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ABSTRACT: 

The exhumation of high pressure metamorphic rocks at convergent plate margins can be explained 

by the existence of a so-called subduction channel, a shear zone of a few kilo meter thickness above 

the downgoing lithospheric plate, in which material is transported deep into the mantle and 

exhumed back to crustal depth. The exact processes taking place within these highly dynamic shear 

zones, however, are still not completely understood. The Eclogite Zone (EZ) of the Tauern Window 

is an exhumed subduction channel of the Alpine Orogen and provides the opportunity to study 

subduction channel rocks at the surface. It forms a typical melange consisting of eclogite lenses in a 

matrix of high pressure metasediments. Crystallographic preferred orientation (CPO) analysis of 

rocks from the EZ offers the possibility to calculate their elastic properties. This data is valuable for 

seismic imaging of subduction channels at convergent plate margins active today. CPO analysis of 

rocks from the EZ furthermore allows drawing conclusions on deformational processes and the 

tectonic history of subduction channels. This PhD thesis provides CPO data of high pressure 

subduction channel rocks from the EZ. It gives an overview on the reliability of time-of-flight (tof) 

neutron diffraction as a method for CPO analysis and uses the obtained data to calculate rock 

physical properties and to provide a detailed deformational history of subduction channel rocks. 

In the first study, Rietveld texture analysis is performed on rock samples of different complexity, 

using tof neutron diffraction at the SKAT diffractometer in Dubna, Russia. The recently upgraded 

SKAT provides three interchangeable multidetector-systems, offering the opportunity to use the 

optimum experimental set-up for different samples. This study illustrates that it is possible to 

obtain reliable CPO results for mineral phases constituting more than 10 vol.% in complex 

polymineralic rock samples. A comparison of CPO results with reference pole figures showed 

coinciding maxima for multiples of a random distribution of crystal lattice planes and similar 

texture strength, which indicates that the acquired data is suitable for the calculation of rock 

physical properties, as well as for geological interpretations. This study further showed that the 

application of full pattern fit methods allows a vast reduction in the number of tof spectra used for 

CPO calculation. 150 spectra for monomineralic samples and 350 spectra for samples with medium 

complexity are sufficient. This shows that a vast reduction in measuring positions is possible 

without loss of information. 

In the second study, the CPO of fresh and retrogressed eclogites, as well as metasediments, from 

the EZ was used to calculate elastic properties of a complete set of subduction channel rocks. The 

elastic anisotropy of fresh eclogites is fairly low (-1.5%), but increases for progressively higher 



grades of retrogression (up to 3.7%). While in fresh eclogites anisotropy is mainly determined by a 

distinct omphacite CPO, in retrogressed samples the elastic properties are additionally influenced 

by the CPO of retrograde amphibole. Elastic anisotropies of metasediments in the subduction 

channel are much higher due to a pronounced quartz and mica CPO (up to 7.5%). Vp/Vs ratios of 

metasediments (-1.s), as well as eclogites with different grades of retrogression (1.70-1.78) yield 

distinctly different values. The combination of P-wave velocity, elastic anisotropy and Vp/Vs ratios 

is specific to each rock type found in the EZ and in the future, these results could simplify the 

detection of internal structures in subduction channels of active subduction zones at depth. 

The third study applies CPO and microstructural analyses to the same rocks investigated in the 

second study to determine the deformational history of the EZ and subduction channel rocks, in 

general. Electron backscatter diffraction (EBSD) analysis revealed signs of dynamic recrystallization 

of omphacite in the eclogites during their final stage of subduction. CPO analysis of retrogressed 

eclogites showed a complex deformation of the rocks within the subduction channel during 

exhumation. Although plain strain was dominant, locally prolate as well as oblate strain conditions 

occurred. These local strain variations were consistent from eclogite facies to blueschist facies 

conditions, as confirmed by matching omphacite and glaucophane CPO in all eclogite samples. 

Asymmetric quartz CPO in the metasediments points to simple shear. Deformation of the 

sedimentary matrix was more pervasive and outlasted deformation of the eclogite lenses, which 

was confirmed by lower silica contents of mica in the metasediments compared to the eclogites. 

This study elaborates the deformational history of the EZ, illustrating the complexity of processes 

taking place in subduction channels. 



KURZFASSUNG: 

Die Exhumation metamorpher Hochdruckgesteine an konvergenten Plattengrenzen kann durch die 

Existenz eines sogenannten Subduktionskanals erklart werden. Subduktionskanale sind wenige 

Kilometer dicke Scherzonen oberhalb der abtauchenden Lithospharenplatte, in welchen Material 

bis tief in den Mantel subduziert und wieder bis in Krustentiefe exhumiert werden kann. Die 

genauen Prozesse die in diesen auBerst dynamischen Scherzonen stattfinden sind jedoch noch 

nicht vollstandig verstanden. Die Eklogitzone (EZ) des Tauernfensters ist ein exhumierter 

Subduktionskanal des alpinen Orogens und bietet die Gelegenheit Gesteine aus 

Subduktionskanalen direkt an der Erdoberflache zu untersuchen. Sie setzt sich aus einer typischen 

Melange von Eklogitlinsen in einer Matrix aus Hochdruckmetasedimenten zusammen. Die Analyse 

kristallographischer Vorzugsorientierungen {CPO) in Gesteinen der EZ ermoglicht es die elastischen 

Eigenschaften der Gesteine zu berechnen. Diese Oaten sind nutzlich fur die seismische Erkundung 

von derzeit aktiven Subduktionskanalen an konvergenten Plattenrandern. Des weiteren erlaubt 

eine CPO Analyse von Gesteinen der EZ Ruckschlusse auf Deformationsprozesse und die 

tektonische Entwicklung von Subduktionskanalen. In der vorliegenden Dissertation werden CPO 

Oaten von Hochdruckgesteinen der EZ prasentiert. Des weiteren wird die Zuverlassigkeit von ,,time­

of-flight" (tof) Neutronendiffraktometrie als Methode fur die CPO-Analyse ausgewertet. Die 

ermittelten CPO Oaten werden fur die Berechnung physikalischer Eigenschaften von Gesteinen aus 

Subduktionskanalen verwendet. 

Im ersten Teil dieser Arbeit wird eine Rietveld Texturanalyse an Gesteinen von verschiedener 

Komplexitat mit Hilfe von tof Neutronendiffraktometrie am SKAT-Diffraktometer in Dubna 

(Russland) durchgefuhrt. Das vor kurzem aufgerustete SKAT ist mit drei austauschbaren 

Multidetektorsystemen ausgestattet und bietet die Moglichkeit die beste experimentelle 

Konfiguration fur verschiedene Proben zu verwenden. Diese Studie zeigt, dass es moglich ist fur 

komplexe polyphase Gesteine verlassliche CPO-Daten der Mineralphasen zu bestimmen, die einen 

Volumenanteil von mehr als 10% ausmachen. Ein Vergleich der CPO-Daten mit Referenzpolfiguren 

weist eine Obereinstimmung der Maxima von Vielfachen der Normalverteilung der 

Kristallgitterebenen und eine ahnliche Texturstarke auf, was darauf hinweist, dass sich die 

erlangten Oaten sowohl fur die Berechnung physikalischer Eigenschaften von Gesteinen, als auch 

fur geologische lnterpretationen eignen. AuBerdem wird in dieser Studie erlautert, dass es durch 

die Anwendung dieser Methode moglich ist, die Anzahl der bei der CPO Berechnung verwendeten 

tof-Spektren erheblich zu reduzieren. 150 Spektren fur monomineralische Proben und 350 

Spektren fur Proben mit einer niedrigen Anzahl an Mineralphasen sind ausreichend. Das bedeutet, 



dass eine enorme Reduktion von Messpositionen moglich ist, ohne dass lnformationen verloren 

gehen. 

Im zweiten Teil dieser Arbeit wurde sowohl die CPO von frischen und retrograden Eklogiten, als 

auch die von Metasedimenten der EZ fur die Berechnung elastischer Anisotropien von Gesteinen 

aus Subduktionskanalen verwendet. Die elastische Anisotropie von frischen Eklogiten ist sehr 

gering {1,5%), nimmt aber bei zunehmend hoherer retrograder Oberpragung zu {bis zu 3,7%). 

Wahrend in frischen Eklogiten die Anisotropie hauptsachlich durch die CPO von Omphazit 

bestimmt wird, tragt in regtrograden Eklogiten zusatzlich die CPO von Amphibol dazu bei. 

Elastische Anisotropien der Metasedimente in Subduktionskanalen sind auf Grund einer 

ausgepragten Quartz- und Glimmer-CPD weitaus hoher (bis zu 7,5%). Sowohl die Vp/Vs­

Verhaltnisse der Metasedimente {-1,5), als auch die Vp/Vs-Verhaltnisse der verschieden stark 

retrogradierten Eklogite {1,70-1,78), haben deutlich unterschiedliche Werte. Die Kombination von 

P-Wellengeschwindigkeit, elastischer Anisotropie und Vp/Vs-Verhaltnis ist spezifisch fur die

jeweiligen Gesteinsarten die in der EZ gefunden werden. Zukunftig konnten diese Ergebnisse die 

Erfassung interner Strukturen in Subduktionskanalen aktiver Subduktionszonen erleichtern. 

Im dritten Teil dieser Arbeit wird mit Hilfe einer CPO-Analyse und einer mikrostrukturellen 

Untersuchung der Gesteine, die bereits Bestandteil der zweiten Studie waren, die 

Deformationsgeschichte der EZ rekonstruiert. Durch ,,electron backscatter diffraction" {EBSD) 

wurde eine dynamische Rekristallisation von Omphazit wahrend den letzten Subduktionsstadien 

belegt. Die CPO Analyse der retrograden Eklogite erwies komplizierte Deformationsprozesse der 

Gesteine im Subduktionskanal bei ihrer Exhumation. Obwohl eine ebene Verformung vorherrscht 

treten lokal konstriktionale und plattende Verformungen auf. Diese lokalen Unterschiede bei der 

Verformung halten von der Eklogitfazies bis zur Exhumation in die Blauschieferfazies an, was durch 

eine Obereinstimmung der CPO von Omphazit und Glaukophan bezeugt wird. Asymmetrische CPO 

von Quarz in den Metasedimenten deutet auf eine einfache Scherung hin. Die Deformation 

innerhalb der Metasedimente war durchdringender und uberdauerte die Deformation der Eklogite. 

Dies bezeugt der niedrigere Si-Gehalt des Hellglimmers in den Metasedimenten im Vergleich zu 

den Eklogiten. In diesem Teil der Arbeit wird somit die gesamte Deformationsgeschichte der EZ 

veranschaulicht und die Komplexitat von Prozessen in Subduktionskanalen verdeutlicht. 
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1. Introduction

1.1 Motivation 

Subduction zones are highly dynamic regions, where massive material transfers take place 

(Vannucchi et al., 2003; Ranero and Weinrebe, 2005; Harders et al., 2012; Herms et al., 

2012). Crustal rocks are subducted deep into the mantle and can be exhumed back to 

crustal levels or even to the earth's surface from depths of over 100 km (e.g. Bebout, 

2007). Subduction channels are frequently proposed as a tectonic regime permitting the 

exhumation of high pressure rocks (e.g. Ernst, 2006). Subduction channels are shear 

zones of a few km thickness above the subducting lithospheric slab, comprising a melange 

of serpentinized mantle rocks, subducted marine sediments and slivers of oceanic crust 

(e.g. Frederico et al., 2007; Blanco-Quintero et al., 2011). Despite detailed field 

investigations of exhumed subduction channels and numerous numerical models (e.g. 

Gerya et al., 2002; Essen et al., 2009), predicting the deformation within these shear 

zones, the exact processes taking place in subduction channels are still not completely 

understood. 

The Eclogite Zone (EZ) of the Tauern Window is an exhumed subduction channel of the 

Alpine Orogen forming a high pressure melange consisting of metabasaltic boudins 

enclosed in a matrix of metasediments. Its composition and tectonic edifice is comparable 

to many other exhumed subduction channels around the world and is assumed to be 

representative of such a tectonic regime. Both the basalts and the sediments experienced 

eclogite facies conditions of 600° 

+/- 30°C and 2.0-2.5 GPa (Stockhert et al., 1997; 

Hoschek, 2001; 2004). Recent studies discovered an Oligocene age for peak pressure 

conditions and a fast exhumation within 1-2 Ma (Glodny et al., 2008; Nagel et al., 2013), 

making the meta basalts of the EZ the youngest eclogites of the Alps. 

Petrographic studies revealed a cold exhumation of the rocks under blueschist facies 

conditions within the subduction channel and a late high temperature pulse due to 

continental collision (Fig. 1.1; Zimmermann et al., 1994; Kurz et al., 1998a; Holland and 

Richardson, 1979). 

In addition to ideal outcrop conditions, several other aspects make the EZ an ideal study 

area to investigate subduction channel rocks and their deformation. Since the 



metabasaltic boudins are much more extensive than the usual thickness of a subduction 

channel (1-2 km), they could not rotate within their sedimentary matrix, as it could be the 

case in other fossil subduction channels, such as the Franciscan complex of California (e.g. 

Mclaughlin et al., 1988). In the EZ, the metasediments are proven to be part of the high 

pressure melange in the subduction channel (Dachs, 1990) and a coherent deformation of 

the unit as a whole throughout its subduction, as well as its exhumation history is likely. 
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Fig. 1.1: Pressure-temperature path of the EZ {modified after Holland, 1979; Dachs, 1986; Spear and Franz 

1986; Dachs, 1990; Zimmermann et al., 1994; Kurz et al., 1998). 

Moreover, the metabasalts of the EZ contain a wide spectrum of rocks with different 

grades of metamorphism. There are fresh eclogites, still exhibiting their high pressure 

mineral assemblage, and others showing signs of pronounced blueschist facies overprint 

(Kurz et al. 1998a). Additionally, there are eclogites, which have been completely 

converted to amphibolites during the late stage high temperature metamorphic 

overprint. The EZ therefore offers the possibility to study the complete tectonic history 

from subduction to peak conditions towards the exhumation to crustal levels within in 

the subduction channel. 



1.2 Aims of this study 

The deformational processes taking place in subduction channels are not completely 

understood. So far, the petrophysical properties of subduction channel rocks are not well 

constrained, which hampers their detection in seismic experiments. The main objective of 

this study is the analysis of crystallographic preferred orientations (CPO) of polymineralic 

high pressure rocks from subduction channels, which, on the one hand, allows 

conclusions on the deformational mechanisms of these rocks and, on the other hand, 

provides data necessary for the interpretation of for seismic data, which permits 

investigations of active subduction channels at depth. The first aim was a quantitative 

investigation of the reliability of time-of-flight (tof) neutron diffraction CPO analysis and 

an improvement in efficiency of this method (A). In the second part (B) of this thesis, the 

improved tof method presented in the first part was used for CPO analysis of subduction 

channel rocks and subsequent calculation of their elastic properties. In the third part (C), 

the CPO and microfabric data was used to reconstruct the deformational processes within 

the EZ subduction channel. 

A) When it comes to the calculation of physical properties of large coarse grained

rocks, tof neutron diffraction is the method of choice. Good grain statistics and

large sample volumes result in reliable bulk texture. While neutron diffraction is

already a wide spread technique used to acquire the CPO of monomineralic rocks,

the reliability of this method analyzing complex polymineralic rock samples has

not been quantitatively investigated. It was the aim of this work to obtain an

understanding of the dependability of CPO analysis of polymineralic rocks using

tof neutron diffraction at the SKAT diffractometer of the Frank Laboratory of Neutron

Physics at JINR, Dubna, Russia (Ullemeyer et al., 1998). Since long exposure times are

necessary for tof neutron diffraction, a further goal of this work was the quantitative

investigation of a possible reduction of exposure time, by progressively reducing the

number of measuring positions.

B) Knowledge of elastic properties of rocks is crucial for seismic imaging of geological

structures at depth. One way to obtain this information is the calculation of rock

seismic properties with the CPO of the constituent mineral phases and their



experimentally determined single crystal elastic properties. This was done 

extensively for mostly monomineralic mantle rocks, which led to a better 

understanding of mantle dynamics (e.g. Montagner and Tanimoto, 1990; Silver, 

1996; Montagner and Guillot, 2003; Vauchez et al., 2005; Mainprice et al., 2008). 

On the other hand, there are only few studies so far, treating seismic properties of 

polymineralic rocks of the crust, specifically those being subducted to mantle 

depths and subsequently exhumed. The lack of knowledge regarding elastic 

properties of subduction channel rocks puts restrictions on seismic imaging of 

these structures. Therefore, it is the goal of this work to obtain seismic properties 

of a range of subduction channel rocks and to provide important data, 

contributing to future seismic investigations of these structures at depth. 

C) The EZ offers the opportunity to study deformational processes of rocks in

subduction channels. Both, fresh and retrogressed eclogites are found in this unit

and allow a reconstruction of the complete tectonic evolution from subduction to

the exhumation of the EZ. Therefore, it is the objective of this study to obtain the

CPO of different units within the EZ and perform a microstructural investigation.

The metasedimentary rocks were part of the high pressure melange and a

microfarbic analysis of both the metasediments and the eclogites leads to a better

understanding of the deformational evolution of the whole unit. In addition, strain

and stress analyses offer insights into the tectonic regime at different stages of the

EZ during its path in the subduction channel, which can be applied to other fossil

and recent subduction channels around the world.

1.3 Subduction zones 

Subduction zones are regions at convergent plate margins, where lithospheric plates 

descend into the mantle (e.g. Jakes and White, 1970; Green and Houston, 1995; Ruff and 

Tichelaar, 1996; Karason and van der Hilst, 2001). They are often referred to as the 

world's largest recycling system and play a crucial role in plate tectonics. Oceanic 

lithosphere forms at mid-ocean ridges and over time moves away from the spreading 

center. With increasing age the oceanic lithosphere thickens and becomes denser. Davies 
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{1992) proposed that the oceanic lithosphere is eventually negatively buoyant with 

respect to the astenosphere and decents into the mantle creating a new subduction zone. 

However, the initiation of subduction zones is still strongly debated (e.g. Spence, 1987; 

Niu et al., 2003). According to Lithgow-Bertelloni and Richards {1995) the largest part of 

the force needed for plate motion comes from the sinking of dense subducting 

lithosphere and only a small contribution is made by ridge push at mid-ocean ridges. 

Although slab buoyancy is a driving force for subduction, newer models illustrate that the 

interaction of slab and mantle are far from simple (e.g. Doglioni et al., 2007). Royden and 

Husson {2006) show that viscous stresses in the mantle bear a large influence on 

subduction dynamics. Karate et al. {2001) suggest that the temperature dependent 

rheology of the subducting slab strongly influences its behaviour in the mantle. 

Fig. 1.2: Tomographic images of the mantle showing the descending lithospheric plates, which are 

defined by high P-wave velocities (blue). CMB: core mantle boundary. Red lines mark location of profiles. 

In Central America, central Japan, and Indonesia the subducted plate penetrates the 660 km discontinuity 

and descends into the lower mantle. In Tonga and lzu Bonin on the other hand, the slab is dragged over 

the 660 km discontinuity (Stern, 2002). 

Seismic tomography revealed that the descending plates are either dragged along the 660 

km discontinuity, at which the olivine high pressure polymorph ringwoodite breaks down 
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into perovskite and magnesiowustite, or they penetrate this discontinuity and finally 

reach the core mantle boundary (Fig. 1.2.; e.g. Helffrich and Wood, 2001; Karason and 

van der Hilst, 2000}. 

Apart from the crucial role of subduction zones in plate tectonics, they also have a large 

impact on society. The world's biggest earthquakes are produced by thrust faulting along 

subduction zones (e.g. Grevemeyer and Tiwari, 2006; Heesemann et al., 2009; Moscoso et 

al., 2011; Geersen et al., 2013}. The region of seismicity along the descending plate is 

called Wadati-Benioff Zone (Fig. 1.3; Wadati, 1928; Benioff, 1949}. The exact location and 

the extent of seismicity depend on a number of factors (Pretti et al., 1994; Papazachos et 

al., 1995}. One is the dipping angle of the subducting plate. Shallow dipping angles lead to 

stronger coupling between plates and generally result in higher magnitude earthquakes 

compared to subduction zones with steeply subducting lithosphere (Stern, 2002}. 

lithosphere 

Fig. 1.3: Schematic cross section through a subduction zone illustrating its main structural elements 

(Kious and Tilling, 1996). 

1.3.1 Structural elements of subduction zones 

Subduction zones can be divided into several structural elements: the trench, the forearc, 

the subducting lithosphere, the magmatic arc and the back-arc (Fig. 1.3). At the trench, 

the lithospheric plate descends into the mantle and forms deep depressions at the ocean 

floor. The deepest trench on earth is the Marianas Trough with a depth of 11.5 km. The 
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trench can be sediment poor, or filled with turbidites originating from the continental 

slope (e.g. van Huene and Scholl 1991; Rea and Ruff, 1996; Simpson, 2009). The 

subduction zone can either be non-accretionary, or accretionary forming aforearc, mainly 

depending on the amount of subducted sediments. Close to continents the sedimentary 

supply is high, which leads to the formation of accretionary wedges (e.g. von Huene and 

Scholl, 1991; van Huene et al. 2004; Simpson, 2009). The sedimentary material is added 

by frontal accretion and deformed by folding and thrusting {Davis et al., 1983). At non­

acretionary forearcs on the other hand, significant volumes of material can be eroded 

from the base of the upper plate and dragged to greater depth {Stern 1991). 

The subducting lithosphere, specifically the upper layer consisting of oceanic crust and 

marine sediments undergoes complex mineralogical changes during its decent. With 

increasing depth the rocks are exposed to high pressure, low temperature 

metamorphism, which leads to a progressive transformation of the basaltic oceanic crust 

into blueschists and eclogites. The wide range of subducted sediments can lead to the 

formation of various rock types at depth. Clastic sediments are mostly transformed into 

micaschists, quartzites and paragneisses, whereas subducted carbonates give rise to 

marbles. Many of the mineral reactions result in the release of fluids which migrate into 

the overlying hot mantle wedge {Pearce and Peate, 1995). These fluids lower the 

temperature necessary for melting of mantle material and the subducted sediments 

{Clark and Ringwood, 1964; Paweley and Holloway, 1993; Ulmer and Tromsdroff, 1995). 

This leads to the formation of magma, which rises in the upper plate and accumulates in 

subvolcanic magma chambers causing the development of magmatic arcs. 

Constrained by the thermal structure of the subduction zone, the magmatic arc is usually 

found 150-200 km from the trench axis {England et al., 2004). There are two types of 

magmatic arcs, depending on whether the upper plate above the subduction zone is 

mostly oceanic or continental. An island arc forms outboard of continental landmasses, 

like for example in the western Pacific Ocean, while continental arcs develop at the edge 

of continental landmasses, like in the Andes (Murphy, 2006). In the subvolcanic magma 

chambers the magma differentiates by fractionated crystallization, mixing of magma and 

an assimilation of crustal material. With increasing maturity (e.g. differentiation) of 

volcanic arcs, island arc tholeiites, low-K-tholeiites and calc-alkaline basalts are produced. 

Further, andesites, dacites and rhyolites are widespread at continental arcs due to further 
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assimilation of the continental crust (Murphy, 2007). A characteristic feature of magma 

produced at magmatic arcs is an enrichment in large ion lithophile elements (LILE) relative 

to high field strength elements (HFSE), which confirms their origin at a shallow mantle 

(Pearce and Peate, 1995). Additionally, the presence of fluids and volatiles verifies 

dehydration of the subducted slab (Murphy, 2006). 

Young, thm, hot. 
buoyant ltthmphcn: 

Chilean type 
(Arc under compre,,,on) 

Bacl..-arc � 
exten\lOn � Deep trench 

den,e litho,phere 

Mariana type 
(Arc under extension) 

Fig. 1.4: End-member types of subduction zones. According to the model, the age of the subducting plate 

determines dip angle, seismicity and back arc-tectonics (after Forsyth and Uyeda, 1975). 

The back arc region is located behind the magmatic arc. Its tectonic regime is highly 

influenced by the dip angle of the subducting plate. There are two end-members for 

subduction zones referred to as Chilean-type and Mariana-type. The shallow dip angle of 

Chilean-type subduction zones results in back-arc compression and the formation of fold 

and thrust belts. In contrast, the steep diping angle in Mariana-type subduction zones 

causes roll-back of the subducting plate and back-arc extension (Stern, 2002; Lallemand 

et al., 2005). Considering these two end-members Uyeda and Kanamori (1979) came to 

the conclusion that older denser subducting lithosphere (i.e. the Mariana subduction 

zone) leads to steep dipping angles and younger warmer subductiong lithosphere (i.e. the 

Chilean subduction zone) leads to shallow dipping angles. Doglioni et al. (1999) assume an 

influence of a westward drift of the lithosphere with respect to the astenosphere. 

According to these authors west-dipping slabs are steeper than east-dipping ones due to 

this phenomenon. However, there are numerous counterexamples to both theories and 

recent studies show that a great number of factors influence the dipping angle of 

subduction zones. Lallement et al. (2005) suggest that slab dip correlates with the 

absolute motion of the overriding plate and whether the overriding plate is continental or 
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oceanic. Furthermore, the authors propose that dipping angles are steeper near the 

edges of subduction zones (e.g. close to the termination of a slab). 

1.3.2 Exhumation of high pressure rocks 

Since the discovery of high pressure polymorphs of quartz (coesite) in the Central Alps 

(Chopin, 1984) and findings of diamond in the Cambrian Kokchetav massif in Kazakhstan 

(Sobolev et al., 1990), it is clear that exhumation of previously subducted continental 

crust from depths of over 100 km is possible. For oceanic crust an exhumation depth of 

up to 80 km has been reported (Angiboust et al., 2009), which is especially impressive 

considering its high density of -3.3-3.4 g/cm3 after eclogitization (i.e. higher than 

lherzolite mantle rocks with -3.2-3.3 g/cm3). 

For decades researchers investigated the mechanisms responsible for the exhumation of 

rocks, which have been metamorphosed under high pressure/low temperature 

conditions. Possible processes are external forcing, by continental fragments entering the 

subduction zone (e.g. Hacker et al., 1995), slab breakoff (Chemenda et al., 1999), or 

underplating combined with extensional collapse (Platt, 1986). Additionally slab rollback 

has been proposed as a mechanism for the exhumation of high pressure rocks during 

ongoing subduction (Brun and Faccenna, 2008). 

The exhumation of dense metabasaltic rocks originating from oceanic crust is difficult to 

explain and is likely only possible with the aid of more buoyant rocks surrounding them 

(e.g. Guillot et al., 2001). Slivers of metabasaltic oceanic rocks are usually exhumed within 

a matrix of lower density metasediments, or serpentinites. The metasediments usually 

originate from subducted trench fills and pelagic seafloor sediments, whereas the 

serpentinites are derived from hydrated mantle rocks of the upper and/or lower plates. 

Together with slivers of oceanic crust these low density rocks form a melange, which is on 

aggregate more buoyant than the surrounding mantle rocks. Buoyant uplift of this 

melange is inferred to take place in a subduction channel (Fig. 1.5). 

The concept of subduction channels was originally proposed by by Cloos {1982) and Cloos 

and Shreve (1988) for the circulation of sedimentary material in subduction zones to and 

from up to 30 km depth. Recent subduction channel models further include the 
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exhumation of subducted oceanic crust from depths of over 70 km (e.g. Agard et al., 

2009; Guillot et al., 2009). 

- metabasalt

D metasediments

D serpentinite

Fig. 1.5: Subduction Zone (Agard et al., 2009) and subduction channel melange incorporating 

serpentinites and fragments of oceanic crust and marine sediments. Slivers of oceanic basalt and its 

sedimentary cover detach from the downgoing slab and assemble in the metasedimentary matrix. This 

melange is more buoyant than the surrounding mantle rocks and exhumes within a few km thin 

subduction channel. 

There are several numerical models describing the conditions for the formation of 

subduction channels and the exhumation of high pressure rocks (Burov et al., 2001; Gerya 

et al., 2002; Gerya and Stockhert, 2006; Warren et al., 2008). Burov et al. (2001) assumes 

two distinct circulation levels, with slower exhumation in the upper lever (0-30 km) and 

faster exhumation in the lower level (30-70 km). Gerya and Stockhert (2006) propose that 

the formation of a subduction channel depends on the rate of subduction and the 

rheology of overriding crust. According to these authors, subduction channels most likely 
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form at moderate subduction rates and moderate brittle strength of the upper plate. 

Under these conditions, a pronounced return flow of material at high velocities is 

achieved in their models. While numerical models provide insightful theories for the 

processes taking place in subduction channels, these theories still need to be confirmed 

by field studies and by seismic imaging of these structures currently active at depth in 

recent subduction zones. 

