and 2 m water depth both species form mixed stands whereas 

F. serratus dominates between 2 and 6 meters (Malm et al. 2001). Both benthic 

algae inhabit a coastal zone where temperature, light and nutrients availability and 

consequently fouling underlie a strong seasonal pattern.  

The aim of the present study was to investigate (1) how the macrofouling 

pressure varies seasonally in intensity and community composition, (2) whether 

Fucus vesiculosus and Fucus serratus chemically inhibit macrofouling, (3) whether 

the strength of chemical antifouling defense of F. vesiculosus and F. serratus relates 

to prevailing  fouling pressure and (4) whether temporal variation in the important 

energy-storage compound mannitol relates directly to defense strength which might 

suggest energy limitation as an alternative explanation for fluctuations in chemical 

antifouling defense of both Fucus species. 

 

Material and methods 

Study organisms and collection of alga material 

This study was carried out with the perennial brown algal species Fucus 

vesiculosus and Fucus serratus which occur intermingled in shallow waters in the 

outer Kiel Fjord, Germany (54°27'21 N; 10°11'57 E) with a tendency for F. 

vesiculosus to occur somewhat shallower (0 - 2 m) than F. serratus (0.5 - 3 m). 

From August 2012 to July 2013, 15 individuals of each species were collected 

monthly at depths from 0.5 m under mid water level and separately stored in 3 l 

plastic bags (to obtain a humid atmosphere) and transported in a cooler to minimize 
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stress during transport to the laboratory and storage. Within 3 to 4 h after sampling 

all algae were surface extracted and processed (see paragraph ‘Surface extraction’ 

below). 

The algal material was used to determine seasonal changes in epiphytic 

coverage and composition, changes in surface associated secondary metabolites 

and total mannitol content. In order to record the actual fouling pressure at the 

sampling site PVC plates were exposed monthly and analyzed for their epiphytic 

coverage and composition. Furthermore, temperature, salinity, and irradiance were 

continuously recorded, while nutrients concentrations were measured weekly. 

Surface extracts were tested on their seasonal patterns of antifouling strength 

performing an in situ bioassay.  

 

Surface seawater parameters and nutrients  

Temperature, salinity and irradiances were recorded at 0.5 m under mid water 

level using HOBO U24-002 conductivity loggers and HOBO UA-002-64 pendant 

temperature/light data loggers (HOBO®, Onset Computer Corporation, Bourne, MA, 

USA) taking one measurement per hour. Fouling biased irradiances were bypassed 

by using just the first seven days of recorded light measurements to calculate the 

daily maximum photon flux rates between noon and 1 pm. Nutrients were analyzed 

out of weekly collected water samples. The water samples were 0.8 µm pre-filtered 

with a cellulose acetate filter (Sartorius Stedim Biotech, Göttingen, Germany) and 

stored until analysis at -20 °C. Nutrient concentra tions were measured using a 

spectrophotometric flow analyzer (SANplus-autoanalyzer-system, Skalar Analytical 

B.V., Breda, Netherlands) following the suggested standard protocol from Skalar.  

 

 Census of epiphytes 

To record the actual fouling pressure for each month, roughened (60 grit sand 

paper) PVC plates of 7x7 cm (n = 15) were horizontally exposed four weeks at the 

sampling site in 0.5 m under mid water level. The plates were collected in seawater-

filled plastic boxes in an upright position to avoid any damage during transport to the 

laboratory. To record the epiphytic coverage and composition for each month, one 

thallus branch per Fucus replicate was separated and stored in a plastic bag at -20 

°C until analysis. Coverage of epiphytes on PVC ref erence plates and Fucus 

material were estimated on a %-grade scale. PVC plates and Fucus material were 
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first preliminary screened for very small and single fouling organisms with a 

stereomicroscope (10-fold magnification). Such observations were recorded with the 

lowest %-value of 0.1 %.The total epiphyte coverage was estimated by naked eye 

according to following %-grades: 1, 2, 3, 5, 10, 20, 25, and 30 % until 100 % in steps 

of 10 %. Fouling species were identified to the lowest possible taxonomic level.  

 

Predicted antifouling defense strength 

The difference between fouling pressures (fouling recorded on PVC panels) and 

detected fouling on F. vesiculosus and F. serratus regarding the major foulers 

Amphibalanus improvisus and Mytilus edulis were used to determine the expected 

defense strength of both Fucus species. Recorded seasonal recruitment patterns of 

A. improvisus and M. edulis on the three different substrata (PVC and both Fucus 

species) were expressed as mean percentage coverage over one month. Any 

difference in fouling rates between the PVC plates (reference substrate) and Fucus 

was used to predict antifouling defense strength for both Fucus species in the 

specific month considered. 

 

Surface extraction 

For surface extraction approx. 50 g of visibly epiphyte-free and non-fertile thallus 

tips (upper 5-10 cm) per replicate (n = 15 per months, for both species) were cut off. 

Before extraction the thallus tips were spin-dried for 30 s to remove most of the 

attached seawater. The extraction procedure was carried out following the protocol 

described by de Nys et al. (1998) with minor modifications. For surface extraction 

thallus tips were held at the cut edge with a long steel tweezers and dipped for 4 s 

into a constantly stirred emulsion of n-hexane and methanol (1:1 v/v). During 

extraction procedure any contact with the cut edge was avoided to prevent leaching 

of intracellular compounds. Former studies from Lachnit et al. (2010) and Saha et al. 

(2011) showed an epidermal cell lysis when extraction time exceeded 10 s. Since in 

preliminary surface extraction tests some Fucus thallus tips turned from normal 

brown-green to bright green color indicating a loss of pigments already after 7 to 8 s 

of extraction, the extraction time to 4 s to avoid any risk of cell lysis. After extraction 

the resulting solution was filtered through a paper filter (Macherey-Nagel 615 1/4, Ø 

150 mm, Düren, Germany) to remove particles. The solvent volume was reduced 

under vacuum at 35 °C using a rotary evaporator. Af ter solvent evaporation the 
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resulting extracts were re-dissolved in 2 ml n-hexane and 2 ml methanol and 

quantitatively halved for in situ bioassays and chemical analytical studies (data not 

shown). Re-dissolved extracts were placed on a heating block at 35 °C and 

evaporated under a constant nitrogen flow. Dried extracts were stored until further 

analysis in 2 ml glass vials at -20 °C.  

The extracted algae were scanned for surface area quantification using the 

biological-image analysis software “Fiji” (Schindelin et al. 2012). Surface extracted 

and scanned alga material was further used for the mannitol analysis.  

 

Mannitol analysis 

Surface extracted algal material was freeze-dried and ground to a fine powder. 

10 - 20 mg dry weight per sample was used for the mannitol analysis according to 

the ethanol based extraction method described by Karsten et al. (1991) and the 

analytical protocol of Nitschke et al. (2010) using an Agilent HPLC (Agilent 

Technologies Deutschland GmbH, Waldbronn, Germany) system with isocratic 

elution equipped with a differential refractive index detector. Mannitol contents are 

expressed as mg mannitol per gram dry weight.  

 

In situ bioassays 

To quantify the seasonal variability in antifouling strength of F. vesiculosus and F. 

serratus surface extracts originating from different months of the year had to be 

tested synchronously to warrant an identical colonizer pool for all monthly samples. 

To this end a novel in situ bioassay was developed in our laboratory (Nasrolahi et al. 

2012). Surface extracts (n = 6 per months and species) were re-dissolved in n-

hexane and methanol (1:1 v/v) and used to repeatedly impregnate a cellulose filter 

paper (MN 616, Ø 40 mm) until a two-fold mean boundary layer concentration 

(referring to mg extracted compounds cm-2 Fucus thallus surface) was obtained. 

Since a living alga actively release and thus maintain a strong metabolite gradient 

with near surface concentrations much higher than the average boundary layer 

concentrations (Grosser et al. 2012) we tried to designed accordingly the bioassay 

approach by applying the two-fold mean boundary layer concentration and thus 

generating an approximated metabolite concentration on the filter paper. The 

impregnated filter paper was freeze-dried to eliminate the solvents. To stabilize the 

extracts on the filter and reduce the leaching of metabolites the extract-loaded filter 
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was covered with 500 µl 1 % low melt agarose (Roth, Germany) at 28 °C. To 

provide a suitable settlement surface for foulers the embedded extracts were then 

covered with a polycarbonate filter membrane, (Ø 47 mm, pore size 0.2 µm, track-

etch membrane, Sartorius Stedim Biotech, Göttingen, Germany). Before application 

the membranes were incubated in sterile filtered seawater to age the surface for 10 

days. Assembling the bioassays took place in PVC holders described by Nasrolahi 

et al. (2012) (see Fig. 1). Approx. 9.60 cm2 of bioassay surface were available for 

settlement after closing the screw-on lid of the PVC holder.  

 

 

 

 

 

 

The assembled bioassays were stored in a water-saturated atmosphere at 4 °C 

in the dark for 24 h to allow an equally distribution by diffusion of the impregnated 

molecules within the cellulose membranes. Bioassays with F. vesiculosus and F. 

serratus extracts were successively exposed to the natural fouler pool in 0.5 m deep 

water at the institute pier, Kiel Fjord for five days during August/September 2013. 

Due to the time-shifted exposure of F. vesiculosus and F. serratus bioassays a 

comparison of the antifouling strength between the two species was not possible. 

After five days the polycarbonate membranes were removed and fixed in sterile 

filtered 3.7 % formaldehyde. The settlement by the most important local 

macrofouling species, Amphibalanus improvisus and Mytilus edulis, was quantified 

under a stereomicroscope.  

 

 

Fig. 1. In situ bioassay holder developed by Nasrolahi and co-workers (2012). 
Extract-loaded and low melt agarose impregnated cellulose filter were placed 
in the cavity for bioassays and covered with a polycarbonate membrane 
serving as a suitable settlement surface for foulers. Each bioassay holder 
represented a single replicate. 
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Data analysis 

To test for differences in the mean number of settlement events of A. improvisus 

and M. edulis on Fucus surface extracts between experimental groups a one-way 

ANOVA was conducted. Homogeneity of variance was tested on the base of a 

residual plot, while normality of errors was assessed by Shapiro-Wilk tests and by 

histograms. Significant differences in antifouling activities between Fucus surface 

extracts obtained in different months of the year were identified by Tukey’s honest 

significant difference (HSD) post hoc test (p ≤ 0.05). These comparisons also 

included the blanks, i.e. bioassays only treated with solvents.  

Assuming that a seasonal fluctuating defense should follow a sinus curve, 

seasonality in antifouling defense strength against A. improvisus and M. edulis was 

identified with a sinusoidal model (nonlinear regression model) that included mean 

data points (n = 6) from the in situ bioassay results. Sinusoidal models were applied 

with the curve fitting free software CurveExpert 1.4 (Hyams 2010).  

The amount of covariance between (1) Fucus mannitol content and the A. 

improvisus and M. edulis settlement results of in situ bioassays and (2) fouling 

pressures monitored in the field and in situ bioassay results was assessed with 

Pearson’s correlations (in case of normal data) or with Spearman’s rank correlations 

(in case of non-normal data). Normality of data was tested by Shapiro-Wilk tests and 

with histograms. If data sets were repeatedly used for different correlations we 

lowered the level of significance by applying the Bonferroni correction to avoid an 

increase in the type-I error rate (Dunn 1961). 

All statistical analyses were performed with the free statistical computing software 

R (R Development Core Team 2010). 

 

Results 

Surface seawater conditions  

Recorded environmental parameters and nutrients concentrations followed a 

seasonal cycle typical for Northern Germany (suppl. Fig. S1a, b and Fig. S2). 

Minimum surface water temperatures were reached on 26 January (- 0.8 °C) and 

maximum mean surface water temperatures were reached on 26 July (23.5 °C). 

Average noon photon flux densities increased from March onwards and reached 

peak irradiances in August (750 µmol photons m-2 s-1). Increased surface seawater 
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temperatures correlated with lower salinities. Low nutrient concentrations were 

measured during spring and summer (mean concentration from April to September: 

nitrate + nitrite 0.4 ± 0.2 µmol/l (mean conc. ± SE), ammonium 1.4 ± 0.3 µmol/l 

(mean conc. ± SE), silicate 13.6 ± 2.4 µmol/l (mean conc. ± SE), phosphate 0.6 ± 

0.2 µmol/l (mean conc. ± SE) followed by increasing concentrations during autumn 

and winter (mean concentration from January to March and from October to 

December: nitrate + nitrite 5.2 ± 0.8 µmol/l, ammonium 2.0 ± 0.3 µmol/l, silicate 23.4 

± 2.0 µmol/l, phosphate 0.9 ± 0.1 µmol/l). 

 

Seasonal mannitol content of vegetative thallus apices  

Mannitol content of vegetative thallus apices in both species showed an increase 

from February to October, with intermittent decreases in May (F. serratus) and July 

(F. vesiculosus). The October maximum was followed by a reduction to half the 

summer values until December (Fig. 2). Except in July and August, F. serratus 

always showed a lower mannitol content than F. vesiculosus with a mean difference 

of 17 %. 

 

 

 

 

Seasonal fouling in the field 

On reference substrata (PVC panels), most intense fouling by macrofauna 

occurred in June and July (4.5 ± 1.0 % and 4.1 ± 1.2 % cover ± SE between 

replicated PVC panels) (Fig. 3 and Table 1). Amphibalanus improvisus and Mytilus 

Fig. 2. Seasonal variations in the mean mannitol content of 
vegetative Fucus vesiculosus and Fucus serratus thallus apices 
(n = 15 per month). Error bars are ± SE.  
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edulis were the most common epizoans with a maximum coverage in July (A. 

improvisus 2.2 ± 0. 9  % mean coverage ± SE between replicated PVC panels) and 

in June and July (M. edulis 1.5 ± 0.4 % and 1.9 ± 0.3 % mean coverage ± SE 

between replicated PVC panels) (suppl. Fig. S3a, b and Table 1). Compared to 

animal fouling, the epiphytic fouling dominated in general. Epiphyte coverage 

showed two distinct peaks in March and July (43.7 ± 6.5 % and 31.6 ± 1.9 % mean 

coverage ± SE between replicated PVC panels) (Fig. 3 and Table 1). 

 

 

 

 

 

 

 

Fig. 3.  Seasonal variability in the mean coverage [%] 
of epiphytes (gray bars) and epizoans (black bars) 
recorded on PVC, Fucus vesiculosus and Fucus 
serratus at the sampling site (Bülk, outer Kiel Fjord, 
Germany) over a period of one year (n = 15 per 
month). 
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On F. vesiculosus epizoans fouling peaked in July and October (2.2 ± 1.1 % and 

1.9 ± 0.8 % mean coverage ± SE between replicated algae individuals, resp.) (Fig. 3 

and Table 2). Amphibalanus improvisus (early recruits) was found on F. vesiculosus 

in July and August in low numbers (July 0.1 ± 0.1 % and August 0.01 ± 0.01 % 

mean coverage ± SE between replicated algae individuals) (suppl. Fig. S3a, b and 

Table 2). Mytilus edulis (juvenile life stages) was the most common fouling species 

on F. vesiculosus with a maximum in July and August (1.4 ± 0.4 % and 1.1 ± 0.3 % 

mean coverage ± SE between replicated algae individuals, resp.) (suppl. Fig. S3a, 

b, Table 2). Epiphytic fouling on F. vesiculosus generally dominated compared to 

animal fouling with abundance peaks in February and April (39.8 ± 4.1 % and 42.4 ± 

8.7 % mean coverage ± SE between replicated algae individuals, resp.) (Fig. 3 and 

Table 2). 

Fucus serratus showed the most intense animal fouling between November and 

February with a maximum in January (11.1 ± 5.4 % mean coverage ± SE between 

replicated algae individuals) (Fig. 3 and Table 3). Most common foulers on F. 

serratus were the bryozoan species Alcyonidium gelatinosum and Electra pilosa. 

Amphibalanus improvisus (early recruits) was only present on F. serratus in May 

(0.1 ± 0.1 % ± SE between replicated algae individuals) while Mytilus edulis (juvenile 

life stages) occurred in lower densities throughout the year (suppl. Fig. S3a, b and 

Table 3). Epiphytic fouling on F. serratus dominated in general compared to epizoic 

fouling and was highest in spring with coverage peaks in February (31.3 ± 6.7 % ± 

SE between algae individuals) and in March (28.4 ± 6.8 % ± SE between algae 

individuals) (Fig. 3 and Table 3). 
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Predicted antifouling defense strength 

The difference between fouling pressure (PVC plates) and detected fouling on F. 

vesiculosus and F. serratus predicted strongest antifouling defense against A. 

improvisus for both Fucus species during July (Fig. 4a). Strongest antifouling 

defense against M. edulis of both Fucus species were predicted for June and July 

according the seasonal recruitment comparison (Fig. 4b). 

 

 
 

 

 

 

 

Fig. 4a, b. Seasonal variability in the mean coverage [%] of the epizoan 
foulers Amphibalanus improvisus (a) and Mytilus edulis (b) recorded on PVC 
plates (PVC), Fucus vesiculosus (Fv) and Fucus serratus (Fs) at the 
sampling site (Bülk, outer Kiel Fjord, Germany) over the period of one year 
(n = 15 per month). Error bars are ± SE.  
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Seasonal variation in antifouling defense strength  

Surface extracts of F. vesiculosus and F. serratus showed seasonality in their 

antifouling activity against A. improvisus. Extract activity was highest during the 

spring and summer months. The seasonal pattern, modeled as a sinusoidal 

nonlinear regression, explained more than 60 % of the variation in antifouling 

activities for F. vesiculosus and F. serratus. (Fig. 5a, b and Table S1). 

F. vesiculosus surface extracts reduced settlement of A. improvisus relative to 

the solvent blank in all monthly samples (Fig. 5a), but this effect was not significant 

on extracts originating from February, March, October and November. Anti-

macrofouling defense against A. improvisus was strongest in January, May and 

August (one-way ANOVA, F = 4.6, p < 0.001, Tukey’s HSD test, p ≤ 0.05). The anti-

macrofouling activities of F. vesiculosus surface extracts from January, April, May, 

June, July and August were significantly stronger than activities from November 

extracts (Tukey’s HSD test, p ≤ 0.05) (Fig. 5a and Table S2).  

F. vesiculosus extracts did not significantly repel M. edulis larvae at any time of 

the year (one-way ANOVA, F = 1.3, p = 0.26). A sinusoidal nonlinear regression 

explained 61 % of the seasonal variations in the monthly extracts modulation of non-

significant M. edulis settlement (Fig. 5a).  

 

 

 

 

 

 

Fig. 5 a. Mean number of settlement events ±SE of Amphibalanus 
improvisus (black bars) and Mytilus edulis (striped bars) on Fucus 
vesiculosus surface extracts (twofold mean boundary layer conc.) 
obtained in different months. Corresponding solvent blanks are grey 
(A. improvisus) and grey striped (M. edulis). Results from one-way 
ANOVA (n = 6, in all cases) for A. improvisus F = 4.6, p < 0.001 and for 
M. edulis F = 1.3, p > 0.1. Significant differences between group means 
are indicated by letter coding (for A. improvisus only), groups with the 
same letter are not significantly different (Tukey’s HSD, p ≤ 0.05). For 
M. edulis no significant differences between groups were observed. 
Seasonality in antifouling defense strength of F. vesiculosus against 
A. improvisus (solid line) and M. edulis (dashed line) is illustrated by 
fitting a nonlinear regression model to the data.  
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F. serratus surface extracts did not significantly repel A. improvisus in any month 

of the year (one-way ANOVA, F = 1.0, p = 0.42, Fig. 5b). A sinusoidal nonlinear 

regression explained 63 % of the seasonal variations in modulated non-significant 

fouling effects of F. serratus surface extract activities against A. improvisus (Fig. 5b). 

The settlement of M. edulis onto F. serratus surface extracts varied among months 

of extraction (one-way ANOVA, F = 2.1, p = < 0.05) but were generally not 

significantly different from the solvent blank. July surface extracts were significantly 

more attractive than extracts originating from December and October (Tukey’s HSD 

test, p ≤ 0.05). The seasonal variation was explained to 52 %, by a sinusoidal 

nonlinear regression, (Fig. 5b and Table S2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 b. Mean number of settlement events ±SE of Amphibalanus improvisus 
(black bars) and Mytilus edulis (striped bars) on Fucus serratus surface extracts 
(twofold mean boundary layer conc.) obtained in different months. Corresponding 
solvent blanks are grey (A. improvisus) and grey striped (M. edulis). Results from 
one-way ANOVA (n = 6, in all cases) for A. improvisus F = 1.0, p > 0.1 and for M. 
edulis F = 2.1, p < 0.05. Significant differences between group means are 
indicated by letter coding (for M. edulis only), groups with the same letter are not 
significantly different (Tukey’s HSD, p ≤ 0.05). In case of A. improvisus no 
significant differences between groups were observed. Seasonality in antifouling 
defense strength of F. serratus against A. improvisus (solid line) and M. edulis 
(dashed line) are illustrated by fitting a nonlinear regression model to the data.  
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Anti-macrofouling activities in F. vesiculosus and F. serratus against A. improvisus 

and M. edulis were neither correlated with the mannitol content of the algae nor with 

in situ fouling pressures as recorded on PVC plates (Table 4). 

 

Table 4. Summarized results of different correlation tests. 
 

Algal species 
Fouling species in bioassay 
[cm2] Potential driver 

Cor. 
coefficient 

p-
value 

Fucus 
vesiculosus  Amphibalanus improvisus Mannitol [mg/g] r = -0.347 0.269 

F. vesiculosus Mytilus edulis Mannitol [mg/g] r =  0.409 0.187 

Fucus serratus A. improvisus Mannitol [mg/g] r = -0.305 0.334 

F. serratus M. edulis Mannitol [mg/g] r = -0.152 0.637 

     
Fucus 
vesiculosus Amphibalanus improvisus In situ fouling pressure [% cover] rho = -0.044 0.893 

F. vesiculosus Mytilus edulis In situ fouling pressure [% cover] rho =  0.085 0.794 

Fucus serratus A. improvisus In situ fouling pressure [% cover] rho = -0.481 0.113 

F. serratus M.edulis In situ fouling pressure [% cover] rho =  0.591 0.043 
 

The table contains correlation coefficients (r = Pearson’s and rho = Spearman’s cor. 
coefficient) and p-values for each correlation test. n = 12, for each correlation.  
Significance level after Bonferroni correction p ≤ 0.025. 
 

Discussion 

The main purpose of the present study was to test (1) if macrofouling pressure in 

the field varies seasonally in intensity and composition, (2) whether F. vesiculosus 

and/or F. serratus chemically inhibit macrofouling, (3) whether the strength of 

chemical antifouling defense of F. vesiculosus and F. serratus is related to prevailing 

fouling pressure and (4) whether there are hints for a resource dependency of 

chemical antifouling defense. 

This study revealed that environmental parameters as well as macrofouling in the 

field followed a pronounced seasonal pattern. Furthermore, in situ bioassays, loaded 

with a two-fold mean boundary layer concentration of Fucus surface extracts, 

showed a seasonally fluctuating and species dependent chemical antifouling 

defense of F. vesiculosus and F. serratus against the barnacle A. improvisus and 

the mussel M. edulis. However, chemical antifouling defense strength (in situ 

bioassays) of both Fucus species did neither correlate with the storage compound 

mannitol, a proxy for stored energy availability (Yamaguchi et al. 1966, Schmitz & 

Lobban 1976), nor with the general fouling pressure.  
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Macrofouling 

Our field experiment revealed a seasonal pattern of epiphytic and epizoic 

macrofouling as well as of environmental parameters, as previously reported 

(Hagermann 1966, Rindi & Guiry 2004, Wahl et al. 2010, Hammann et al. 2013). 

Autotrophic fouling dominated on all substrates (PVC and Fucus) and exhibited a 

clear seasonal pattern, increasing with irradiation and temperature during spring and 

summer along with the depletion of surface water nutrients due to increasing 

primary production. The decrease of epiphytic fouling during autumn and winter is 

most likely because of cessation of the vegetation period of annual algae. The 

dominance of the autotrophic relative to the heterotrophic components of fouling is 

probably attributable to the shallow depth (0.5 - 1.5 m, depending on water level) 

and ample light supply (in spring and summer). Fucus serratus occurs slightly 

deeper than F. vesiculosus (Malm et al. 2001) and hosts less epiphytes and more 

epizoans than PVC plates and F. vesiculosus. Disregarding agile species (with 

exception of M. edulis) may have contributed to the apparent dominance of 

autotrophic epibionts. 

Heterotrophic fouling showed a less pronounced seasonal pattern as compared 

to phototrophic fouling. Epizoans on PVC plates exhibited the clearest seasonality 

with a maximum in June and July, when recruitment of many species is generally 

high. In contrast to the PVC panels, F. vesiculosus revealed high animal fouling 

densities not only in summer, but also in autumn and winter. Fucus serratus 

associated epizoans showed peak densities during winter. These differences 

between PVC and Fucus associated epizoans can be explained by the short 

exposure time (four weeks at a time) of the PVC substratum. Considering that both 

Fucus species are perennial with a life time of three to five years or even longer, 

depending on environmental conditions (Rees 1932, Knight & Parke 1950), it is 

reasonable to assume that perennial foulers which settled during spring and 

summer would persist over winter producing a seasonal fouling pattern less “pure” 

than on the panels. Only the fouling data obtained from the PVC plates reflect the 

actual fouling pressure Fucus is exposed to in the field in the course of a given 

month. 
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Fouling of Amphibalanus improvisus and Mytilus edulis 

The barnacle A. improvisus and the mussel M. edulis are considered as two 

common biofouling species (Berntsson & Jonsson 2003, Railkin 2004, Wikstrom & 

Pavia 2004, Bloecher et al. 2013). While the first species can heavily colonize Fucus 

thalli during peak settlement seasons (June, July) (Rohde et al. 2008, Nasrolahi et 

al. 2012, Pansch et al. 2012), M. edulis can also heavily colonize macroalgae thalli 

by forming dense mussel layers (80 to 100 % coverage) on the kelp Saccharina 

latissima or on the seagrass Zostera marina (own observations).  

The field experiment revealed higher densities of A. improvisus on PVC plates as 

compared to F. vesiculosus and F. serratus, suggesting a settlement-deterrent effect 

for both Fucus species against the barnacle. Our findings corroborate results from 

Wikstrom & Pavia (2004) and Brock et al. (2007), the latter ones observed in a field 

study significant higher barnacle densities on rocks compared to adjacent 

F. vesiculosus as well as the avoidance for algal fronds during the peak settlement 

season. Wikstrom and Pavia (2004) reported higher barnacle recruitment on 

Perspex panels compared to F. vesiculosus. The presumed settlement-deterrent 

effect of F. vesiculosus and F. serratus against A. improvisus may be due to 

released algal secondary metabolites (Koivikko et al. 2005).  

It should be mentioned that our observations of A. improvisus settlement events 

on PVC reflect a reduced pattern of what Thomsen et al. (2010) described, namely 

A. improvisus settlement from January until October on PVC settlement panels 

located in the inner Kiel Fjord. The fact that we found A. improvisus on PVC just 

during the main recruitment phase in June and July is possibly due to differences of 

the experimental sites (inner Kiel Fjord vs. outer Kiel Fjord). In our study the 

experimental site was wave exposed and located in the outer Kiel Fjord while the 

experimental site of Thomsen and co-workers was a sheltered site in the inner Fjord 

at the institute’s pier. These differences could have led to very different settlement 

conditions for cyprid larvae. Our results probably reflect successful settlement 

events during the peak recruitment season when many cyprid larvae tried to settle. 

A further explanation for the relatively weak and temporally compressed 

A. improvisus settlement could be that our PVC plates were deployed in a Fucus 

bed presumably surrounded by an elevated level of exuded algal secondary 

metabolites such as phlorotannins (Koivikko et al. 2005), creating a deterrent 

environment for cyprid larvae. A previous laboratory study by Wikstrom & Pavia 
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(2004) showed that phlorotannins decreased the settlement of cyprid larvae and 

Brock et al. (2007) demonstrated that phlorotannins in situ can reach concentrations 

inhibitory for cyprid settlement. Therefore, it seems possible that algal secondary 

metabolites released from the Fucus canopy had led to a reduced cyprid settlement 

on our PVC plates.  

With regard to the second important fouler, Mytilus edulis, our field experiment 

found no significant differences in recruitment on PVC, F. vesiculosus and 

F. serratus, suggesting that both Fucus species did not repel juvenile and adult 

M. edulis. One explanation could be that M. edulis is a mobile fouling species with 

several attachment and detachment phases during its early life. In fact, young larvae 

prefer to settle onto filamentous structures, while post-larval M. edulis preferentially 

settle into mussel beds (Bayne 1964, Bayne 1976). Therefore we assume that 

M. edulis is not a real threat for Fucus. Interestingly, we found no larvae of M. edulis 

on either Fucus species. This observation matches with findings from a former study 

(Dobretsov 1999), which was explained with the flat thallus of Fucus. Other possible 

explanations could be (1) the settlement preference of M. edulis larvae on artificial 

substrata (Dobretsov & Wahl 2001) and (2) a possible repellent effect through 

excretion of molecular signals by F. vesiculosus and F. serratus as well as by their 

associated biofilm communities (Dobretsov 1999).  

 

Antifouling defense strength 

The extraction of alga surface metabolites using the dipping method gives 

average concentrations over the entire concentration gradient within the boundary 

layer surrounding the producer surface (Grosser et al. 2012). Grosser and co-

workers (2012) showed that inside the diffusion boundary layer, 0 -150 µm above 

the thallus surface of Fucus, the spatial distribution of non-polar algae metabolites 

forms a strong gradient declining with distance from thallus surface. Consequently, 

real concentrations as encountered by a settler approaching the thallus surface 

increase towards the surface dramatically. To at least partially mimic the 

concentration in the thallus-near part of the boundary layer (where attachment 

happens) we used a concentration of twice the boundary layer mean.  