1.3.3 Seismic imaging of subduction channels 

Geological structures at depth can be imaged by reflection seismic methods. Substantial 

progress was made in seismic imaging of shallow subduction channels, as defined by 

Shreve and Cloos {1988), in the last decade (e.g. Eberhard-Philips et al., 2005; 

Calahorrano et al., 2008; Collot et al., 2011). Seismic observations of the South Ecuador 

subduction Zone imaged a roughly 1 km thick low velocity channel, interpreted as a 

continuous sheet of subducted sediment undergoing high shear deformation in the upper 

10 km of subduction zones (Col lot et al., 2011). GroB et al. (2007) also discussed a zone of 

high reflectivity between the subducting oceanic Nazca plate and overriding South 

American plate, which they interpreted as a subduction channel. It exhibits a variable 

thickness of 2-5 km down to a depth of about 38 km. They furthermore observed 

reflectivity corresponding to broad band of reflectors of more than 4 km, starting at the 

upper limit of the mantle wedge and attributed this reflective band to the continuation of 

the subduction channel. 

Even at higher depths, in many subduction zones a low velocity layer of several km 

thickness has been observed above the downgoing slab (e.g. Langston, 1981; Helffrich 

and Stein, 1993 Abers et al., 1996; Audet et al., 2010).lt is likely caused by serpentinized 

mantle above the subducted oceanic crust (Davies and Stevenson 1992) and could be part 

of the subduction channel at depth. However, so far it was not possible to image the 

internal structure of these low velocity zones, e.g. the existence of slivers of oceanic crust 

and marine sediments within the subduction channel. 

The expected signal of deep subduction channels can be evaluated by numerical modeling 

of seismic waves. Essen et al. {2009) investigated the possible influence of a deep 

subduction channel above the slab of the Hellenic subduction zone in the Cyclades. The 
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authors assume an intermediate velocity and density for the channel, compared to the 

oceanic crust and the overlying mantle. They come to the conclusion that high amplitudes 

of guided waves could indicate the existence of subduction channels. Models of Furumura 

and Kennett (2005), on the other hand show that guided waves are also highly dependent 

on heterogeneities within the subducted oceanic crust. Recent numerical simulations of 

seismic wave propagation modeled a more detailed subduction channel structure with 

eclogite blocks in a serpentinite matrix (Friedrich et al., 2014). The model furthermore 

incorporates thermodynamic parameters leading to phase transitions of the rocks in the 

subduction channel. The modeled channel leads to very specific seismic signatures in the 

simulation and the authors conclude that the detection of such a structure at depth is 

possible. 

1.4 Geological Overview of the study area 

1.4.1 Tauern Window 

The Tauern Window is a tectonic window in the Eastern Alps - which mainly originate 

from the Adriatic continent - exposing basement and cover of the European plate, as well 

as Penninic oceanic units that have been subducted under the Adriatic plate and stacked, 

during Tertiary continental collision. The exhumation of the Tauern Window was mainly 

achieved by crustal scale folding, E-W extension, and an indentation of the Adriatic 

continent (Rosenberg et al., 2007; Schmid et al., 2013). To the east, the Tauern Window is 

bordered by the Katschberg normal fault (Fig. 1.6 A; Ratschbacher et al., 1989) and the 

western margin is defined by the Brenner normal fault, which accommodated large 

amounts of orogen parallel extension (Behrmann, 1988; Selverstone, 1988; Fugenschuh 

et al., 1997). The southwestern margin of the Tauern Window is bounded by the Sterzing­

Steinach mylonite zone, which also exhibits normal displacement (Behrmann, 1988). A 

large part of the northern edge is formed by the Salzach-Ennstal-Mariazell-Puchberg fault 

(SEMP), which accommodated about 60 km of sinistral displacement during the Cenozoic 

(Ratschbacher et al., 1991; Linzer et al., 2002). To the south of the Tauern Window, a 

system of splay faults that are part of the dextral Periadriatic Line (PL) can be found 

(Muller et al., 2001; Mancktelow et al., 2001). 
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Fig. 1.6: (A} Tectonic map of the Tauern Window. BN: Brenner normal fault; KN: Katschberg normal fault; 

SEMP: Salzach-Ennstal-Mariazell-Puchberg fault (B} scetch of NNW-SSE cross section of the Tauern 

Window. Location of cross section is marked on (A) (Kurz et al. 1998b}. (C} Cross section of the Eclogite 

Zone and surrounding nappes (Raith, 1980). 

In the Tauern Window, several paleogeographic units have been stacked in a northward 

fashion (Fig.1.6 B and C). The lowermost unit is the Venediger nappe, which comprises 

pre-Variscan continental crust from the European margin and Variscian granitic 

intrusions, as well as Jurassic to Cretaceous metasedimentary cover rocks {Kurz et al., 

1998b). In the central southern Tauern Window, the Venediger nappe is overlain by the 
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Eclogite Zone, a transitional zone between the southern European margin and the 

Penninic ocean. It consists of metasediments of a continental margin sequence and 

metabasites, which are assumed to represent intraplate basalts (Hock and Miller, 1987). 

The Eclogite Zone is overlain by the Rote Wand-Modereck nappe, which comprises 

basement slices, as well as Permian to Cretaceous metasedimentary rocks (Kurz et al., 

1998 b). Above the Rote Wand-Modereck nappe lies the Glockner nappe, comprising 

serpentinites, greenschist facies metabasalts and marine sediments. The overlying Matrei 

zone is interpreted as an accretionary wedge that formed north of the Adriatic continent. 

The units of the Tauern Window form an anticline, hence deeper units are exposed in the 

center and tectonically higher units occur at the boarders of the window (Fig. 1.6 A). 

1.4.2 The Eclogite Zone 

The Eclogite Zone (EZ) is a coherent, 20 km long and up to 3 km thick unit, consisting of 

eclogite facies sediments, and boudins of tholeiitic and mildly alkaline eclogites (Miller, 

1974; Miller, 1977) (Fig. 1.7). The boudins occur in sizes from a few meters to several 

kilometers. Some of the eclogites are coarse grained and massive with relict gabbroic 

structures, others are fine grained and foliated or mylonitic (Kurz et al., 1998 a). The 

metasediments are quartzites, paragneisses, meta-arkosic rocks, garnet micaschists, 

calcareous micaschists, calcitic and dolomitic marbles. Kurz et al., (1998b) interprets the 

rocks of the EZ as transitional crust between the distal European continent and the 

Penninic ocean. According to the authors the basaltic sills intruded during Jurassic rifting 

of the penninic ocean. On the other hand, some of the eclogites show relictic pillow 

structures and gabbro structures (Miller et al., 1980). This led Behrmann and 

Ratschbacher {1989) to the conclusion that the eclogite lenses found in the EZ are slivers 

of oceanic crust, which got scraped off during subduction of the penninic ocean. The 

authors interpret the metasediments as the pelagig cover of the oceanic crust, as well as 

material deposited in the deep see trench. 

The EZ has been buried to a depth of about 70 km and subjected to pressure-temperature 

conditions of 20-25 kbar and 600+- 30°C (Fig. 1.1; Stockhert et al., 1997; Hoschek, 2001; 

2004). Recently, an Oligocene age for peak metamorphic conditions and a fast 
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exhumation of the unit within 1-2 Ma has been documented (Glodny et al., 2005; Nagel et 

al., 2013}. 

During its exhumation the EZ underwent blueschist fades conditions and an amphibolite 

fades barrovian type overprint, which is regionally termed "Tauernkristallisation" 

(Holland and Richardson, 1979; Zimmermann et al., 1994; Schuster et al., 2004}. However, 

large parts of the EZ did not suffer post-eclogitic (retrograde) overprint, which could be 

explained by high exhumation rates of 3.6 cm per year or a heterogenous fluid 

distribution during exhumation (Glodny et al., 2005; Kurz et al., 2008}. 
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Fig. 1.7: Simplified columnar section documenting the lithological units of the Eclogite Zone (after Kurz et 

al 1998b}. 

The foliation of the EZ and its surrounding nappes is generally steeply S to SE-dipping, 

whereas the lineation mainly SW-plunging to subhorizontally EW-trending (Raith et al., 

1980; Behrmann and Ratschbacher, 1989; Kurz et al., 1998a}. Folds are large scale and 

isoclinal with steeply 5-SE dipping axial planes (Raith et al., 1980}. 
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1.5 Methods 

1.5.1 Microprobe analysis 

Mineral assemblages and chemical compositions of the samples in this study were 

determined by a JEOL JXA 8200 Electron microprobe of the Geomar, Kiel. In microprobe 

analysis a high voltage electron beam is focused on polished sample surfaces. The 

electrons produce X-rays, which are characteristic for certain elements. The resulting X­

rays are diffracted by analyzing crystals and counted using gas-flow and sealed 

proportional detectors. Chemical composition of the investigated minerals is determined 

by comparing the intensity of the X-rays to those produced by standards (natural and 

synthetic silicates) with a known composition. 

1.5.2 Crystallographic preferred orientation analysis 

The main method used in this PhD thesis is the analysis of crystallographic preferred 

orientation (CPO). To describe the CPO of a polycrystalline material, a coordinate system 

has to be assigned to both the sample and the crystallites (Fig. 1.8 A). The coordinate 

system of the sample KA is chosen according to the process geometry, which, in case of 

geological samples, is the foliation and lineation (Fig. 1.8 B). The coordinate system of the 

crystallites K8 is determined by the base vectors a, b and c of the Bravais lattice, where ZB 

= c; Y8 = c * a; and X8 = Z8 * Y8. The orientation of the crystal is described by rotations, 

which transfers the coordinate system of the sample into that of the crystal. Three so 

called Euler angles describe the minimum set of rotations that can bring one orientation 

to coincidence with another. In case of a polycrystalline samples, this results in an 

orientation probability distribution of the lattice planes and is defined by the orientation 

distribution function {ODF). The ODF is illustrated as equal area projections in polefigures, 

which are two-dimensional illustrations of the three-dimensional distribution of the pole 

of a certain lattice plane. They are normalized to multiples of a random distribution and 

express the probability of finding a lattice plane in a certain direction. 
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Fig. 1.8: (A) Sample coordinate system X.A, VA, and ZA and crystal coordinate system determined by the 

base vectors of the crystal (see text for explanation). (B) Lineation direction and foliation plane in 

geological samples defining X, V, and Z of the sample coordinate system. 

CPO of polycrystalline rocks can be determined through different techniques. The most 

common one is x-ray or synchrotron diffraction, which is ideal for small, fine grained 

samples and can be applied even if the water content of the samples is high. Neutron 

diffraction is the most useful technique for coarse grained samples and when large 

sample volumes are needed, i.e. for the calculation of rock physical properties from the 

CPO. This method can be applied to big, coarse grained heterogenous samples, is 

however unfitted for samples with high water contents. Another method for CPO 

investigations is electron backscatter diffraction (EBSD). As opposed to X-ray, or neutron 

diffraction, where sample volumes are analyzed, EBSD is applied to polished sample 

surfaces. Grain statistics in this method are low, but it yields the advantage that the 

orientation relationships between grains can be analyzed, which allows to draw 

conclusions on the deformation mechanisms. 

1.5.2.1 Time-of-flight neutron diffraction 

For this work, time-of-flight (tof) neutron diffraction was performed at the SKAT 

diffractometer of the Frank Laboratory of Neutron Physics at JINR, Dubna, Russia 

(Ullemeyer et al., 1998). Like x-ray and synchrotron diffraction, tof neutron diffraction 

takes advantage of the Bragg equation to obtain the CPO (1), 

(1) 1=2d/sin(8)
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where d is the distance between lattice planes, J is the wavelength of neutrons and Bis 

the angle between the lattice plane and the diffracted neutron beam (Bragg angle). 
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Fig. 1.9: (A) Front and top view of one of the three available detector rings at the SKAT. (B) Points 

measured at one sample position. (C) Extensively covered pole figure, achieved by a stepwise rotation of 

the sample through a goniometer. 

A reflection of the neutron beam can only be observed if the Bragg equation is fulfilled. 

Each parallel group of lattice planes (hkl) of any mineral phase has a specific Bragg angle 

and a specific d-spacing. At the SKAT, d-spacings are recorded by measuring the time of 

flight of neutrons using equation (2), 

h 
(2) d = t 

2m
,,
ssin O 

which combines (1) with mechanical properties of neutrons, whereas h is the Planck's 

constant, m is the mass of neutrons, sis the flight path and t is the time of flight. 
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At the SKAT, samples are placed in the middle of the detector-ring fixed at a certain Bragg angle (8 

in Fig.1.9 A), which makes e a constant in equation (2). At each measuring position a half circle of 

points on the pole figure is measured and a goniometer rotates the sample to cover the full pole 

figure (Fig. 1.9 B and C). Each of the measured points represents a spectrum recording d-spacings 

of all mineral phases in the sample. The spectra are used for full pattern fit methods (Rietveld 

Texture Analysis), which allow CPO analysis of all mineral phases of the sample, despite 

overlapping reflections in the spectra. 

1.5.2.2 Electron backscatter diffraction 

Another method applied in this study was EBSD analysis with a scanning electron 

microscope {SEM) at the Bayerisches Geoinstitut, Universitat Bayreuth. In this method a 

polished sample is placed at a shallow angle to an incident electron beam with an 

accelerating voltage of 10-30 kV {Fig. 1.10 A). The electrons are diffracted on the sample 

surface, interacting with the crystal lattice of the constituent minerals {Fig. 1.8 B). 
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Fig. 1.10: (A) Schematic illustration of EBSD using a scanning electron microscope. (B) Kikuchi bands 

produced by the diffracted electrons interacting with crystal lattice planes. 

The diffracted electrons display specific patterns on a phosphor screen in short distance 

to the sample. The patterns are called Kikuchi bands and are specific to different mineral 

phases, reflecting their lattice symmetry {Schwartz et al., 2009). Specialized computer 

software can use the detected Kikuchi bands to identify the mineral phase and its 

orientation within the sample coordinate system. With systematic point measurement on 
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the sample the CPO of different mineral phases can be obtained. Individual areas on the 

sample can be scanned with small step sizes and high resolution to produce orientation 

maps, which reveal even small differences in orientation of the crystal lattice planes. 

These maps can be used for microstructural investigations as they illustrate the grain 

structures and grain boundary characters. 

1.6 Thesis Outline 

Chapters 2, 3, and 4 are individual articles, which are either published (chapter 1), 

submitted for publication (chapter 3}, or in preparation (chapter 4). They all focus on CPO 

analysis of polycrystalline high pressure rocks. Samples investigated in the three studies 

originate from the Tauern Window subduction channel (Eclogite Zone). In chapter 5 the 

main results of the individual studies are summarized and discussed. Furthermore an 

outlook on prospective continuative work in this research area is given. 

In chapter 2, a methodical study is presented, which illustrates the reliability and limits of 

time-of-flight neutron diffraction for CPO analysis of polymineralic rocks, applying 

'Rietveld Texture Analysis'. The possibility for reduction in exposure time for measured 

samples is investigated. Furthermore, this study gives an overview on the recently 

upgraded SKAT diffractometer in Dubna. 

Chapter 3 provides data for elastic properties of subduction channel rocks, calculated 

from the CPO of eclogites and high pressure metasediments from the Eclogite Zone. The 

novel approach of this study is the investigation of seismic velocity anisotropies of 

eclogites, which were retrogressed during exhumation. Additionally, chapter 3 provides a 

comparison of fresh and retrogressed eclogites. Data presented in chapter 3 were finally 

used to calculate the elastic properties of the metasediments in the subduction channel. 

In chapter 4, CPO and microstructures of high pressure rocks from the Eclogite Zone are 

investigated to gain insights on their deformational history. As in chapter 2, fresh and 

retrogressed eclogites, as well as metasediments are analyzed to cover the full spectrum 

of subduction channel rocks and unravel the complete deformational path of the Eclogite 

Zone from its subduction to high pressure towards its exhumation to crustal depths. 
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The application of Rietveld texture analysis (RTA) to time-of-flight (TOF) 
neutron diffraction data allows complex materials with many diffraction peaks 
to be investigated, for example, rocks composed of different minerals. At the 
recently upgraded SKAT texture diffractometer at the JINR in Dubna (Russia), 
which provides three alternative multidetector systems, resolution and 
accessible range of lattice d spacings can be adapted to sample requirements. 
In order to infer the optimum experimental setup and the reliability of texture 
estimates from complicated TOF patterns, the influence of counting statistics 
and various spectral resolutions on texture deconvolution was investigated. 
Comparing the results obtained at different resolutions and from different 
sections of the d patterns indicates that the textures of a four-phase sample can 
be determined. but using a section at small d spacings with a larger number of 
peak overlaps leads to smoother textures. A complex seven-phase sample shows 
orientation differences in addition to the smoothing effect. Weak textures and 
textures of the minor rock constituents are inaccurate owing to multiple peak 
overlaps. Consequently, good resolution is essential for RTA on such samples. 
Grid thinning tests confirmed that no more than 150 diffraction spectra are 
needed to characterize the texture of a monomineralic sample, and 
approximately 350 spectra are sufficient for a four-phase sample. The irregular 
grid point arrangement caused by the SKAT geometry has no negative 
consequences. 

1. Introduction
Neutron diffraction has proven to be the most suitable and
promising method for texture analysis of polymineralic rock
samples (e.g. Brokmeier, 1994; Siegesmund et al., 1994; Wenk,
1991; Wenk et al., 2001; Leiss et al., 2002; Xie et al., 2003; Pehl
& Wenk, 2005; Mtiller et al., 2010). Because of the low
attenuation of thermal neutrons in matter large sample
volumes can be investigated and good counting statistics are 
achieved. The texture calculated from neutron diffraction data 
is, therefore, an optimal representation of the bulk rock. This
is particularly important when predicting physical anisotropies
from the textures in medium- to coarse-grained rocks (e.g.

Siegesmund et al., 2000; de Wall et al., 2000; Ullemeyer et al.,

2006, 2010; Kem et al., 2008).

neutrons with different wavelengths (>..) from their point of 
creation at a pulsed reactor or a spallation source. From 
Bragg's law, 

In addition to this principal advantage of working with 
neutrons, the energy-dispersive time-of-flight (TOF) method 
provides the possibility of measuring the complete diffraction 
patterns for each sample direction. The detector is installed at 
a fixed scattering angle (28) and records the time of flight (t) of 
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>.. = 2dsin0, 
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where d is the lattice spacing, h is the Planck constant, 1110 is 
the neutron mass, v is the speed and s is the total flight path 
(Windsor, 1981). Since e and s are fixed,>.. and d depend on t
only. i.e. recording the neutrons as a function of their arrival 
time at the detector directly leads to neutron intensity as a 
function of d spacing. Once the TOF spectra are acquired, full 

/. Appl. Cryst. (2014). 47, 1520-1534 



pattern fit methods like the so-called Rietveld texture analysis 
(RTA) for texture evaluation (Matthies et al., 1997; Von 
Dreele, 1997) can be applied. This method is advantageous for 
texture investigations of polymineralic rocks, because the 
separation of nonoverlapped pole figures for quantitative 
texture analysis (OTA) using a classical pole figure inversion 
method (e.g. Matthies & Vinel. 1982; Dahms & Bunge, 1989;
Hielscher & Schaeben, 2008) is difficult and often impossible 
owing to multiple peak overlaps. Besides the texture evalua­
tion, RTA offers the possibility of refining lattice parameters, 
grain size and microstrain, and of performing quantitative 
phase analysis (Lutterotti et al., 1997). 

The accessible range of lattice spacings is determined by the 
pulse repetition rate of the neutron source and by the 
diffraction angle 0. The resolution (!:idld) depends on flight
time uncertainty ( D.tlt), uncertainty of the total flight path ( !:is/ 
s) and ():

!:id [( !). )
2 ( D.t ) 2 

J
1/2 

d = -!- + t
+ (!:i0cote)2 

(4) 

The neutrons are slowed down to thermal energies in a 
moderator, which causes a Maxwellian energy distribution. 
This leads to the highest intensities at small wavelengths, 
tailing off rapidly at higher wavelengths, i.e. counting statistics 
become worse with increasing >.. and also d (Fig. 1). Larger 
diffraction angles() generate higher resolution, but because of 
the energy distribution of the neutron beam, the counting 
statistics are very low at high d spacings. Smaller diffraction 
angles. on the other hand, have the opposite effect. In addi­
tion, there are many peak overlaps at small d spacings. This 
will be explained in detail in §3. It follows that the quality of 
texture analysis with TOF neutrons and RTA depends on 
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several factors, which have so far not been investigated 
comprehensively. 

In order to extend the possibilities for OTA of poly­
mineralic rock samples from TOF spectra, the SKAT texture 
diffractometer at the pulsed neutron source IBR-2M in Dubna 
(Russia) has recently been upgraded. In addition to the 
already existing multidetector system with the detectors 
positioned at 20 = 90° {Ullemeyer et al., 1998), two more
detector arrangements at other diffraction angles were 
installed. This offers the opportunity to select the most 
suitable instrument geometry, i.e. to adapt the accessible d

range and resolution to the sample state. For texture evalua­
tion from complicated spectra. RTA is introduced as the 
standard method. 

The aim of this paper is, first, to give a short description of 
the upgraded SKAT and its main characteristics and, second, 
to develop criteria for selecting the optimum detector 
geometry for texture analysis from diffraction spectra of 
polymineralic geological samples. We also address the ques­
tion to what extent exposure time can be reduced when using 
RTA for texture evaluation. In contrast to classical OTA based 
on the inversion of only a few pole figures, RTA uses a large 
number of Bragg reflections for the texture computations. This 
directly implies that the number of sample orientations and, 
by this means, bulk exposure time can be reduced without loss 
of information. The limits of such optimization have not yet 
been investigated. Answering all these questions will, first of 
all, characterize the SKAT diffractometer and delineate its 
potential applications. However, the results of the investiga­
tion presented here are of general interest and may be helpful 
to judge the results obtained at other TOF instruments, which 
have already been successfully operated for texture investi­
gations [HIPPO (Wenk et al., 2003) and GEM (Hannon, 
2005)] or are under construction (POWTEX; Conrad et al.,

2008). 

2. The upgraded SKA T

The early SKAT (Ullemeyer et al., 1998) at beamline 7A2 of 
the IBR-2M reactor in Dubna (Russia) was placed at the end 
of an over 100 m long flight path and the detectors were 
arranged at a diffraction angle of 20 = 90°. Along with the
pulse repetition rate of 5 s- 1

, this limited the accessible d

range to dmax � 5 A with a resolution of !:idld = 5 x 10-3 at d = 

2.5 A at best (Ullemeyer et al., 1998). Owing to the usually 
large sample dimensions, the contribution of the 8-dependent 
term in equation (4) is large; hence, high resolution can be 
achieved only by collimation of the secondary beam. 1\vo sets 
of collimators with angular dispersions of 18' and 45' are 
availahle, allowing adaptation of the resolution, the width of 
the pole figure window and the level of diffracted intensity to 
some extent. High resolution and consistent detector 
geometry (i.e. avoidance of .>..- and 0-dependent intensity 
corrections) were the main demands when designing the early 
SKAT; an accompanying loss of luminosity was accepted. 
Owing to these characteristics and to the large beam cross 
section of 50 x 95 mm, many materials - including coarse-
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grained rocks - could be successfully investigated applying 

classical OTA, but the investigation of complicated poly­

mineralic rock samples was mostly impossible. The application 
of RTA leads to an enormous improvement; however, other 

restrictions have to be considered. As already pointed out by 
Matthies et al. (1997), the deconvolution of overlapping 

diffraction peaks may be ambiguous, especially in the case of 

multiple overlaps. This corresponds to our experience from 
many experiments and led to the conclusion that instrumental 

upgrading is the only way for further improvements of the 
SKAT. From equations (1) and (4) above it follows that (a) 

decreasing the diffraction angle () expands drnax at the expense 

of resolution. As many minerals have large volume cells, 

access to more well separated diffraction peaks is possible, and 
(b) increasing the diffraction angle() improves resolution, but 

leads to a decrease of drnax· 
Both possibilities were realized with the installation of two 

new detector systems at diffraction angles of W = 65 and 135°. 

In order to keep the advantage of constant diffraction 

geometry, the detector systems were designed for alternative 

use. The technical realization is such that the detector-colli­
mator units can be exchanged without making subsequent 

adjustment of the collimators necessary. As a further advan­

tage of consistent detector geometry, d range and resolution 
are the same for all detectors during an experimental run. The 

relation of particular d ranges to the wavelength range and to 
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(a) General layout of beamline 7 at the IBR-2M reactor; 7Al, 7A2 and 7B represent the neutron 
guides of adjacent bearnlines. (b} Scheme of the SKAT detector arrangements at various diffraction 
angles 28 for alternative use. The mounting ring of the active detector system is shaded gray. Dots in 
the spherical and pole figure representation indicate scattering vectors at starting position z = 0°. ln 
case of 2(} = 135

° comprising two goniometer positions Y I and Y 2, the pole figure representation 
(equal angular projection) is shown for better visualization of the more complicated spatial 
relationships. 
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the energy distribution is shown in 
Fig. l, and Fig. 2 illustrates the general 

layout of beamline 7 A2 at the IBR-2M 
reactor (Fig. 2a) and the detector 

arrangements at various diffraction 
angles W (Fig. 2b ). The position of the 
detector-collimator units on the rings is 

arbitrary; the example arrangements for 

W = 65°/90° with 19 units correspond to 
a constant pole angle step size of 5°. 

Related spherical representations indi­
cate that a single sample revolution 

around the Z axis is sufficient to 
measure complete pole figures (Fig. 2b). 

In contrast, the W = 135° configuration 
requires two sample revolutions at 

goniometer positions Y1 and Y2 to 

obtain complete pole figures. The 
example arrangement with 13 detector­
collimator units is such that repeated 
measurements in the center and at the 

border of the pole figure, as well as at 
the boundary of the two Debye­

Scherrer cones (Fig. 2b ), are avoided. 
For all detector arrangements the 

overall number of sample directions to 
be measured can be selected via the Z
increment ll.Z. Table 1 summarizes the 

main characteristics of the SKAT and 
applied detectors and collimators, 
including the B-related parameters. 

As indicated by equation ( 4), the 

resolution is best for W = 135 118' 
collimation, approximating t:.dld ::::: 
3.5 x 10-3 at d = 2.5 A. It decreases to 
ll.dld :::: 11 x 10-3 (W = 65°/45' colli-

mation) in the least favorable case 
(Fig. 3). For all detector systems, the 
resolution applying 45' collimation is 

about 25% less compared with 18' 
collimation. However, the intensity gain 
at the collimator exit is about 2.5 times. 
In comparison with the resolution prior 
to upgrading of the SKAT, the resolu-
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Table 1 
General characteristics of the SKAT diffractometer. 

Moderator-sample distance 
eutron guide 

Detectors 

Collimators 

Amu 

Flux at sample position 

I03.244 m 
Cross section: 50 (width) x 95 mm (height) 
Bent, radius: 13 400 m 
Coating: natural Ni (m = I) 
Option: ).-chopper covering every second 

neutron pulse 
3He single tube, P = 4.5 bar= 450 kPa,

060mm 
Soller-type, Gd coated. cross section: 55 x 

55mm 
Two sets with angular dispersions 18' and 45' 
1.4 A 
-urn cm-2 s-1 

II-related parameters 
������������� 

Sample-<letector distance (m) 
dmu (A) 
dmu (A) applying ).-chopper 

option 

28 = 65 

J.041 
6.8 
13.8 

I.OOO 
5.2
10.6

28 = 135' 

1.060 
4.0 
8.2 

tion at present (20 = 90°/18' collimation) shows a small 

decrease and a shift of the resolution function to smaller d

values (Fig. 3). Both effects can be attributed to the replace­

ment of the formerly straight neutron guide by a curved one, 

while the diffracted beam geometry remains unchanged. The 

decrease of resolution is small and corresponds to predictions 

from neutron guide simulations (Manoshin et al., 2009). For 

this reason, the small decrease was accepted when planning 
the upgrade of the SKAT. 

3. Analytical methods

As mentioned above, the objective of this work is to assess the 

influence of resolution, multiple peak overlaps and variability 

of counting statistics in the TOF neutron spectra on the 
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Figure 3 
Experimental resolution of the SKAT. Dots refer to the best possible 
resolution function (28 = 135'/18' collimators), squares to the worst one 
(28 = 65 /45' collimators). For comparison. the resolution prior to 
upgrading of the SKAT (dotted line: Ullemeyer et al .. 1998) and the 
current resolution function for 28 = 90°/18' collimators (triangles) are 
given. 

reliability of RTA-based QTA. RTA allows the exposure time 

to be decreased by reducing the number of sample positions. 

So, some effort was made to define the minimum number of 
sample positions necessary to ensure reliable results for RTA. 

For this purpose three geological samples were investigated. 