Our in situ bioassays revealed that both Fucus species show a seasonal pattern 

of chemical antifouling defense strength against A. improvisus. We had, indeed, 

hypothesized that the chemical antifouling defense of F. vesiculosus and F. serratus 
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would be induced and regulated by the seasonally fluctuating fouling pressure. Such 

fine-tuned defense pattern could be demand-driven. Increasing fouling during 

spring/summer generated by reproduction and larvae recruitment would entail a 

rising demand of antifouling defense, as postulated by Wahl et al. (2010). In 

contrast, antifouling defense of Fucus against M. edulis were weak or non-existent 

and consequently did not show any seasonal pattern in either Fucus species (Fig. 

5a, b). As mentioned above, M. edulis could be just a transient guest and, thus, not 

a real threat for Fucus, soliciting no demand for defense. 

Alternatively or additionally to the hypothesis that antifouling defense in Fucus is 

demand driven seasonal fluctuations in these defenses could also reflect the 

availability of resources (Coley et al. 1985, Strauss et al. 2002, Wahl et al. 2010). In 

our study we used the concentration of the storage compound mannitol (Lehvo et al. 

2001) as a general proxy for (stored) energy, inter alia, for defense metabolite 

production. The tissue mannitol content of vegetative thallus tips varied considerably 

between seasons but was never depleted. A correlation between antifouling defense 

(in situ bioassays) and the tissue mannitol content was not found. Seasonal 

mannitol fluctuations were reported for Xiphophora gladiate (Fucales) and for 

F. vesiculosus from the Finland Baltic Sea (Gillanders & Brown 1994, Lehvo et al. 

2001). The authors assumed that mannitol may represent a carbon reserve and is 

used for receptacle formation (Gillanders & Brown 1994) and/or is mobilized for 

growth during unfavorable light conditions such as winter (Lehvo et al. 2001).  

In conclusion, this study has shown that in F. vesiculosus and F. serratus the 

chemical antifouling defense against the barnacle A. improvisus varies with season 

and matches the seasonal fluctuations in fouling pressure of this barnacle, i.e. 

strong defense in phases of strong fouling. Interestingly, a corresponding pattern 

was not detected with regard to the -transient- fouler M. edulis. The observed 

seasonal fluctuations of anti-barnacle defense do not seem to reflect the availability 

of resources. 
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Supplementary Information 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary  Fig. S1a, b.  Seasonal variation of mean surface 
seawater temperature, salinity and photosynthetic photon flux 
rate (PAR) recorded at the sampling site (Bülk, outer Kiel Fjord, 
Germany) in 0.5 m water depth under mid water level. 
Temperature, salinity and PAR photon flux rates were 
continuously measured by loggers (U24-002 conductivity logger 
and pendant temperature/light logger, HOBO®, Onset Computer 
Corporation) taking one measurement per hour (n = 3 per month). 
Error bars are ± SE. "Noon photon flux rates" represent the 
average dose registered between noon and 1 pm on the first 
seven days of each month.  
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Supplementary  Fig. S2. Seasonal variations of mean surface seawater nutrient 
concentrations measured weekly (n = 3 per week) at the sampling site (Bülk, outer Kiel 
Fjord, Germany) in 1 - 1.5 m water depth (depending on water level). Gaps between the 
lines are due to missing measurements. 
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Supplementary Fig. S3a, b. Seasonal variability in the mean coverage [%] of the epizoan 
foulers Amphibalanus improvisus (a) and Mytilus edulis (b) recorded on PVC plates 
(PVC), Fucus vesiculosus (Fv) and Fucus serratus (Fs) at the sampling site (Bülk, outer 
Kiel Fjord, Germany) over the period of one year (n = 15 per month). Error bars are ± SE.  
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Alga species Fouling species in bioassay 
Significant different 

data sets P-value 

Fucus vesiculosus Amphibalanus improvisus Nov / Jan 0.003 
Fucus vesiculosus Amphibalanus improvisus Nov / Apr 0.029 
Fucus vesiculosus Amphibalanus improvisus Nov / May 0.004 
Fucus vesiculosus Amphibalanus improvisus Nov / Jun 0.019 
Fucus vesiculosus Amphibalanus improvisus Nov / Jul 0.053 
Fucus vesiculosus Amphibalanus improvisus Nov / Aug 0.009 
Fucus vesiculosus Amphibalanus improvisus solvent blank / Sep 0.035 
Fucus vesiculosus Amphibalanus improvisus solvent blank / Jan 0.001 
Fucus vesiculosus Amphibalanus improvisus solvent blank / Apr 0.009 
Fucus vesiculosus Amphibalanus improvisus solvent blank / May 0.001 
Fucus vesiculosus Amphibalanus improvisus solvent blank / Jun 0.006 
Fucus vesiculosus Amphibalanus improvisus solvent blank / Jul 0.019 
Fucus vesiculosus Amphibalanus improvisus solvent blank / Aug 0.003 
Fucus vesiculosus Amphibalanus improvisus solvent blank / Dec 0.053 

    
Fucus serratus Mytilus edulis Dec / Jul 0.025 
Fucus serratus Mytilus edulis Oct / Jul 0.011 

 

Table S2. Summarized significant results of Tukey’s HSD test (p ≤ 0.05). 
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Seasonal variations in surface metabolite compositi on of 
Fucus vesiculosus and Fucus serratus from the Baltic Sea 

Rickert, E .1, Wahl, M.1, Richter, H.2 and Pohnert, G.2 

Abstract 

The perennial macroalgae Fucus is known to exude metabolites through its outer 

thallus surface some of which have pro- and antifouling properties. Seasonal 

fluctuations of natural fouling pressure and of Fucus chemical fouling control 

strength regarding micro- and macrofoulers have been observed suggesting that 

control strength varies with threat. So far, a study on the seasonal composition of 

surface associated metabolites, responsible for much of the fouling control, is 

missing. In a one-year field survey, we sampled monthly the two co-occurring 

species F. vesiculosus and F. serratus individuals (six per species and month). We 

analysed by means of gas chromatography-mass spectrometry (GC-MS) the 

chemical composition of surface associated metabolites of both Fucus species to 

describe temporal patterns in chemical surface composition. Subsequently we 

search for correlation between the up- and downregulation of metabolites and 

prokaryotic fouling control strength. Additionally, we correlated monthly recorded 

abiotic parameters from the sampling site with the variation in the chemical surface 

landscape of Fucus. Our study revealed that the chemical surface composition of 

both Fucus species exhibit substantial seasonal differences between spring/summer 

and autumn/winter months. Light and temperature explained most of the seasonal 

variability in surface metabolite composition of both Fucus species. A strong 

summerly upregulation of saccharides and hydroxy acids in F. vesiculosus and of 

fatty acids and two saccharides in F. serratus was observed. It is conceivable that 

these upregulated molecules have an antagonistic effect on associated microfoulers 

caused by the profouling effect of sugars and the antifouling effect of organic acids.  
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Keywords: Fucus, macroalgae surface metabolites, carbohydrates, fatty acids, 

hydroxy acids, chemical pro- and antifouling control, seasonal fluctuation patterns 

 

Introduction 

 

Macroalgae surfaces function as an interface with the aquatic environments. All 

essential physiological processes like light absorption, gas exchange, nutrients 

uptake or the disposal of metabolic products happen via this outer interface (Wahl et 

al. 2012). Being most active interfaces macroalgal thallus surfaces are often 

enriched with photosynthesis products like oxygen and carbohydrates (Abdullah & 

Fredriksen 2004, Goecke et al. 2010, Haas & Wild 2010). At the same time 

macroalgae surfaces are exposed to a diverse and seasonally variable prokaryotic 

fouling pressure and are typically colonized by up to 107 - 108 bacteria cells per cm2 

of algal surface, depending on the algal species (Bengtsson et al. 2010, Saha & 

Wahl 2013, Stratil et al. 2013). Uncontrolled microbial fouling would entail a 

reduction of incoming light (Wahl et al. 2010) as well as reduced gas and nutrient 

exchange resulting in lower photosynthesis efficiency (as described for epiphytes on 

seagrass in (Sand-Jensen 1977, Wahl 1989). Further, uncontrolled bacterial 

pathogens can cause algal diseases (Egan et al. 2014). Thus macroalgae fitness 

and, ultimately, survival should depend on an efficient fouling control admitting the 

beneficial and repelling the detrimental bacteria while keeping the overall 

abundance of epibacteria at a tolerable level. It is therefore to be expected that the 

evolutionary pressure for macroalgae to evolve mechanisms against uncontrolled 

bacterial colonization is high. Several studies have demonstrated that macroalgae 

developed chemical defense mechanisms against potential bacterial foulers by 

means of exuded metabolites to prevent or regulate bacterial attachment, growth 

and hence the density of associated bacteria (Nylund et al. 2005, Dworjanyn et al. 

2006, Saha et al. 2011, Saha et al. 2012). Furthermore, it has been shown that 

different macroalgae metabolites can have pro- and antifouling effects with the 

power to shape the composition of the bacterial community composition (Persson et 

al. 2011, Sneed & Pohnert 2011a, Sneed & Pohnert 2011b, Lachnit et al. 2013).  
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Since macroalgae are photosynthetic organisms their metabolism strongly 

depends on environmental parameters like light and temperature but also on the 

availability of nutrients (Davison 1991, Raikar et al. 2001, Nygard & Dring 2008, 

Nejrup et al. 2013). It has been shown for some brown algal species that the tissue 

content as well as exudation rates of polyphenols and carbohydrates varies in 

response to environmental parameters (Sieburth 1969, Ragan & Jensen 1978, 

Pavia & Toth 2000, Abdullah & Fredriksen 2004). Additionally, it has been reported 

for different macroalgae species that the chemical defense strength or even specific 

antifouling metabolites against bacteria exhibit seasonal variations, showing a 

general up-regulation during summer months when metabolic rates and fouling 

pressure are high (Amade & Lemee 1998, Culioli et al. 2002, Hellio et al. 2004, 

Marechal et al. 2004). As fouling pressure as well as resource availability varies 

during the year especially in temperate regions, it could be expected that 

macroalgae in such a fluctuating environment exhibit also synchronized anti-

bacterial defence strength. A simultaneous assessment of the temporal patterns of 

fouling pressure, fouling control strength and the chemical landscape at the thallus 

surface through all seasons has not been undertaken before. 

The present study focused on the perennial brown macroalgae F. vesiculosus 

and F. serratus from the temperate Baltic Sea. Previous studies showed that 

F. vesiculosus chemically control bacterial attachment via exuded metabolites (Wahl 

et al. 2010, Saha et al. 2011, Saha et al. 2012, Lachnit et al. 2013). The metabolites 

fucoxanthin, dimethylsulphopropionate (DMSP) and proline were found to be 

present at the immediate vicinity of F. vesiculosus surfaces with the capacity to 

inhibit bacterial attachment and to modulate the bacterial community composition 

(Saha et al. 2011, Grosser et al. 2012, Saha et al. 2012, Lachnit et al. 2013). 

Additionally, recent studies revealed that F. vesiculosus surface extracts also exhibit 

profouling effects on bacterial attachment (Lachnit et al. 2013, Letschert 2014, 

Rickert et al. submitted). Furthermore, several studies with focus on the seasonality 

of the bacterial antifouling defense strength of F. vesiculosus revealed seasonal 

fluctuating antifouling activities along with in situ bacterial fouling pressure intensities 

(Wahl et al. 2010, Saha & Wahl 2013, Rickert et al. submitted). 

However, to date only little is known about the seasonal composition of Fucus 

surface metabolites and how environmental parameters like light, temperature, 

nutrients and prokaryotic fouling pressure influences the metabolic response of 
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Fucus. In-depth knowledge regarding the chemical composition of Fucus surface 

metabolites and their seasonal patterns is essential to gain a better understanding of 

the chemical fouling control of Fucus.  

The aim of the present study was to investigate the seasonal variation in surface 

metabolite composition of F. vesiculosus and F. serratus and how the metabolite 

composition relates to the seasonal variations in the environmental factors light, 

temperature, nutrients and fouling pressure. The following questions structured the 

project: (1) Are there significant differences in the surface chemistry composition of 

Fucus between different seasons? (2) Which metabolites contribute most to the 

seasonal differences in surface chemistry? (3) Which abiotic parameters correlate 

significantly with the metabolite composition of Fucus? 

 

Material and Methods 

 

Algae material 

The two perennial brown macroalgae Fucus vesiculosus Linnaeus (1753) and 

Fucus serratus Linnaeus (1753) were monthly sampled over an entire year (August 

2012 - July 2013) at Bülk, outer Kiel Fjord, Germany (54°27’21 N / 10°11’57 E). Per 

month six non-fertile algal individuals per species were collected at depths of 0.5 m . 

Transportation to the laboratory took place in 3 l plastic bags and a cooler box to 

avoid desiccation and temperature stress.  

 

Environmental parameters and fouling pressure 

At the algae sampling site data loggers (HOBO UA-002-64, Onset Computer 

Corporation, Bourne, Massachusetts, USA) were deployed at 0.5 m depth and 

temperature and light were recorded hourly From the same depths weekly water 

samples were analysed for nitrogen (nitrate + nitrite, ammonium) and phosphate 

concentrations. For detailed method descriptions see Rickert et al. (2015).  

To assess the relative seasonal variation in prokaryotic fouling pressure at the 

sampling site horizontal oriented microscope slides (n = 9) were exposed for seven 

days each month. After retrieval, slides were fixed in 3.7 % formaldehyde solution at 

4 °C overnight followed by rinsing with sterile fil tered 1x PBS solution and storage in 
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a PBS-ethanol solution (1:1 v/v of 1x PBS and 96% ethanol) at -20 °C until further 

sample preparation. Approx. 1 cm2 of the microscopy slides was stained with 10 µl 

of a ready-to-use DAPI (4’.6-diamidino-2-phenylindole) containing mounting medium 

(Roti®-Mount FluorCare DAPI, Roth, Karlsruhe, Germany) and covered with a cover 

glass. For prokaryotic cell enumeration five randomly selected visual fields per 

replicate were photographed (epifluorescence microscope: Axio Scope.A1, Carl 

Zeiss Microscopy GmbH, Göttingen, Germany; camera: ProgRes® CF, Jenoptik, 

Jena, Germany). Photos were manually analysed by counting all prokaryotic cells in 

20 randomly selected squares (each 50 µm2). For detailed method descriptions see 

Rickert et al. (2015).  

 

Surface extraction 

Six Fucus individuals per species and month were surface-extracted. Per algae 

individual approx. 50 g (approx. 1500 cm2) of the upper 5-10 cm apical thalli tips, 

devoid of macrofoulers, were cut off. The surface extraction of Fucus was performed 

according to the protocol of de Nys et al. (1998) with minor modifications. Before 

extraction, thalli tips were spin dried in a salad spinner for 30 s to remove excess 

seawater from the algae material. Extraction time was set to 4 s, to minimize the risk 

of epidermis damage and extraction of internal metabolites (for details see Rickert et 

al. 2015). For extraction 3-6 thallus tips (depending on size and branching) were 

dipped into 100 ml of a constantly stirred n-hexane and methanol (1:1 v/v) emulsion 

for 4 s. Careful attention was paid to ensure that the cut surface had no contact with 

the solvents to avoid any leaching of internal metabolites. Surface extractions were 

performed within 3 to 4 hours after algae sampling. Extracts were filtered with a 

paper filter (MN 615 ¼, Ø 150 mm, Macherey-Nagel, Düren, Germany) to remove 

particles and reduced at 35 °C under vacuum with a rotation evaporator. Reduced 

extracts were redissolved respectively with 2 ml n-hexane and methanol. Under 

constant nitrogen flow extracts were dried at 35°C and stored until GC-MS sample 

preparation at -20 °C. 