Two samples are natural rocks originating from the Eclogite 
Zone of the Tauern Window in Austria (e.g. Raith et al., 1980), 

a monomineralic calcite (Cc) marble (RK17) and a poly­

mineralic eclogite (RK20). The latter has seven mineral 

phases identifiable in thin section. The sample volumes 

applied in the neutron experiment were 43 and 60 cm3
, 

respectively. In both cases the exposure time was 30 min per 

sample position. The two samples were taken to represent the 

lower and upper bounds of spectrum complexity. The third 

sample, termed MIX, was artificially created by summing up 

the TOF spectra of two monomineralic rocks [a quartzite and 

tl;Q) 13111 

Figure 4 
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Summarized diffraction patterns of (a) the artificial (MIX) and (b} the 
eclogite (RK20) sample. normalized with respect to the energy 
distribution. For the eclogite, diffraction patterns with the highest and 
lowest resolution are given. The line patterns indicate peak positions. 
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a dunite consisting solely of forsterite (Fo )] and a marble­
containing calcite and dolomite (Do). The resulting four-phase 
TOF pattern is of intermediate complexity with a moderate 
number of peak overlaps (Fig. 4a), and from the point of 
mineralogical complexity is representative of a large number 
of real rocks. although rocks with the above composition do 
not occur in nature. The reason for creating such an artificial 
sample was that well defined reference textures from the 
monomineralic samples were accessible. RTA performed on 
the individual measurements is considered to approximate the 
true texture in the best possible way, which is, therefore, used 
as a reference for comparison with the results obtained from 
the artificial sample. In the case of the marble it should be 
mentioned that calcite and dolomite do not exhibit over­
lapping reflections at d spacings greater than 1.6 A (Fig. 4a),

i.e. setting this lower limit for RTA avoids mutual influences
between the two phases.

The MIX individual measurements were performed at 2() = 
90°, applying 18' collimation. First of all, the summarized data 
set was used to compare the mineral textures obtained at 
various d ranges, i.e. the results from d ranges with good 
counting statistics but many peak overlaps (small d spacings) 
were compared with the results from d ranges with only a few 
or no peak overlaps but bad counting statistics (large d

spacings). The sample was also used to examine the mini­
mization of sample positions required for RTA. Starting with 
the initial measuring grid (5 x 5°), the sampling increment !).Z

was successively enlarged by removing sample positions from 
the data set, until visual inspection of the recalculated pole 
figures indicated clear differences from the reference texture 
(for a quantitative description of differences in texture see 
below). As the SKAT detectors occupy fixed positions on the 
detector ring, large sampling increments cause scattering 
vector arrangements on the pole sphere that are far from an 
equal area arrangement (compare with Fig. 2b). Hence, the 
results of grid thinning are, first of all, specific to the SKA T and 
grid effects cannot be excluded. In order to obtain information 
on possible grid effects, thinning of the measuring grid was 
also done in such a way that the remaining sample directions 
are closest to a hexagonal grid with approximately the same 
number of sample directions as the optimized grid. Thereby, 
an approximately equal area arrangement is achieved and the 
results may be compared with the results of the standard grid 
thinning procedure. 

In the case of the monomineralic marble sample (RKl 7), a 
large potential to reduce the number of required sample 
positions was expected. The measurement was performed at 
W = 135°, which requires two goniometer positions Y 1 and Y2 

to obtain complete pole figures (see Fig. 2b ). The measuring 
strategy considered that position Y I covers approximately 
30% of the pole sphere surface, and position Y 2 approximately 
70%. Consequently, the sampling increment !).Zin the central 
part of the pole figure was twice the increment in the outer 
part (30 and 15°), and the reduction of sample positions was 
done accordingly. Likewise, as for sample MIX, the starting 
grid was also thinned to approximate a hexagonal grid in order 
to assess grid effects. 

The eclogite sample (RK20 mainly consists of omphacite 
(Orn). almandine (Al) and glaucophane (GI), and to a lesser 
extent of quartz (Qz), muscovite (Mus), al bite (Alb) and rutile 
(Ru). The large number of phases and, in part, their low 
crystal symmetries lead to many peak overlaps in the spectra 
at small d spacings (Fig. 4b ). To give examples, the d range 1.2-
2.4 A hosts 1424 reflections but the d range 2.1-4.0 A a much 
smaller number (294) of reflections. In order to detect texture 
differences between high- and low-resolution measurements, 
the sample was measured twice with the highest and lowest 
resolution applying detector configurations 2() = 135°/18' 
collimation and 2() = 65°/45' collimation, respectively (see 
Fig. 2b ). In contrast to sample MIX no reference textures were 
available. In order to define a reference measurement in the 
best possible way, we checked R indices of the high-resolution 
RTA fits on various d ranges in order to find a reference (for 
details refer to §4.3). Subsequently, the reference textures 
were compared with the other texture estimates. 

RTA was performed using the MAUD software (Lutterotti 
et al .. 1997; Wenk et al., 2010). Initially, the significant instru­
ment parameters - total flight path, accuracy of the collimator 
alignment, detector efficiency and instrumental peak shape -
were calibrated using precipitated calcite as a standard. The 
lattice parameters were proven independently by means of 
Rietveld refinement on X-ray diffraction data. A vanadium 
sample was used to determine the energy distribution (Fig. 1), 
which is used to normalize the diffraction spectra prior to 
RTA. For the texture evaluation the EWIMV algorithm was 
applied (Wenk et al., 2003). EWIMV is able to handle irregular 
pole figure grids and, for this reason, was the method of choice 
for our investigations. The resolution in Euler space was 
selected close to the angular resolution of the SKAT, and 
always below or equal to 15°. This ensured an orientation 
distribution function (ODF) coverage of 100%; however, one 
should be aware that in the case of extremely thinned 
measuring grids the number of ODF bits may differ greatly 
(Wenk et al., 2010). For texture evaluation, useful parameters 
to be refined in the Rietveld step of RTA were the crystal 
lattice parameters, the peak shape by means of the micro­
structural parameters microstrain and crystallite size, the 
phase fractions, and the temperature coefficient B [for details 
on particular parameters refer to the paper by Wenk et al.

(2010)]. The latter is considered to be isotropic and equal for 
all atoms of all phases. As normalized spectra are used for 
RTA, the background trend (individually adapted to each 
spectrum) could be described sufficiently well by a second­
order polynomial. 

Textures are mostly interpreted on the basis of pole figures. 
Consequently, the quantitative description of texture differ­
ences is based on pole figure differences ('difference pole 
figures') 

(a, f3 are the inclination, azimuth of sample directions) and 
mean RPl values (%) 
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Table 2 

RPlmean values(%) of sample MIX, based on the pole figures in Fig. S(a).
12.23) with pole density maxima always

Values in parentheses indicate the RPl range; 0 is the average RPlmcan of all phases. (a)

Obtained from RTA applying various d ranges. {b) Results of grid thinning, related to sampling 
increment AZ and bulk number of sample directions (n).

exceeding 3.0 m.r.d. and forsterite (!2 
= 3.01)

with pole density maxima always greater than
2.0 m.r.d. 

Judging RPlmean values obtained from RTA
(a) 

d range (A) Quartz Calcite Dolomite Forsterite 0 

1.0-4.3 8.5 (6.3-11.7} 5.2 (4.2--M) 
J.(}...2.3 25.9 (13.9-54.2) 9.8 (6.8-14.7) 
1.7-3.0 17 .6 (7 .2-45.8) 8.3 ( 4.6-11.7) 

4.3 (2.4-7.2) 
15.9 (7.1-29.5) 
4.9 (3.3-7.7) 

5.5 (2.2-10.1) 
16. 7 ( 12.5-20.5)
5.9 (4.3-9.1)

5.9 
17.1 
9.2 
6.8 

on various d ranges, the best results are
achieved using the whole d range (1.0-4.3 A),
yielding magnitudes of 4.3-8.5% and an
average 0 of 5.9% (see Table 2a). For several
Bragg reflections, the intermediate section
(1.7-3.0 A) leads to lower RPl values2.2--4.3 9.1 (6.6-14.2) 5.4 (3.2-7.3) 5.7 (3.6-8.5) 6.8 (4.2-11.4)

(b) 

compared with the whole d range [Oz (110), Do
AZ n Quartz Calcite Dolomite Forsterite 0 

(110), Fo (002), Fo (010)]. However, this never
holds true for RPlmean, which is always minimal
for RTA considering the whole d range.
Nonetheless, RTA using the intermediate
section also yields good results, with RPlmcan ranging from 4.9 to 17.6% and 0 = 9.2%.
Considering the d range from 2.2 to 4.3 A

10 684 16.5 ( l0.5-33.4) 9.5 (5.(}...13.1) 5.0 (3.3-7.8) 5.4 (4.0-7.5) 9.1 
10.9 
13.7 

13.8 
12.7 

20 342 20.4 ( 13.(}...38.5) 10.3 (6.3-15) 6.1 (4.4-10.3) 6.9 (5.8-8.8) 
30 228 29.7 (20.7--49.4) 
45 152 29.0 ( 19.9-47.0) 
Hexagonal 301 24.4 (20.6-282) 

10.3 (7.1-13.5) 
10.6 (6.9-16.4) 
BA (5.5-12.5) 

6.0 ( 4.5-8.5) 
6.5 {4.8-9.4) 
6.2 (4.4-9.7) 

8.7 (6.7- l0.3) 
8.9 (5.8- l0.9) 
11.8 ( I 1.7-12.0) 

I RPlmean = L RPl;/ I (6) 
i=I 

(I is the number of pole figures considered). RPl values are
derived from relative deviations rhlc1(a, /3) of the pole figures to
be compared; 

RPl = B(x)rhkt(a. /3).
where B(x) represents a selecting function.

B(x) = { � for {: � ;

(7)
(8)

(9)
(1 is the random pole density). For the definition of RP values
in general refer to the paper by Matthies et al. (1988). The
unique estimation of RPl mcan should consider all recalculated
pole figures of a mineral phase. In practice. only a few pole
figures that are important for the interpretation of the texture
were used (refer to the description of the results). Indirect
information on the reliability of RTA comes from variations of
the texture indices obtained from different RTA runs, and
from parameters related to the Rietveld refinement step in
MAUD, as there are fluctuations of lattice parameters and
volume fractions in the polymineralic rock samples. 

4. Results

4.1. MIX sample 

All reference textures derived from the individual
measurements show clearly preferred orientations of the
lattice directions used for the computation of difference pole
figures (Fig. Sa). The weakest textures are evident for calcite
and dolomite, as indicated by texture indices J2 (Matthies et
al., 1988) of 2.21 and 1.67, respectively, and pole density
maxima mostly less than 2.0 multiples of random distribution
(m.r.d.). Rather strong textures are shown by quartz (J2 =

produces RPlmean values ranging from 5.4 to
9.1 % and an average 0 of 6.8%. This is close to the magni­
tudes obtained when using the whole d range (see Table 2a).
Generally, the largest discrepancies with the reference
textures are obtained for the range 1.0-2.3 A, yielding
RPlmean values of 9.8-25.9% and 0 = 17.1 %. 

As the large number of pole figures and difference pole
figures prevents easy visualization of all results, Qz (110) was
chosen for illustration. The principal characteristics of parti­
cular difference pole figures are representative for most other
Bragg reflections; exceptions will be noted. Moreover, the Qz
(110) pole density distribution has several maxima and,
therefore, displays textural changes more clearly than pole
density distributions with only a single maximum. Mostly, the
reference pole figure generated from RTA of the individual
sample (Fig. Sa) bears a strong resemblance to the pole figures
and difference pole figures generated from RTA of the MIX
sample (Fig. Sb). Positive deviations in the difference pole
figures usually yield intensities greater than 1.0 m.r.d., i.e. the
degree of preferred orientation obtained from the MIX
sample is smaller than the reference. Exceptions are Fo (002)
and Fo (200), where the relationship is vice versa (see
Discussion). The positive variations in the difference pole
figures are always found at the location of the maxima of the
pole figures, whereas the smaller negative variations are also

found at locations varying from the maxima. e.g. close to the
center of the pole figure (Fig. Sb). The difference pole figuresreflect the RPl mean magnitudes and exhibit fairly low differ­
ences of the textures gained at intermediate and high d
spacings, as well as RTA using the whole d range. In contrast.
usage of only small d spacings produces the largest differences,
usually in the positive range (Fig. Sb). 

Grid thinning by increasing the sampling increment liZ
generally creates higher RPl mean values (Table 2b). The best
results are achieved for a starting grid with !iZ = 5° , corre­
sponding to 1368 sample directions (RPlmcan = 4.3-8.5%, 0 =

5.9%; Table 2a), while the highest values are yielded for !iZ = 

45° (RPlmcan = 6.5-29.0%, 0 = 13.8%). The only exception is
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quartz, where 30� increments cause the highest magnitudes of 
RPl mean

· Remarkably, the wide range of RPl values for quartz 
are caused by the (003) lattice plane, which always produces 
the maxima of RPl. RPl

mcan 
values for a comparable hexa-

Figure 5 

(a) 

Qz (110) 

(b) 

(c) 

(a) Recalculated pole figures of the artificial sample (MIX) representing the reference
textures of calcite (Cc), dolomite (Do), forsterite (Fo) and quartz (Qz). The maximum pole
density and/or the contour interval are given at the bottom left of the pole figures: grid
points indicate intensities <1.0 m.r.d. (b) Recalculated and difference pole figures of quartz
{110) applying different d ranges; c.i. indicates con1our intervals. In the difference pole
figures (t..P), grid points indicate intensities <0.0 m.r.d. (c) Recalculated and difference
pole figures (t..P) of quartz (110) resulting from grid thinning tests. Always. intensities are 
multiples of a random distribution (m.r.d.) and the pole figures are given for a regular 5 x 
5° grid.
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gonal grid comprising 301 sample directions 
show magnitudes similar to the one obtained 
for 20 and 3ou sampling increments, for which 
342 and 228 grid points. respectively, were used 
for the calculation. 

All pole figures up to a sampling increment 
of ll.Z = 20° display a fairly strong visual 
similarity to the reference pole figures, but the 
pole density maximum is slightly weaker. 
Correspondingly, the maxima in the difference 
pole figures agree with the maxima in the pole 
figures (Fig. Sc). There is also a visual similarity 
for sampling increments greater than 20°, but 
the pole density maxima are much weaker and, 
consequently, the maxima in the difference 
pole figures are higher. This holds true for the 
quartz reflections (Fig. Sc) and Fo (040) and Fo 
(200) only, while all other reflections do not
show a clear trend. Do (012) and Do (104)
show progressively higher maxima when using
a more thinned-out grid, i.e. the trend is
inverted, as well as the pole density distribu­
tions in the difference pole figures. Further-
more, with increasing sampling increments, the
maxima always broaden and become less
precise (Fig. Sc).

4.2. Marble sample RKl 7 

The results obtained from sample MIX 
indicated that a rather small number of 
diffraction spectra should be sufficient for a 
reliable texture evaluation of monomineralic 
samples. Thus, the marble sample was initially 
measured with 15° increments in the outer part 
of the pole figure and 30° increments in the 
center (in the following abbreviated as 15°/ 
30"). This full grid results in 468 spectra 
employed for the RTA, and this particular 
texture was used as baseline for the grid thin­
ning. Just as for sample MIX, RPlmcan calcu­
lation of calcite is based on reflections (006). 
(012), (104) and (110). The reference texture is 
weak (/2 = 1.23) and the type of texture is the 
same as for sample MIX (refer to Fig. Sa) and. 
therefore, not shown here. 

As expected, RPl mean increases with 
increasing sampling increment t:.Z and, corre­
spondingly, fewer spectra (Table 3). Applying 
l:l.Z = 3W/60° (234 spectra) and ll.Z = 45 /90 
(156 spectra) yields very low RPlmcan values of 
2.2 and 3.5%, respectively. Further reduction 
using t:.Z = 60 /120 {117 spectra) provides 
RPlmean = 4.6%, and for ll.Z = 90°/180 {78 
spectra) a rather low RP1 mcan of 7.0% is 
achieved {Table 3). 
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Table 3 
Texture strengtbs/2 and RPlmcan values(%) of the calcite marble sample 
( R K 17) for various grids. 

Values in parentheses indicate RPl ranges. The grid thinning is described by 
the sampling increment 6.Z in the outer/inner part or the pole figure and the 
bulk number of sample directions (11). 

6.Z () n l RPlmean 

15/30 468 1.23 
30/60 234 1.25 2.2 (1.5-4.3) 

45/90 156 1.35 3.5 (2.2---0.3) 
60/120 J 17 1.44 4.6 (2.4-8.4) 
90/180 78 1.55 7.0 (4.5-11.8) 
Hexagonal 127 1.31 4.5 (3.0---0.5) 

Calcite (003) was chosen to illustrate the effects of grid 

thinning. The reference pole figure of Cc (003), for which 15°/ 

30" sampling increments were used, shows a single pole 

density maximum of 2.5 m.r.d. slightly to the left of the center 

(Fig. 6). The maximum pole density increases using a 

progressively thinned-out grid. This is the case for reduced 

sample increments, as well as for reduced hexagonally 

arranged grid points. It also holds true for all other relevant 

pole figures of the sample. The pole figures calculated for a 

30"/f'JIJ' 45'/90° 

90'/180" 

Figure 6 
Calcite marble sample: recalculated and difference pole figures (6.P) of 
calcite (006) for successively thinned-out measuring grids. The sampling 
increment in the outer/inner section of the starting(= reference) grid was 
6.Z = 15 /30 . The maximum pole density and/or the contour interval are 
given at the bottom left of the pole figures; c.i. indicates the contour 
interval. and grid point in the recalculated and difference pole figures 
indicate intensities <LO and <0.0, re pcctively. 

thinned grid using 30°/60° and 45°/90° sampling increments 

exhibit a strong visual similarity to the reference with the same 

location of the pole density maximum. For the grid with 60°/ 

120° sampling increments. the calculated pole figure displays a 

second maximum to the lower left of center. A third maximum 

to the upper right of the center is produced using the 90°/180° 

grid. For the hexagonally thinned-out grid, the pole figure is 

visually similar to the reference (Fig. 6). 

Difference pole figures exhibit larger positive as well as 

negative ranges for progressively Larger sample increments. 

For sampling increments of 90° /180° and 60°/120°. the negative 

ranges are larger than the positive. This is also the case for 

other pole figures, with the exception of (104), where negative 

and positive ranges are of similar magnitude in all difference 

pole figures. 

The hexagonal grid comprises 127 spectra and is close to the 

number of sample directions resulting from 45°/90° and 60°/ 

120° sampling increments (156 and 117, respectively; Table 3). 

It yields an RPlmcan value of 4.5% (Table 3). The pole figure 

exhibits a visual similarity to the reference, but the maximum 

is likewise higher for the reference (Fig. 6). Furthermore, 

equally larger negative and positive ranges occur in the 

difference pole figure. 

(a) 

(b) 
Figure 7
Omphacite (003) pole figures and respective difference pole figures (6.P) 
of the eclogite sample. Results obtained from different d ranges at high 
(RK20 HR) and low (RK20 LR) resolution were compared. The 
maximum pole density and/or the contour interval are given at the 
bottom left of the pole figures: c.i. indicates contour interval, and grid 
points in the recalculated and difference pole figures indicate intensities 
<1.0 and <0.0, respectively. 
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Table 4 
RPlmcan values (%) of the main constituents of the eclogite sample 
(RK20). 

Values in parentheses indicate the RPI range. 0 is the average of all phases. 
HR and LR indicate the high· and low-resolution measurements, respectively. 

d range 
(A) Omphacite Glaucophane Quartz 0 

HR 

l.2-4.0 7.8 (55-11.5) 2.3 ( 1.1-4.3) 10.3 (3.3-15.4) 6.8 

1.2-2.4 10.0 (5.4-14.6) 6.5 {2.4-10.2) 5.1 (3.4-9.0) 7.2 
2.1-4.0 5.5 ( 4.4-8.5) 3.7 (2.0-5.3) 8.5 (6.2-12.5) 5.9 
LR 

1.2-5.0 19.9 ( 12.0-26.4) 9.1 (7.7-1 l.9) 14.0 (5.3-20.9) 14.3 
1.2-2.6 14.9 (9.8-24.7) 15.1 (6.6-22.5) 6.4 {4.&-9.7) 12.l 
2.0-3.5 10.8 (5.&-15.9) 7.8 (5.5-9.8) 16.7 (7.7-29.5) 11.8
2.1-5.0 20.8 (16.&-23.2) 8.9 (8.4-9.6) 12.7 {6.1-17.1) 14.1

GI (008) 1.a..3.2 (merence) 

8 
.. } 

� l '"' 

c.l. •O 15 

(a) 

4.3. Eclogite sample RK20

As has been mentioned above. identification of the refer­
ence textures for comparison of the high- and low-resolution 
measurements of the eclogite sample (RK20) is largely based 
on judgment of the residuals of RTA. In the following R

wp 

values are used because of their independence of scattered 
intensity (e.g. Von Dreele, 1997). The much better peak 
separation of the high-resolution measurement must lead to 
better results (see Fig. 4b); hence, we compared R

wp 
values of 

RTA fits on various d ranges of the high-resolution 
measurement in order to identify the reference. The inter­
mediate d range (1.8-3.2 A) yielded the best results (R

wp 
= 

20.9% ), whereas the other fits delivered somewhat higher 
residuals (1.2-4.0 A: R

wp 
= 24.2%; 2.1-4.0 A: R

wp 
= 27.3%). 

Use of the d range between 1.2 and 2.4 A 
yielded an R..,.T> 

= 14.9%, but because of 
many overlaps the texture calculations are 
not considered very reliable (see later 
discussion). As other independent criteria 
are missing, the intermediate d range is 
taken to provide the reference textures. 
However, it has to be emphasized that the 
reference textures do not necessarily 
correspond to the true textures. For 
subsequent comparison of the textures, 
omphacite, glaucophane and quartz were 
considered (with quartz representing a 
minor rock constituent of approximately 
10%). Almandine. which has random 

Qz (110) 1.2-'.0 
crystallographic orientation in the ample, 
and phases making up only small volume 
fractions were neglected. 

·sIQ..,,.

c.l •O 1 

(b) 

Figure 8 
(c) 

.(['\ 
� 

Examples for pole figures showing inconsislenl pole density distributions. (a) Gl {008) and Orn
(030) from the eclogite high-resolution experimenL (b) Qz (003) from the eclogite high resolution
experiment. (c) Qz (003), GI (008) and Orn (030) from the eclogite low resolution experiment.
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The reference textures of omphacite 
and glaucophane show clearly preferred 
orientation of the lattice directions, with 
pole density maxima of 1.62-2.76 m.r.d. 
and 1.41-3.75 m.r.d., respectively. The 
texture strengths f2 are 1.57 for omphacite 
and 1.70 for glaucophane. Weaker 
textures are evident for quartz with 
maxima of 1.17-1.41 m.r.d. and texture 
indices f2 up to 1.07. Comparing the 
reference textures to other high-resolu­
tion te:>.1:ures for different d ranges yields 
RPl mean values between 2.3 and 10.3%. 
The averages of all phases are in the range 
5.9-7.2% (see Table 4). There is no 
consistency concerning the best value. For 
omphacite it is 5.5% derived from the d
range 2.1-4.0 A, for glaucophane the 
minimum of 2.3% refers to the whole 
spectrum (1.2-4.0 A), while quartz shows 
5.1 % for the d range 1.2-2.4 A (Table 4). 
With regard to low-resolution textures, 
the general range of RPl mean is 6.4-
20.8%. The averages of the phases have a 
range 11.8-14.3%. This is approximately 
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twice the value of the high-resolution measurements. The 
lowest RPl

mcao 
values are mostly seen when considering the 

intermediated range (omphacite: 10.8%; glaucophane: 7.8%). 
except for quartz with an RPl

mean value of 6.4% for the d

range 1.2-2.6 A (Table 4). 
The omphacite (003) pole figure with a clear maximum 

close to the center is appropriate to illustrate that the 
maximum pole density in the difference pole figures of high­
resolution measurements frequently coincides with the 
maximum pole density in the reference pole figure, whose pole 
density is generally higher (Fig. 7). The smallest deviations 
from the reference are obtained for the d range 2.1-4.0 A, 
which also finds its expression in the difference pole figure 
(Fig. 7). For other d ranges, deviations are up to 0.6 m.r.d. from 
the reference. This similarity holds true for most other pole 
figures of omphacite and glaucophane, with the exception of 
Gl (008), which sometimes develops a second maximum in the 
center of the pole figure, and Orn (030), which exhibits a 
secondary maximum in the reference. The latter is missing in 
the pole figures recalculated from the whole d range and high 
d range RTA runs (Fig. Sa).

At high resolution, quartz (011) and (101) textures reveal 
strong visual similarities for all d ranges. In contrast, the Qz 
(003) reference pole figure displays the maximum pole density
at the margin of the pole figure, whereas the maximum
resulting from RTA applying the whole spectrum (1.2-4.0 A)
is shifted towards the center. Accordingly, Qz (110) displays a
single maximum close to the center of the reference pole
figure and, in contrast, a maximum at the margin of the pole
figure when the whole d range is considered (Fig. Bb ).
However, the textures are weak, as indicated by pole density
maxima around l.2 m.r.d.

Concerning the low-resolution measurements, the inter­
mediate d range (2.0-3.5 A) of the omphacite and glauco­
phane pole figures exhibits a strong visual similarity to the 
respective reference pole figures. This is not the case for 
quartz. The example difference pole figure of Orn (003) shown 
in Fig. 7 yields positive deviations up to 0.52 m.r.d. and 
negative deviations down to -0.86 m.r.d. Such deviations are 
typical for the other pole figures as well. All the other RTA 
runs show obvious visual discrepancies and the difference pole 
figures usually yield higher positive deviations. This holds true 
for all other relevant Bragg reflections. For Orn (030) and Gl 
(008). the pole figures for particular d ranges display extre­
mely strong visual discrepancies with a strong maximum in the 
center of the pole figure. Qz (003) exhibits discrepancies to the 
reference for all d ranges at low resolution. In all cases, the 
maxima are no longer at the periphery of the pole figure. 
However, the quartz textures in low-resolution measurements 
are similar to each other (Fig. 8c) and the texture indices J2 are 
generally higher than the reference (/2 up to 1.33). 

5. Discussion

For the evaluation of textural differences it has to be kept in 
mind that several sources contribute to RPl magnitudes. 
These are differences in texture strength, orientation differ-

ences and superimposed noise. Hence, the global parameter 
RPl carries only limited information on texture differences, 
except when it is very small. Difference pole figures are 
capable of providing more detailed information on texture 
variations: if the contour pattern of the difference pole figure 
resembles the pole figure patterns to be compared, RPl 
magnitudes are largely due to differences in texture strength. 
If not, orientation differences contribute to particular 
magnitudes. The discussion now focuses mainly on these 
reflections, but, as stated above, parameters like J2 magni­
tudes, estimated volume fractions and fluctuations of the 
lattice parameters bear information on the reliability of RTA 
as well and will also be considered in the following. 

This paper does not include a general discussion of counting 
statistics, which applies to any diffraction experiment. As the 
use of neutrons is very expensive, the exposure time is usually 
selected to be close to the minimum required to obtain suffi­
cient counting statistics. The individual spectra of two of our 
samples given in Fig. 9 illustrate the level of noise, which 
according to our experience is acceptable for the purpose of 
texture analysis at the SKAT. However, in a strict sense, the 
transfer of our results to other T OF neutron instruments 
implies a comparable level of noise for particular measure­
ments. The comparison of texture measurements on a gneiss 
rock sample at the SKAT and HIPPO reveals that, despite 
significantly worse Rwp indices of the RTA fit performed on 
the SKAT data, the textures are very similar (Wenk et al.,

2012). We, therefore, suppose that variation in counting 
statistics bas only a slight effect on the estimated textures. 

5.1. RTA using various d ranges 

For sample MIX, only minor variations of texture strength 
J2 are observed, except for the d range 1.0-2.3 A, which 

1000 

I 
?:-

500 "iii 

Figure 9 

RK20 

500 1000 1500 

Time of flight c·54 µs) 

2000 

Individual diffraction patterns of the monomineralic marble (RK 17) and 
the polymineralic eclogite (RK20). illustrating the noisy patterns and the 
high background level of the eclogite. The exposure time was 30 min. 
Because of the different diffraction angles, the intensity is given as a 
function of time of night instead of d spacing. 
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Table 5 

Variation of texture strength f2 and volume fractions of sample MIX as a 
function of the applied d range and grid step size t:,.Z. 