Solvent blanks (n = 4) for GC-MS analysis were prepared by performing the 

whole extraction procedure without algae material.  
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GC-MS sample preparation and analysis  

For GC-MS dry Fucus extracts were redissolved first with 2x 800 µl of heptane 

(≥ 99.9 % GC grade, Sigma-Aldrich Chemie Gmbh, Munich, Germany) followed by 

1 min of vortexing and transfer to a new vial. Remaining undissolved extracts were 

treated with 2x 800 µl of methanol (≥ 99.9 % GC grade, Sigma-Aldrich Chemie 

Gmbh, Munich, Germany) and 1 min of vortexing to complete the resolving process. 

Respectively 40 µl of heptane and methanol solved extracts were mixed and 2 µl of 

ribitol internal standard solution (0.4 mmol in water, Sigma-Aldrich, Germany) were 

added followed by evaporation to dryness under vacuum for ~ 3 h. 

Sample derivatisation was performed according to the protocol by Vidoudez & 

Pohnert (2012). For derivatisation 50 µl of a fresh prepared methoxymation solution 

(20 mg methoxyamine hydrochloride, Sigma-Aldrich Chemie Gmbh, Munich, 

Germany, dissolved in 1 ml of pyridine) were added to the sample followed by 1 min 

of vortexing. Prepared samples were first incubated at 60 °C for 1 h followed by a 

second incubation step at room temperature for 9 h. Silylation solution was fresh 

prepared by adding with a glass syringe 40 µl of retention time index mix (Sigma-

Aldrich Chemie Gmbh, Munich, Germany) into a new vial of N-methyl-N-

trifluoroacetamide (MSTFA, 1 ml aliquots, Macherey-Nagel, Düren, Germany). Of 

this silylation solution 50 µl were added with a glass syring to the sample and 

incubated at 40 °C for 1 h. Solvent blank samples w ere prepared for GC-MS 

analysis in the same way like extract samples. After incubation samples were 

transferred into vials with glass inserts and analysis with a GCT Premier TOF mass 

spectrometer (Waters / Micromass, Manchester, UK).  

Immediate GC-MS analysis and further data processing were performed as 

described by Vidoudez & Pohnert (2012). The DB-5ms column had a length of 30 m 

attached to a 5.7 m pre-column, source temperature was set to 250°C, and the split 

to 4. The oven temperature was hold for 3 min at 75°C, increased with 12°C/min to 

315°C and hold at that temperature for 7min. Mass s pectra were obtained with 

10scans/sec. 

 

GC-MS data processing 

Chromatogram deconvolution was performed using AMDIS 2.71 with a 

smoothing window of 5 scans and peak integration using MET-IDEA 2.08 with a 

lower mass limit of 50.  
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Each GC-MS extract measured data were corrected to the internal standard 

ribitol with dividing each extracts readings by the respectively ribitol measured value. 

Further ribitol-corrected measured data were corrected by the measured data of the 

solvent blanks. For blank correction each measured data was subtracted by the 

mean (n = 4) of solvent blanks. After ribitol and solvent blank correction all negative 

values were converted to zero.  

 

Identification of metabolites 

Peaks were tentatively identified with the spectral library NIST 2011.  

 

Statistical Analysis  

All multivariate analyses were performed using the software package Plymouth 

Routines in Multivariate Ecological Research (PRIMER) version 6 and 

PERMANOVA+ add-on (Clarke & Gorley 2006, Anderson et al. 2008).  

In order to test for significant differences in the metabolite composition of Fucus 

surface extracts originating from different seasons an analysis of similarity 

(ANOSIM) was performed and a metric multi-dimensional scaling (MDS) plot was 

generated to visualize the resulting similarity/dissimilarity patterns. These analyses 

were based on square root transformed GC-MS data (masses). On the basis of 

these data the related resemblance matrix (Bray-Curtis similarity) was calculated for 

all samples (in all cases n = 6 per month; exceptions in the F. vesiculosus data set: 

May and July n = 5 and August n = 4). Global-R statistic was used to test for 

significant differences between groups (factor season). Classification of the factor 

‘season’ was performed according to the meteorological seasons for the northern 

hemisphere (Dec., Jan., Feb. = winter; Mar., Apr., May = spring; Jun., Jul., Aug. 

= summer; Sep., Oct., Nov. = autumn). R-values range from 0 to 1, where high 

values indicating a high variety among seasons. R-values of > 0.25 show that the 

patterns are not random.  

 

To assess the relationship between the variation of Fucus surface chemistry and 

the environmental variables (temperature, light, nutrients and prokaryotic fouling 

pressure) a distance-based linear model (DistLM) was performed. With this 

procedure it was first tested if there are significant correlations between the 
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multivariate Fucus surface chemistry and each of the environmental variables 

(marginal tests). In the next steps the DistLM procedure runs through all variable 

combinations to identify which set best explains the patterns in the Fucus surface 

chemistry data (sequential tests). 

Prior running DistLM, data sets were prepared as followed: the data resemblance 

matrix containing the square root transformed Fucus surface chemistry data (GC-

MS data) were converted to a centroid resemblance matrix (based on Bray-Curtis 

similarities). The environmental variable data were normalized and selected as 

predictor variables. The conversion of the Fucus chemistry data into a centroid 

resemblance matrix was necessary to match the chemistry matrix with the 

environmental variable matrix, both matrices had a similar sample size (n = 12, 

month). The following DistLM settings were used: stepwise selection, adjusted R2 

criterion and 9999 permutations.  

 

To analyse which masses or rather molecules are most strongly up- or down 

regulated in winter and summer surface extracts a Simper routine (similarity 

percentage analysis) was performed by comparing the winter and summer GC-MS 

measured values (masses) based on square root transformed values. From the 

Simper result table all masses cumulative contributing to 75 % of the observed 

differences were selected. For further analysis first from each mass, the log of the 

ratio between the GC-MS masses in summer and winter extracts was calculated. 

Second, the detected masses were ranked according to their log ratio values with a 

cut off at 0.7 corresponding to a five-fold increase in summer relative to winter (see 

ration summer/winter, Table 5 and 6).   

 

Results 

 

Seasonal variability of Fucus surface chemistry 

The chemical composition of Fucus vesiculosus surface extracts differed 

significant among seasons (ANOSIM global test: global R = 0.342, p = 0.0001). The 

composition of F. vesiculosus surface extracts sampled in winter differed 

significantly from surface extracts sampled in spring (ANOSIM pairwise tests: 
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winter/spring R statistic = 0.399, p = 0.0001) and summer (ANOSIM pairwise tests: 

winter/summer R statistic = 0.72, p = 0.0001). Summer extracts differed significantly 

from autumn extracts (ANOSIM pairwise tests: summer/autumn R statistic = 0.346, 

p = 0.0001) (Table 1 and Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. MDS (multi-dimensional scaling) plot of the variance in 
Fucus vesiculosus surface extract composition originating from different 
seasons.  Symbols representing single monthly samples of F. vesiculosus 
individuals within the four seasons (n = 6 per month; exceptions: May (spring) 
and July (summer) n = 5, August (summer) n = 4). 
 

Groups R statistic p-value Significance level %  
Winter, Spring  0.399 0.0001 0.01 
Winter, Summer  0.72 0.0001 0.01 
Winter, Autumn 0.239 0.0006 0.06 
Spring, Summer 0.161 0.004 0.4 
Spring, Autumn 0.231 0.0002 0.02 
Summer, Autumn  0.346 0.0001 0.01 

Table 1.   Pairwise test results (ANOSIM) for Fucus vesiculosus 
chemical composition of surface extracts. 
 

R-values > 0.25 indicating statistical significant discrimination among 
groups (highlighted in bold). 
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The chemical composition of Fucus serratus surface extracts differed significantly 

among seasons (ANOSIM global test: global R = 0.293, p = 0.0001). The 

composition of winter extracts differed significantly from that of spring extracts 

(ANOSIM pairwise tests: winter/spring R statistic = 0.472, p = 0.0001) and summer 

extracts (ANOSIM pairwise tests: winter/summer R statistic = 0.338, p = 0.0001). 

Spring extracts differed significantly from autumn surface extracts (ANOSIM 

pairwise tests: spring/autumn R statistic = 0.425, p = 0.0001) (Table 2 and Figure 2).  

These statistical differences are represented well in the MDS representation (Fig. 

1 and 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  2. MDS (multi-dimensional scaling) plot of the variance in Fucus serratus 
surface extract composition originating from different seasons.  Symbols 
representing single monthly F. serratus individuals within the four seasons (in 
all cases n = 6 per month).  
 

Groups R statistic p-value Significance level % 

Winter, Spring  0.472 0.0001 0.01 
Winter, Summer  0.338 0.0001 0.01 
Winter, Autumn 0.129 0.007 0.7 
Spring, Summer 0.198 0.0006 0.06 
Spring, Autumn  0.425 0.0001 0.01 
Summer, Autumn 0.208 0.0007 0.07 

 

Table 2. Pairwise test results (ANOSIM) for Fucus serratus 
chemical composition of surface extracts. 
 

R-values > 0.25 indicating statistical significant discrimination among 
groups (highlighted in bold). 
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Relationship between surface chemistry composition and environmental 
variables 

The distance-based linear model (DistLM) analysis detected significant 

correlations between the surface chemistry composition of Fucus and the 

environmental variables (Table 3 and Table 4).  

For Fucus vesiculosus, the sequential tests of the distance-based linear model 

revealed that the combination of light and temperature has the highest explanatory 

power, together explaining 56.7 % of the variance of F. vesiculosus surface 

chemistry (Table 3). 

 

 

 

 

 

 

 

 

The distance-based redundancy (dbRDA) plot illustrates the separation of the 

surface chemistry samples along the first and second axis correlating with the most 

important variable light on the first axis and with the variable temperature on the 

second axis. The variation on the first axis mainly separates spring and summer 

extract samples from autumn and winter samples (Figure 3). Light correlates with 

the first axis which explains 49.8 % of the variation in chemical composition. 

Temperature correlates with the second axis which explains 6.9 % of the variation in  

chemical composition (Figure 3).  

 

Fig. 3. dbRDA plot  (distance-based redundancy analysis) of the 
distLM model based on the two predictor variables (temperature and 
light) fitted to the variance in Fucus vesiculosus surface chemistry 
composition.   

Variable Adj. R2 SS(trac) Pseudo-F P Prop. Cumul res.df 

+ Light 0.4475 1607.5 9.9115 0.0005 0.4977 0.4977 10 

+Temperature 0.4708 223.81 1.4408 0.2397 6.9306E-2 0.5670 9 

 

Table 3. Results of distance-based linear model (DistLM). Relationship between Fucus 
vesiculosus surface chemistry composition and the predictor variables (temperature, light, 
phosphate, prokaryotic fouling pressure). Model output contains only the best fitting 
variables.  
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For Fucus serratus, the sequential tests of the distance-based linear model 

exhibited that the combination of all four environmental variables (light, temperature, 

phosphate and fouling) has the highest relevance, together explaining 61.01 % of 

the variance of F. serratus surface chemistry (Table 4).  

 

 

 

 

 

 

 

 

 

 

 

The dbRDA ordination plot shows that the two most important variables light and 

phosphate correlate with the first axis which explains 33.8 % to the variation in 

chemical composition. Along the first axis light and phosphate are negatively 

correlated to each other resulting in a distinct grouping of mainly winter and autumn 

extract samples from summer and spring samples (Fig. 4). Temperature and 

prokaryotic fouling correlate with the second axis which explains 14.9 % to the 

variation in chemical composition (Fig. 4).   

 

 

Variable Adj. R2 SS(trace) Pseudo-
F P Prop. Cumul. res.df 

+ Light 0.2167 770.99 4.0435 0.0097 0.2879 0.2879 10 

+ Temperature 0.3244 426.66 2.5944 0.0419 0.1593 0.4472 9 

+ Phosphate 0.3582 230.25 1.4738 0.2207 8.5987E-2 0.53325 8 

+ Fouling 0.3874 205.96 1.3811 0.2378 7.6915E-2 0.61016 7 

 

Table 4. Results of distance-based linear model (DistLM). Relationship between Fucus 
serratus surface chemistry composition and the predictor variables (temperature, light, 
phosphate, prokaryotic fouling pressure). Model output contains only the best fitting variables.  
 

Fig.  4. dbRDA plot  (distance-based redundancy analysis) of 
the distLM model based on the four predictor variables 
(temperature, light, phosphor and fouling) fitted to the 
variance in Fucus serratus surface chemistry composition.   
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Regulation of surface associated metabolites  

Comparison of F. vesiculosus winter and summer surface extract composition 

revealed that two main signal groups (retention time 13-14 and 20-23 min, resp.) 

dominated by carbohydrates exhibited a pronounced up-regulation in summer 

extracts. Mono- and disaccharides were the prevalent up-regulated molecules in 

summer surface extracts. Furthermore, three different hydroxy acids were found up-

regulated: citric, hydroxypropanoic and maleic acid.  Citric acid was found to be only 

present in summer surface extracts, whereas hydroxypropanoic acid and maleic 

acid were present during both seasons with a 7.7 and 5-fold up-regulation, 

respectively, in summer extracts compared to winter extracts (Table 5). 

Comparing F. serratus winter and summer surface extract composition showed 

that also two main signal groups (retention time 13-17 and 20-28 min) dominated by 

saturated fatty acids were up-regulated in summer surface extracts. Hexadecanoic 

acid (or palmitic acid) and octadecanoic acid (or stearic acid) were only present in 

summer surface extracts. Pentadecanoic and docosanoic acids were present in both 

seasons with a 4.5 and 5-fold up-regulation, respectively, in summer extracts 

compared to winter extracts (Table 6). Further, two carbohydrate molecules were 

found to be up-regulated in summer extracts compared to winter extracts, whereby 

the detected disaccharide was 18-fold up-regulated comparing winter and summer 

extracts (Table 6). 
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Metabolite 
or class 

GC-MS 
mass 

Rt 
(min) 

Winter 
(av. abund.) 

Summer 
(av. abund.) 

Ratio 
(summer/winter) 

Log ratio 
(summer/winter) 

Contrib.  
(%) 

Citric acid 273.1 14.29 < 0.0001* 0.24 2400 3.38 0.81 

Monosacch. 117.1 13.60 0.19 < 0.0001* 0.0005 -3.28 0.63 

Disacch. 205.1 21.90 < 0.0001* 0.14 1400 3.15 0.46 

unknown 97.1 23.54 < 0.0001* 0.11 1100 3.04 0.36 

Disacch. 204.1 21.89 0.01 0.23 23 1.36 0.74 

Disacch. 117.0 20.43 0.01 0.22 22 1.34 0.69 

Monosach. 319.2 14.95 0.01 0.16 16 1.20 0.49 

Disacch. 217.1 21.88 0.01 0.15 15 1.18 0.48 

Monosacch. 245.1 14.31 0.01 0.12 12 1.08 0.37 

Disacch. 75.0 20.89 0.01 0.11 11 1.04 0.35 

Disacch. 103.1 21.89 0.01 0.11 11 1.04 0.34 

Monosacch. 205.1 14.95 0.02 0.17 8.50 0.93 0.51 

Disacch. 204.1 21.13 0.02 0.17 8.50 0.93 0.48 

Hydroxy-
propanoic acid 

117.1 5.90 0.03 0.23 7.67 0.88 0.75 

Disacch. 273.0 20.44 0.02 0.15 7.50 0.88 0.45 

Monosacch. 205.1 13.03 0.05 0.36 7.20 0.86 1.04 

Disacch. 363.2 20.51 0.07 0.44 6.29 0.80 1.21 

Disacch. 361.2 20.45 0.19 1.16 6.11 0.79 3.19 

Disacch. 217.1 20.46 0.14 0.85 6.07 0.78 2.37 

Disacch. 361.2 21.13 0.06 0.35 5.83 0.77 0.98 

Monosacch. 103.1 14.74 0.03 0.17 5.67 0.75 0.46 

Disacch. 231.1 20.49 0.03 0.16 5.33 0.73 0.46 

Maleic acid**  131.1 7.57 0.04 0.2 5.00 0.70 0.54 

 

Table 5. Regulated metabolites in summer and winter surface extracts of F. vesiculosus 
from simper analysis. Metabolites are ranked by regulation strength (log ratio).  
 

GC-MS mass = gas chromatography–mass spectrometry mass output; Rt = retention time; av. 
abund. = average abundance derived from the relative peak area; Contrib. %= contribution in % to 
the dissimilarity between winter and summer group; < 0.0001* = original value was 0, transformed to 
calculate the ratio and log ratio; Monosacch. = Monosaccharide; Disacch. = Disaccharide; Maleic 
acid** = determined only very vaguely.  
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Discussion 

 

The perennial macroalgae Fucus vesiculosus and F, serratus are known to 

exhibit a seasonal variable chemical control of micro- and macrofoulers with a 

tendency of stronger fouling control strength during seasons of high fouling pressure 

(Wahl et al. 2010, Saha & Wahl 2013, Rickert et al. 2015). Therefore it seems 

reasonable to assume that the chemical metabolite composition at the interface, 

which approaching foulers are first confronted with, is also not static but rather 

seasonal variable. To investigate this issue, the main focus of the present study was 

on the seasonal composition of F. vesiculosus and F. serratus associated surface 

metabolites.  

Our study revealed that both Fucus species exhibited significant differences in 

surface chemistry composition between the seasons. Striking differences in surface 

metabolite composition were found between the two season group’s summer/spring 

and winter/autumn. For both Fucus species light was identified as the environmental 

variable with the highest explanatory power regarding the seasonal variance of the 

Metabolite 
or class 

Mass Rt 
(min) 

Winter 
(av. abund.) 

Summer 
(av. abund.) 

Ratio 
(Summer/Winter) 

Log ratio 
(Summer/Winter) 

Contrib.  
(%) 

Hexadecanoic 
acid / FA 

129.0 16.15 < 0.0001* 0.09 900.0 2.95 0.48 

Octadecanoic 
acid / FA 

341.2 17.66 < 0.0001* 0.06 600.0 2.78 0.35 

unknown 204.1 28.41 < 0.0001* 0.05 5.0 2.70 0.28 

Disacch. 204.1 21.86 0.02 0.36 18.0 1.26 2.06 

unkown 149.0 19.69 0.01 0.13 13.0 1.11 0.74 

Pentadecanoic 
acid / FA 

299.2 15.05 0.02 0.1 5.0 0.7 0.48 

Docosanoic 
acid /FA 

129.0 20.36 0.02 0.09 4.5 0.65 0.50 

Sugar derivate/ 
Sacch. 

263.1 13.03 0.02 0.09 4.5 0.65 0.42 

       

 

Table 6. Regulated metabolites in winter and summer surface extracts of F. serratus from 
simper analysis. Metabolites are ranked by regulation strength (log ratio). 
 

Mass = gas chromatography–mass spectrometry mass output; Rt = retention time; av. abund. = 
average abundance derived from the relative peak area; Contrib. %= contribution in % to the 
dissimilarity between winter and summer group; < 0.0001* = original value was 0, transformed to 
calculate the ratio and log ratio; FA = Fatty acid; Disacch. = Disaccharide; Sacch. = Saccharide. 
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surface metabolite composition. Additionally, in summer surface extracts compared 

to winter extracts for F. vesiculosus a pronounced up-regulation of mono- and 

disaccharides and hydroxy acids and for F. serratus up-regulated saccharides and 

fatty acids were found. 

 

Seasonal variation and the relationship to environmental variables  

Light was the most important variable contributing to the seasonal variance in 

surface metabolite composition, but temperature also contributed to the variance. 

Phosphate -as nutrient proxy- and prokaryotic fouling pressure had less explanatory 

power (DistLM analysis, sequential test). 

The strong relationship between light and surface metabolite composition is not 

surprising considering the fact that Fucus is a photosynthetic organism. Increasing 

light intensities -up to light saturation- during spring and summer months in 

macroalgae leads to higher photosynthetic rates (King & Schramm 1976, Brinkhuis 

1977, Raven & Hurd 2012) and consequently to elevated levels of photosynthates 

(Chapman & Craigie 1978, Pavia & Toth 2000, Lehvo et al. 2001). Former studies 

observed that the phenolic compound phlorotannin in the brown alga Cystoseira 

tamariscifolia (Abdala-Diaz et al. 2006) and the antifouling metabolite caulerpenyne 

from Caulerpa taxifolia (Amade & Lemee 1998) exhibit annual cycles regulated by 

solar radiation, showing higher compound concentrations in moths with greatest 

irradiance. Such light-dependent metabolite production in macroalgae and their 

partial exudation in Fucus (actively or passively by leaking) through its outer thallus 

surface as described for phlorotannins (Koivikko et al. 2005, Brock et al. 2007), the 

pigment fucoxanthin (Saha et al. 2011, Grosser et al. 2012) or dissolved organic 

carbon (Sieburth 1969) could be the drivers for the observed seasonal variance in 

surface metabolite composition significantly correlated to light.  Our results of up-

regulated saccharides in summer surface extracts is in accordance with the findings 

from Sieburth (1969) who found that F. vesiculosus exude as much as 30 % of 

photosynthetically fixed carbon.  

Beside light, temperature was the second most important variable contributing to 

the seasonal variation in surface metabolite composition. F. serratus surface 

metabolite composition was significantly influenced by temperature, whereby 

F. vesiculosus surface metabolites showed a less strong and non-significant 

relationship with temperature. The found relation could be indirect since 
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photosynthesis is also controlled by temperature (Davison 1991). Since temperature 

influence the activities of several key enzymes of the carbon metabolism such as 

the ribulose-1.5-bisphosphate carboxylase oxygenase (RuBisCO) (Davison & 

Davison 1987, Sukenik et al. 1987) as well as physical processes like diffusion, 

carbon fixation and thus indirectly photosynthetic rates are strongly and positively 

influenced by temperature (Davison 1991) as long as temperature does not reach 

stressful levels. Typically photosynthetic performance increase with increasing 

temperature up to an temperature maximum (Davison 1991, Terrados & Ros 1992, 

Masini et al. 1995, Colvard et al. 2014). In this context it should be mentioned that 

F. vesiculosus from the Baltic Sea, a temperate sea with a pronounced temperature 

range between summer and winter months (Hammann et al. 2013, Rickert et al. 

2015), exhibit typically higher photosynthetic rates at low temperatures and a 

decreasing maximal ETR (electron transport rates) beyond approx. 25 °C (Nygard & 

Dring 2008, Graiff et al. 2015). Thus rising temperatures during spring and summer 

may have a double effect by accelerating metabolism, including photosynthesis, and 

by facilitating the diffusive transport of nutrients and CO2 through the viscous 

boundary layer to the thallus surface. The consequence apparently is higher release 

of metabolites like organic acids or carbohydrates into the diffusive boundary layer 

on the thallus surface (from where we extracted them).  

The differences between F. vesiculosus and F. serratus regarding the 

explanatory power of light and temperature for the seasonal surface metabolite 

variation could be attributable to the slightly shallower habitat of F. vesiculosus. This 

depth difference between should affect irradiation more than temperature or 

nutrients. In this context it should be mentioned that F. vesiculosus is more frequent 

exposed to air during low tides due to wind conditions. Such air exposure can lead 

to desiccation stress along with photoinhibition, but generally F. vesiculosus 

recovers rapidly when exposed to seawater (Kawamitsu et al. 2000). 

Nutrient availability or, rather phosphate as proxy showed no significant influence 

on the chemical surface composition of both Fucus species. This lack of strong 

relationship between nutrient availability and the surface metabolite composition is 

surprising considering the fact that nutrients are known to modify the metabolism of 

plants (Longstreth & Nobel 1980). Previous studies on macroalgae have shown that 

a sufficient mineral nutrient supply leads to a more effective metabolism with higher 

photosynthetic capacities and elevated growth or biomass (Lapointe 1987, 



Paper III  102 
 

 

Menendez et al. 2002, Nygard & Dring 2008). Especially dissolved nitrogen is 

known to favour photosynthesis since nitrogen is essential for protein synthesis, 

many key carbon assimilatory enzymes like ribulose-1.5 bisphosphate carboxylase 

oxygenase (rubisco) as well as chlorophyll (Menendez et al. 2002) and hence 

photosynthetic rates are dependent on nitrogen availability (Wheeler & Weidner 

1983). For F. vesiculosus it has been demonstrated that elevated nutrient 

concentrations (NH4, NO3, PO4) enhance the photosynthetic efficiency (Nygard & 

Dring 2008) and that accumulated tissue nitrogen could be the primary factor for the 

concentration of phenolic compounds in F. vesiculosus (Ilvessalo & Tuomi 1989). 

The lack of significant relationship between nutrient availability and surface 

metabolite composition in the present study may be attributable to the fact that many 

macroalgae including F. vesiculosus have the ability to use internal nitrogen 

reserves for metabolic performance like growth during seasons of nitrogen 

deficiency (Mizuta et al. 1992, Lehvo et al. 2001, Fong et al. 2004). Therefore it 

seems reasonable that during our survey the metabolism of both Fucus species was 

probably not nitrogen or nutrient-limited. This could be explained by the fact that F. 

vesiculosus has the ability to store nitrogen and to utilize stored nitrogen during 

conditions were inorganic nitrogen in seawater is depleted (Lehvo et al. 2001). 

Additionally, our findings regarding light and nutrients show similarities with the 

results from Pavia & Toth (2000). The authors reported that nitrogen availability has 

low explanatory power regarding the variation in tissue phlorotannin content of 

F. vesiculosus, whereby light exhibited greater importance in predicting the 

phlorotannin variability.  

The seasonal variation on prokaryotic fouling pressure neither related to the 

surface metabolite variability in both Fucus species. This result is surprising and in 

partial contradiction with regard to results of several previous studies (Hellio et al. 

2004, Maréchal et al. 2004, Saha et al. 2011, Rickert et al. submitted) showing that 

different macroalgae including F. vesiculosus exhibit a chemical antifouling defense 

tuned to microbial fouling pressure. Referring to these former findings and 

considering that the outer thallus surface represents the alga interface for all 

interactions with the environment (Wahl et al. 2012) and that in many macroalgae 

defense metabolites are often concentrated in the outer meristoderm layers (Tugwell 

& Branch 1989) or in specialized cells located on the thallus surface (Nylund et al. 

2009) suggest a response relationship between the in situ microbial pressure and 
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the composition of surface associated metabolites. One possible explanation for this 

discrepancy could be that surface associated anti-microfouling compounds of 

F. vesiculosus has been found to be present in very small concentrations, within the 

lower nanogram to microgram-range (e.g. proline 0.09 - 0.59 ng cm-2; 

dimethylsulphopropionate (DMSP) 0.12 - 1.08 ng cm-2; fucoxanthin 0.7 - 9 µg cm-2) 

(Saha et al. 2011, Saha et al. 2012). Therefore, it seems reasonable that these fine 

chemical signals become lost in the remaining mixture of surface associated 

metabolites and thus cannot be related to the seasonal variability in Fucus 

metabolite composition.  

Furthermore, in this context it should be mentioned that Fucus and macroalgae in 

general do not exist in an axenic state in nature, but rather in a holobiont-like system 

tightly associated with a diverse community comprising mainly prokaryotes, fungi 

and diatoms (Lachnit et al. 2011, Wahl et al. 2012, Egan et al. 2013). Consequently, 

the analysed Fucus surface extracts obtained by the dipping extraction technique 

represents the surface metabolome of Fucus and its associated micro-epibionts.  

 

Regulation of surface associated metabolites 

F. vesiculosus summer and winter surface extract analysis revealed an up-

regulation of mono- and disaccharides, citric acid, hydroxypropanoic acid as well as 

maleic acid in summer extracts compared to winter surface extracts.  

Our findings of up-regulated mono- and disaccharides match with previous 

results which showed that many macroalgae, including fucoids exude large amounts 

of photosynthates (up to 30 % of total fixed carbon) as dissolved organic carbon 

(DOC) mainly consisting of carbohydrates like the monosaccharide glucose 

(Sieburth 1969, Pregnall 1983, Carlson & Carlson 1984, Haas & Wild 2010, Wyatt et 

al. 2014). Sieburth (1969) showed that the exudation of organic matter in 

F. vesiculosus is directly coupled to photosynthesis, increasing with solar radiation. 

Additionally, it has been shown that the DOC release by many different macroalgae 

species (from kelp to green algae) exhibit also a seasonal variation correlated to 

light availability and temperature as well as synchronized with growth and 

photosynthetic rates (Abdullah & Fredriksen 2004, Wada et al. 2007, Haas & Wild 

2010). This presumption is also supported by our findings that light followed by 

temperature has the strongest exploratory power regarding the seasonal variability 

of Fucus surface metabolite composition (as discussed earlier). Since mono- and 
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disaccharides, especially the monosaccharide glucose functions as ubiquitous 

energy source from bacteria to human, the observed up-regulation of mono- and 

disaccharides on Fucus surface should entail a profouling effect on the generally 

elevated microbial foulers pool during summer months (Saha & Wahl 2013).  

Beside saccharides, the hydroxy acids: citric, hydroxypropanoic and maleic acid 

were found up-regulated in F. vesiculosus summer surface extracts compared to 

winter extracts.  

Citric acid or citrate, the conjugated base of citric acid, is in all aerobe organisms 

the first intermediate product of the citric acid cycle, the oxidative breakdown of 

organic molecules for energy generation and provision of intermediate products for 

biosynthesis. Therefore it seems reasonable to assume that the pronounced up-

regulation of citric acid could be connected to higher metabolic turn overs of Fucus 

during summer months. Hydroxypropanoic acids have been found in most brown 

and red algae as well as in low concentrations in green algae (De Rosa et al. 2001, 

Kamenarska et al. 2002, Kamenarska et al. 2004). To our knowledge maleic acids 

have not been reported so far from macroalgae. Since from all three detected 

hydroxy acids antimicrobial activities has been reported, mainly from surveys with a 

medicinal or food technology background, (Daly 1982, Ferrer-Luque et al. 2010, 

Sebastianes et al. 2012, In et al. 2013) as well as an enhanced antimicrobial effect 

by mixing citric and maleic acids (Ferrer-Luque et al. 2010) it is conceivable that 

these organic acids could function as antibacterial agents on the thallus surface 

reducing and regulating microbial densities. An antifouling effect obviously depends 

on the in situ surface concentrations of the respective acids and on the individually 

sensitivity of the respective bacterial strains. 