Fo: forsterite: Qz: quartz; Cc: calcite; Do: dolomite. 11 is the bulk number of 
sample directions. 

f2 Vol.% 

Fo Oz Cc Do Fo Oz Cc Do 

Reference 3.01 12.23 2.21 1.67 

d range (A) 
1.0-4.3 2.76 7.66 1.88 1.51 25.8 32.1 27.8 14.4 
1.0-2.3 1.82 4.59 1.13 1.60 23.6 31.0 28.2 17.2 
1.7-3.0 3.26 9.06 2.08 1.60 26.6 34.8 24.8 13.9 
2.2-4.3 3.45 9.55 2.46 1.80 29.7 31.2 26.5 12.6 

AZ II 

100 684 3.08 9.12 2.01 1.49 26.8 34.2 25.1 14.0 
20° 342 3.02 8.11 1.89 1.47 27.1 34.0 24.8 14.1 
30 228 3.36 5.74 1.91 1.45 26.8 31.3 27.2 14.6 
45 152 3.24 5.38 2.04 1.49 27.5 30.6 27.2 14.7 
Hexagonal 301 2.53 5.34 1.80 1.37 27.2 28.2 JO.I 1-1.4 

generally indicates much weaker magnitudes of [2 (Table 5). 
The only exception is dolomite, showing arbitrary scattering of 
[2. This is probably due to the rather low volume fraction of 
dolomite (12.6-17.2%; Table 5). It appears that the large 
number of peak overlaps (the d range 1.0-2.3 A contains 312 
Bragg reflections), or in other words the absence of isolated 
peaks, reduces texture strength. Texture factors derived from 
overlapping peaks are generally not unique (Matthies et al.,

1997). However, texture strength does not necessarily 
diminish as a consequence of peak overlaps. Variance tests 
confirm that the applied Rietveld algorithm does not constrain 
the texture factors of overlapping peaks (Matthies et al., 1997). 
Consequently, there is no implied explanation for the 
observed consistent reduction of texture strength. The varia­
tion in volume fractions of the different phases obtained from 
various RTA runs is 3.4-6.1 %. Variations are arbitrary 
(Table 5) and, therefore, do not allow any correlation. The 
lattice parameters exhibit a maximum deviation of 0.026 A 
from the reference. Such a small deviation should not be 
interpreted in terms of strain because of the low counting 
statistics of the texture experiment (see discussion below), but 
indicates that the Rietveld refinement did not get out of 
control. 

Judging difference pole figures, coinciding maxima apply to 
almost all pole figures of all phases [see the example of Qz 
(110) in Fig. 5(b )], so that RPl

mean magnitudes mainly
represent differences in texture strength. As mentioned above,
the smallest deviations from the reference occurred when
using the intermediate and high lattice spacing ranges (1.7-3.0
and 2.2--4.3 A), whereas the d range 1.0-2.3 A consistently
leads to higher RPl mean 

values. The only exceptions to this
observation are Cc (012) and Cc (104), where the intermediate
d range exhibits slightly higher values than the small d spacing
range. The increase of RPlmean corresponds to decreases of
the texture strength [2. The d range 1.0--4.3 A includes 344
Bragg reflections in total with an average RPl

mcan 
of 5.9%,

whereas the range 1.0-2.3 A includes 312 reflections with an

Table 6 

Variation of texture strength f2 (Orn, 01, Qz) and volume fractions of all 
constituents of the eclogite sample (RK.20) as a function of the applied d 

range. 

HR and LR indicate the high- and low-resolution measurements. respectively. 
Orn: omphacite; GI: glaucophane; Qz: quartz; Gt: garnet; Rut: rutile; Mus: 
muscovite; Alb: albite. 

f
2 Vol.% 

d .range 
(A) Orn GI Qz Orn GI Qz Gt Rut Mus Alb 

HR 
1.2-4.0 1.37 1.65 1.07 42.3 19.7 7.2 24.1 1.1 2.4 3.1 
1.2-2.4 1.26 1.44 1.02 43.7 20.2 65 26.8 0.9 0.6 1.4 
1.8-3.2 1.57 l.70 1.07 38.9 18.3 6.9 21.6 1.0 6.0 7.3 
2.1-4.0 1.58 1.74 1.17 42.4 19.7 6.7 23.9 1.1 3.5 2.7 
LR 
1.2-5.0 1.10 1.42 1.13 38.2 23.4 4.1 20.7 2.4 10.1 1.2 
1.2-2.6 1.29 1.15 1.04 38.6 18.5 9.2 22.6 3.5 0.3 7.4 
2.0-3.5 1.68 1.66 1.33 41.8 19.8 7.2 24.1 4.6 0.5 2.0 
2.1-5.0 1.15 1.58 1.33 38.9 24.3 3.8 20.0 3.3 8.2 1.5 

average RPl mcan of 17.1 %. The overall number of reflections 
is comparable, but in the second case isolated reflections are 
almost completely absent (see Fig. 4a). Obviously, the lack of 
isolated reflections for the RTA has a significant influence on 
the results of RTA. 

In summary, it appears that almost all examined d ranges of 
sample MIX are suitable to derive the textures of all consti­
tuents with sufficient accuracy. Care must be taken when the 
number of peak overlaps becomes very large and no, or only a 
few, isolated peaks are accessible. This is generally the case for 
the d range 1.0-2.3 A. Despite higher diffracted intensities, i.e.

better counting statistics (see Fig. 1), the large number of 
overlaps appears to be a limitation, as indicated by signifi­
cantly worse RPl

m
c

a
n magnitudes and diminishing tex1ure 

strength. Weak textures might still be useful for geological 
interpretations, since maxima positions are usually interpreted 
in terms of strain geometry and deformation kinematics (e.g. 
Schmid & Casey, 1986; Law et al., 1990; Trullenque et al., 2006; 
Keller & Stipp, 2011). However, the prediction of ani otropic 
physical rock properties depends on such quantities and may 
be influenced in a negative way. 

For the high-resolution RTA runs of the eclogite sample 
(RK20), the texture strength [2 of the main rock constituents 
omphacite, glaucophane and quartz is minimal for the small 
lattice spacing range (1.2-2.4 A). The texture strength shows 
the same relationship with the number of peak overlaps as 
sample MIX (Table 4). Such a consistency was not observed 
for the low-resolution runs, where the minimal texture 
strength of omphacite (the dominant rock constituent) 
belongs to the d range 1.2-5.0 A (/2 = 1.10, see Table 6). The 
scattering of estimated volume fractions seems acceptable for 
the main constituents; however, the minor rock constituents 
muscovite and albite show much larger variabilities. In parti­
cular, the muscovite volume fractions range from 0.3 to 10.l %. 
both extreme values in association with low-resolution RTA 
(see Table 6). The observations on texture strength and esti­
mated volume fractions indirectly indicate that RTA on 
polymineralic materials has limitations. in particular, if the 
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resolution is low. In contrast, such an obvious conclusion 
cannot be drawn from the small variability of lattice para­
meters of the main rock constituents, which is :::0.06 A for the 
crystallographic axes and :::0.36° for the monoclinic angles of 
omphacite and glaucophane. The maximum variability is 
always associated with low-resolution RTA. supporting the 
notion that good spectral resolution is advantageous. 

Hence, it is not surprising that pole figure differences for the 
eclogite sample (R.K20) are considerably larger than for 
sample MIX. Regarding high-resolution RTA performed on 
various d ranges, the recalculated pole figures exhibit coin­
ciding maxima in the majority of cases [see the example of Orn 
(003) in Fig. 7]. In this case texture strength is always
comparable to the reference, although generally a bit higher.
However, there are some exceptions [see examples in Figs. 8(a)
and 8(b )]. The causes of such differing pole figure maxima are
not necessarily true texture differences. For example. the pole
density maximum in the center of the GI (008) difference pole
figure (considered d range: 1.2-2.4 A) might be an artifact
caused by the weighting scheme, which is applied to balance
the large number of sample directions in this pole figure
region (Fig. 8a). The differences found in the quartz pole
figures are less well interpretable (Fig. 8b). Bearing in mind
that the quartz texture is not very strong and the volume
fraction is approximately 10%, this texture estimation may be
erratic. The similarity of Qz (003) textures derived from the
whole d range {l.2-5.0 A) RTA with Qz (003) pole figures
recalculated from low-resolution data may indicate that the
reference texture (high resolution, d range: 1.8-3.2 A) is not
the true texture.

For the low-resolution measurement, the pole figure 
differences of omphacite and glaucophane become significant 
[see the examples in Fig 8(c)]. Several pole figures exhibit 
maxima that do not coincide with the reference, or exhibit 
additional maxima missing in the reference pole figure. Gl 
(008) and Orn (030). which also showed larger differences in
the high-resolution measurements, exhibit such maxima in the
center of the pole figures; this holds true for all d ranges. As
above. we have to state that such maxima may be artifacts. Qz
(003) displays a visual similarity to the pole figure obtained
from the whole d range RTA at high resolution, which in this
case might in fact be the better texture estimate.

As expected, texture analysis of a seven-phase sample 
containing several phases with low crystal symmetries is not as 
consistent as in the case of sample MIX. Mostly, coinciding 
maxima, relatively low variations of J2 values and similar 
lattice parameters for all d ranges, however, show that for the 
main constituents the results of texture analysis are reliable, if 
the measurement is made at high resolution. Many deviations 
in the texture analyses measured at low resolution, however, 
show that this setup is not suitable for a sample of such 
complexity. 

5.2. The effect of grid thinning 

The grid thinning tests are independent of counting statis­
tics and the effect of overlapping peaks, because the d range 

used for RTA is always the same. There are two possible 
reasons why the removal of sample directions goes along with 
smoother textures. Firstly, the resolution in orientation space 
has been reduced in order to approximate the angular reso­
lution of the instrument. Secondly. texture maxima are not 
necessarily hit, or poorly characterized by the thinned grid. In 
particular, sharp textures can be falsified in the case of 
excessive grid thinning. In contrast to classical QTA, RTA uses 
a very large number of Bragg reflections for the texture 
computations. This significant increase of input information 
may be able to compensate the effects of incompletely 
described pole figures, as discussed in the following. 

For sample MIX, the effect of grid thinning on the textures 
can be demonstrated best by means of the forsterite and 
quartz textures with rather different texture strength of the 
reference textures (/2 = 3.01 and 12.23, respectively, Table 5). 
All the important pole figures of forsterite show broad 
maxima (Fig. Sa), and the effect of grid thinning on texture 
strength is minor (3.02-3.36, Table 5). In contrast, the quartz 
texture is more complicated, displaying several sharp maxima 
in the pole figures (Fig. Sa). The grid thinning leads to a 
consistent decrease of texture strength down to J2 = 5.38 for 
llZ = 45° (Table 5). The correlation of J2 and llZ is obvious 
and reasonable. The variability of estimated volume fractions 
as a function of llZ is small (Table 5) and disparities of the 
lattice parameters are of the order of 10-3 A, indicating that
the fit did not get out of control. The difference pole figures 
should deliver significant information to decide whether the 
texture estimates are similar or not. For all phases, sampling 
increments llZ up to 20° exhibit strong similarities to the 
reference textures, and only small deviations from the 
maximum intensities in the pole figures are apparent [see the 
example of Qz (110), Fig. 5(c)]. Exceptions are Do (012) and 
Do {104). where inconsistent scattering of the pole figure 
maxima as a function of llZ are observed. This probably 
results from the low volume fraction of dolomite. For sampling 
increments greater than 20 all phases show abrupt drops in 
the maximum pole density of most pole figures (Fig. Sc). 
Correspondingly, the maximum in the difference pole figure 
increases and the maxima of the pole density distributions 
appear to be significantly wider (Fig. Sc). These observations 
let us conclude that a sampling increment of llZ = 20° appears 
to be a reasonable Limit, which ensures reliable texture esti­
mates for samples constituting a medium number of mineral 
phases. 

The monomineralic calcite marble sample (RKl 7) produces 
low J2 values and very small fluctuations of the lattice para­
meters with variations of !lZ. In contrast to sample MIX, J2 
consistently increases with increasing sampling increment 
{Table 3). The same holds true for RPl mean (Table 3) and the 
pole density maxima of the recalculated pole figures. Another 
important observation is some correlation between the 
sampling increment llZ and the symmetry of the pole density 
distributions in the difference pole figures (Fig. 6). This is 
illustrated best by means of the difference pole figure resulting 
from sampling increments llZ = 45°/90 . An eightfold repe­
tition of pole density maxima (Fig. 6) in agreement with the 
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accumulation of grid points at these positions (see Fig. 10) is 
observed at the periphery of the difference pole figure. In the 
center of the pole figure the symmetry appears to be fourfold. 
The same observation is made for sampling increments of 
t::.Z = 30°/60° and t::.Z = 60°/120°, leading to a sixfold 
symmetry of the pole density distributions in the difference 
pole figures (best visible in the center of the 30°/60° difference 
pole figure in Fig. 6). Remarkably, such dependence on the 
grid point arrangement could not be observed in the case of 
the calcite reference texture of sample MIX (Fig. Sa), although 
the type of texture and its relation to the sample coordinate 
system are the same (the texture is axially symmetric with the 
symmetry axis at or close to the center of the pole figure). This 
means that the algorithm used for the texture evaluation can 
be sensitive to irregular grid arrangements. As other causes 
like anisotropy effects due to irregular sample shape can be 
excluded, the only reasonable source for the observed differ­
ences of the marble sample (RKl 7) and the artificial sample 
(MIX) appears to be the texture strength, leading to pole
figure maxima of the order of two to three times random
(RK17) and six to seven times random (MIX) for the calcite
(006) pole figure. In the case of the weaker texture, the relative
contribution of artifacts is larger and becomes obvious in the
difference pole figures. Hence, grid effects on the texture
cannot be definitely excluded, and the recommendation is to
check the textures for such features in order to avoid misin­
terpretation. All the parameters and characteristics discussed
above deliver no clear criteria to recommend an optimum grid
for the marble sample (RK17). The only clues come from the
visual inspection of the difference pole figures. The inference
that the grid with increments of t::.Z = 45°/90° seems to be the
optimum one is largely based on the observation that single

Starung grkl Optimized grid 

'12=5· n= 1368 '12=20° n = 342 

'12 = 15•t30• n = 468 

Figure 10 

ilZ. • 45•!90• n • 156 

C-rable 
·t,eugonal' grid 

n= 301 

n= 127 

Representation of the grids used for grid thinning tests of sample (MIX) 
and the marble sample (RKl7}. Starting grid refers to the measurement 
grid and optimized grid to the grid causing only insignificant variation of 
the starting textures. The hexagonal grid comprises the starting grid 
sample directions, which are closest to a hexagonal grid with 
approximately the same number of sample directions as the optimized 
grid. n is the number of sample directions and t:;.Z it the sampling 
increment. 

pole density maxima in several pole figures - in particular the 
(110) pole figure - split into submaxima for larger sampling
increments.

Comparing the MIX textures obtained for the optimized 
grid with t::.Z = 20° with the textures from the closest hexa­
gonal grid (see Fig. 10 for illustration of the grids) leads to 
similar RPl meao values, the variability of a few percentage 
values appears to be acceptable (Table 2). Significant differ­
ences are due to the texture strength [2, which is always 
weaker for the hexagonal grid (Table 5). The drop is small for 
most textures; however, the comparatively strong quartz 
texture shows a decrease of /2 from 8.11 down to 5.34, similar 
to those for sampling increments of t::.Z = 30 and 45°. The 
texture weakening finds its expression in both the recalculated 
pole figures and difference pole figures. For the quartz (110) 
pole figure, which is given as an example in Fig. S(c). the 
maximum pole density of 6.14 m.r.d. decreases down to 
3.98 m.r.d. and corresponds to the maximum pole density 
observed for larger sampling increments. Concurrently. the 
difference from the reference pole figure is large. This large 
drop holds true for all quartz reflections. while for the other 
mineral phases it is less pronounced but visible in the pole 
figures and difference pole figures. At least, we attribute this 
observation to the fact that the quartz texture is more 
complicated than the textures of the other phases, leading to 
multiple sharp maxima in most pole figures (see Fig. Sa). The 
hexagonal grid with an approximately equal area distribution 
of sample directions is not able to describe the maxima 
arrangement and the outlines of the maxima in all detail. In 
contrast, the optimized grid with closely spaced grid points 
along the circles belonging to a single sample direction 
obviously delivers more detail about the shape of the maxima 
than the hexagonal grid does, despite the large sampling 
increment of t::.Z = 20'. The consequence is a more precise 
texture description; in other words, the smoothing effect of the 
hexagonal grid on the quartz texture is more pronounced. For 
the forsterite texture the effect is less pronounced because of 
the somewhat simpler texture, which is characterized by broad 
elongated maxima in the considered pole figures (see Fig. Sa).

The related drop of texture strength /2 is from 3.02 to 2.53 
(Table 5). 

The even simpler textures of calcite and dolomite, 
displaying almost perfect axial symmetry (see Fig. Sa), are 
least affected. In summary, it appears that the irregular. 
optimized grid contains more detailed information on the 
textures than the hexagonal grid does. and the textural 
discrepancies caused by these two types of grids largely 
depend on the complexity of the texture. Moreover, the irre­
gular grid point arrangement of the optimized SKA T grid 
obviously produces no artifacts or falsification of the textures. 
The optimized grid of the calcite sample (RKl 7) contains 156 
sample directions and the closest hexagonal grid 127 sample 
directions (see Fig. 10). The texture type is axially symmetric 
and corresponds to the textures of calcite and dolomite in 
sample MIX. Hence, we expect only minor differences 
between particular texture approximations, which, in fact. i 
the case. RPlmean 

values are similar and texture strengths f2 
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are almost identical (Table 3). In the pole figures, the layout of 
the pole density distributions and the maximum pole densities 
are nearly the same. For the Cc (006) pole figure, given as an 
example in Fig. 6, the particular magnitudes are 2.99 and 
2.86 m.r.d., respectively. These observations confirm the above 
finding that for simple axially symmetric textures no differ­
ences between the optimized and hexagonal grids are valid, 
and that the irregular arrangement of sample directions has no 
negative effects. 

6. Summary and conclusions

The upgraded SKAT with three interchangeable detector 
arrangements offers the possibility of adapting the resolution 
and accessible d range to the sample state. Owing to a large 
beam cross section of SO x 95 mm, the analysis of sample 
volumes of up to 65 cm3 is possible. 

Investigation of the potentially limiting factors of RTA, 
such as the resolution !:!.did, the dependence of the variable 
counting statistics on d and the number of peak overlaps, 
indicates that the texture estimates of a four-phase compound 
(sample MIX) are largely independent of the d range applied 
for RTA. The outlines of the textures can be reproduced very 
well. but using only reflections with small d spacings, thereby 
accepting many peak overlaps, reduces texture strength 
significantly. This holds true despite better counting statistics 
at small d spacings. We correlate the smoothing effect with the 
large number of peak overlaps, i.e. improving the resolution 
delivers better results. 

RTA of the eclogite sample (RK20) comprising several low­
symmetry phases yielded more complications. The coin­
cidence described above of the texture maxima when using 
different d ranges is valid for many pole figures, but orienta­
tion differences frequently occur as well. This holds true in 
particular for low-resolution measurements. In polyphase 
geological samples, when phases constitute a volume fraction 
greater than 10% and the texture strength J2 is greater than 
l .S, orientation differences are missing and textural differ­
ences are due to texture strength only. The correlation 
between the number of peak overlaps and decreasing texture 
strength applies in the same way as for the low d spacing range 
of sample MIX. but for RTA of the eclogite sample (RK20) 
with seven mineral phases high resolution is indispensable. It 
is important to recall that no true reference textures were 
available for this sample; the comparison with the textures 
derived from the intermediate d range of the high-resolution 
measurement indicates only the range of possible solutions. 
Consequently, we must be aware that the textural results we 
get from such complex samples are approximations of the true 
textures. The missing orientation differences of sufficiently 
strong textures from mineral phases comprising large volume 
fractions let us predict that these textures better resemble the 
true textures. 

The experimental effort to obtain reliable results by means 
of RTA, especially exposure time, can be reduced , depending 
on the complexity of the diffraction patterns. A mono­
mineralic sample of medium to low symmetry requires no 

more than 150 sample directions. The irregular grid point 
arrangement of the minimized SKAT grid leads to a more 
detailed texture description than the comparable hexagonal 
grid does, when the texture is sharp and pronounced. Hence, 
the irregular grid arrangement of the SKAT is not a disad­
vantage but can be advantageous for this texture type. More 
complex samples bearing few phases require approximately 
350 sample directions. As the results were obtained from 
diffraction spectra with rather low counting statistics, we 
conclude that the numbers given above are upper limits and 
can be smaller, if counting statistics are significantly improved. 

The general conclusion is that TOF neutron diffraction in 
combination with full pattern fit methods can be used to 
evaluate the textures of the rock constituents with good 
reliability even in polymineralic materials. The complexity of 
the diffraction patterns is the limiting factor. i.e. high resolu­
tion is essential. provided that a minimum of statistical 
significance is achieved. It was demonstrated that access to 
many Bragg reflections compensates the need for measuring a 
large number of sample directions and. therefore, far reaching 
reduction of exposure time is possible. Although the direct 
transfer to other TOF instruments is not possible, our results 
can be helpful to define the experimental conditions in rela­
tion to the complexity of the material to be investigated. The 
concept of creating an artificial sample from individual 
measurements is useful to find out the specific limitations of, in 
principle, any diffraction instrument delivering diffraction 
patterns suitable for RTA. 
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Crystallographic preferred orientations (CPO) of rocks from an exhumed subduction channel of the Alpine 
orogen were determined using time-of-flight neutron diffraction. This method allows the investigation of large 

polymineralic samples and. more importantly. the application of full pattern fit methods to constrain CPOs of 

mineralogically complex rocks. Samples studied include intensely deformed fresh and retrogressed eclogites, 

as well as metasediments, which are interleaved with the eclogites in the subduction channel. From the CPO. 

seismic properties of the samples were calculated. P-wave anisotropies of the eclogite samples are fairly low. 

with an average of about 15%, and mainly constrained by pronounced omphacite CPO. Growth and deformation 

of retrograde amphibole in the eclogites also led to a pronounced CPO. which has a large impact on seismic 
anisotropies by raising them to up to 3.7% and changing the orientations of velocity maxima. Elastic anisotropies 

of the subducted metasediments are higher (up to 7.4%) and constrained by quartz and mica CPO in elastics and 

by calcite CPO in marble. Vp/V5 ratios may help to distinguish fresh eclogites from retrogressed ones. and both 
rock types from mantle peridotites of downgoing lithospheric slabs in seismic imaging. Our data also indicate 

that subducted terrigenous sediments not only are strongly anisotropic. but also have low Vp/Vs ratios. This 

way there may be the potential to image them by seismic tomography at depth in active subduction channels. 

1. lntroduction 

The interface of convergent plate boundaries is a highly dynamic 
tectonic environment. featuring deep subduction, offscraping of lower 
plate materials. underplating, and eventual exhumation by return flow 
towards the Earth's surface. The general concept is that of rocks moving 
in a subduction channel. first established by Shreve and Cloos (1986) 
and Cloos and Shreve (1988). These authors mainly describe the move­
ment of material to and from depths of 30 km. More recent subduction 
channel models include the exhumation of previously subducted ocean­
ic crust and sedimentary cover from depths of over 70 km ( e.g. Agard 

et al.. 2009; Angiboust et al., 2009). The generally invoked driving mech­
anisms are buoyancy of surrounding low-density rocks (e.g. Guillot 
et al.. 2001; Kurz and Froitzheim, 2002). external forcing by continental 
fragments entering the subduction zone (e.g. De Franco et al., 2008). 
slab breakoff ( e.g. Ratschbacher et al., 2004). or the changeover to an 
extensional regime in the overriding plate (e.g. Behrmann and 
Ratschbacher, 1989; Platt. 1986). There is a large number of recent 
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regional studies of exhumed subduction channel rocks, which yield 
information on their petrology and tectonic history. Examples are the 
Franciscan Complex of California ( e.g. Anczkiewicz et al., 2004 ). the 
Mesohellenic subduction zone in the Cyclades (e.g. Schmaedicke and 
Will. 2003). the Western (e.g. Bousquet. 2008) and the Eastern Alps 
(e.g. Kurz et al.. 1998). Common to all these subduction zones are the 
thickness of only a few kilometres and their lithologies comprising 
metabasic lenses of variable size embedded in a matrix of lower­
density metasediments or serpentinites. 

Despite detailed field investigations and numerous models for 
subduction channels, the exact processes taking place within are far 
from being completely understood. High resolution seismic imaging - a 
promising tool for the deconvolution of small-scale structures at 
depth - is still hampered by inadequate knowledge regarding the velocity 
structure and elastic anisotropies. Elastic anisotropy data of rocks 
incorporated in subduction zones are an important source of information 
for the interpretation of ( high resolution) seismic sections, and have been 
used to aid the understanding of mantle dynamics ( e.g. Montagner and 
Guillot, 2003; Montagner and Tanimoto. 1990; Silver. 1996). ln this con­
text aystallographic preferred orientation ( CPO) of the rock constituents 
can be used as a powerful tool to predict the elastic anisotropy of 
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deformed subduction channel rocks. However, the acquisition of CPO 
data and, thus, obtaining first-hand information on elastic anisotropies 
of polymineralic rocks is not straightforward. Most studies on 
polymineralic rocks were conducted on materials from the upper and 
lower crust (e.g. lvankina et al.. 2005; Kitamura, 2006; Ullemeyer et al.. 
2006), or on rocks originating from above and below the continental 
Moho (e.g. Barruol and Kem, 1996; Liana-Funez and Brown, 2012; Pros 
et al., 2003; Ullemeyer et al.. 2010). Elastic data for subduction channel 
rocks were provided by Mauler et al. (2000), Bascou er al. (200 I). and 
Worthington et al. (2013). who investigated mineral CPOs of eclogites 
using EBSD (electron backscatter diffraction) and bulk rock elastic anisot­
ropies calculated from the CPO data. However, these studies neither in­
clude metasedimentary rocks in the subduction channel nor 
retrogressed eclogites. which yield information on the processes and 
changes in state during exhumation. Furthermore, a methodical draw­
back of EBSD is the poor grain statistics due to limited sample size. 
which has consequences when calculating rock physical properties 
from CPO data. 

To overcome these methodical limitations. and to offer a more 
comprehensive insight into the petrophysics of rock associations in a 
subduction channel. we present CPOs and bulk rock elastic anisotropies 
of principal rocks from an exhumed subduction channel: the Eclogite 
Zone ( EZ in the following) of the Tauern Window in the Eastern Alps. 
The CPOs were acquired from time-of-night neutron diffraction spectra 
applying the full pattern fit method for the texture evaluation. which 
permits a fully quantitative investigation of large rock samples with 
complex mineralogy. From the CPO data. we have modelled elastic 
anisotropies. In addition, two eclogite samples were the subject of direct 
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P-wave velocity measurements on spherical samples, giving an impres­
sion of the crack innuence on the elastic rock properties at shallow and
intermediate crustal depths. Our results allow to make inferences
regarding the seismic attributes of subduction channels. especially
acoustic anisotropy, and guide future visualization of subduction chan­
nel structure and physical properties.

2. Geological overview of study area

The EZ is located at the southern margin of the Tauem Window in the 
Eastern Alpine Orogen (Fig. lA and B). The Tauem Window is a tectonic 
window exposing basement and cover of the lower European plate, as 
well as Penninic oceanic units that were initially subducted beneath the 
Adriatic plate and subsequently incorporated in the Alpine stack of tec­
tonic nappes during continental collision in the Tertia1y. The EZ is consid­
ered to represent the ocean-continent boundary at the distal European 
margin. Its general character is a volcano-sedimentary sequence formed 
during Jurassic rifting of the Penninic ocean (Kurz et al.. 1998). Driven 
by the negative buoyancy of the downgoing Penninic oceanic slab, the 
EZ entered the subduction channel in the course of Adria-Eurasia conver­
gent movements. The rocks were subjected to PT conditions of 2.0-
2.5 GPa and 600 ± 30 ·c (Dachs. 1990: Hoschek. 2001, 2004; Stockherr 
et al., 1997). Rb-Sr dating by Glodny et al. (2005) and Lu-Hf dating by 
Nagel et al. (2013) indicate an Oligocene age for the peak PT conditions, 
and a fast exhumation thereafter within 1-2 Ma. Because of the fast exhu­
mation from great depths, only part of the rocks suite was severely affect­
ed by retrograde metamorphism. With large coherent sheets of ec.logite 
and interleaved metasediments prese,ved, the area offers the 

Fig.3.1. Tectonic maps of A) the Alps. B) 1he Tauem Windom (after Schmid er al, 2013) and() the Eclogite Zone (.lfrer Neufeld et al. 2008). The loc.ltion of the field arN 1s 1ndica!NI by 
J frame. 
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opportunity to study the effects of retrogression along intensity gradients
in the field, and make predictions about the changes in petrophysical be­
haviour as rocks are being progressively exhumed. 

Currently, the EZ is sandwiched in between European continental units
to the north (Venediger nappe) and Penninic oceanic units to the south
(Glockner nappe). and is dipping steeply to the SSE (Figs. 1C and 2). The 
EZ comprises eclogite lenses of various sizes. surrounded by a matrix of 
gneisses. micaschists, quartzites, marbles, and metaconglomerates (Fig. 2).

3.Methods

CPO measurements were performed at the neutron time-of-flight
(TOF) texture diffractometer SKAT at the Frank Laboratory of Neutron
Physics at JINR, Dubna. Russia (Keppler et al., 2014; Ullemeyer et al .•
1998). The high penetration capability of neutrons in matter together
with the large beam cross section of the SKAT (50 x 95 mm2) allows

Green schist
- Eclogites ' I 

Paragneiss/Micaschist )J
- Metaconglomerate 
- Quartzite �
- Marble 
/ Dip and strike

/ 

the application of large-volume samples in the neutron experiment,
e.g. of spherical samples with volumes of about 65 cm3

• This is an impor­
tant prerequisite, because the investigated samples are usually coarse­
grained. Moreover, since complete diffraction patterns are recorded in
a TOF experiment, highly sophisticated methods like the so-called
'Rietveld Texture Analysis' (RTA) can be used for the texture evaluation,
allowing the simultaneous determination of all mineral textures even
for samples with complex mineralogy (Von Dreele, 1997; Matthies
et al. 1997). We used the MAUD software for the texture evaluation
(Lutterotti et al., 1997; Wenk et al, 2010), for the discussion of practical
limitations refer to Wenk et al. (2012) and Keppler et al. (2014). Since
RTA requires knowledge of the mineral structures present in the sample,
mineral assemblages and chemical compositions were determined by
means of microprobe analysis on a JEOL JXA 8200 Electron microprobe.

From the CPOs of the main rock constituents and particular single
crystal elastic constants and volume fractions the elastic moduli of 

F'ig.32. Geologic map or the Edogite Zone in the area or the Timmeltal ( own mapping completed by map or Raith et al. 1980). Sample locations and corresponding dipping angles are 

indicated in red. (For interpretation or !tie references to colour in this figure legend. the reader is referred to the web version of tnis artide.) 
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bulk rock were calculated by using the Christoffel equation (e.g. 
Christoffel, 1874; Mainprice and Humbert, 1994), 

(1) 

where V is the phase velocity of the P-. 51 or 52 waves, oii is the 
Kronecker delta, and rii is the Christoffel tensor, 

(2) 

Parameters Oij1c1 represent the density-corrected elastic (stiffness) 
moduli, and x,,x1 are the direction cosines of the wave propagation 
direction. Hill (1952) has shown that the widely used Voigt (1928) and 
Reuss ( 1929) averaging schemes deliver upper and lower bounds of the 
elastic moduli, respectively. Other averaging schemes were proposed 
( e.g. Matthies, 2011; Matthies and Humbert, 1995 ), however, the true 
values of parameters aijkl are still somewhat uncertain. Therefore, we de­
cided to use the most straightforward approach by consistently applying 
the Voigt averaging scheme, and at the same time keeping in mind that 
the recalculated velocities obtained are maximum velocities. The single 
crystal elastic constants were taken from the literature ( omphacite: 
Bhagat et al., 1992; garnet: Babuska et al., 1978; hornblende: 
Aleksandrov and Ryzhova. 1961; glaucophane: Bezacier et al., 2010; mus­
covite: Vaughan and Guggenheim, 1986; quartz: Heyliger et al., 2003; al­
bite: Brown et al., 2006; epidote/zoisite/clinozoisite: Aleksandrov et al., 
1974; calcite: Dandekar, 1968). Whereas the elastic constants of quartz, 
muscovite and albite are confirmed to be reliable, the elastic constants 
of some other minerals are at least questionable. This holds in particular 
true for hornblende, the main constituent of the amphibolite 1W32 (see 
Table 1 ). Microprobe analyses revealed glaucophane as the amphibole 
phase in most samples. Its chemical formula shows differences compared 
to the glaucophane individual of Bezacier et al. (2010). but the elastic data 
ofBezacier et al. (2010) are the only available and we were forced to use 
them. The omphacite composition varies from D�d35 to Di.is)d55; Bhagat 
et al. (1992) report Di3a]d62 for their sample. The composition of garnet is 
close to the almandine end member in the pyrope-almandine-spessar­
tine system, which justifies the use of the almandine elastic constants of 
Babuska et al. ( 1978). Nevertheless, we conclude that for some main 
rock constituents the elastic constants may differ from the 'true' mineral 
constants in our samples. Elastic data of chlorite, not present in excess 
of 5% in any of the samples, were approximated by the muscovite elastic 
constants. In this case and for other minerals like epidote/zoisite/ 
clinozoisite contents in the samples studied are lower than the 10% 
threshold that would make the CPO of a particular mineral relevant for 
the physical properties (see Mainprice and Ildefonse, 2009). In Fig. 3, P­
wave velocity distributions and particular P-wave anisotropies are given 
for the main rock constituents. 

Many experiments have shown that the elastic properties of rocks at 
small confining pressures are largely controlled by the crack fabric (e.g. 
lvankina et al, 2005; Kem et al.. 2002, 2008; Pros et al., 2003; Ullemeyer 
et al., 2006). The unique experiments of Christensen (1974) on mantle 
rocks confirmed crack influence to pressures of about I GPa, and there 
is evidence from low-pressure measurements that crack influence up 
to 1 GPa (or more) is valid for other rock types as well (Ullemeyer 
et al., 2011 ). We, therefore, accept that our texture-based predictions 
of the elastic constants are valid for great depths only. In order to get 
an impression on the crack influence at smaller depths, complete P­
wave velocity distributions were determined on an amphibolite and 
an eclogite sample applying the pressure apparatus of the Institute of 
Geology ASCR. Prague, Czech Republic (Pros et al., 1998). The measure­
ments were performed at various pressure levels starting at ambient 
conditions (0.1 MPa). the maximum pressures achieved in the experi­
ments (300 and 400 MPa, respectively) are sufficient to close most 
open microcracks, allowing in particular the judgement of anisotropy 
differences to the crack-free medium. 
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Description and modal compositions of the investigated samples. derived from 
RTA RK4HP and RK20HP are model compositions calculated by means of the THERIAK, 

DOMINO thermodynamic modelling tool 

Sample Description 

Rl<I 

RK3 

RK4 

RK4HP 

RK5 

RK6 

RK17 

RK20 

Layered, mica-rich eclogite with 
medium grain size. Alternating 
omphacite, garnet, and mica 
layers of 05-4 mm. 

Fine-grained eclogite with weak 
layering. 

Retrogressed eclogite with 
pronounced carbonate-rich 
layers. Medium grain size and 
layers of about 1-5 mm thickness. 

Simulated HP equivalent of 
sample RK4 

Layered micaschist, containing 
clinozoisite. 

Micaquartzite 

Medium-grained, foliated marble 

Coarse-grained eclogite with 
omphacite-dominated and 
garnet-dominated layers of 
5-lOmm. 

RK20HP Simulated HP equivalent of 
sample RK4 

RK28 

RK49 

MS11.2 

1W32 

1W33 

Paragneiss with strong mira 
foliation. 

Medium-grained, layered, 
retrogressed eclogite. 

Fine-grained, mylonitized eclogite 
with pronounced layering of 
omphacite and garnet Layers are 
05-2 mm thick. 

Weakly layered, medium grained 
amphibolite. 

Layered, mica-rich eclogite with 
fine co medium grain size. 

Composition 

37% omphacice, 19% zoisite, 15% 
garnet, 15% phengite, 7X quartz, 
4% dolomite. 3% rutile 

43% omphacite, 22% garnet 15% 
paragonite, 10% glaucophane, 
9% quartz, 1% rutile 

37% barroisite, 25% omphacite, 
12% phengite, 9% garnet, 8% albite. 
6% dolomite, 3% calcite 

38% omphaate, 33% garnet 12% 
phengite, 8% quartz, 6% magnesite 
(MgC03), 3% dolomite 

71% quartz, 24% muscovite, 5% 
clinozoisite 

92% quartz. 8% muscovite 

99% calcite, 1% dolomite 

43% omphac1te. 24% garnet, 20% 
glaucophane. 7% quartz, 3% albite, 
2% paragonite, 1 % rutile 

52% omphaate. 23% garnet, 13% 
phengite. 11:1: quanz. 1% rutile 

50% quanz, 31 % al bite, 19% muscovite 

25% omphame, 33% albite, 14% 
garnet, 12% phengite, 8% quartz. 
8% glaucophane 

45% omphaate, 24% almandine, 

15% quanz, 6% phengite. 5% albite, 
4% glaucophane, 1 % rutile 

51% hornblende, 20% paragonite, 

8% garnet, 6l: albite, 5% dolomite. 
5% chlorite. 3% omphadte, 2% quartz

38% omphacite. 24% garnet. 19% 
phengite, 10% albite, 5% 
glaucophane. 4% quartz 

In order to help quantification of the effects of retrogression on the 
elastics properties of the edogite samples, bulk chemical compositions 
of the retrogressed eclogite samples RK4 and RK20 were used to 
model the pristine equilibrium mineral assemblages and modal mineral 
amounts at peak metamorphic conditions of 600-630 •c and 2.0-
25 GPa (Hoschek, 2001, 2004; Stockhert et al, 1997). For this purpose 
the thermodynamic modelling tool THERIAK/DOMINO is used (de 
Capitani and Brown, 1987; de Capitani and Petrakakis, 2010). The equi­
librium assemblage was calculated utilizing a modified Holland &
Powell database (Holland and Powell, 1998). To avoid interferences of 
different implemented amphibole solid solution models, only the two­
endmember glaucophane model was applied. Such an adjustment is 
reasonable as only the relevant high-pressure realm is considered. 
and therefore only blueschist facies amphiboles are expected. Bulk 
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Fig.3.3. Crystal structurts and P-wave velocity distribution of important mineral phases influencing elastic anisotropy of the samples in this study. Colour bars indicate velocity 
ranges. A= (Vmax - Vmin) /Vmean: anisotropy. Crystallographic axes are indicated. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

compositions of the rocks were calculated from averaged microprobe 
mineral analyses, and corresponding modal amounts were taken from 
RTA All calculations were carried out assuming excess of a hydrous 
fluid. In order to reproduce the exact amount of carbonates present in 
the rock sample in the retrogressed state. a stoichiometric quantity of 
COi was added to the fluid composition of sample RK4. Comparison of 
the retrogressed and peak-grade mineral compositions allows to assess 
the likely change in elastic properties and anisotropy associated with 
retrogressive changes during the exhumation stage. 

4- Compositions and microfabrics of the samples studied

The composition of the eclogites is quite variable. Main constitu­
ents are omphacite and garnet, changing amounts of glaucophane, 
barroisitic hornblende, clinozoisite, quartz. phengite, paragonite, 
albite and minor amounts of dolomite, calcite, kyanite and rutile 
(Table 1 ). The mesoscopic and microscopic fabric of the eclogites is 
also highly variable (Fig. 4). There are coarse-grained and fine-
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grained varieties with random mineral distribution (RK3, RK20), as 
well as fine grained and strongly foliated eclogites displaying com­
positional layering (RKl, RK4, RK49, MSl 12, 1W33). Elongated 
omphacite grains define a clear lineation on the foliation plane. In 
mylonitic eclogites the omphacite forms aggregates of small recrys­
tallized grains. Garnet exhibits prograde zoning and either occurs 
in layers or as randomly distributed cluster. Layered samples show 
garnet- and quartz-rich layers alternating with omphacite-rich 
layers of variable thickness (Fig. 4). In samples containing zoisite 
and dolomite, both these phases are often concentrated in distinct 
layers. Small and dispersed zoisite grains within omphacite-rich 
layers are aligned parallel to the foliation, whereas in zoisite-rich 
layers the grains are larger and do not show shape preferred orienta­
tion (SPO) (see RKl in Fig. 4). Quartz grains do not exhibit SPO. In the 
eclogites phengitic mica (Si: 3.26-337) is always aligned parallel to 
the foliation. whereas paragonite is randomly oriented. 

The metasediments investigated in this study comprise gneisses, 
micaschists, mica-bearing quartzites and marbles. Particular modal 
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Fig.3.4. Typical BSE m1cros1ruc1ures or fresh (RKI and MS 112) and rerrogressed (RK20. RK49 and RK3) eclogire samples. Cw= chnozo,site: Doi= dolomile: Grt = garnet: Hbl = 
hornblende: Ky= kyanitc; Omp = omphacitc: Pg = paragonite: Phe = phengite: Qz = quartz: Re= rutile. Sections are perpendicular to the foliation and parallel lo the 
stretching lineacion. For sample descriptions see Tablt' I. 

compositions are summarized in Table 1. The elastic metasediments 
exhibit a strong foliation defined by mica (Fig. 5). The phengite compo­
nent of the micas is lower than in the eclogite samples (Si: 3.07-3.24). 

Most of the elastic metasediments contain minor amounts of clinozoisite, 
and the gneisses contain feldspar. The only marble sample is mainly com­

posed of medium-grained calcite and shows a weak foliation. 

S. Results

5.1. C,ystal/ograp/iic preferred orientations 

5.1.1. Eclogices 

All eclogites exhibit a distinct CPO of omphacite. Position and inten­

sity of the pole density maxima are variable. however. (001) always 

displays a maximum parallel to the stretching lineation (Figs. 6 and 7). 

In some samples (RKl, RK3, 1W33) the maximum is cluster-like, 

60 

in others. (001) forms a more or less pronounced girdle within the 
foliation plane (RK4. RK20. RK49. MSl 12). (010) not only is 

concentrated normal to the foliation plane, but also can be distributed 

in a girdle perpendicular to the lineation. 
Glaucophane also displays pronounced CPO in all retrogressed 

eclogites (Fig. 6). As in the case of omphacite the glaucophane CPOs 

are variable. Glaucophane (001) mostly parallels the omphacite (001) 

lattice plane. however. one sample shows a clear deviation from this 

rule, an angular deviation of about 40° within the foliation plane is 

valid (sample RK20, Fig. 6). Glaucophane ( 100) always has the maxi­

mum pole density normal to the foliation plane. The barroisitic horn­

blende in sample RK4 shows girdle-like distributions of the ( 100) and 

(001) lattice planes. the latter scattering within the foliation plane.

The ( 100) girdle is very weak and oriented perpendicular to the kine­

matic Z axis (Fig. 6). In this sample, there is also a pronounced (010)

maximum normal to the foliation (not depicted).
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Fig..3.5. Microgr�phs of rypu:.il cL15tic met,isediments. Left: mic.-1qUJm1te (RK6): right: p.iragneiss (RK28). both exhibiting a pronounced mica foliation. Sections are perpendicular to the 
foliation and parallel to the �tretching lineation: cros�d polarizers. 

With the exception of sample RK4, the phengite (006) basal 

planes have strong axial symmetric maxima parallel to the foliation 

normal. If paragonite is present in significant amounts, (006) 
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exhibits only a weak preferred orientation. but the maximum pole 

density also parallels the foliation normal (sample RK3, Fig. 6). Gar­

net, the acoustically isotropic major constituent of the eclogites. 
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Fig. 6. RecalcuL11ed pole figures of omphacite, hornblende, and mica of the re1rogressed eclog1te s.1mples. Pole figures are oriented according to omphilme lineation and foliation. The 
hneat1on (x-d1rechon of the finite stram ellipsoid) is EW in 1he pole figure. the foliation normal (z-direction of the finite strain ellipsoid) is onented NS. and the y-direction (perpendicular 
to x Jnd z) lies normal to the pole figure pi.me. Pole figures are lower hemisphere equal area pro.J{'Ctions. Comour levels are multiples of a random disnibut1on. Maxima are ind1c.,1ed at the 
lower nght corner of the pole figure. Only s1gmfic,mt pole figures are given. They are sufficient to illustrate the textllral differences between samples. NA - not avail,1ble. 
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fig. 3. 7. Recalcul,1ted pole figures of omphac1re, garnet, mica. and quartz of fresh eclogite Samples. Pole figures are oriented accord mg ro ompharne linearion and foliation. The 
lineation (x-direction) is EW in the pole figure. foliation normal (z-direction) is oriented NS and they-direction (perpendicular cox and z) lies normal to the pole figure 
plane. Pole figures are lower hemisphere equal area proJections. Contour levels are multiples of a random dismbunon. Maxima are indicated at the lower nght comer or the 
pole figure. 

has nearly random distribution, as exemplified by two garnet pole 
figures of samples 1W33 and MSl 12 (Fig. 7). The zoisite CPO of sam­

ple RKl is of intermediate strength with (010) parallel to the linea­
tion and a slight tendency of ( 100) to form a girdle around the 

lineation (Fig. 7). Calcite, dolomite and albite. if present, always dis­
play very weak preferred orientations close to a random distribution 

(for this reason not presented). 
Despite the generally low volume fraction, quartz has a weak but 

well-defined CPO, as exemplified by sample MS 112 bearing 15% quartz 
(Table I). The (003) lattice plane displays a small circle distributions 
around the foliation normal. The (011) and ( 101) lattice planes have 

intensity clusters parallel to the foliation normal. whereas (011) 

exhibits additional scattering in the foliation plane (Fig. 7). The overall 

layout corresponds to a nearly perfect axial symmetric texture with 
the foliation normal as the symmetry axis. 

5.1.2. Metasediments

In the metasediments, the quartz CPO is more pronounced com­
pared to the eclogites. The maximum pole densities are in the order of 

2.0 [m.r.d.J, except for the c-axis distribution of sample RK6, which is 

two times higher (Fig. 8). Mostly, asymmetric c-axis crossed girdles or 

point maxima slightly inclined to the foliation normal are observed, 

sample RK6 exhibits an additional c-ax.is maximum close to the center 
of the pole figure. The ( 110) maxima are always close to the margin of 

the pole figures, in agreement with the inclination of the c-axis, they 

are inclined with respect to the stretching lineation (Fig. 8). The ( 100) 

lattice planes show pole density distributions in agreement with the 
geometrical relationship of the quartz lattice planes. Their outline is ei­

ther similar to the ( 110) pole figure (sample RK6), or dissimilar (sample 
RKS ). The ( 011) and ( 101) rhombs generally have weak preferred ori­
entation, with maximum pole densities either within the foliation 
plane (RKS). on small circle girdles around the foliation pole (RK6 and 

RK28), or normal to the foliation (RK28). lf present, albite has a random 
CPO ( not presented). The (006) basal planes muscovite/phengite exhib­

it very strong maxima normal to the foliation (Fig. 8) with much higher 

pole densities compared to the eclogites (Figs. 6 and 7). 
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The calcite CPO of the marble sample RKl 7 is of intermediate 
strength. The ( 110) lattice planes form a girdle within the foliation 

plane, the maximum pole density on the girdle parallels the stretching 
lineation. The (006) lattice planes make a maximum parallel to the 
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F'ig. 3.8. Recalcul,ued pole figures of quartz. mica and calrne in the metasedimemy samples. The pole figures of the clasuc merasedimentary samples (RKS. RK6. and RK28) are oriented 
according ro the mica lme,uion and foliation. whereas the marble sample (RKl7) is aligned with respect to the calcite lineanon and foliation. The lineanon (x-diremon) is EW in the 
pole figure. folianon normal (z-direction) is oriented NS and they-direction (perpendicular to x and z) lies normal to the pole figure plane. Pole figures are lower hemisphere equal 
,1rea proJecllons. Contour levels are multiples of random distribution. Maxima are indicated at the lower right corner of the pole figure. 

foliation normal. The general layout of the calcite CPO is axial symmetric 
with the foliation normal as the symmetry axis. 

52. P-wave anisotropy

52.1. Ec/ogires and retrogressed counterparts 

P-wave velocities (Vp) of the eclogite samples calculated from the
CPOs vary between 7.45 and 8.10 km/s ( Fig. 9). P-wave anisotropies of 
the eclogite samples are mostly low. with the highest value (3.7%) for 
the retrogressed sample RK20. and the lowest one (0.4%) for the non­
retrogressed sample RK I. which has a high zoisite content (see 

Table 2). In all samples. the velocity maxima are close to the omphacite 

(001) pole density maximum. and. if present, the amphibole (001)
pole density maximum. In sample Rl<20. where the pole density

maxima of the two minerals exhibit an angle of about 40° within

the foliation plane. the calculated velocity maximum lies between

both these maxima. Lowest P-wave velocities are normal to the foli­
ation throughout. i.e .. high velocities are always located within the
foliation plane. S-wave velocities in the eclogites vary between
4.82 and 4.23 km/s (V5i). and between 4.81 and 4.22 km/s (V52 ) 

(Table 2). We avoided graphical representation of the S-wave veloc­

ity distributions, because the velocity differences are mostly some
tenths of metres (see Table 2) and. therefore. insignificant.

P-wave velocity distributions of samples RK4 and RK20 were also

calculated for the high-pressure mineral assemblages obtained from 
thermodynamic modelling by means of the THERIAK/DOMINO tool 

(RK4HP and RK20HP in particular figures and tables). The most promi­
nent difference to the actual composition obtained from RTA is the 
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absence of amphibole minerals (Table 1 ). Fig. 10 shows an equilibrium 

assemblage diagram illustrating the high pressure assemblage of sam­
ple RK20. the frame in the diagram indicates the PT conditions of the 

EZ we used for modelling. P-wave velocities recalculated for the 
modelled samples are higher (RK4HP) or lower (RK20HP) compared 
to the retrogressed counterparts.Judging the isotropic mean V

pi><>· the 

velocity increase of sample RK4HP is approx. 0.7 km/s. the decrease of 
sample RK20HP is much less (approx. 02 km/s. Table 2). In both cases. 
however, P-wave anisotropy decreases. The already weak anisotropy 
of the strongly retrogressed eclogite RK4 is reduced even more and 
becomes insignificantly small ( < 1 %). in case of the less retrogressed 
eclogite RK20 anisotropy still exceeds 2%. although the decrease is 

remarkable ( compare magnitudes in Table 2). 
The experimental P-wave velocity distributions determined at 

moderate confining pressures of 300 MPa (amphibolite sample TW32) 

and 400 MPa (eclogite sample TW33) show different relationships to 
the crack-free ((PO-derived) counterparts. The amphibolite (TW32) 

has a slightly higher 'experimental' velocity level in the order of 
0.1 km/s (Table 2). Since the experimental velocities should not exceed 
the (PO-derived ones. this is a clear indicator that the bulk error intro­

duced by applied methods ( uncertainties of the CPO estimates, inaccu­
rate mineral elastic constants. experimental errors etc.) is 0.1 km/s to 

the best. Judging the velocity vs. pressure trends of the minimum and 
maximum velocities (Fig. 98). further velocity increase with increasing 
pressure and. accordingly, a still higher error level is implied from the 

trends. Whether. despite these peculiarities, the calculated P-wave an­

isotropies are realistic will be the subject of discussion. Concerning the 
eclogite (TW33). the relationships are somewhat different. The 
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calculated velocities exceed the experimental velocities, as expected 
from theory. From the experimental velocity vs. pressure trends further 

velocity increase for pressures beyond 400 MPa is difficult to infer 
(Fig. 98). but appears to be possible. As for the amphibolite. the 'true' 
level of the calculated P-wave velocities is questionable and is the sub­
ject of discussion. 

5.2.2. Metasediments 

In the metasediments the calculated P-wave velocities are gen­

erally lower compared to the eclogites. ranging from 6.24 to 
6.86 km/s. P-wave anisotropies. on the other hand. are higher with 

values of up to 7.4% (Table 2). In the paragneiss sample (RK28) the 

highest velocities are evenly distributed within the foliation plane 
and the velocity minimum parallels the foliation normal, i.e., the ve­
locity distribution is more or less axial symmetric (Fig. 9). The 
micaschist sample ( RKS) deviates from axial symmetry, because 

two velocity maxima at angles of approx. 45
° with respect to the lin­

eation are observed (Fig. 9). The micaquartzite (RK6) shows an un­

common relation to the sample reference frame with the velocity 
maximum apart from the foliation plane and two regions of mini­

mum velocity (Fig. 9). The marble sample has the highest velocity 

roughly parallel to the lineation with some dispersion in the 

foliation plane, and the lowest velocity is located normal to the 

foliation plane. 
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P-wave (Vp) and S-wave (Vs) velocities. elastic anisotropies (A) and Vp/Vs ratio of all samples. A: modelled from CPO of the Silmples. 8: experimentally measured Mean values for Vp and 
Vs were calculated by averaging the three measured or modelled principal velocities. 

Sample Lithology v_ (km/s) Min Max 

A RKl Eclogite 8.Q3 8.01 8.05 

RK3 Eclogite 8.14 8.08 8.22 

RK4 Strongly retrogressed Eclogite 7.54 7.48 7.56 

RK4HP Eclogite 8.27 8.23 8.29 

RKS Micaschist 639 6.16 6.64 

RK6 Micaquartzite 6.24 6.07 6.39 

RK17 Marble 6.86 6.62 6.97 

RK20 Retrogressed Eclogite 7.57 7.49 7.77 

RK20HP Eclogite 7.40 7.31 7.48 

RK28 Paragneiss 6.37 6.12 6.54 

RK49 Eclogite 7.46 7.41 7.52 

MS112 Eclogite 8.12 8.05 8.16 

1W32 Amphibolite 7.14 7.05 72.3 

1W33 Eclogite 8.00 7.88 8.11 

8 1W32 Amphibolite 7.25 7.01 7.43 

1W33 Eclogite 7.56 7.28 7.91 

53. V,1'15 ratios

Vp/V5 ratios of the eclogite samples are between 1.7 and 1.75. They 

are slightly higher for the retrogressed samples RK4 and 1W32 with 
values of 1.77, and 1.78, respectively (Table 2). In the elastic 
metasedimentary samples the Vp/Vs values are significantly lower 

with values between 1.48 and 1.60. A much higher value of 1.85 was ob­

tained for the marble sample. 

6. Discussion

Elastic anisotropy of rocks is, to a large part, constrained by the CPO 
of its constituent mineral phases, which. in tum. is caused by 
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deformation of the rocks. As Main price and Ildefonse (2009) point out. 

only mineral percentages above 10% play an important role for rock 
physical properties. In this study, all mineral phases were included 

into calculation of the elastic anisotropy of bulk rock. Garnet does not 
exhibit pronounced elastic anisotropy, we, therefore, used the isotropic 
average of the elastic constants. This might have been possible also in 

the case of random textures, however. we preferred to average the con­
tribution of particular minerals from the Orientation Distribution Func­
tion and the anisotropic mineral elastic coefficients. 
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The reliability of the predicted elastic anisotropy depends on 
accuracy of the CPD estimates and mineral elastic constants. A possi­

ble source of error is the rock modal composition delivered by RTA. 
Varying the volume fractions of the rock constituents can lead to 
the changes of anisotropy. Our observation is that modifications of 
a few percentages have no effect at all. Accordingly, the error contri­
bution of the minor rock constituents is negligible. If the modifica­
tion approaches 10%, the effect becomes visible. in particular for 
mica minerals exhibiting P-wave anisotropies in the order of 50%. 
The effect of erroneous CPD estimates in particular of rocks bearing 
many phases is much harder to assess. Methodical investigations of 
Keppler et al. (2014) show that, the orientational features of the 
CPOs of the main rock constituents can be reproduced well, but dif­
ferences due to texture strength may occur. 

6.1. Edogites 

6.1.1. CPO development 

The omphacite CPD in the eclogites is variable. exhibiting L-type 
(lineation dominated), S-type (foliation dominated) or transitional 
(SL-type) fabrics. The transitional fabrics predominate (Figs. 6 and 7). 
The CPD geometry has been interpreted as relating to strain geometry 
(e.g. Kurz and Froitzheim, 2002), with L-type fabrics revealing 

constrictional strain, S-type fabrics indicating oblate strain, and transi­
tional fabrics suggesting plain strain deformation (e.g. Helmstaedt 
et al., 1972). 

The retrograde glaucophane - a main rock constituent of many 
eclogites - also exhibits variable CPD. Appearance and CPD develop­
ment of glaucophane are very likely related to deformation during 
exhumation. As in the case of omphacite, the strain geometry may 
have been variable. An important result of the active deformation 

during exhumation is the degree of retrogression, which is reflected in 
different glaucophane volume fractions (Table 1 ). However, in most 
samples the layout of the glaucophane CPD corresponds to that of 
omphacite (Fig. 6). This indicates that the CPDs of both minerals formed 

during rock exhumation, and similar strain geometries persisted in the 
subduction channel for a long period. The retrogressed eclogite RK20 

represents a significant exception. because the orientation of the 
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glaucophane lineation (direction of the pole density maximum of the 

(001) lattice plane) deviates from the omphacite lineation (Fig. 6).
This indicates that the direction of maximum principal extension in

this sample changed after formation of the omphacite CPO, but prior

or simultaneously to formation of the glaucophane CPO. Passive rotation
of the eclogite block as a whole within the surrounding metasediments

appears to be the most probable explanation for the rotating stress field.
The uncommon barroisite CPO of sample RK4 with a weak girdle ten­
dency of (100) is unusual for amphibole (Zhang et al., 2013).

Al bite as a member of the retrograde mineral assemblage formed at 
a late stage of exhumation. The random CPO suggests that no dislocation 

creep was active at this stage of exhumation. Other deformation mech­
anisms cannot be excluded, but, obviously, did not lead to preferred 
orientation of albite. 

In the eclogites, phengitic mica was already present during HP defor­
mation. as confirmed by its high silica content. Strength of the ( 006) 

basal plane maximum indicates a well-developed foliation, except for 
sample RKl. which has a much lower pole density maximum (Fig. 7). 
The more fluctuating character of the foliation is visible also on hand 

specimen. If quartz is present, the weak CPO is almost perfectly axial 
symmetric with the foliation normal as the symmetry axis (Fig. 7). 

Due to the crystal plastic behaviour of quartz even at low temperatures, 
oblate strain can be derived from this feature for the very last stages of 
deformation. 