F. serratus summer surface extracts analysis showed an up-regulation of two 

saccharides as well as of different fatty acids (FA). The dominant presence of FA 

among up-regulated metabolites in summer extracts is not exceptional, since marine 

macroalgae are rich in FA (Fleurence et al. 1994, Khotimchenko 1998, 

Khotimchenko et al. 2002), with hexadecanoic acid or palmitic acid the most 

common saturated fatty acid in many macroalgae, with 21-42 % of all fatty acid 

(Nelson et al. 2002). Many FA have antimicrobial effects (Kabara et al. 1972, 

Ouattara et al. 1997, McGaw et al. 2002). Palmitic acid, for instance, has 

antibacterial activity against different bacterial strains including mycobacteria (Yff et 

al. 2002, Seidel & Taylor 2004). The up-regulation of saccharides in F. serratus 
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surface extracts is in accordance with the findings from F. vesiculosus and can be 

similarly interpreted (see previous paragraph).  

 

Concluding, our findings of up-regulated summer surface metabolites in 

F. vesiculosus and F. serratus indicates that primary metabolites with potential pro- 

and antifouling properties are present on both Fucus surfaces, originating from 

Fucus itself and, presumably, from its associated biofilm community. It is reasonably 

possible that these metabolites exhibit an antagonistic interaction regulating the 

composition of associated microbial surface community of Fucus which is different 

from other co-occurring living and dead surfaces and varies among seasons 

(Lachnit et al. 2011). Fucus-specific biofilms have in their turn the capacity to affect 

further fouling (Nasrolahi et al. 2012). 

 

Acknowledgements 

We thank Nadja Stärck for her help during algae sampling and extraction 

procedure and Dr Heike Link and Dr Yvonne Sawall for advice on the statistical 

analyses. We are also grateful to Dominique Jacquemoud for his great work with 

respect to GC-MS sample preparation, measuring and data analysis. We thank 

Constanze Kuhlisch for her help regarding the GC-MS method section. This project 

was funded by the German Research Foundation (DFG) under the project number: 

WA 708/24-1. 

 

 

References 
 
Abdala-Diaz RT, Cabello-Pasini A, Perez-Rodriguez E, Alvarez RMC, Figueroa FL. 2006. 
Daily and seasonal variations of optimum quantum yield and phenolic compounds in 
Cystoseira tamariscifolia (Phaeophyta). Marine Biology. 148:459-465. 
 

Abdullah MI, Fredriksen S. 2004. Production, respiration and exudation of dissolved organic 
matter by the kelp Laminaria hyperborea along the west coast of Norway. Journal of the 
Marine Biological Association of the United Kingdom. 84:887-894. 
 

Amade P, Lemee R. 1998. Chemical defence of the Mediterranean alga Caulerpa taxifolia: 
variations in caulerpenyne production. Aquatic Toxicology. 43:287-300. 
 

Anderson MJ, Gorley RN, Clarke KR. 2008. PERMANOVA+ for PRIMER: Guide to software 
and statistica methods.  Plymouth, England: PRIMER-E Ltd. 



Paper III  106 
 

 

Bengtsson MM, Sjotun K, Ovreas L. 2010. Seasonal dynamics of bacterial biofilms on the 
kelp Laminaria hyperborea. Aquatic Microbial Ecology. 60:71-83. 
 

Brinkhuis BH. 1977. Seasonal variations in salt-marsh macroalgae photosynthesis. I. 
Ascophyllum nodosum ecad scorpioides. Marine Biology. 44:165-175. 
 

Brock E, Nylund GM, Pavia H. 2007. Chemical inhibition of barnacle larval settlement by the 
brown alga Fucus vesiculosus. Marine Ecology Progress Series. 337:165-174. 
 

Carlson DJ, Carlson ML. 1984. Reassessment of exudation by Fucoid macroalgae. 
Limnology and Oceanography. 29:1077-1087. 
 

Chapman ARO, Craigie JS. 1978. Seasonal growth in Laminaria longicruris: relations with 
reserve carbohydrate storage and production. Marine Biology. 46:209-213. 
 

Clarke KR, Gorley RN. 2006. PRIMER v6: User manual, tutorial. Plymouth, England: 
PRIMER-E Ltd. 
 

Colvard NB, Carrington E, Helmuth B. 2014. Temperature-dependent photosynthesis in the 
intertidal alga Fucus gardneri and sensitivity to ongoing climate change. Journal of 
Experimental Marine Biology and Ecology. 458:6-12. 
 

Culioli G, Ortalo-Magne A, Richou M, Valls R, Piovetti L. 2002. Seasonal variations in the 
chemical composition of Bifurcaria bifurcata (Cystoseiraceae). Biochemical Systematics and 
Ecology. 30:61-64. 
 

Daly CG. 1982. Anti-bacterial effect of citric acid treatment of periodontally diseased root 
surfaces In vitro. Journal of Clinical Periodontology. 9:386-392. 
 

Davison IR. 1991. Environmental effects on algal photosynthesis: Temperature. Journal of 
Phycology. 27:2-8. 
 

Davison IR, Davison JO. 1987. The effect of growth temperature on enzyme activities in the 
brown alga Laminaria saccharina. British Phycological Journal. 22:77-87. 
 

de Nys R, Dworjanyn SA, Steinberg PD. 1998. A new method for determining surface 
concentrations of marine natural products on seaweeds. Marine Ecology Progress Series. 
162:79-87. 
 

De Rosa S, Kamenarska Z, Bankova V, Stefanov K, Dimitrova-Konaklieva S, Najdenski H, 
Tzevtkova I, Popov S. 2001. Chemical composition and biological activities of the Black Sea 
algae Polysiphonia denudata (Dillw.) Kutz. and Polysiphonia denudata f. fragilis (Sperk) 
Woronich. Zeitschrift Fur Naturforschung C-a Journal of Biosciences. 56:1008-1014. 
 

Dworjanyn SA, de Nys R, Steinberg PD. 2006. Chemically mediated antifouling in the red 
alga Delisea pulchra. Marine Ecology Progress Series. 318:153-163. 
 

Egan S, Fernandes ND, Kumar V, Gardiner M, Thomas T. 2014. Bacterial pathogens, 
virulence mechanism and host defence in marine macroalgae. Environmental Microbiology. 
16:925-938. 
 

Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T. 2013. The seaweed 
holobiont: understanding seaweed-bacteria interactions. Fems Microbiology Reviews. 
37:462-476. 



Paper III  107 
 

 

 

Ferrer-Luque CM, Arias-Moliz MT, Gonzalez-Rodriguez MP, Baca P. 2010. Antimicrobial 
Activity of Maleic Acid and Combinations of Cetrimide with Chelating Agents against 
Enterococcus Faecalis Biofilm. Journal of Endodontics. 36:1673-1675. 
 

Fleurence J, Gutbier G, Mabeau S, Leray C. 1994. Fatty acids from 11 marine macroalgae of 
the French Brittany coast. Journal of Applied Phycology. 6:527-532. 
 

Fong P, Fong JJ, Fong CR. 2004. Growth, nutrient storage, and release of dissolved organic 
nitrogen by Enteromorpha intestinalis in response to pulses of nitrogen and phosphorus. 
Aquatic Botany. 78:83-95. 
 

Goecke F, Labes A, Wiese J, Imhoff JF. 2010. Chemical interactions between marine 
macroalgae and bacteria. Marine Ecology Progress Series. 409:267-299. 
 

Graiff A, Liesner D, Karsten U, Bartsch I. 2015. Temperature tolerance of western Baltic Sea 
Fucus vesiculosus - growth, photosynthesis and survival. Journal of Experimental Marine 
Biology and Ecology. 471:8-16. 
 

Grosser K, Zedler L, Schmitt M, Dietzek B, Popp J, Pohnert G. 2012. Disruption-free imaging 
by Raman spectroscopy reveals a chemical sphere with antifouling metabolites around 
macroalgae. Biofouling. 28:687-696. 
 

Haas AF, Wild C. 2010. Composition analysis of organic matter released by cosmopolitan 
coral reef-associated green algae. Aquatic Biology. 10:131-138. 
 

Hammann M, Buchholz B, Karez R, Weinberger F. 2013. Direct and indirect effects of 
Gracilaria vermiculophylla on native Fucus vesiculosus. Aquatic Invasions. 8:121-132. 
 

Hellio C, Marechal JP, Veron B, Bremer G, Clare AS, Le Gal Y. 2004. Seasonal variation of 
antifouling activities of marine algae from the Brittany coast (France). Marine Biotechnology. 
6:67-82. 
 

Ilvessalo H, Tuomi J. 1989. Nutrient availability and accumulation of phenolic compounds in 
the brown alga Fucus vesiculosus. Marine Biology. 101:115-119. 
 

In Y-W, Kim J-J, Kim H-J, Oh S-W. 2013. Antimicrobial Activities of Acetic Acid, Citric Acid 
and Lactic Acid against Shigella Species. Journal of Food Safety. 33:79-85. 
 

Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP. 1972. Fatty acids and derivatives as 
antimicrobial agents. Antimicrobial Agents and Chemotherapy. 2:23-28. 
 

Kamenarska Z, Stefanov K, Dimitrova-Konaklieva S, Najdenski H, Tsvetkova I, Popov S. 
2004. Chemical composition and biological activity of the brackish-water green alga 
Cladophora rivularis (L.) Hoek. Botanica Marina. 47:215-221. 
 

Kamenarska Z, Yalcin FN, Ersoz T, Calis I, Stefanov K, Popov S. 2002. Chemical 
composition of Cystoseira crinita Bory from the Eastern Mediterranean. Zeitschrift Für 
Naturforschung C-a Journal of Biosciences. 57:584-590. 
 

Kawamitsu Y, Driscoll T, Boyer JS. 2000. Photosynthesis during desiccation in an intertidal 
alga and a land plant. Plant and Cell Physiology. 41:344-353. 
 



Paper III  108 
 

 

Khotimchenko SV. 1998. Fatty acids of brown algae from the Russian Far East. 
Phytochemistry. 49:2363-2369. 
 

Khotimchenko SV, Vaskovsky VE, Titlyanova TV. 2002. Fatty acids of marine algae from the 
pacific coast of north California. Botanica Marina. 45:17-22. 
King RJ, Schramm W. 1976. Photosynthetic rates of benthic marine algae in relation to light 
intensity and seasonal variations. Marine Biology. 37:215-222. 
 

Koivikko R, Loponen J, Honkanen T, Jormalainen V. 2005. Contents of soluble, cell-wall-
bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on 
their ecological functions. Journal of Chemical Ecology. 31:195-212. 
 

Lachnit T, Fischer M, Kunzel S, Baines JF, Harder T. 2013. Compounds associated with 
algal surfaces mediate epiphytic colonization of the marine macroalga Fucus vesiculosus. 
FEMS Microbiol Ecol. 84:411-420. 
 

Lachnit T, Meske D, Wahl M, Harder T, Schmitz R. 2011. Epibacterial community patterns 
on marine macroalgae are host-specific but temporally variable. Environmental Microbiology. 
13:655-665. 
 

Lapointe BE. 1987. Phosphourus-limited and nitrogen-limited photosynthesis and growth of 
Gracilaria tikvahiae (Rhodophyceae) in the Florida Keys - an experimental field study. 
Marine Biology. 93:561-568. 
 

Lehvo A, Bäck S, Kürikki M. 2001. Growth of Fucus vesiculosus L. (Phaeophyta) in the 
northern Baltic proper: energy and nitrogen storage in seasonal environment. Botanica 
Marina. 44:345-350. 
 

Letschert J. 2014. Wie wirken sich Sekundärmetabolite verschiedener Algen auf die 
Lebensgemeinschaften in der Ostsee aus? Bachelor thesis, Kiel: Christian-Albrechts 
Univerity Kiel. 
 

Longstreth DJ, Nobel PS. 1980. Nutrient influences on leaf photosynthesis -effects of 
nitrogen, phosphorus and potassium for Gossypium hirsutum L. Plant Physiology. 65:541-
543. 
 

Maréchal JP, Culioli G, Hellio C, Thomas-Guyon H, Callow ME, Clare AS, Ortalo-Magne A. 
2004. Seasonal variation in antifouling activity of crude extracts of the brown alga Bifurcaria 
bifurcata (Cystoseiraceae) against cyprids of Balanus amphitrite and the marine bacteria 
Cobetia marina and Pseudoalteromonas haloplanktis. Journal of Experimental Marine 
Biology and Ecology. 313:47-62. 
 

Masini RJ, Cary JL, Simpson CJ, McComb AJ. 1995. Effects of light and temperature on the 
photosynthesis of temperate meadow-forming seagrasses in Western Australia. Aquatic 
Botany. 49:239-254. 
 

McGaw LJ, Jager AK, van Staden J. 2002. Isolation of antibacterial fatty acids from Schotia 
brachypetala. Fitoterapia. 73:431-433. 
 

Menendez M, Herrera J, Comin FA. 2002. Effect of nitrogen and phosphorus supply on 
growth, chlorophyll content and tissue composition of the macroalga Chaetomorpha linum 
(OF Mull.) Kutz in a Mediterranean coastal lagoon. Scientia Marina. 66:355-364. 

 



Paper III  109 
 

 

Mizuta H, Maita Y, Yanada M. 1992. Seasonal changes of nitrogen metabolism in the 
sporophyte of Laminaria japonica (Phaeophyceae). Nippon Suisan Gakkaishi. 58:2345-2350. 
 

Nasrolahi A, Stratil SB, Jacob KJ, Wahl M. 2012. A protective coat of microorganisms on 
macroalgae: inhibitory effects of bacterial biofilms and epibiotic microbial assemblages on 
barnacle attachment. FEMS Microbiol Ecol. 81:583-595. 
 

Nejrup LB, Staehr PA, Thomsen MS. 2013. Temperature- and light-dependent growth and 
metabolism of the invasive red algae Gracilaria vermiculophylla - a comparison with two 
native macroalgae. European Journal of Phycology. 48:295-308. 
 

Nelson MM, Phleger CF, Nichols PD. 2002. Seasonal lipid composition in macroalgae of the 
northeastern pacific ocean. Botanica Marina. 45:58-65. 
 

Nygard CA, Dring MJ. 2008. Influence of salinity, temperature, dissolved inorganic carbon 
and nutrient concentration on the photosynthesis and growth of Fucus vesiculosus from the 
Baltic and Irish Seas. European Journal of Phycology. 43:253-262. 
 

Nylund GM, Cervin G, Hermansson M, Pavia H. 2005. Chemical inhibition of bacterial 
colonization by the red alga Bonnemaisonia hamifera. Marine Ecology Progress Series. 
302:27-36. 
 

Nylund GM, Persson F, Lindegarth M, Cervin G, Hermansson M, Pavia H. 2009. The red 
alga Bonnemaisonia asparagoides regulates epiphytic bacterial abundance and community 
composition by chemical defence. FEMS Microbiol Ecol. 71:84-93. 
 