Generally, no correlation between compositional layering and tex­
ture strength was observed. Layered samples do not necessarily exhibit 
a more pronounced CPO than samples with a random grain distribution. 
Furthermore. no correlation between grain size and the CPO strength of 
the samples was found. For example strongly layered sample RKl 
exhibits much lower texture values in m.r.d. than sample RK3. which 
exhibits a granular mineral distribution (Table 1 and Figs. 4 and 6). 

6.12. Elastic anisotropies 

The (PO-derived elastic anisotropy of the eclogites is mainly 
constrained by the omphacite CPO and, if present. the amphibole CPO. 
Phengite contributes significantly if particular volume fractions are 
large enough. Due to consistent CPO type with the alignment of the 
basal plane within the foliation, and due to very high single crystal 
anisotropy (Fig. 3), phengite generally decreases the velocity normal 
to the foliation. The contribution to the velocity level within the foliation 
is vice versa. Garnet is basically isotropic and does not contribute to 
anisotropy. Due the high isotropic velocity in the order of 9 km/s the 
contribution to bulk rock velocity can be significant if large volume frac­
tions are present. 

The relationship of the kinematically significant lattice planes of 
omphacite ( (010) and (001)) and amphibole ((100) and (001)) to the 
single crystal P-wave distribution is not simple. In case of the 
omphacite, both the (010) and (001) lattice planes ocrupy intermediate 
positions between the directions of minimum and maximum velocities 
(Fig. 3 ). The velocity in ( 010) direction is closer to the minimum velocity 
and the velocity in (001) direction is closer to the maximum velocity. 
In case of the amphibole, the orientation differences between ( 100)/ 
minimum velocity and (001 )/maximum velocity are a few degrees 
only (Fig. 3). Especially in case of omphacite, the P-wave velocity distri­
butions are hard to infer directly from the pole figures. However, if the 
( 001) lattice planes of omphacite and amphibole exhibit strong coincid­
ing maxima parallel to the lineation (no dispersion within the foliation
plane), the same applies to the velocity distribution (sample RK3 in
Figs. 6 and 9). If the omphacite and amphibole (001) lattice planes are
dispersed within the foliation plane, the velocity maximum also tends
to form a more or less pronounced girdle within the foliation plane
(sample RK49 in Figs. 6 and 9). The strongly retrogressed eclogite RK4
shows clear girdle tendencies of omphacite {001) and hornblende
(001 ), but the velocity distribution exhibits a point maximum parallel
to the lineation. The unexpected relationship is caused by the anoma­
lous amphibole CPO with the (100) lattice plane forming a nearly

complete - but weak - girdle around the Y axis of the structural refer­

ence frame (Figs. 6 and 9 ). The retrogressed eclogite RK20 with different 
orientations of the omphacite (001) and amphibole (001) pole density 

maxima shows a velocity maximum between these maxima (Figs. 6 

and 9). 
Elastic anisotropy of the eclogites is always small with magnitudes 

mostly <2%, except for the retrogressed eclogite RK20 (A = 3.7%), 

which yields the highest glaucophane volume percentage in the 
samples (Table 1 ). Elastic anisotropies of the simulated HP eclogites 

RK4HP and RK20HP bearing only the high-pressure mineral assem­
blages are dominated by the omphacite CPO due to the lacking influenc:e 

of the amphibole CPO. In both cases the overall elastic anisotropy 

decreases. For sample RK4HP it becomes insignificantly small (0.7%), 

for sample RK20HP it markedly goes down to 2.3% (RK20: 3.7%, 
Table 2). This shows that the retrograde metamorphic overprint of 
eclogites during exhumation is capable of increasing the elastic anisot­

ropy due to the formation of amphibole, provided there is a CPO­
forrning mechanism during exhumation. 

62. Metasediments

62.1. CPO development 

The asymmetric crossed girdles of quartz (003) of samples RKS and 
RK28 (Fig. 8) are indicative of non-coaxial shear with combined basal 
<a>, prism <a> and rhomb <a> slip (e.g. Schmid and Casey, 1986). 

Sample RK6 exhibits a strong quartz (003) maximum at the border 
of the pole figure. The inclination with respect to the foliation normal 
indicates non-coaxial shear (Fig. 8). A weaker maximum in the foliation 
plane points to additional prism <a> slip. Hence, basal <a> slip is the 
predominant slip system (Schmid and Casey, 1986: Stipp et al.. 2002). 
The quartz textures and observed quartz dynamic recrystallization 
microstructures are characteristic of dislocation creep in the 
metasediments of the Eclogite Zone. The asymmetry of the CPO is 
missing in the eclogites (see also Behrmann and Ratschbacher. 
1989), i.e., non-coaxial shearing within the subduction channel 
mainly affected the elastic metasediments surrounding the eclogite 
bodies. In all elastic metasediments, the mica always shows pro­
nounced basal plane alignment parallel to the foliation plane 
(Fig. 8). The high phengite component of mica indicates high pres­
sure metamorphism of the metasediments. Since the orientation of 
the main foliation of the metasediments resembles the orientation 
in the eclogite bodies, it is likely that deformation concordantly af­
fected both rock associations, as already assumed by Behrmann and 
Ratschbacher ( 1989). 

The calcite CPD of the marble RKl 7 is weak and has a clear axial 
symmetry of all lattice planes with the foliation normal as symmetry 
axis indicating pure shear deformation. Slight maxima on the girdle 
distributions apply (see (110) in Fig. 8). This type ofCPO is typical for 
plastically deformed marbles with combined dislocation glide and twin­
ning as CPO forming deformation mechanisms (Wenk et al., 1987). 

622. Elastic anisotropies

In the elastic metasediments. bulk rock P-wave velocity distributions
are always dominated by the mica and quartz CPOs in dependence on 
particular volume fractions. The strongly foliated paragneiss RK28 
shows clear predominance of the mica due to the very strong preferred 
orientation of the (006) basal planes (Fig. 8), the high single crystal 

anisotropy (Fig. 3) and the relatively high volume fraction approaching 
19% (Table 1 ). As the distribution of P-wave velocities with respect to 

crystallographic direction in muscovite single crystals is almost biaxial, 
with a very strong anisotropy (see Fig. 3 ), representation of the basal 
plane textures (see Fig. 8) is sufficient to understand the textural 
contribution of mica to the calculated p-wave anisotropies in the 
metasediments. For a mica-rich mylonite, Behrmann (1984) showed 
that strong basal plane textures may well be accompanied by weak 
CPO of other reflections. Such a texture constrains the geometry of Vp 
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anisotropy patterns to be approximately biaxial with a Vp minimum 
perpendicular to the foliation, as is the case in the micaschist and 
paragneiss examples in Fig. 9. Due to weak CPO strength (Fig. 8), 
the contribution of quartz is negligible despite a volume fraction of 
50% (Table 1 ). Albite exhibits a random preferred orientation and there­
fore lowers the overall anisotropy of this sample. In samples RK5 and 
RK6, quartz has large influence on the modelled elastic anisotropies 
due to a strong CPO and higher volume fractions (71 % and 92%, respec­
tively). The three-fold symmetry of the quartz single crystal velocity 
distribution ( Fig. 3) makes it impossible to directly infer the influence 
of quartz on bulk rock velocity distributions. In the case of sample RK5 
with clear predominance of the mica ( very strong CPO and 24 vol.%), 
quartz causes the splitting of the mica-controlled high velocity girdle 
within the foliation plane into two maxima. In contrast, the effect of 
the mica (8 vol.%) is hardly visible in the case of sample RK6, despite 
the very strong preferred orientation ( Fig. 8). 

To some extent, the velocity distribution of the monomineralic mar­
ble RKl 7 can be inferred from the CPO. As expected, the direction of 
minimum velocity parallels the (006) maximum. The position of the ve­
locity maximum parallel to the lineation cannot be directly inferred 
from the CPO, but the elongation of the maximum within the foliation 
plane correlates with the axial symmetric layout of the CPO. 

Observed anisotropies of the metasediments range from 5.1 % to 
7.4%. They are considerably higher as for the eclogites (0.4%-1.8%) and 
the retrogressed eclogites (12%-3.7%; Table 2). In the case of samples 
RK5 and RK28, observed magnitudes of 7.4% and 6.8% can be attributed 
to the high volume fraction of the mica with very strong preferred 
orientation. The quartz textures are comparably weak and make no 
significant contribution. Sample RK6 also shows strong preferred orien­
tation of the mica, but the volume fraction of 8% is too small to deter­
mine the layout of the velocity distribution and to significantly control 
anisotropy. The quartz CPO is rather strong compared to other samples 
(Fig. 8). Together with the high volume fraction of quartz (92%) this 
causes the observed anisotropy magnitude of 53%, despite the three­
fold symmetry of the single crystal velocity distribution (Fig. 3). The an­
isotropy of the monomineralic marble RKl 7 corresponds to expecta­
tions from CPO strength and CPO symmetry. It appears that the much 
higher degree of mica preferred orientation is mainly responsible for 
the higher anisotropy level in most metasediments. Some eclogites/ 
retrogressed eclogites also bear considerable amounts of mica in the 
order of 10%-15% (samples RKl. RK3, RK4), but the very weak degree 
of preferred orientation ( Figs. 6 and 7) prevents significant contribution 
of the mica to bulk rock anisotropy. The anisotropy level of the essential­
ly monomineralic samples is controlled by the CPO strength or the crys­
tallography of the mineral phase. 

63. Comparison of modelled and laboratory data 

The elastic anisotropy of rocks is largely influenced by the CPO of
their constituent minerals. However, other factors like oriented 
microcracks or an SPO of the mineral grains can further influence elastic 
properties. Therefore, P-wave velocities of two eclogite samples were 
additionally measured in the laboratory for a comparison to the 
modelled data. The experimental and calculated P-wave velocity distri­
butions of samples 1W32 and 1W33 exhibit coinciding maxima and 
minima. the outlines of the patterns are slightly different (Fig. 9A). 
Such a principal agreement, which has been observed also by Mauler 
et al. (2000) and Abalos et al. (2010) indicates that the influence of 
the crack fabric is mainly due to quantities. The much larger decrease 
of the experimental minimum velocity compared to the experimental 
maximum velocity indicates that the influence of microcracks is aniso­
tropic, and that the microcracks essentially parallel the mica basal 
planes. Differences are due to anisotropy, which is generally higher for 
the experimental velocity distributions (Table 2). We already described 
the considerably lower velocity level of the calculated velocity distribu­
tion of sample 1W32 compared to the experimental one (Fig. 98). The 
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most probable explanation is that the elastic constants of hornblende 
used for the averaging do not fit the actual ones. Microprobe analyses 
revealed that the amphibole composition of this sample does not 
match the composition of glaucophane as for all other eclogites 
and retrogressed eclogites. Hence, we used elastic constants of 
Aleksandrov and Ryzhova (1961) for the averaging. Compared to 
glaucophane, the P-wave velocities recalculated from the elastic 
constants are lower (hornblende: 5.98-7.86 km/s; glaucophane: 6.30-
9.27 km/s), and this may explain the surprisingly low velocity level of 
the calculated P-wave distribution. Simply shifting the calculated veloc­
ity pattern as a whole to higher velocities would not change anisotropy 
significantly, so we suppose that the estimated anisotropy magnitude is 
affected by some error but realistic. In conclusion. the comparison 
indicates a remarkable anisotropy difference for the eclogite (1W33). 
at interrnediate crustal depths it is approximately three times higher 
as for the crack-free ((PO-derived) sample. For the retrogressed 
eclogite (TW32) it is roughly 1.5 times higher. Such raw estimates 
give an idea about the increasing influence of the crack fabric during 
exhumation. According to Christensen (1974) the influence of 
microcracks is nonexistent at pressures exceeding about 1 GPa, 
which means for rocks in deeper levels of the subduction channel 
(e.g. more than 30 km), the modelled anisotropies are expected to 
be realistic. 

Measured elastic anisotropies of gneisses and micaschists are like­
wise higher than those modelled from compositions and CPO (cf. 
Meltzer and Christensen, 2001; Punturo et al., 2005; Zappone et al., 
2000). Generally the discrepancies are larger than in case of the 
eclogites. Again. this indicates that preferentially oriented mica exerts 
a strong influence on velocity anisotropy. In samples RK5 and RK6 of 
this study, the quartz CPO largely controls the modelled elastic anisot­
ropies and not the mica CPO. Because of the effects induced by 
microcrack fabric the modelled anisotropy values from this study need 
to be considered as lower bound estimates. The same is true for the 
5.1 % anisotropy modelled for the marble sample with a weak CPO 
(RKl 7; Table 2), which is at the lower bound for experimentally mea­
sured anisotropies of marble ( 6-12%, depending on the strength of the 
foliation; Zappone et al., 2000; Punturo et al., 2005). 

6.4. Vrl'/5 ratios 

Calculated Vp/V5 ratios of the fresh eclogite samples are about 1.70-
1.75 (Table 2). These values are somewhat lower than those obtained by 
Kem et al. (1999), or Worthington et al. (2013), who modelled Vp and 
V5. Laboratory investigations of Gao et al. (2001 ), on the other hand, 
produced a wide spread of Vp/V5 ratios between 1.70 and 1.86 for 
fresh eclogite samples, and values of up to 1.87 for retrogressed 
samples. Considering the suite of samples in the present study retro­
gression of eclogite. ultimately leading to amphibolite, has the effect of 
increasing the Vp/V5 ratios, to values of up to 1.78. This can be seen 
when examining Vp/Vs ratios in samples RK20, RK4 and TW32 
(Table 2). In principle, this allows to differentiate between portions of 
fresh and retrogressed eclogite in subduction channels. 

The V r!Vs values of eclogite appear lower than those of peridotites of 
the lithospheric mantle of a downgoing slab, quoted for global earth 
models ( 1.79; e.g. Kennett et al., 1995 ). those of peridotites from exper­
imental studies ( e.g. Kara to et al., 2008), or those from studies that take 
compositional differences into account ( e.g. Alfonso et al., 2010). High­
resolution tomographic analysis of subducting slabs ( Northern Honshu; 
Zhang et al., 2004) shows that the peridotite slab has Vp/V5 ratios of 
1.80-1.85 at depths between 60 and 85 km. A zone of lower Vrl'/5 ratios 
( 1.70-1.80) in the upper layer of the slab is interpreted to reflect 
subducted meta-gabbros of the oceanic crust that are transformed to 
blueschists and/or eclogites. The Vp/V5 values from Zhang et al. (2004) 
are in good accordance with those derived from the present study, 
and show that subducted oceanic crust can be imaged and identified 
by seismic tomography. 
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The metasediments, however, have much lower Vp/Vs ratios 
(Table 2), with the exception of the marble sample RKl 7. which 
has a VpfVs ratio of 1.85. The micaceous rocks and the paragneiss. 
show Vp/Vs ratios between 1.48 and 1.60, making them typical equiv­
alents of subducted terrigenous sediments deposited in a deep sea 
trench setting, with Vp/Vs around 1.60 at a Vp velocity of 5 km/s 
(e.g. Fig. 7 of Tsuji et al., 2011 ). When large packets of such sedi­
ments are subducted, they should be clearly visible as low Vp/Vs 

features in seismic tomographic images at convergent margins. 
This signature may be modified by high fluid pressures (e.g. 
Eberhart-Phillips et al., 2005: Nugraha and Mori, 2006), but based 
on only the composition of subducted sediments Vp/V5 ratios would 
be low and coupled with high Vp and V5 anisotropies. For marble, 
the combination of high Vp/Vs ratio, as well as high Vp anisotropy, 
and Vp velocities much lower than those of peridotite or eclogite, 
may constrain a very specific signal for marble, which is a character­
istic of subducted carbonate platforms (see e.g. Urai et al.. 1990: 
Behrmann and Seckel, 2007, for a fossil geological example). 

6.5. Seismic imaging of subduction channel rocks

The EZ is a good example for a fossilized subduction channel and 
the data discussed in the previous sections yield important information 
on the elastic properties of rocks within such a tectonic regime. Never­
theless. no serpentinite is found in this unit. which occurs in several 
other exhumed subduction channels (e.g. the Voltri Massif in the 
Western Alps: Frederico et al.. 2007. or the Sierra del Convento in 
Cuba: Blanco-Quintero et al., 2010). Therefore the EZ represents a 
subduction channel. in which the viscous matrix surrounding the 
eclogite boudins is purely made up of high pressure metasediments. 

Our results demonstrate that in this kind of subduction channel a 
matrix of highly anisotropic ( up to 7.5%) metasediments with low Vp 

(6.2-6.4 km/s) and low Vp/Vs ratios (1.48-1.60) can be expected. At 
depth of over 45-50 km, where eclogile high pressure assemblages 
are stable. the eclogite boudins in the subduction channel exhibit low 
anisotropy (-1.5%), high Vp (8.0-8.3 km/s) and a relatively high Vp/Vs 

ratio (-1.70). At higher levels in the subduction channel, retrogression 
of the eclogites increases their anisotropy to up to 3.7%, mostly lowers 
their velocity (7.1-7.6 km/s) and somewhat increases their Vp/V5 ratio 
(-1.78). This shows that retrogression of eclogite boudins in the sub­
duction channel may be detectable. Marbles in the subduction channel. 
which originate from subducted carbonate platforms ( e.g. e.g. Urai et al., 
1990; Behrmann and Seckel, 2007). yield an anisotropy of about 5% and 
a Vr of about 6.9 km/s. Further. their Vp/V5 ratio is very high with values 
of 1.85, constraining a specific seismic signal for marble. 

The present state of instrumental techniques only permits relatively 
low resolution images at depths in which high pressure subduction 
channels are active. Yet, substantial progress was made improving the 
resolution of seismic imaging in the last decades and it is assumable 
that a detection of the internal structures within subduction channels 
will be possible in the future. 

In addition, the expected signal of subduction channels can be eval­
uated by numerical modelling of seismic waves. Essen et al. (2009) 
modelled subduction channels as a layer of intermediate velocity 
above the downgoing slab to predict the seismic signal. and showed 
that high amplitudes of guided waves could indicate the existence of a 
subduction channel. However, no internal structure within this layer 
was incorporated in their model. Recent numerical simulations of 
Friederich et al. (2014) included a more detailed subduction channel 
structure with eclogite blocks in a serpentinite matrix. The authors 
demonstrated that this internal structure leads to very specific seismic 
s�gnatures. In their mod_el. elastic anisotropy of the rocks was neglected,
smce the large-scale anisotropy of the subduction channel was consid­
ered insignificantly small. Our results show that anisotropy of subduc­
tion channel rocks can be significant in case of the metasedimentary 
matrix surrounding the eclogite blocks. An incorporation of anisotropy 

in numerical simulations could, therefore, help to make the resulting 
images more realistic. 

7. Conclusion

We use crystallographic preferred orientations (CPO) of a compre­
hensive suite of rocks from the Tauern Eclogite Zone in southern 
Austria as a petrophysical analogue for a subduction channel between 
the downgoing and overriding plates at modem convergent margins. 
Using this analogy we show in particular that: 

1. Time-of-flight neutron diffraction studies on large polymineralic
rock samples and the application of full pattern fit methods are a
valuable quantitative tool to assess CPO and resulting elastic anisot­
ropy and Vp/Vs ratios of rnineralogically complex rocks.

2. P-wave anisotropies of fresh deformed eclogites are fairly low, with
an average of about 1.5%, and mainly constrained by pronounced
omphacite CPO. Growth and deformation of retrograde amphibole
also produces a pronounced CPO, raising P-wave velocity anisotropy
to up to 3.7%, and possibly changing the orientations of velocity
maxima. 

3. Elastic anisotropies of the once subducted metasediments are higher
(up to 7.4%) and constrained by quartz and mica CPO in elastic sedi­
ments.

4. Most rock types of such subduction channels have distinct signatures
ofV,,/Vs ratios. Fresh eclogites can be distinguished from retrogressed
ones. and both rock types can in turn be distinguished from mantle
peridotites and metasediments of the downgoing lithospheric slab.

5. Subducted terrigenous sediments are not only strongly anisotropic,
but also have low Vp/Vs ratios. This makes them detectable at depth
in active subduction channels using seismic tomography. Marbles,
which may constitute subducted marine carbonates, are distinguish­
able from terrigenous elastics by high anisotropy, but also high v,,;v5 

ratios.
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Deformation of subduction channel rocks - Insights from crystallographic preferred 

orientations and microstructures of eclogites and metasediments from the Eclogite 

Zone of the Tauern Window, Austria 

ABSTRACT 

The Eclogite Zone (EZ) of the Tauern Window is an exhumed subduction channel of the 

Eastern Alps consisting of kilometer sized eclogite lenses wrapped in a matrix of 

metasediments. The eclogites show variable grades of retrogression, from fresh eclogites 

still exhibiting their high pressure mineral assemblage to those that were severely 

retrogressed during exhumation. In this study, microfabrics of both fresh and 

retrogressed eclogites, as well as the metasediments surrounding the eclogite lenses 

were investigated. EBSD analysis of fresh eclogites shows omphacite porphyroclasts with 

local subgrains, as well as small recrystallized omphacite grains. The porphyroclasts 

exhibit increasing jadeite content from core to rim, whereas highest jadeite contents are 

observed for the recrystallized grains. This points to omphacite growth and dynamic 

recrystallization during subduction at increasing pressure. Bulk omphacite CPO of fresh 

eclogites exhibits an SL-type fabrics pointing to plane strain during subduction. EBSD 

analysis of retrogressed eclogites also showed omphacite porphyroclasts with local 

subgrains as well as small recrystallized grains. In the retrogressed eclogites the 

porphyroclasts mainly display decreasing jadeite content from core to rim. The 

recrystallized grains show lower jadeite contents than the porphyroclast cores pointing to 

dynamic recrystallization during the exhumation at decreasing pressure. Omphacite CPO 

of the retrogressed eclogites mainly exhibits SL-type fabrics pointing to plane strain 

during exhumation. L-type fabrics and S-type fabrics also occur indicating local strain 

variations in the prolate and oblate strain field. The CPO of retrograde glaucophane 

always matches the omphacite CPO, which suggests that the local strain variations 

persisted from eclogite facies to the exhumation to blueschist facies. Quartz CPO of the 

metasediments is also pronounced. Deformation of the metasediments outlasted that of 

the eclogite lenses, as confirmed by lower Si-contents of mica. The metasediments 

therefore record the final stages of deformation in the EZ. 
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1. Introduction

Subduction channels comprising a melange of sediments and oceanic crust represent shear zones 

of up to a few km thickness on top of the downgoing oceanic plate in subduction zones. The 

concept of material transport and specifically the exhumation processes within subduction 

channels have first been established by Shreve and Cloos (1986). Originally applied to the 

circulation of sedimentary material within a crustal wedge reaching depths of 30 km, this model 

has been extended to the exhumation of oceanic crust and its sedimentary cover from depths of 

more than 70 km in recent models (e.g., Angiboust et al., 2009; Agard et al., 2009). At this greater 

depth the subduction channel rocks are subjected to high-pressure metamorphism leading to the 

formation of eclogites and high pressure metasediments (e.g., Ernst, 1970; Goffe and Chopin, 

1986). 

Eclogites from exhumed subduction channels can show a pronounced crystallographic preferred 

orientation (CPO) of omphacite, their main constituent, e.g., Monviso ophiolithic complex in the 

Western Alps (Mauler et al., 2000a), Les Essarts complex in France (Mauler et al., 2001), the Caba 

Ortega! complex in Spain (Abalos et al., 2010), Adula Nappe in the Central Alps and Eclogite Zone 

in the Eastern Alps (Kurz et al., 2004). The deformation mechanisms leading to such pronounced 

omphacite CPOs, however, are not completely understood. Godard and Van Roermund 

determined the activity of three slip systems of omphacite [0011(100), Yi<ll0>{-110}, and 

[001]{110} using transmission electron microscopy (TEM). With the activity of three slip systems 

alone, strain cannot be fully accommodated according to Von Mises criterion (van Mises, 1928) 

and the authors concluded that other deformation mechanisms must be involved. Mauler et al. 

(2000) investigated microstructures and crystallographic preferred orientations (CPOs) of 

experimentally deformed omphacite. Their study indicated that anisotropic growth of omphacite 

is the main CPO forming mechanism. Helmstedt et al. (1979) identified two principal types of 

omphacite CPO: L-type fabrics characterized by alignment of [001] parallel to the lineation and 

[010] girdles perpendicular to the lineation, and S-type fabrics, in which [001) exhibits girdles

within the foliation plane and [010) is aligned with the foliation normal. According to Brenker et 

al. (2002) the formation of S-type and L-type fabrics is determined by cation ordering of 

omphacite, which is in turn defined by its formation temperature and jadeite content. Abalos 

(1997) and Kurz et al. (2004) on the other hand, studied omphacite CPO in naturally deformed 

eclogites and infer a strain induced CPO development leading to L-fabrics due to prolate strain 

and S-fabrics due to oblate strain. Another question is the timing of CPO development in 

eclogites, i.e., does it take place mainly during subduction of the rocks, during their exhumation, 

or is it a continuous process? Based on omphacite CPO data of eclogites, Neufeld et al. (2008) 
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assume that CPO formation in eclogites occurs during prograde metamorphism of subduction due 

to a higher fluid availability. However, deformation related retrogression of eclogites is well 

documented (e.g. Abalos and Puelles, 2003}, and Kurz (2005) relates CPO formation of eclogites 

with both, subduction and exhumation. 

The Eclogite Zone (EZ) of the Tauern Window offers the great opportunity to study deformation 

during both prograde and retrograde metamorphism stages of subduction channel rocks. The EZ 

is an exhumed high pressure unit of the Eastern Alps exhibiting a subduction channel structure 

with eclogite lenses in a metasedimentary matrix (e.g. Smye et al. 2011). Several aspects make the 

EZ an ideal study area for subduction channel deformation and CPO formation. The eclogite 

lenses reach sizes of several kilometres (Raith et al., 1980) and it is unlikely that these large and 

partly irregularly shaped lenses rotated much within the metasediments. Both metasedimentary 

matrix and eclogite lenses experienced high pressure metamorphism up to 2.5 GPa (e.g. Holland, 

1979, Dachs, 1986; Selbverstone, 1992; Stockhert et al., 1997; Hoschek, 2001; 2004) and were 

exhumed as a coherent unit (Dachs, 1990; Behrmann and Ratschbacher, 1989). The eclogites of 

the EZ comprise the complete spectrum from prograde blueschist facies relicts, over fresh 

eclogites, to eclogites, which were severely retrogressed under blueschists facies conditions. 

The main aims of the present study are the determination of CPO forming mechanisms in 

eclogites, as well as the timing of their deformation. Furthermore, we want to determine, which 

rock units accommodate strain at different stages in the subduction channel. For this purpose, we 

investigate the microfabrics of fresh and retrogressed eclogites, as well as metasediments from 

the EZ to unravel their deformation from subduction to peak pressures and back to the 

exhumation to crustal levels. Our results give insights into CPO formation and deformation 

mechanisms of eclogites and their operation within the Tauern window subduction channel. 

2. Geological overview

The EZ is a high pressure unit in the southern Tauern Window (Fig. 1 A and B), which is a tectonic 

window exposing European continental units and Penninic oceanic units beneath the Adria­

derived Austroalpine. It developed through crustal scale folding, EW extension, and an 

indentation of the Southern Alps (Laubscher, 1988; Ratschbacher et al., 1989; Behrmann and 

Frisch, 1990; Selverstone, 1993; Rosenberg et al., 2004; Schmid et al., 2013). The EZ is located in 

the southern Tauern Window and originates from transitional crust between the distal European 

margin to the north and the Penninic ocean to the south. It is assumed to have developed from a 

volcano-sedimentary sequence, which formed during rifting of the Penninic ocean in the Jurassic 

(Kurz et al., 1998b). The EZ entered the subduction channel during the subduction of the Penninic 
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ocean beneath the Adriatic microcontinent and reached PT conditions of 2.0-2.5 GPa and 600 +/-

300( (Holland, 1979, Dachs, 1986; Selbverstone, 1992; Stockhert et al., 1997; Hoschek, 2001; 

2004). Recent Rb-Sr and Lu-Hf dating revealed an Oligocene age for peak conditions in the EZ and 

a fast exhumation within 1-2 Ma (Glodny et al., 2005; Nagel et al., 2013). Initial exhumation of the 

EZ occurred under relatively low temperature (Fig. 2A) and part of the unit was retrogressed 

under blueschist fades conditions (Dachs, 1986; Behrmann and Ratschbacher, 1989; Zimmermann 

et al., 1994; Kurz et al., 1998a). Furthermore, the EZ was subjected to a late stage high 

temperature overprint (Holland and Richardson, 1979). However, due to the fast exhumation 

large parts of the unit escaped retrogression. 
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Im Austroalpine Penninic Units 

D Southalpine • Penninic
(Adriatic continent) oceanic units
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in Tauern Window) 

� Venediger Nappe Brian�onnais 
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Figure 4.1: Tectonic maps of (A) the Alps, (B) the Tauern Windom (after Froitzheim et al., 1996; Schmid et 

al., 2013} and (C} the Eclogite Zone (after Neufeld et al., 2008}. Insets indicates locations of field areas 

shown in figure 28 and C. 