Ouattara B, Simard RE, Holley RA, Piette GJP, Begin A. 1997. Antibacterial activity of 
selected fatty acids and essential oils against six meat spoilage organisms. International 
Journal of Food Microbiology. 37:155-162. 
 

Pavia H, Toth GB. 2000. Influence of light and nitrogen on the phlorotannin content of the 
brown seaweeds Ascophyllum nodosum and Fucus vesiculosus. Hydrobiologia. 440:299-
305. 
 

Persson F, Svensson R, Nylund GM, Fredriksson NJ, Pavia H, Hermansson M. 2011. 
Ecological role of a seaweed secondary metabolite for a colonizing bacterial community. 
Biofouling. 27:579-588. 
 

Pregnall AM. 1983. Release of dissolved organic carbon from the estuarine intertidal 
macroalga Enteromorpha prolifera. Marine Biology. 73:37-42. 
 

Ragan MA, Jensen A. 1978. Quantitative studies on brown algal phenols. II. Seasonal 
variation in polyphenol content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus 
(L.). Journal of Experimental Marine Biology and Ecology. 34:245-258. 
 

Raikar SV, Iima M, Fujita Y. 2001. Effect of temperature, salinity and light intensity on the 
growth of Gracilaria spp. (Gracilariales, Rhodophyta) from Japan, Malaysia and India. Indian 
Journal of Marine Sciences. 30:98-104. 
 

Raven JA, Hurd CL. 2012. Ecophysiology of photosynthesis in macroalgae. Photosynthesis 
Research. 113:105-125. 
 



Paper III  110 
 

 

Rickert E, Karsten U, Pohnert G, Wahl M. 2015. Seasonal fluctuations in chemical defenses 
against macrofouling in Fucus vesiculosus and Fucus serratus from the Baltic Sea. 
Biofouling. 31:363-377. 
 
Rickert E, Gorb SN, Wahl M. (submitted). Seasonally fluctuating chemical microfouling 
control in Fucus vesiculosus and Fucus serratus from the Baltic Sea. Marine Biology 
 

Saha M, Rempt M, Gebser B, Grueneberg J, Pohnert G, Weinberger F. 2012. 
Dimethylsulphopropionate (DMSP) and proline from the surface of the brown alga Fucus 
vesiculosus inhibit bacterial attachment. Biofouling. 28:593-604. 
 

Saha M, Rempt M, Grosser K, Pohnert G, Weinberger F. 2011. Surface-associated 
fucoxanthin mediates settlement of bacterial epiphytes on the rockweed Fucus vesiculosus. 
Biofouling. 27:423-433. Epub 2011/05/07. 
 

Saha M, Wahl M. 2013. Seasonal variation in the antifouling defence of the temperate brown 
alga Fucus vesiculosus. Biofouling. 29:661-668. 
 

Sand-Jensen K. 1977. Effect of epiphytes on eelgrass photosynthesis. Aquatic Botany. 3:55-
63. 
 

Sebastianes FLS, Cabedo N, El Aouad N, Valente A, Lacava PT, Azevedo JL, Pizzirani-
Kleiner AA, Cortes D. 2012. 3-Hydroxypropionic Acid as an Antibacterial Agent from 
Endophytic Fungi Diaporthe phaseolorum. Curr Microbiol. 65:622-632. 
 

Seidel V, Taylor PW. 2004. In vitro activity of extracts and constituents of Pelagonium 
against rapidly growing mycobacteria. International Journal of Antimicrobial Agents. 23:613-
619. 
 

Sieburth JM. 1969. Studies on algal substances in the sea. III. The production of 
extracellular organic matter by littoral marine algae. Journal of Experimental Marine Biology 
and Ecology. 3:290-309. 
 

Sneed JM, Pohnert G. 2011a. The green alga Dicytosphaeria ocellata and its organic 
extracts alter natural bacterial biofilm communities. Biofouling. 27:347-356. 
 

Sneed JM, Pohnert G. 2011b. The green macroalga Dictyosphaeria ocellata influences the 
structure of the bacterioplankton community through differential effects on individual bacterial 
phylotypes. FEMS Microbiol Ecol. 75:242-254. 
 

Stratil SB, Neulinger SC, Knecht H, Friedrichs AK, Wahl M. 2013. Temperature-driven shifts 
in the epibiotic bacterial community composition of the brown macroalga Fucus vesiculosus. 
Microbiologyopen. 2:338-349. 
 

Sukenik A, Bennett J, Falkowski P. 1987. Light-saturated photosynthesis - limitation by 
electron transport or carbon fixation. Biochimica Et Biophysica Acta. 891:205-215. 
 

Terrados J, Ros JD. 1992. The influence of temperature on seasonal variation of Caulerpa 
prolifera (Forsskal) Lamouroux photosynthesis and respiration. Journal of Experimental 
Marine Biology and Ecology. 162:199-212. 
 

Tugwell S, Branch GM. 1989. Differential polyphenolic distribution among tissues in the 
kelps Ecklonia maxima, Laminaria pallida and Macrocystis angustifolia in relation to plant-
defence theory. Journal of Experimental Marine Biology and Ecology. 129:219-230. 



Paper III  111 
 

 

Vidoudez C, Pohnert G. 2012. Comparative metabolomics of the diatom Skeletonema 
marinoi in different growth phases. Metabolomics. 8:654-669. 
 

Wada S, Aoki MN, Tsuchiya Y, Sato T, Shinagawa H, Hama T. 2007. Quantitative and 
qualitative analyses of dissolved organic matter released from Ecklonia cava Kjellman, in 
Oura bay, Shimoda, Izu Peninsula, Japan. Journal of Experimental Marine Biology and 
Ecology. 349:344-358. 
 

Wahl M. 1989. Marine epibiosis. 1. Fouling and antifouling - some basic aspects. Marine 
Ecology Progress Series. 58:175-189. 
 

Wahl M, Goecke F, Labes A, Dobretsov S, Weinberger F. 2012. The second skin: ecological 
role of epibiotic biofilms on marine organisms. Frontiers in Microbiology. 3. 
 

Wahl M, Shahnaz L, Dobretsov S, Saha M, Symanowski F, David K, Lachnit T, Vasel M, 
Weinberger F. 2010. Ecology of antifouling resistance in the bladder wrack Fucus 
vesiculosus: patterns of microfouling and antimicrobial protection. Marine Ecology Progress 
Series. 411:33-U61. 
 

Wheeler WN, Weidner M. 1983. Effects of external inorganic nitrogen concentration on 
metabolism, growth and activities of key carbon and nitrogen assimilatory enzymes of 
Laminaria saccharina (Phaeophyceae) in culture. Journal of Phycology. 19:92-96. 
 

Wyatt KH, Rober AR, Schmidt N, Davison IR. 2014. Effects of desiccation and rewetting on 
the release and decomposition of dissolved organic carbon from benthic macroalgae. 
Freshwater Biology. 59:407-416. 
 

Yff BTS, Lindsey KL, Taylor MB, Erasmus DG, Jager AK. 2002. The pharmacological 
screening of Pentanisia prunelloides and the isolation of the antibacterial compound palmitic 
acid. Journal of Ethnopharmacology. 79:101-107. 
 

 

 

 

 

 

 

 

 

 



 

 



3. General Discussion  113 
 

 

 

3. General Discussion 

The aim of the present thesis was to investigate the putative seasonal variability 

in fouling control of Fucus vesiculosus and Fucus serratus from the Baltic Sea under 

in situ conditions and how the fouling control relates to the natural seasonal 

variations in abiotic and biotic factors.  

I have demonstrated that both Fucus species exhibit a seasonal fluctuating 

fouling control against prokaryotes and diatoms as well as against the barnacle 

Amphibalanus improvisus. Further, I could show that the seasonal fluctuating fouling 

control roughly matched the seasonal fluctuations in fouling pressure of these 

species (Paper I and II). The strength of prokaryotic fouling control of Fucus could 

not be correlated with the energy status of Fucus, with the sole exception of F. 

serratus’ prokaryotic fouling control strength (Paper I and II). Furthermore, I found 

that F. vesiculosus’ surface extracts in general attracted prokaryotes, whereas a 

reduced profouling effect was detected during summer months (Paper I). Surface 

metabolite analysis showed an up-regulation of primary metabolites with profouling 

and potential antifouling properties during summer (Paper III). Seasonality of surface 

metabolite composition was best explained by the abiotic factors light and 

temperature (Paper III). Finally, I could show that both Fucus species assist 

chemical microfouling control via cuticula shedding (Paper I).  

 

Main study questions (see Thesis outline) and received answers. 

1.1 Does the chemical fouling control 
strength of Fucus vary with season?  

Yes. (Paper I and II) 

1.2 Does the surface metabolite 
composition of Fucus vary with season 
and which metabolites are up- or down-
regulated during seasons of high or low 
fouling pressure? 

Yes, spring/summer and autumn/winter 
surface metabolite composition varied 
significantly. During summer, season of 
high fouling pressure, carbohydrates and 
organic acids were upregulated 
metabolites. (Paper III)  

1.3 Do seasonal fluctuations of Fucus 
fouling control correlate with (a) fouling 
pressure and / or (b) the energy status of 
Fucus? 

(a) Yes, there is a trend. (Paper I and II) 

(b) No, with the sole exception of F. 
serratus prokaryotic fouling control 
strength. (Paper I) 

1.4 Does the surface metabolite 
composition of Fucus correlate with abiotic 
and biotic variables?  

Yes, seasonal variability in surface 
chemistry composition was best explained 
by light and temperature. (Paper III) 
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3.1 Seasonal fluctuations of the fouling control system of 
Fucus  

My thesis revealed that both Fucus species exhibited a seasonally fluctuating 

chemical fouling control on prokaryotic and diatom cells as well as on the barnacle 

Amphibalanus improvisus and the mussel Mytilus edulis under in situ conditions for 

the first time, with the sole exception of diatom cells on Fucus vesiculosus surface 

extracts (Paper I and Paper II). In general, both Fucus species possessed the 

highest micro- and macrofouling control strength from spring to late summer months 

(Paper I and II). This finding is in accordance with previous studies which 

demonstrated seasonal variations in the chemical micro- and macrofouling control of 

different temperate macroalgae species, including F. vesiculosus under laboratory 

conditions (Hellio et al. 2004, Marechal et al. 2004, Stirk et al. 2007, Wahl et al. 

2010, Saha & Wahl 2013).  

Besides demonstrating the previously known chemical fouling control, my study 

revealed that both Fucus species also have a mechanical fouling control in the form 

of cuticula peeling, which removes surface-associated microfoulers (see Paper I). 

The tissue removal occurred in both Fucus species periodically throughout all 

seasons. Such mechanical fouling control by means of tissue sloughing has been 

previously reported from many different macroalgae species (Filion-Myklebust & 

Norton 1981, Sieburth & Tootle 1981, Russell & Veltkamp 1984, Nylund et al. 2005, 

Harder 2008, Yamamoto et al. 2013). To my knowledge, this thesis is the first study 

to demonstrate that F. vesiculosus and F. serratus control fouling on their apical 

thallus regions by cuticula sloughing. Since this phenomenon was not quantified, 

further investigations are needed to understand the contribution and ecological 

relevance of this mechanism with regard to the fouling control of Fucus.  

3.2 Possible causes for seasonal fluctuations of the 
fouling control system of Fucus  

 

A differentiation between proximate and ultimate causes for an observed 

phenomenon is often made in biological/ecological studies. The proximate causes  

or ‘effective causes’ refer to the mechanisms or immediate relations of a biological 
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phenomenon (how?), whereas the higher-level ultimate causes  refer to the 

biological function or fundamental relations of a biological circumstance (why? or 

what for?).  

 
Figure 5. Conceptual model of different abiotic (grey) and biotic (green) factors influencing the fouling 

control system of Fucus. The proximate causes include the abiotic factors (light, temperature and 
nutrient concentrations), the surface metabolite composition of Fucus as well as the fouling status of 
Fucus, whereas ultimate causes include the energy status of Fucus and the in situ fouling pressure. 

Alga drawing from Per Arvid Åsen (1980) slightly modified. 

3.2.1 Proximate causes for seasonal fluctuations of the fouling 
control system of Fucus  

Previous studies showed seasonally variable levels of bioactive fouling control 

metabolites for different species of macroalgae (see introduction, Amade & Lemee 

1998, Abdala-Diaz et al. 2006). However, previous studies did not investigate the 

underlying chemical landscape of the seasonally fluctuating fouling control for 

Fucus. The analysis of the surface metabolite composition of Fucus, covering all 

seasons, was therefore of crucial importance for the further understanding of the 

observed seasonal chemical fouling control and possible causes. It should be 

mentioned here that each surface extract sample used for in situ bioassays (Paper I 

and Paper II) and for GC-MS analysis (Paper III) represented a quantitatively halved 

sample. This procedure allows a direct comparison between the detected fouling 

control strength by means of in situ bioassays (Paper I and Paper II) and the surface 
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metabolite composition analysed via gas chromatography / mass spectrometry 

analysis (GC-MS) (Paper III).  

 GC-MS analysis of the surface metabolite composition of both Fucus species 

revealed a pronounced seasonal variability with significant differences between 

autumn/winter and spring/summer months (Paper III). Moreover, the comparison of 

winter and summer surface metabolites revealed that mono- and disaccharides as 

well as organic acids were up-regulated during summer months on both Fucus 

species (Paper III). This finding is in agreement with former studies, which showed 

that macroalgae exude (actively or passively by leaching) photosynthetic 

metabolites, e.g. low molecular weight monosaccharides (Sieburth 1969, Haas & 

Wild 2010, Wyatt et al. 2014). The presence of carbohydrates on Fucus surfaces 

could explain the observed profouling effect on prokaryotic cells on F. vesiculosus 

extracts, whereas the trend of a lower attractiveness despite up-regulated 

carbohydrates during summer months could indicate a fouling control. This fouling 

reduction could possibly originate from low concentrated deterring compounds as 

reported by Saha and co-workers (2011, 2012) (this aspect was briefly discussed in 

Paper III). Such a combination of attracting and repelling effects has been 

demonstrated in former studies reporting that macroalgae, including F. vesiculosus, 

exhibit an attracting or stimulating effects on prokaryotes besides their repelling 

features (Seshadri & Sieburth 1975, Goecke et al. 2010, Lachnit et al. 2013). 

Further, the observed profouling effect of F. vesiculosus surface extracts on 

prokaryotes match with the finding that F. vesiculosus exhibited higher prokaryotic 

fouling compared to F. serratus (see Paper I) or to the kelp species Laminaria 

hyperborean (Bengtsson et al. 2010) in the field throughout the year (Paper I). The 

reason why only F. vesiculosus surface extracts exhibited a profouling effect on 

prokaryotic settlement may be explained by the fact that, compared to F. serratus 

summer surface extracts, F. vesiculosus summer extracts showed a higher up-

regulation of primary metabolites during summer months (Paper III).  