Today, the EZ is steeply dipping to the SSE and sandwiched between the Venediger nappe in its 

footwall, which was part of the European basement and the Glockner nappe in its hangingwall, 

which originates from Penninic oceanic crust (Fig 1(). Under- and overlying nappes are of lower 

metamorphic conditions than the EZ. The Venediger nappe reached a metamorphic peak of 10-12 

kbar and SS0°C, which corresponds to the blueschist facies event of the EZ. This indicates an 
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emplacement of the EZ on the Venediger nappe under blueschist facies metamorphic conditions 

(Franz et al., 1991; Selverstone, 1993). Geothermobarometric data of Dachs (1990) indicate peak 

conditions of 7.5+-1 kbar and 525+-25
°

( for the overlying Glockner nappe. 

,0 

" 

Figure 4.2: (A) PT-path of the EZ after Holland, 1979; Dachs, 1986; Spear and Franz 1986; Dachs, 1990; 

Zimmermann et al., 1994; Kurz et al., 1998a. Geologic maps of the Timmeltal (B), constructed from own 

work and completed with map of Raith et al., (1980) and the Frosnitztal (C). Marked in red are sample 

locations. Main foliation and streching lineation are indicated. 

Previous field studies covering the entire EZ revealed a steeply S to SE-dipping foliation and a 

sub horizontal stretching and mineral lineation preferentially dipping gently to the Wand SW (e.g., 

Behrmann and Ratschbacher, 1989; Fig. 2A, B). The EZ consists of lenses of eclogites, with 

thicknesses between a few meters and several hundreds of meters. They are enclosed in a matrix 

of paragneisses, micaschists, quartzites, metaconglomerates, and marbles (Fig. 28 and C), which 

were part of the high pressure melange in the subduction channel (Spear and Franz, 1986; Dachs, 

1990). 
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2. Methods

A detailed field mapping was performed in the areas of the Timmeltal and Frosnitztal (Fig. 2 B and 

C) and a set of rock samples including fresh eclogites, retrogressed eclogites, and metasediment

samples was collected from different outcrops in the two field areas. Locations are marked in red 

in Fig 2 B and C and GPS coordinates are given in Table 1. Samples were cut perpendicular to 

foliation and stretching lineation, as well as parallel to the stretching lineation and perpendicular 

to the foliation for microfabric analysis. 

Sample Location Description Composition 

RK3 30193/ Fine grained eclogite with weak layering 43 % omphacite, 22 % garnet, 15 % 

21692 pa ragonite, 10 % gla ucopha ne, 9 % 

quartz, 1 % rutile 

RK4 30157/ Retrogressed eclogite with pronounced 37 % barroisite, 25 % omphacite, 12 % 

21550 carbonate rich layers. Medium grain size phengite, 9 % garnet, 8 % al bite, 6 % 

and layers of about 1-5 mm thickness. dolomite, 3 % calcite 

RK5 30104/ Layered micaschist 71 % quartz, 24 % muscovite, 5 % 

21542 clinozoisite 

RK6 30136/ Mi ea-quartzite 92 % quartz, 8% muscovite 

21639 

RK28 30147/ Paragneiss with strong mica foliation 50% quartz, 31 % al bite, 19 % muscovite 

21637 

RK49 30636/ Layered, retrogressed eclogite 25 % omphacite, 33 % al bite, 14 % 

21642 garnet, 12 % phengite, 8 % quartz, 8 % 

glaucophane 

MSll.2 Fine grained, mylonized eclogite with 45 % omphacite, 24 % almandine, 15 % 

pronounced layering of omphacite and quartz, 6 % p hen gi te, 5 % a I bite, 4 % 

garnet. Layers are 0.5-2 mm thick glaucophane, 1 % rutile 

Table 3.1: Location, description and composition of the samples investigated in this study. Mineral phases 

were determined by microprobe analysis. Volume percentages of different mineral phases were 

determined by Rietveld texture analysis. 

Mineral assemblages and chemical compositions of the eclogites and metasedimentary samples 

were determined by microprobe analyses at a JEOL JXA 8200 Electron Probe of GEOMAR, Kiel. 

Natural and synthetic silicates were used as standard materials. Single point analyses were 

performed at 15 kV accelerating voltage and 20 nA beam current. Volume percentages of mineral 

phases in the investigated samples were determined by 'Rietveld Texture Analysis' using the 

MAUD software (Table 1; Lutterotti et al., 1997). Microstructures of both the eclogites and the 

metasedimentary rocks were investigated using optical light microscopy. 

For the fabric analysis, sample surfaces perpendicular to foliation and stretching lineation were 

mechanically polished with a minimum grain size of 0.25 µm and subsequently chemo-

80 



mechanically polished with a high-pH silica solution. Additionally, the sample surface was coated 

with about 3nm of carbon to prevent charging in the SEM. Microfabrics of two eclogite samples 

were analyzed with electron backscatter diffraction (EBSD) in the scanning electron microscope 

(SEM) of the Bayerisches Geoinstitut, Universitat Bayreuth. The SEM is a Leo (Zeiss) Gemini 1530 

with a Schottky FEG cathode equipped with a combined EBSD/EDS detection system made by 

Oxford Instruments. EBSD patterns were collected with a Nordlys 2 CCD camera and EDS spectra 

with a Peltier-cooled X-MAX silicon drift detector with 20 mm2 chip size. In the scans, 

accelerating voltage was 20 keV at a working distance of 19 mm and a beam current of about 2 nA 

was used yielding an acquisition time of about 50 ms per point. Analysis of indexed EBSD patterns 

was performed with the Channel 5 software from Oxford Instruments (Schmidt et al., 1991). 

Automatic indexing of the diffraction patterns was carried out with 5-7 reflections and a reference 

file of 75 reflections of the omphacite, garnet and magnesiohornblende structure, respectively. 

The use of magneisohornblende structure instead of glaucophane, which is the amphibole in the 

investigated samples, is warranted since hornblende and glaucophane are structurally equivalent 

(C2/m space group; Reynard et al., 1989).The accuracy between individual EBSD orientations is 

usually between 0.5 and 0.8°, but always better than 1.3°. 

Orientation maps showing misorientation angles between crystal lattices of different grains were 

produced and color-coded with respect to the Euler angles. Sudden changes in color do not 

necessarily represent large changes in orientation. Boundaries related to different misorientation 

intervals are presented as colored lines on the orientation maps. Black and red lines define 

misorientations above 10° and between 1 and 10°, respectively. 

Misorientation angle distributions were calculated for correlated as well as uncorrelated 

omphacite grains by selecting the minimum misorientation angle and its corresponding axis from 

all possible symmetric variants (Wheeler et al., 2001). Uncorrelated grains are random, non­

neighboring pairs of grains, whereas correlated grains are neighboring pairs of grains (e.g. 

Mainprice et al. 1993). For comparison, in all histograms the misorientation angle distribution for 

random distributions of crystals, e.g. no crystallographic distribution, was plotted (Mackenzie 

1958). 

Misorientation axes express the rotation that transfers one crystal lattice into the other and can 

be illustrated in pole figures and inverse pole figures. An analysis of the distribution of 

misorientation axes of neighboring or nearby grains can highlight the deformation process that 

led to the misorientation (e.g. Lloyd et al., 1997; Wheeler et al., 2001). In this study, the 

distribution of misorientation axes was determined for misorientations of 2-10°, 10-30° and 30-

500 and plotted with respect to the sample reference system, as well as the crystallographic 

reference system. 
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Energy dispersive spectroscopy (EDX) was performed in parallel to the EBSD scans with an 

exposure time of 30 ms per point. X-ray fluorescence counts in the positions of the Mg-, Na-, and 

Ca-K lines were collected within a window of 90, 95 and 134 eV width respectively. 

In addition, CPO was investigated by time-of-flight (tof) neutron diffraction texture analysis at the 

SKAT diffractometer at the Frank Laboratory of Neutron Physics at JINR, Dubna, Russia (Ullemeyer 

et al., 1998; Keppler et al. 2014). This method allows the investigation of large sample volumes 

leading to representative bulk CPO. The application of full pattern fit methods makes it possible to 

determine the CPO of all mineral phases in the investigated samples. 

4. Microfabrics

4.1. Eclogites 

The studied eclogites are relatively fine-grained (< 1 mm) and can be subdivided into rocks that 

were retrogressed during exhumation and those that do not show significant signs of 

retrogression. The high-pressure assemblage of the eclogites contains omphacite, garnet, 

phengite, quartz and minor amounts of rutile (Table 1). For samples not overprinted by later 

retrogression we will use the term 'fresh eclogites' in the following. Most fresh eclogites are 

strongly layered displaying omphacite rich layers alternating with layers that are rich in garnet, 

phengite and quartz. A few samples, however, exhibit a more or less random grain fabric. 

Omphacite is the main constituent in all eclogites and mostly displays a well-developed foliation 

(Fig. 3A). Frequently a distinct streching lineation is observed, but there are also samples, in which 

it is only weakly developed (Fig. 38). Phengite is always aligned within the foliation. Garnet is 

either distributed within layers or forms clusters within the omphacite matrix. Quartz is mostly 

found in the pressure shadows of garnets. 

Eclogite samples, which were overprinted by blueschist facies conditions further contain 

amphibole and paragonite (Table 1). The amphibole is either glaucophane or barroisitic 

hornblende. For these we will use the term 'retrogressed eclogites' in the following. Likewise, the 

samples mostly exhibit strong layering with omphacite and garnet rich layers, whereas the 

amphibole can be found within the omphacite layers, as well as the pressure shadows of garnet. 

The retrogressed eclogites also display a distinct omphacite foliation and in some samples a 

stretching lineation is observed (Fig. 3 C and D). The retrograde amphibole foliation is parallel to 

the omphacite foliation and in most samples the amphibolite stretching lineation is aligned with 

that of omphacite. Paragonite is not so well aligned in the foliation as phengite and frequently 

displays a nearly random orientation. 
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Figure 4.3: (A) Fresh eclogite mylonite sample MS112 cut perpendicular to foliation and parallel to 

lineation; note the distinct omphacite rich and alternating garnet rich layers. (B) foliation plane of sample 

MS112; note that lineation is only weakly developed. (C) retrogressed eclogite sample RK3 cut 

perpendicular to foliation and parallel to lineation. Alternating omphacite rich and garnet rich layers are 

visible but less distinct. (D) Foliation plane of retrogressed sample RK19; note the clear stretching 

lineation. 

Tof neutron diffraction texture analysis shows a variable ompacite CPO of both fresh and 

retrogressed eclogites (Fig. 4A and Keppler et al., 2015). (001) is strongly aligned with the 

omphacite stretching lineation in some samples and more or less distributed within the foliation 

plane in others. (010) displays girdle structures perpendicular to the omphacite stretching 

lineation in samples where {001) is aligned with the lineation (RK3 in Fig 4A). This CPO is a clear L­

fabric after Helmstedt (1974). In samples where (001) is distributed within the foliation plane, 

(010) shows point maxima aligned with the foliation normal (RK4 in Fig. 4A), which would be

described as a typical S-fabric after Helmstedt {1974). Most samples, however, exhibit SL-fabrics, 

where (001) is aligned with the omphacite stretching lineation with some distribution in the 

foliation plane and (010) displays point maxima normal to the foliation (RK49 and MS112 in Fig. 

4A and Keppler et al., 2015). In the retrogressed samples, (001) of amphibole mostly matches that 
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of omphacite. Likewise, it can either be strongly aligned with the omphacite stretching lineation 

(RK3 in Fig. 4A) or more or less distributed within the foliation plane with some alignment in 

lineation direction {RK4 and RK49 in Fig. 4A). Glaucophane (100) is always aligned with the 

foliation normal, whereas (100) of barroisite shows a very weak girdle distribution in the foliation 

plane. Phengite in the eclogites always exhibits a strong alignement of its basal plane {001) in the 

foliation (see RK49 and MS112 in Fig. 4A). {001) of muscovite and paragonite, on the other hand, 

only shows a weak alignment in the foliation plane (RK3 and RK4 in Fig. 4A). 
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Figure 4.4: {A) Omphacite and amphibole CPO of fresh and retrogressed eclogites. (B) Quartz CPO of 

metasediments. All pole figures are lower hemisphere equal area projections. Coloured lines are 

multiples of a random distribution with maxima (max) indicated at the lower right of each pole figure. 

CPO is derived from tot neutron diffraction. 
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A Omphadte Glaucophane 
Sample MS112 (fresh edogiteJ RK49 retrogressed edogite) RK3 (retrogressed eclogite) 

#1 #2 13 #4 #5 #6 #7 #8 representative profile through omphacite grain #9 #10 #11 #U #13 
Si02 56.67 57.19 57.23 57.84 56.85 57.04 57.42 57.83 57.04 57.71 57.49 57.46 57.51 57.80 57.60 57.49 57.46 58.16 58.91 59.43 59.21 
Ti02 0.06 0.05 0.05 0.07 0.05 0.05 0.05 0.07 o.os 0.05 0.06 0.05 0.04 0.05 0.05 0.05 0.04 0.05 0.04 0.03 0.02 
Al203 9.18 10.96 11.35 13.34 10.13 10.98 12.93 13.05 13.00 13.06 14.25 13.48 13.84 14.44 14.38 13.07 9.84 13.69 13.46 12.98 12.99 
FeO 6.25 4.95 4.81 1.95 5.29 4.67 2.29 2.25 2.24 4.00 1.83 2.03 3.04 2.31 2.17 2.30 5.84 2.39 4.37 4.40 4.44 
MnO 0.02 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.08 0.04 0.07 0.00 0.01 0.03 0.00 0.00 0.07 0.03 0.01 0.02 
MgO 8.77 8.14 8.21 8.54 8.93 8.53 8.44 8.44 9.29 7.83 8.49 8.68 7.63 7.70 7.85 8.93 832 8.19 12.07 12.88 13.04 
eao 14.19 12.85 12.87 12.51 13.91 13.27 12.39 12.34 13.35 11.77 11.99 12.55 11.22 11.27 11.41 13.07 13.65 12.17 1.71 0.50 0.98 
Na20 5.n 6.45 6.60 6.85 5.96 6.45 6.85 6.87 6.58 7.47 7.31 6.96 7.61 7.63 7.57 6.57 6.18 6.97 6.67 7.06 6.87 
K20 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.02 0.01 0.02 
Sum 100.9 100.6 101.1 101.1 101.l 101 100.4 100.9 101.6 102 101.5 101.3 100.9 101.2 101.1 101.5 101.3 101.7 97.28 97.3 97.59 

jd-con-
tent 0.38 0.46 0.47 0.53 0.42 0.46 0.53 0.53 0.45 0.52 0.51 0.50 0.55 0.56 0.55 0.49 0.41 0.55 

Si 8.07 8.06 8.05 8.05 8.02 8.05 8.03 7.98 7.89 7.98 7.91 7.94 7.98 7.97 7.95 7.94 8.10 7.99 8.27 8.28 8.25 

Ti 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.005 0.01 0.00 0.00 

Al 1.63 1.49 2.23 1.90 1.38 0.78 1.92 2.22 2.12 2.13 2.31 2.20 2.26 2.35 2.34 2.13 2.06 2.22 2.11 2.13 2.13 

Fe 0.68 0.72 0.28 0.53 0.70 0.85 0.51 0.28 0.26 0.46 0.21 0.24 0.35 0.27 0.25 0.27 0.69 0.28 0.51 0.51 0.52 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.008 0.00 0.00 0.00 

Mg 1.79 1.91 1.58 1.69 2.07 2.55 1.72 1.67 1.91 1.61 1.74 1.79 1.58 1.58 1.62 1.84 1.75 1.68 2.70 2.68 2.71 

Ca 2.11 2.22 1.73 1.92 2.41 2.87 1.91 1.77 1.98 1.74 1.77 1.86 1.67 1.67 1.69 1.93 2.06 1.79 0.12 0.07 0.15 

Na 1.64 1.56 1.91 1.78 1.38 0.90 1.81 1.98 1.77 2.00 1.95 1.86 2.05 2.04 2.03 1.76 1.69 1.86 1.88 1.91 1.86 

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sum 15.92 15.97 15.79 15.89 15.98 16.01 15.91 15.90 15.93 15.95 15.91 15.89 15.9 15.88 15.89 15.87 15.93 15.82 15.61 15.60 15.62 

0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.00 24.00 24.00 

B Phengite C Phengite 
Sample MSm (frMh edcsitel RKl RK28 (pa,.nelss) 

Si02 51.00 49.64 50.90 50.12 50.71 50.75 50.17 50.51 51.58 48.59 48.28 48.33 
Ti02 0.20 0.22 0.16 0.25 0.23 0.21 0.22 0.25 0.26 0.38 0.40 0.35 
Al203 27.87 30.42 27.71 30.07 28.88 29.44 30.02 28.91 29.49 31.56 31.43 32.11 
FeO 1.00 1.10 1.00 0.71 2.02 1.85 1.96 2.16 2.33 3.25 3.37 3.01 
MnO 0.04 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 
MgO 4.49 3.77 4.44 3.88 3.82 3.76 3.45 4.16 3.74 2.19 2.23 2.10 
eao 0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.00 
Na20 0.33 0.67 0.38 0.69 0.66 0.73 0.73 0.66 0.76 0.59 0.58 0.68 
K20 10.80 10.06 10.70 10.31 10.51 10.43 10.45 10.23 10.23 10.49 10.48 10.37 
Sum 95.74 95.89 95.32 96.03 96.83 97.18 97.00 96.91 98.43 97.06 96.78 96.95 
Si ratio: 3.37 3_27 3.38 3.2S 3.33 3.32 3.29 3.31 333 3.20 3.20 3.19 

Si 6.74 6.54 6.59 6.75 6.66 6.63 6.63 6.57 6.63 6.32 6.32 6.32 6.27 

Ti 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.04 0.04 0.03 

Al 4.34 4.72 4.66 4.33 4.47 4.54 4.54 4.64 4.47 5.16 5.14 5.14 5.24 

Fe 0.12 0.12 0.08 0.12 0.24 0.22 0.22 0.23 0.26 0.26 0.25 0.25 0.25 

Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mg 0.89 0.74 0.76 0.88 0.82 0.80 0.80 0.74 0.89 0.34 0.36 0.37 0.32 

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na  0.08 0.17 0.18 0.10 0.18 0.20 0.20 0.20 0.18 0.15 0.21 0.20 0.22 

K 1.82 1.69 1.73 1.81 1.76 1.74 1.74 1.75 1.71 1.76 1.70 1.72 1.72 

Sum 14.02 14.01 14.01 14.01 14.05 14.04 14.04 14.05 14.05 14.02 14.03 14.04 14.05 

0 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 22.00 

Table 3.2: Mineral analysis of the investigated samples. (A} Omphacite in fresh and retrogressed 

eclogites (MS112, RK3 and RK49) and glaucophane in a retrogressed eclogite (RK3}. Jd=Jadeite. (B} 

Phengite in fresh (MS112} and retrogressed (RK49} eclogites. (C} Phengite and feldspar in a in a 

paragneiss (RK28}. (D} Garnet in fresh (MS112) and retrogressed (RK49} eclogites. 
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D Garnet 
Sample MS112 (fresh edogite) 

Si02 37.56 37.52 37.20 

Ti02 0.04 0.06 0.09 

Al203 21.97 22.13 21.65 

FeO 25.88 28.57 29.13 

MnO 0.12 0.22 0.56 

MgO 6.86 5.21 3.52 

eao 6.69 6.65 8.29 

Na20 0.04 0.02 0.02 

K20 0.00 0.00 0.00 

Cr203 0.00 0.02 0.02 

Sum 99.16 100.39 100.49 

Alman 

dine: 54.32 60.66 61.53 

Pyrope: 26.70 20.27 13.82 

Si 5.88 5.88 S.86 

Ti 0.00 0.01 0.01 

Al 4.06 4.09 4.09 

Fe 3.39 3.74 3.77 

Mn 0.02 0.03 0.05 

Mg 1.60 1.22 1.05 

Ca 1.12 1.12 1.25 

Na 0.01 0.01 0.02 

K 0.00 0.00 0.00 

Cr 0.00 0.00 0.00 

Total 16.09 16.08 16.09 

0 24.00 24.00 24.00 

37.13 

0.13 

21.54 

28.61 

0.84 

3.15 

8.76 

0.02 

0.00 

0.03 

100.21 

60.89 

12.41 

S.88

0.01 

4.03 

3.85 

0.08 

0.83 

1.40 

0.01 

0.00 

0.00 

16.10 

24.00 

Sample RK49 (retrogressed ecloglte} 

Si02 38.29 38.42 38.13 37.97 

Ti02 0.04 0.04 0.02 0.02 

Al203 22.45 22.49 22.22 22.29 

FeO 23.16 22.83 24.48 24.80 

MnO 0.14 0.56 0.25 0.27 

MgO 8.45 8.46 7.34 7.29 

eao 6.66 6.78 6.92 6.73 

Na20 0.03 0.03 0.03 0.05 

K20 0.01 0.00 0.00 0.00 

Cr203 0.00 0.02 0.00 0.00 

Sum 99.22 99.63 99.39 99.42 

Alman 

dine: 48.97 47.88 51.97 52.60 

Pyrope: 32.38 32.30 28.30 28.14 

Si 5.91 5.91 5.92 5.90 

n 0.00 0.00 0.00 0.00 

Al 4.08 4.07 4.07 4.08 

Fe 2.99 2.93 3.18 3.22 

Mn 0.02 0.07 0.03 0.04 

Mg 1.94 1.94 1.70 1.69 

Ca 1.10 1.12 1.15 1.12 

Na 0.01 0.01 0.01 0.01 

K 0.00 0.00 0.00 0.00 

Cr 0.00 0.00 0.00 0.00 

Total 16.05 16.06 16.05 16.06 

0 24.00 24.00 24.00 24.00 

Table 3.2 (continued) 

36.80 36.75 36.42 

0.05 0.15 0.10 

21.82 21.53 21.52 

26.42 25.11 25.58 

2.04 1.81 4.59 

2.92 2.85 1.00 

9.74 11.56 11.29 

0.00 0.04 0.03 

0.00 0.00 0.00 

o.os 0.05 0.00 

99.84 99.84 100.54 

56.23 51.89 53.39 

11.54 11.25 3.98 

S.89 S.85 5.84 

0.02 0.01 0.02 

4.03 4.09 4.03 

3.80 3.51 3.34 

0.11 0.27 0.24 

0.75 0.69 0.68 

1.49 1.66 1.97 

0.01 0.00 0.01 

0.00 0.00 0.00 

0.00 0.01 0.01 

16.09 16.10 16.13 

24.00 24.00 24.00 

37.40 38.16 37.44 

0.04 0.05 0.04 

21.75 22.26 21.77 

27.67 24.45 28.84 

0.35 0.42 0.38 

5.40 7.33 4.49 

6.73 6.83 7.22 

0.02 0.03 0.01 

0.00 0.00 0.00 

0.01 0.01 0.02 

99.37 99.54 100.21 

59.07 51.94 61.27 

21.18 28.22 17.57 

5.90 5.91 5.90 

0.00 0.01 0.00 

4.05 4.07 4.04 

3.65 3.17 3.80 

0.05 0.06 0.05 

1.27 1.70 1.05 

1.14 1.13 1.22 

0.01 0.01 0.00 

0.00 0.00 0.00 

0.00 0.00 0.00 

16.07 16.50 16.08 

24.00 24.00 24.00 

36.24 36.31 37.11 36.76 37.17 37.41 37.58 

0.15 0.23 0.14 0.25 0.09 0.04 0.02 

21.24 21.25 22.16 21.78 22.13 22.10 22.44 

22.31 21.00 26.04 29.64 29.36 29.19 26.81 

7.50 8.19 0.67 0.50 0.36 0.13 0.16 

0.88 0.65 5.46 3.40 4.22 4.97 6.33 

11.91 12.23 8.05 8.28 7.27 6.41 6.13 

0.04 0.03 0.01 0.03 0.02 0.04 0.02 

0.00 0.00 0.00 0.00 0.00 0.00 0.01 

0.01 0.01 0.00 0.02 0.00 0.00 0.03 

100.28 99.91 99.64 100.66 100.62 100.29 99.52 

45.31 43.65 54.62 62.10 62.28 62.35 57.94 

3.52 2.61 21.31 13.37 16.49 19.39 24.59 

5.86 5.82 5.84 5.83 S.82 5.85 S.84

0.01 0.02 0.03 0.02 0.03 0.01 0.01 

4.08 4.02 4.03 4.10 4.06 4.10 4.13 

3.47 3.00 2.83 3.42 3.92 3.86 3.75 

0.18 1.02 1.12 0.09 0.07 0.05 0.04 

1.03 0.21 0.16 1.28 0.80 0.99 1.14 

1.47 2.05 2.10 1.36 1.41 1.23 1.16 

0.01 0.01 0.01 0.00 0.01 0.01 0.01 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

16.10 16.15 16.12 16.10 16.12 16.10 16.09 

24.00 24.00 24.00 24.00 24.00 24.00 24.00 

37.43 37.42 37.16 37.45 37.45 37.60 38.14 38.22 

0.04 0.09 0.05 0.05 0.05 0.04 0.03 0.04 

21.83 21.52 21.76 21.67 21.85 22.04 22.32 22.33 

28.31 29.33 29.88 30.07 29.70 28.56 26.07 23.31 

0.53 0.37 0.37 0.27 0.24 0.24 0.29 0.19 

4.35 3.98 4.22 4.20 4.92 5.81 6.78 8.31 

7.81 7.74 6.82 6.63 6.22 5.50 6.35 6.56 

0.04 0.01 0.02 0.02 0.04 0.02 0.05 0.05 

0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 

0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.01 

100.36 100.47 100.30 100.37 100.47 99.81 100.05 99.03 

59.89 61.76 63.34 64.24 62.81 61.38 55.68 49.52 

17.00 15.60 16.57 16.47 19.21 22.66 26.11 31.94 

5.88 5.90 5.88 5.91 5.89 5.90 5.91 5.91 

0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 

4.05 4.00 4.05 4.03 4.05 4.08 4.08 4.07 

3.72 3.87 3.95 3.97 3.90 3.75 3.38 3.02 

0.07 0.05 0.05 0.04 0.03 0.03 0.04 0.03 

1.02 0.94 0.99 0.99 1.15 1.36 1.57 1.92 

1.32 1.31 1.16 1.12 1.05 0.93 1.06 1.09 

0.01 0.00 0.01 0.01 0.01 0.00 0.17 0.01 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

16.09 16.09 16.10 16.07 16.09 16.06 16.05 16.05 

24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00 
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4.1.1. Fresh eclogites 

The mylonitic eclogite sample MSll.2 represents a fresh eclogite, which has not been overprinted 

by later retrogression. It exhibits a pronounced omphacite foliation and a weakly developed 

stretching lineation (Fig. 3 A and B).The omphacite grain size is variable with larger grains (�100-

300 µm) and smaller grains with sizes <20 µm (Fig. SA). 

Fig. 4.5: Characteristic sample micrographs under crossed polarizers of thin sections perpendicular to the 

main foliation and parallel to the streching lineation. (A) fresh eclogite, showing elongated omphacite 

grains of both larger grains (ompl) and smaller recrystallized grains (omp2). Inset shows rutile (rt) 

inclusions in garnet through transmitted light. (B) Retrogressed eclogite with glaucophane (gl) growing in 

the pressure shadows of garnet, and alignement of omphacite within the foliation. Insets show rutile (rt) 

inclusions in garnet through transmitted light. (C) Mica-schist with quartz grains displaying variable grain 

size (50-300 µm), irregular shapes, and lobate boundaries, pointing to grain boundary migration. (D) 

Paragneiss with large, slightly elongated quartz grains (100-400 µm) and smaller recrystallized grains (30-

60 µm). 

The grain boundaries of the omphacite porphyroclasts, i.e. the larger grains, are frequently 

lobate, resulting in dissection microstructures and island grains (Fig. 6A), characteristic of grain 

boundary migration recrystallization (e.g., Guillope and Poirier, 1979; Means, 1983; Urai et al., 

1986). 
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Figure 4.6: A and BJ Orientation maps of omphacite. Numbers indicate locations of quantitative point measurements 

listed in Table 2. Location of maps A and B are marked by red squares in D. C) EDX map showing Na-content of 

omphacite matrix of a fresh eclogite. Warmer colours indicate higher content. Black lines show misorientation angles 

over 10°, red lines indicate boundaries with misorientation angles below 10
°

. DJ Microprobe maps showing contents 

of Na, Fe, and Al in omphacite matrix and BSE picture of the same area. All images are perpendicular to foliation and 

lineation. 
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Fig. 4. 7: Distribution of misorientation angles of correlated and uncorrelated omphacite grains. (A-C) are from the fresh aclogite 
sample MSl 1.2 and (D·F) are from the retrogressed sample RK3. (A and D) all omphacite grains, (Band E grains >20 µm, (C and F) 
grains <20 µm. 