Distance‐based linear modelling (DistLM) revealed that the seasonal variability in 

the surface metabolite composition of both Fucus species was best explained by the 

abiotic factors light and temperature (Paper III). Since Fucus is a photosynthetic 

organism, this finding is not surprising. Several studies have highlighted the impact 

of light (Rohde et al. 2008, Wahl et al. 2010) and temperature (Graiff et al. 2015) on 

Fucus photosynthesis. Additionally, previous studies showed that the seasonally 
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variable metabolite levels are influenced by irradiance and seawater temperature 

(Amade & Lemee 1998, Sudatti et al. 2011). 

The detected seasonal variations in Fucus metabolite composition (Paper III) 

could be seen as one possible proximate cause for the observed seasonal 

fluctuations in the fouling control of Fucus (Paper I and Paper II).  

 

The observed seasonal chemical fouling control (Paper I and Paper II) as well as 

the seasonal variable surface metabolite composition (Paper III) cannot be 

exclusively attributed to Fucus, since the applied ‘dipping-method’ (modified after 

(de Nys et al. 1998) provides surface extracts consisting of metabolites derived from 

Fucus and its surface associated microfoulers. Saha and co-workers (2011) could 

show that the antibacterial fucoxanthin originates from Fucus exudation and not 

from associated diatoms via prevention of diatom growth. However, in my 

experiments and in all studies applying surface extraction techniques, the analysed 

surface extracts were an inseparable mixture of chemical compounds originating 

from the holobiont Fucus (see below). This fact should not be interpreted as a 

limitation but rather as the normal state. From an ecological point of view, 

macroalgae should be seen as a functional entity, also termed as ‘holobiont’, 

consisting of the host algae and the associated microbiota (Egan et al. 2013). 

Several studies regarding macroalgae-bacteria interactions have revealed the close 

relationship between macroalgae and their associated bacteria, often with beneficial 

functions related to host defence or host health (see Introduction) (reviewed by 

(Egan et al. 2013, Hollants et al. 2013, Singh & Reddy 2014). Regarding 

macroalgae fouling control, it has been demonstrated that the marine epiphytic 

bacterium Pseudoalteromonas tunicate has the potential to protect its hosts, the 

green alga Ulva australis, against common fouling organisms like algal spores and 

marine fungi (Rao et al. 2007). Bacterial biofilms consisting of natural assemblages 

obtained from F. vesiculosus as well as of mono-species biofilms have been shown 

to hinder the settlement of Amphibalanus improvisus cypris larvae (Nasrolahi et al. 

2012). Beneficial services relating to the fouling control of the macroalga host, as 

described above, indicate the vital role of some associated microorganisms and 

could be seen as a hint for the reason why Fucus is not better defended against 

microorganisms or even axenic. It would be possible that the seasonally fluctuating 

fouling control of Fucus benefits also from symbionts or associated microfoulers. 
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Further investigations are necessary to answer the question which role the natural 

assemblage of associated bacteria or even fungi paly in the observed chemical 

fouling control of Fucus. 

Besides having a chemical and mechanical fouling control (see 6.1), the thallus 

surface of macroalgae per se represents a selective microenvironment for 

approaching microorganisms and small epiphytic fouler species. When small foulers 

reach the surface of F. vesiculosus, they first encounter the overlying topmost water 

layer termed “diffusion boundary layer”, which has a thickness of approx. 150-250 

µm, depending on velocity and temperature (personal communication Yvonne 

Sawall). The diffusion boundary layer is characterized by strong gradients in O2, 

CO2 and pH and is highly dynamic depending on Fucus’ photosynthetic activity and 

respiration (Spilling et al. 2010). Spilling and co-workers (2010), for example, 

showed that O2 concentrations and pH at the thallus surface of F. vesiculosus 

increased with light intensities reaching highest O2 concentrations of >1 mM and a 

pH of 9.5. Furthermore, they demonstrated that the O2 concentrations increased 

from approx. 90 % to 290 % saturation and pH increased from approx. 8.0 to 

approx. 8.8. at the thallus surface after six minutes of illumination (~500 µmol 

photons * m-2 *s-1) of a dark-acclimated F. vesiculosus. 

The oxygen concentrations within the layer can reach hyperoxic levels possibly 

along with the formation of reactive oxygen species (ROS) during daytime (Irwin & 

Davenport 2002). Moreover, the uneven thallus surface of Fucus provides cavities, 

termed cryptostomata, with hypoxic conditions during darkness (Spilling et al. 2010). 

In addition, it is conceivable that metabolites exuded from the ‘holobiont’ also form 

gradients within the diffusion boundary layer. Obviously, microorganisms and small 

epiphytic organisms settling within the boundary layer of Fucus have to resist this 

harsh and highly dynamic environment or even prefer it. Thus, it seems likely that 

this special microenvironment leads to a selection of potential fouler species from 

the in situ microfouler pool and therefore may function as an additional secondary 

fouling control. Moreover, considering the pronounced day/night fluctuations within 

the boundary layer, driven by photosynthetic activity, it would be conceivable that 

the boundary layer conditions are seasonally variable, influenced by the 

photosynthetic performance of Fucus (Graiff et al. 2015), possibly leading to a 

seasonally variable preselection of potential microfoulers.  
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3.2.2 Ultimate causes for seasonal fluctuations of the fouling 
control system of Fucus  

In my studies, I demonstrated that the in situ micro- and macrofouling pressure is 

seasonally variable, reaching peak intensities during spring and summer months 

along with increasing irradiance, seawater temperature and nutrient availability 

(Paper I and Paper II). Further, the recorded fouling control strength of both Fucus 

species tended to be synchronised with the in situ fouling pressure of prokaryotic 

cells as well as that of the barnacle A. improvisus (Paper I and Paper II). This result 

is in accordance with previous studies which showed the seasonally variable 

chemical fouling control of different temperate macroalgae to be tuned to the in situ 

fouling pressure (Hellio et al. 2004, Marechal et al. 2004, Wahl et al. 2010). Such 

fine-tuned fouling control should in general be beneficial for macroalgae, especially 

when considering the often discussed aspects of potential metabolic costs of 

chemical fouling control (see Introduction). One study that analysed the metabolic 

costs of defence, including biofouling, found a significant inverse relationship 

between fecundity and the level of the bioactive compounds furanones as well as 

significant higher growth rates for algae unable to produce furanones, indicating a 

cost of furanone production (Dworjanyn et al. 2006).  

 In my studies, I demonstrated that both Fucus species were not energy 

limited throughout the year. For this purpose we used the intracellular mannitol 

concentration of both Fucus species as a general proxy for energy available for 

defense metabolite production (Paper II) or other metabolic demands. Tissue 

mannitol concentrations in both Fucus species showed a clear seasonal fluctuation 

with increasing concentrations from February to October, followed by a reduction in 

late autumn and winter. However, no complete mannitol utilization was found during 

the seasonal cycle, indicating that the fouling control of both Fucus species was not 

energy or carbon limited during my experiment. This finding is in accordance with a 

previous study, which demonstrated that the mannitol reserve of F. vesiculosus from 

the Northern Baltic Sea was never fully depleted during an annual cycle (Lehvo et 

al. 2001). Further, it has previously been shown that F. vesiculosus can store 

nitrogen (Lehvo et al. 2001), which would also rule out a possible nitrogen limitation 

of the fouling control. 

The GC-MS analysis of the surface metabolite composition showed that mainly 

primary metabolites are up-regulated on Fucus surfaces during summer months 
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when the thallus surface is least attractive.  This could indicate that these 

metabolites are somehow involved in the fouling control. If this is the case, then 

possible metabolic costs of chemical fouling control could be reduced with the 

deployment of bioactive primary metabolites. Recent studies have shown that 

primary metabolites can function as cost effective and suitable metabolites in the 

chemical defence of macroalgae (summerized by Pohnert 2012). Regarding the 

fouling control of F. vesiculosus, it has already been shown that metabolites fulfilling 

tasks in primary metabolism, like the amino acid proline or the osmolyte 

dimethylsulfoniopropionate (DMSP) as well as the pigment fucoxanthin are active 

against bacterial settlement and growth (Saha et al. 2011, Saha et al. 2012, Lachnit 

et al. 2013). Since a fouling control based on simple primary metabolites would not 

cause extra costs for synthesis or storage in specialized cells, e.g. gland cells in the 

red alga Bonnemaisonia hamifera (Nylund et al. 2008), such fouling control would 

be a cost-saving strategy (Pohnert 2012).  

 

 Besides the recorded quantitative seasonal variations in prokaryotic fouling 

pressure, it is conceivable that the density of potential pathogens also varies with 

season, since it has been demonstrated that virulence gene expression of 

opportunistic pathogens can be influenced by environmental conditions (Egan et al. 

2014). Increasing temperature leading to warming of seawater is one environmental 

key factor inducing virulence (Case et al. 2011, Kimes et al. 2012, Guijarro et al. 

2015). A study on epibacterial communities attached to the surface of  Baltic  F. 

vesiculosus suggested increasing relative abundances of potential pathogenic 

bacterial families (including Pseudoalteromonadaceae, Vibrionaceae, 

Alteromonadaceae) during summer, reaching highest abundances in autumn 

(personal communication with Birte Mensch). Therefore it is conceivable that the 

number of potential pathogens increase during summer months due to elevated 

seawater temperatures leading to an elevated pathogenic threat entailed with an 

increased need of fouling control for Fucus.   

3.4 Consequences for population dynamics 

One underinvestigated aspect of the chemical fouling control of macroalgae is 

the influence of exuded macroalgal fouling control metabolites on benthic 
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community dynamics. Since available settlement surface in the marine environment 

is limited (Harder 2008), competition for space in the benthic environment is 

immense (Wahl 1989).  It is therefore conceivable that a chemical fouling control 

originating from the Baltic Sea’s keystone species Fucus vesiculosus (Kautsky et al. 

1992) as well as from Fucus serratus affects the formation and development of the 

natural fouling community in the proximity of Fucus. A previous study showed that in 

the immediate neighbourhood of different benthic organisms, including F. serratus, 

the natural fouling community on hard substrata was modulated in its community 

development, probably impacted by the exudation of metabolites influencing 

settlement or advection success and/or post-settlement survival (Wahl 2001). 

Furthermore, it has been demonstrated that cypris larvae of the barnacle 

Amphibalanus improvisus preferred stones as settlement substrate over F. 

vesiculosus thalli and that the low larval preference for Fucus was due to 

waterborne metabolites, probably exuded phlorotannins from F. vesiculosus (Brock 

et al. 2007). These examples illustrate the potential influence of macroalgae exuded 

metabolites on the settlement success and thus the survival and establishment of 

neighbouring benthic communities. Considering that my thesis reveals the highest 

fouling control of Fucus and the highest in situ fouling pressure to be synchronised 

for prokaryotic foulers and the barnacle A. improvisus, it is possible that these two 

fouler species are influenced. This would mean that A. improvisus has less available 

settlement substrate during settlement seasons leading to a higher settlement 

pressure on other available surfaces. For prokaryotes it could mean that a specific 

community develops on Fucus thalli (Lachnit et al. 2009) and adjacent surfaces, 

probably leading to a subsequent and specific colonization (Hadfield 2011).  

Thus, Fucus chemical fouling control more than likely affects the community 

development and the structure of the surrounding environment. 

3.5 Consequences of changing environmental 
parameters 

F. vesiculosus, the key stone species of the Baltic Sea (Kautsky et al. 1992), and 

its relative F. serratus inhabit an environment that is influenced by eutrophication 

(HELCOM 2014). The Baltic Sea is especially susceptible to eutrophication due to 

several combined reasons. First the bordering countries with high populations and 
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human activities result in large nutrient loads (mainly nitrogen and phosphorous). 

Second its inland sea characteristics lead to a limited water exchange and a longer 

residence time of water (HELCOM 2009). Eutrophication is known to modify biotic 

interactions in macroalgae communities by causing enhanced growth of fast-

growing opportunistic macroalgae entailing increasing epibiotism and grazing 

(Korpinen et al. 2007). Slow-growing perennial macroalgae such as Fucus are 

negatively affected by higher epibiotism (Korpinen et al. 2007). A previous study 

showed that epiphytic load decreases the growth of F. vesiculosus (Rohde et al. 

2008). In addition, eutrophication leads to turbidity of the seawater due to 

phytoplankton growth (HELCOM 2009). Turbid seawater reduces the depth 

penetration of sunlight, leading to a reduced light availability for benthic macroalgae 

species, including Fucus. F. vesiculosus declined in the past decades from deeper 

waters shifting its vertical depth distribution upwards (Kautsky et al. 1986). This 

depth decline of F. vesiculosus from deeper waters has been attributed indirectly to 

eutrophication and directly to a lack of light supply caused by epibiotism and turbid 

water (Kautsky et al. 1986, Voigt & Schramm 1991).  

Eutrophication in combination with the predicted future sea surface temperature 

in the Baltic Sea (increase by 0.5 °C to 5 °C by th e end of the century) (BACC 2008, 

Neumann & Friedland 2010) will probably increase the fouling pressure for Fucus in 

the Baltic Sea. However, regarding the chemical microfouling control of F. 

vesiculosus a previous study demonstrated that surface associated active 

metabolites, such as fucoxanthin and DMSP, were influenced in their natural surface 

concentrations by the abiotic factors light and temperature. The study also showed 

that under all tested light and temperature conditions at least one of the fouling 

control metabolites were concentrated high enough to reduce bacterial settlement, 

indicating that F. vesiculosus is capable to deal with shading and warming (Saha et 

al. 2014). Therefore, it seems conceivable that at least with respect to the 

microfouling control F. vesiculosus is capable to control a putative increasing fouling 

threat.  

 3.6 Conclusion 

This thesis shows that the micro- and macrofouling pressure in the field and the 

micro- and macrofouling control strength of Fucus vesiculosus and Fucus serratus 
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tested under natural conditions varies with season. Surface extracts tended to be 

least attractive for micro- and macrofoulers during seasons when the respective field 

fouling pressure was highest. While this correlation was not significant, the trend is 

suggestive of a pronounced deployment of fouling control metabolites during periods 

of high fouling pressure as shown earlier (Saha & Wahl 2013). Surprisingly, a similar 

pattern was not detected for the transient fouler M. edulis and only restricted for 

diatoms, indicating a species specific macrofouling control like it has been 

demonstrated for bacteria (Saha & Wahl 2013). The observed seasonal fluctuations 

of micro- and macrofouling control do not seem to reflect the availability of 

resources. Furthermore, this thesis exhibits a clear seasonal variation in surface 

metabolite composition of both Fucus species, with significant differences between 

spring/summer and autumn/winter extracts. Variability in surface metabolite 

composition was best explained by the abiotic factors light and temperature. 

Additionally, a pronounced up-regulation of mono- and disaccharides as well as 

hydroxy acids was detected in F. vesiculosus and F. serratus surface extracts during 

summer months compared to winter months. This up-regulation indicates that 

primary metabolites with potential fouling control properties are present on both 

Fucus surfaces, originating from Fucus itself or from its associated microfoulers.  

It is conceivable that these primary metabolites, maybe together with undetected 

lower concentrated Fucus compounds such as fucoxanthin or DMSP (Saha et al. 

2011, Saha et al. 2012), exhibit an antagonistic interaction regulating the specific 

composition of surface associated microbes of Fucus. In turn, the Fucus-specific 

biofilms could modify subsequent macrofouling (Nasrolahi et al. 2012).  
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