The porphyroclasts show some inctracrystalline deformation features like undulose extinction and 

subgrains, but the subgrain density is relatively low. There are, however, also some 

porphyroclasts without any subgrains, showing little variability in misorientation angles. Subgrain 

boundaries in ompacite are defined by misorientation angles of less than 10
°, following Buatier et 

al. (1991). Many of the subgrains (Fig. 6C subset 1) are about the same size as the smaller grains 

<20 µm (Fig 6C subset 2), which we interpret as recrystallized grains. These subgrains and related 
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recrystallized grains are indicative of the operation of subgrain rotation recrystallization (e.g., 

Hobbs, 1968; Guillope and Poirier, 1979; Urai et al., 1986). 
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Fig. 4.8: (A) Pole figures of relevant hkl of omphacite porphyroclast in subset 1 (B). For location of subset 

see Fig. 5. (C) Inverse pole figure and (D) pole figure of misorientation axes of small angle boundaries (2-

100) of the omphacite porphyroclast. (El Pole figures of relevant hkl of omphacite porphyroclast and 

recrystallized grains in in subset 2 (F). For location of subset see Fig. 5. Inverse pole figures of 

misorientation axes of small angle boundaries (2-10°) and large angle boundaries (>10°) of omphacite 

porpharoclast and recrystallized grains. 
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Misorientation angle data analysis of sample MS11.2 shows a deviation of uncorrelated grains 

from the random distribution, which can be attributed to a pronounced CPO. For correlated grains 

a main maximum below 10
° 

and a secondary maximum between 20 and 30°, when all grains are 

considered (Fig. 7 A). For the omphacite porphyroclasts (100-300 µm), the relative frequency of 

misorientation angles in correlated grains displays only the maximum below 10°

, pointing to the 

formation of low angle boundaries (Fig. 78). For the recrystallized grains (<20 µm) the seconday 

maximum between 20
° and 30° is observed (Fig. 7C). The main maximum characteristic of low 

angle grain boundaries below 10
° 

as well as this secondary maximum of recrystallized grains are 

together indicative of subgrain rotation recrystallization (Fig. 7C). 

B (010) •• 

•
"'
· 

,.:, .. 

;t ; 

Fig. 4.9: (Al) Orientation map of the omphacite matrix of a fresh eclogite (MS112) showing grains <20 

µm. (Bl) Pole figures and (Cl) related contour pole figures of omphacite [010] and [001] of grains <20 µm. 

(A2) Orientation map of the omphacite matrix of a fresh eclogite (MS112) showing grains >20 µm. (82) 

Pole figures and (C2) related contour pole figures of omphacite [010] and [001] of grains >20 µm. Maps 

are perpandicular to foliation and lineation. Black lines indicate misorientation angles over 10°, red lines 

indicate misorientation angles between 1 and 10°. Contour levels in pole figures represent multiples of a 

random distribution and are indicated to the right. 
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Pole figures of an omphacite porphyroclast with a high subgrain density showed a continuous 

misorientation of the crystal lattice from subgrain to subgrain (subset 1 in Fig. 8A and 8). A 

misorientation axis analysis across the subgrain boundaries yielded a relatively scattered 

distribution of the misorientation axes with some clustering in pole figures and inverse pole 

figures (Fig. 8C and D). The clusters can usually be related to individual subgrain boundaries. In 

the pole figure of Fig. 8D a prominent cluster is found around the Y-direction. Pole figures of 

several porphyroclast and surrounding recrystallized grains (subset 2 in Fig. 8E and F) exhibit a 

more distributed orientation of the crystals, forming several clusters around a main maximum. 

The misorientation axis analysis of this section yielded patchy distributions. Low angle 

misorientation axes (2-10
°

) show some clustering in the inverse pole figure (Fig. 8G), but less clear 

than for the subgrains of subset 1 (Fig. 8(). High angle boundary misorientation axes (10-30° and 

30-50°) display some distinct clustering whereas each major cluster is related to a distinct

recrystallized grain (Fig. 8G). 

Omphacite exhibits variable jadeite contents (38-53%, see Table 2). In the porphyroclasts, the 

jadeite-content increases from core to rim, which goes along with an increase of the Na- and the 

Al-content and a decrease of the Fe-content from core to rim (see Fig. 68 and Table 2, #1-4). 

Jadeite content within island grains does not exhibit a high variability, whereas the jadeite 

content in the omphacite grain, into which the island grain migrated shows deceasing jadeite 

content towards the grain boundary (see Fig. 6A, 5D and Table 2, #5-8). Recrystallized omphacite 

grains always display a higher Na-content (e.g. Jadeite content) than the porphyroclasts. Color­

coding of some recrystallized grains corresponds to a Na-content comparable to that of the 

porphyroclast rims and may even be higher (Fig. 6(). 

EBSD results of the Na-poor omphacite porphyroclasts (>100 µm) of sample MS112 show a girdle 

distribution of the [001] axes within the foliation plane with a maximum close to the direction of 

the omphacite stretching lineation and point maxima of the [010] axes normal to the omphacite 

foliation of the sample (Fig 98 and C). This CPO concurs well with the SL-fabric of the hand 

specimen, displaying a clear foliation and an omphacite stretching lineation. The Na-rich 

recrystallized grains (<20 µm) exhibit point maxima of [001] roughly aligned with the lineation 

direction and girdle structures of [010] perpendicular to the lineation (Fig. 98 and C).The CPO of 

porphyroclasts coincides with the one derived from neutron diffraction texture analysis (compare 

MSll.2 in Fig. 9 and Fig. 4A). 

Quartz in sample MS112 shows an irregular grain shape and frequently displays straight grain 

boundaries and it is mostly found in pressure shadows of garnet. Phengite display a strong 

alignment parallel to the omphacite foliation. It exhibits high Si-contents (3.27-3.39, see Table 2) 

and is mostly found within garnet rich layers, but locally also within omphacite rich layers. 
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0 2700 700 2300 

Fig. 4.10: EDX map of a garnet grain in the fresh eclogite sample MS112 (A) Mg content. Misorientation 

boundary angles of over 10° are marked in black and misorientation boundary angles of over 2° are 

marked in red. (B) Ca content of same garnet grain. Warmer colours indicate higher contents. 

Garnets in the fresh eclogites are generally euhedral and display grain sizes of about 100-500 µm. 

They are mostly intact, but some grains show fractures. In sample MSll.2 they display prograde 

zoning with increasing pyrope and almandine contents from core to rim. A small drop in 

almandine content at the very outer rim is frequently observed (Table 20 MSll.2). The garnet 

grains in sample MSll.2 contain subgrains with sizes between 20 and 50 µm (Fig 108). Subgrain 

boundaries in garnet are defined by misorientation angles of less than 10°, following Storey and 

Prior (2005). The subgrain formation is locally reflected in the Mg-content of the grains, exhibiting 

higher Mg-contents at the rims of subgrains (Fig. lOA). The Ca-content of garnet is not related to 

the subgrains (Fig. 108). In the fresh eclogites, omphacite, glaucophane, phengite, quartz and 

rutile occur as inclusions in garnet. Rutile needles and white mica flakes in garnets show a shape 

preferred orientation corresponding to the main foliation (inset in Fig. SA). Most of the 

glaucophane and omphacite inclusions are aligned in the foliation, too, but some exhibit an 

irregular or random distribution as do the quartz inclusions. 

4.1.2. Retrogressed eclogites 

Sample RK3 is a retrogressed eclogite representing a protomylonite. It exhibits a pronounced 

omphacite lineation, whereas the omphacite foliation is only weakly developed (Fig 30). 

Omphacite exhibits two sets of grain sizes in this sample - larger grains of -100-400 µm and 

smaller grains of <20 µm (Fig. SB). 
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Fig. 4.11: A) Orientation map of a retrograde eclogite sample consisting of omphacite (yellow) and 

glaucophane (purple). Black and red lines indicate misorientation angles over 10° and between 1 and 10°

1 

respectively. B) EDX map showing Na-content of the same section. Section is perpandicular to foliation 

and streching lineation. 

94 



Similar to the fresh eclogite sample MS11.2, the large omphacite grains frequently exhibit 

subgrains, which are similar in size to the smaller grains (Fig. 11A). The smaller grains are 

therefore considered recrystallized grains. Labate grain boundaries of the porphyroclasts do not 

occur as frequently as in the fresh eclogite sample MSll.2 and island grains are not observed. 

Misorientation angle data analysis of the eclogite protomylonite sample RK3 reveals a deviation of 

uncorrelated grains from a random distribution, which indicates a pronounced CPO. For 

correlated grains a main maximum below 10° and a secondary maximum between 15 and 30°, 

when all grains are considered (Fig. 70) similar to the eclogite mylonite sample MSll.2. For the 

omphacite porphyroclasts (100-400 µm), the relative frequency of misorientation angles in 

correlated grains displays only the maximum below 10°, pointing to the formation of small angle 

boundaries (Fig. 70). For the small grains (<20 µm) the secondary maximum of misorientation 

angles between 15° and 25° is observed, pointing to a recrystallization of grains (Fig. 7E). The main 

maximum characteristic of low angle grain boundaries below 10° as well as this secondary 

maximum of recrystallized grains are together indicative of subgrain rotation recrystallization (Fig. 

7F). 

A B 
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Fig. 12: (A) EDX map of Na-content of retrogressed eclogite sample RK3. GI = glaucophane; Omp = 

omphacite (B) EDX map of Mg-content. C) Back scatter electron map. Numbers indicate location of 

quantitative point measurements listed in Table 2. Section is perpendicular to foliation and lineation. 

In contrast to the fresh eclogite mylonite sample MSll.2, porphyroclasts of the retrogressed 

mylonites mainly display Na-rich cores and a decreasing Na-content towards the rim (subset in 

Fig. 118 and Fig. 12A). Locally, a few omphacite porphyroclasts yield Na-poor inner cores (#9 in 

Fig. 12C and Table 2), Na-rich outer cores (#10 in Fig. 12C and Table 2) and a decreasing Na­

content towards the rim (subset in Fig. 12A). A decrease of Na is always associated with an 

increase of Ca in the omphacite grains (Fig. 12A and B and Table 2 #9 and #10). Colar-coding of 

the recrystallized grains indicates an intermediate Na-content, i.e. generally lower than the Na-
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rich cores, but higher than the Na-poor rims of the porphyroclasts. They also show some zoning 

with decreasing Na-content towards the rim. 

Glaucophane in the eclogites formed during retrogression, illustrated by its frequent occurrence 

in pressure shadows of garnet grains (Fig SB). Furthermore boudinaged ompacite grains with 

glaucophane-filled gaps can be observed. The glaucophane also occurs within the omphacite 

matrix and its stretching lineation is aligned with that of omphacite. Glaucophane likewise 

exhibits two sets of grain sizes - larger grains with (> 100 µm) and smaller grains (<10 µm) and a 

few of the glaucophane grains exhibit subgrains (Fig. 11A). There are two different groups of 

subgrains, one with a size of 3-10 µm, the other one with a size of 20-50 µm (Fig. 11A). The small 

glaucophane grains are of similar size as the small set of subgrains indicating that they are 

recrystallized grains. Relatively low Na- and Mg-contents and high Fe-contents of up to 4.4% show 

that the amphibole in sample RK3 is not the pure glaucophane end-member, but a solid solution 

between glaucophane and ferroglaucophane (Table 2 #11-13). 

omphacite glaucophane 

Fig. 4.13: Pole figures of omphacite (010) and (001) and glaucophane (100) and (001) of a retrogressed 

eclogite sample (RK3). Contour levels represent multiples of a random distribution and are indicated on 

the right. 

EBSD CPO analysis of sample RK3 showed that both, the omphacite CPO, and the glaucophane 

CPO display [001) point maxima parallel to the X-direction of the pole figure which is aligned in 

accordance with the omphacite lineation (Fig. 13). The [010) axes of omphacite, and the [100] of 

glaucophane, respectively, form girdle structures perpendicular to the omphacite streching 

lineation in sample RK3 (Fig. 13). This is in accordance with the pronounced streching lineation 

observed in the hand specimen. The CPOs of both the omphacite and the glaucophane coincide 

with those derived from neutron diffraction (compare RK3 in Fig. 4A and Fig. 13). 

Paragonite in sample mostly exhibits a random distribution, as well as orientation in the sample. 

Its random orientation is confirmed by the CPO obtained by tof neutron diffraction, which shows 

a weak alignment of the paragonite basal plane (001) within the foliation plane (RK3 Fig. 4A). 
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Garnet grain sizes are about 80-500 µm in the fine-grained retrogressed samples. The grains are 

mostly euhedral and fractures are frequent. In the retrogressed eclogite sample RK49, the pyrope 

content increases from core to rim, whereas the almandine content decreases (Table 2). Garnet 

inclusions in retrogressed eclogites are omphacite, glaucophane, phengite, epidote, quartz and 

rutile. Omphacite, glaucophane and phengite are mostly aligned within the main foliation, but 

locally also exhibit an irregular orientation. Rutile needles are ubiquitous and are always aligned in 

a foliation, (inset Fig. SB). Quartz and epidote inclusions always display an irregular or random 

distribution. 

4.2. Metasediments 

4.2.1. Micaquartzites 

The micaquartzites contain quartz (71-92 vol.-%), white mica (8-24 vol.-%) and some minor 

amounts of clinozoisite. The rocks are relatively massive and exhibit a weak mica foliation and a 

well-defined quartz foliation and quartz stretching lineation. Quartz grains are variable in size with 

smaller grains and larger grains of a few hundred µm and display irregular grain shapes, which can 

be influenced by pinning of mica flakes and other second phases. They exhibit lobate grain 

boundaries and form together dissection microstructures indicative of grain boundary migration 

recrystallization (Fig. SC). Some of the large grains show intracrystalline deformation features like 

undulose extinction, deformation bands and subgrains. As the small grains (-30-100 µm) are 

similar in size as the subgrains within some of the larger grains, it can be assumed that also 

subgrain rotation recrystallization had some significance for deformation and the microstructural 

development. Locally, there are straight grain boundaries and 120° triple junctions, which suggest 

that the quartz microstructure was affected by some annealing after deformation. 

White mica in the micaquartzites is phengitic with Si-contents of 3.22-3.24 (Table 2). Mica grains 

are between 100 µm and 1 mm in length. There are individual mica grains between quartz grains 

and also some thin mica layers. Most mica grains are aligned in the foliation, but some grains, 

especially the individual ones are irregularly oriented. 

4.2.2. Paragneisses 

The gneisses consist of quartz (-so vol.-%), feldspar (-30 vol.-%), white mica (-20 vol.-%) and 

some accessory minerals. A pronounced foliation is defined by alternating quartz-rich and mica­

rich layers with thicknesses of a few mm. Some of the quartz layers vary in thickness and either 
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thinn-out or reach thicknesses of up to 1 cm. Quartz grains display irregular shapes and a variable 

grain size. There are larger porphyroclasts with sizes of 100-500 µm and recrystallized grains with 

sizes of 30-80 µm (Fig. 5D}. The large grains contain some optical subgrains which are about the 

same size as the recrystallized grains. Locally bulges with sizes of 10-20 µm are also observed. 

Signs of annealing of the porphyroclasts are not clearly visible. 

Mica in the paragneiss is phengitic with Si-contents of 3.19-3.20 (Table 2). Mica grain sizes are 

between 150 µm and 2 mm in length. They show some alignment within the foliation, but occur 

also at small angles to the foliation. 

The feldspar in the gneisses has a grain size of 100-400 µm and mostly displays an irregular shape. 

Most deformation was taken up by quartz and mica; albite grains represent clasts with some 

internal fractures, embedded in the weaker matrix of quartz and mica. 

5. Discussion

5.1 Deformation mechanisms of eclogites 

Omphacite and garnet are the major constituents of eclogites. Since garnets generally behave as 

rigid bodies, omphacite accommodates most of the deformation in eclogites. Omphacite in 

naturally deformed eclogites frequently develops a pronounced CPO (e.g. Abalos, 1997; Kurz et 

al., 2004; Neufeld et al., 2008; Liana-Funez et al, 2012), but the CPO forming deformation 

mechanisms are not completely understood. Trans electron microscopy (TEM) studies of naturally 

deformed omphacite revealed dislocation glide and climb by activation of three slip systems: 

[0011(100); Yz<ll0>{-110}; [001]{110} (Godard and Van Roermund, 1995). Three active slip 

systems alone, however, cannot fully accommodate strain, which means other deformation 

mechanisms are likely to operate in addition. Mauler et al. (2001) consider anisotropic growth and 

anisotropic elastic moduli as most important mechanisms for CPO formation in omphacite. The 

eclogite mylonite MS112 and the retrogressed eclogite RK3 of the present study both display a 

pronounced omphacite CPO (Figs. 4, 9 and 13}. In both samples, the omphacite grains exhibit 

zoning, which has an equal thickness along individual grains (e.g. zoning is not thicker in any 

growth direction of omphacite grains). This shows that anisotropic growth of omphacite was not 

the CPO forming mechanism of the eclogites in this study. EBSD analysis revealed large omphacite 

porphyroclasts with subgrains, as well as small grains, which are of similar size as the subgrains in 

the porphyroclasts in both fresh eclogites (Fig. 6C) and retrogressed eclogites (Fig. llA). The 

porphyroclasts in the eclogite mylonite MS112 frequently exhibit lobate grain boundaries, which 

points to grain boundary migration (GBM) and indicates relatively low strain rates (Fig. 6A). 

98 



Misorientation angles of the omphacite porphyroclasts of both fresh eclogites (Fig. 78) and 

retrogressed eclogites (Fig. 7E) exhibit a maximum below 10°, which indicates subgrain rotation 

(SGR) and higher strain rates. The recrystallized grains display a maximum between 10 and 30
° in 

addition to the maximum below 10° 

(Fig. 7 C and F), which points to an ongoing rotation of the 

recrystallized grains in both fresh and retrogressed eclogites. 

The analysis of misorientation axes of subgrains within a porphyroclast of the eclogite mylonite 

MS112 yielded a relatively scattered distribution (Fig. 8 C and D). The observed clusters are 

formed by individual subgrain boundaries and indicate that several different slip systems 

operated. The prominent cluster in Y-direction of the pole figure could indicate a rotation around 

the Y-axis and shows the kinematic influence on the deformation (Fig. 8 D). When subgrains of 

several porphyroclasts, as well as recrystallized grains, are considered in the analysis of 

misorientation axes, the distribution is even more scattered (Fig. 8G). However, clustering is still 

observed even for high angle boundaries. This confirms SGR and dynamic recrystallization of 

omphacite. The generally scattered distribution of misorientation axes however, indicates that 

other deformation mechanisms were active. Grain boundary sliding has been well documented in 

other minerals like calcite (Bestmann and Prior, 2003), quartz (Stipp et al., 2006; Halfpenny et al. 

2006), plagioclase (Jiang et al., 2000) and garnet (Terry and Heidelbach, 2004), and could be an 

explanation for the randomization of misorientation axes of omphacite in MS112. 

EBSD analysis of retrograde glaucophane in sample RK3 revealed subgrains in large porphyroclasts 

and smaller grains, which are of similar size as the subgrains in the porphyroclasts (Fig. 11A). 

Deformation of naturally deformed glaucophane by dislocation creep at temperatures between 

550 and 600° 

has been documented by Reynard et al. (1989), who identified the activity of 5 

independent slip systems through TEM: (010)[100]; (100)[001]; {110}[001]; {110}1
/2<1-10>; (001)

1
/2<110>. It is therefore likely that glaucophane in the retrogressed eclogite sample RK3, which 

formed at similar temperatures deformed by dynamic recrystallization (Fig. 2A). 

5.2 Deformation from subduction to peak conditions 

Prograde blueschist facies conditions during subduction of the EZ are documented by 

glaucophane inclusions in garnet (Droop, 1985; Frank et al., 1987; Kurz et al., 1998a). The garnets 

in the eclogite mylonite MS112 exhibit prograde zoning and contain numerous glaucophane 

inclusions, which are aligned in a foliation. This shows that a foliation forming deformation took 

place at blueschist facies conditions on the prograde path. A foliation forming deformation at 

eclogite facies conditions is confirmed by the alignment of omphacite inclusions. The folded rutile 
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foliation in garnets of the eclogite sample RK49 points to a rotation of some of the garnets during 

their syn-deformational growth (Fig. 48). 

Deformation of the omphacite matrix of the eclogites was analysed by EBSD analysis of sample 

MS112 (section 6.1). Omphacite porphyroclasts, which exhibit a prograde zoning, were deformed 

by GBM, indicating relatively low strain rates and a distributed deformation during subduction at 

lower eclogite facies conditions. The recrystallized omphacite grains exhibit higher jadeite 

contents than the porphyroclasts (Fig. SC), which shows that dynamic recrystallization became the 

main deformation mechanism at higher pressures. Hence, with increasing depth strain rates 

increased and deformation became more localized, which is unusual for shear zones, where 

generally the opposite effect is observed (e.g. the Simplon fault in the Central Alps: Campani et 

al., 2010 or the Northern Shear Belt at the Cap de Creus peninsula: Fusseis and Handy, 2008). 

On the basis of quartz inclusions in garnet of a metasediment from the EZ, which displayed a foam 

structure and random CPO, Stockert et al. (1997) and Stockert (2002) concluded that stress in the 

EZ was too low for dislocation creep of quartz during peak conditions. Experimental studies 

revealed that high stress is required for dislocation creep pyroxene (Boland and Tullis, 1986). 

The fact that omphacite in the eclogite mylonite MS112 of the present study deformed by 

dislocation creep shows that stress in the EZ was in fact high during peak conditions. 

The eclogites of the EZ exhibit a pronounced omphacite CPO (Fig. 9 and Kurz et al., 2004; Neufeld 

et al., 2008; Keppler et al., 2015). CPO analysis of Kurz et al. (2004) yielded an S to SL fabric of 

omphacite in coarse grained eclogites containing jadeite poor omphacite and an L-fabric in fine 

grained eclogites containing jadeite rich omphacite. According to the authors this indicates oblate 

strain conditions during subduction and prolate strain during peak conditions and the first stages 

of exhumation. In contrast, CPO analysis of Neufeld et al. (2008) exclusively yielded SL and 5-

fabrics of omphacite in the eclogites. The CPO forming deformation was assigned to the prograde 

path of the EZ by the authors and interpreted to have occurred during the accretion of the EZ to 

the upper plate. Bulk CPO of the eclogite mylonite MS112 of the present study yielded an SL fabric 

for omphacite (Fig. 9 and Keppler et al., 2015), which indicates plane strain during subduction of 

the EZ at eclogite facies condictions. This concurs well with the pronounced macroscopic foliation 

and well-defined stretching lineation of the eclogites in the EZ (Fig. 3 A and B of this study and 

Behrmann and Ratschbacher, 1989). The L-fabric of the recrystallized jadeite rich omphacite 

grains in this sample indicates a transition towards more prolate strain conditions with increasing 

pressure in this sample. Brenker et al. (2002) attributed the formation of S-fabrics and L-fabrics, 

respectively, to the cation ordering in omphacite, which is in turn determined by jadeite content 

and formation temperature. According to this model, at temperatures of up to 750°, an increase 

in jadeite content causes a transition from a C2/c to a P2/n structure of omphacite leading to a 
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switch from S-type fabrics to the formation of L-type fabrics. This concurs with the SL-fabric of 

jadeite-poor porphyroclasts and the L-type fabric of jadeite-rich recrystallized grains of sample 

MS112. However, this concept is refuted by the SL-fabric yielded for sample RK49 (Fig. 9A), in 

which omphacite exhibits high jadeite contents (Table 2) and should therefore exhibit an L-type 

fabric according to the model of Brenker et al., (2002). 

Keppler et al. (2015) showed that garnets in the eclogites of the EZ generally exhibit a nearly 

random CPO. However, the formation of subgrains in garnet of the mylonite eclogite MS112, 

indicates that strain was high enough for ductile deformation of garnet. The Mg highs along 

subgrain boundaries could be explained by short-range vacancy diffusion increasing the 

concentration of the pyrope end member in the distorted regions (Strorey and Prior, 2005). This 

indicates garnet deformation at increasing pressures coeval with the deformation of the 

omphacite matrix of this sample on the prograde path (see discussion above). 

5.3 Deformation during exhumation 

The deceasing jadeite content from core to rim of most omphacite porphyroclasts in the 

retrogressed eclogite RK3 confirms their continuous growth at decreasing pressures during the 

exhumation of the eclogites (Fig. 11 and 12). A few omphacite porphyroclasts exhibit Jadeite poor 

inner cores, Jadeite-rich outer cores and a decreasing Jadeite-content towards the rim (Fig. 11 and 

12), indicating that the inner core is a remnant from the prograde path of the rock, while the 

outer core and the rim grew during exhumation at decreasing pressure. EBSD analysis of this 

sample suggests SGR and dynamic recrystallization of omphacite (section 6.1). Neufeld et al. 

(2008) performed CPO analysis of the eclogites from the EZ and found that all CPO forming 

deformation of omphacite occurred on the prograde path during eclogitization. However, the 

retrograde zoning of the omphacite porphyroclasts and the low jadeite content of the 

recrystallized grains in sample RK3 of the present study demonstrate that the dynamic 

recrystallization occurred on the retrograde path and that CPO forming deformation of the 

eclogites in the EZ continued during exhumation. Kurz et al. (2004) and Kurz (2005) found L-type 

fabrics to be dominant in the eclogites during decreasing pressures at eclogite facies conditions, 

which led Kurz (2005) to the conclusion that constrictional strain was prevalent during early 

stages of exhumation of the EZ. Neutron diffraction CPO analysis, however, mostly yielded SL­

fabrics of omphacite in the retrogressed eclogite samples, which indicate plane strain during 

exhumation at eclogite facies conditions (Fig. 9A and Keppler et al. 2015). In addition, Keppler et 

al. (2015) yielded a few S-type fabrics and L-type fabrics of omphacite, which are most likely 

caused by strain variations towards prolate strain and oblate strain within the subduction 
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channel. Local strain variability is frequently observed in high strain shear zones, like for example 

the simplon fault in the Central Alps (REF). 

Glaucophane in the retrogressed eclogite sample RK3 shows signs of dynamic recrystallization 

(section 6.1). Like omphadte, glaucophane CPO mostly yields SL-type fabrics, which shows that 

plane strain was still dominant at blueschist fades conditions (Fig. 9A and Keppler et al., 2015). A 

few L-type fabrics and SL-type fabrics of glaucophane are also found, suggesting ongoing local 

strain variabilities during exhumation to blueschist fades conditions. The CPO of glaucophane 

always matches that of omphadte (Fig. 9A}. If omphadte yields L-type, SL-type, or S-type fabrics, 

glaucophane correspondingly produces L-type, SL-type, and S-type fabrics, respectively. 

Heidelbach and Terry (2013} showed that CPO of retrogressive amphibole can be inherited from a 

preexisting omphacite CPO. In their study, the (100) and (010) axes of amphibole match those of 

omphacite, if the amphibole CPO is inherited from the omphacite CPO. In the eclogites of the 

present study, on the other hand, the (010) axes of omphacite preferably align normal to the 

foliation, or form girdles normal to the lineation according to a more oblate or prolate strain 

regime, respectively, whereas glaucophane (100) is always aligned normal to the foliation and 

glaucophane (010) is usually aligned in y-direction (Fig. 9A and Keppler et al. 2015). This shows 

that in the eclogites of the EZ, glaucophane CPO formed due to ongoing strain as opposed to 

statically overgrowing a preexisting omphadte CPO. This shows that the same strain was constant 

from eclogite facies conditions towards the exhumation to blueschist facies conditions. 

Phengite in the eclogites always exhibits a pronounced alignment in the foliation, whereas 

paragonite is not so well aligned. This points to foliation forming deformation at higher pressures 

during the growth of phengite, which decreased by the time of paragonite growth at a later stage 

of the exhumation of the eclogites. 

In the metasediments, on the other hand, a pronounced mica foliation and lower Si-contents of 

mica, as compared to the eclogites (Table 2), demonstrate an ongoing foliation forming 

deformation during exhumation of the metasediments surrounding the eclogite lenses. 

Deformation of the metasediments is further documented by quartz microstructures. Quartz 

grains in the micaquartzites display a variable grain size and irregular shapes. The grain 

boundaries are frequently lobate (Fig. 4C}, which indicates grain boundary migration 

recrystallization and points to a deformation at high temperatures. 120° 

triple junctions show that 

temperatures were high enough for a local annealing. Quartz grains in the paragneisses display 

large porphyroclasts, as well as small recrystallized grains (Fig. 4D}. Furthermore, visual subgrains 

are observed, indicating subgrain rotation recrystallization. 

Quartz CPO in both the paragneisses and the micaquartzites exhibits an asymmetry (Fig. 98}. The 

asymmetric type I crossed girdle of the quartz c-axes of the paragneiss sample RK28 is indicative 
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of combined basal <a>, rhomb <a> and prism <a> slip. The maxima of the c-axes close to the 

periphery of the pole figure at an angle to the foliation normal show that rhomb <a> slip was 

most dominant. Quartz c-axes of the mica quartzite are aligned at a small angle to the foliation 

normal, indicating basal <a> slip. The secondary maximum in the center of the pole figure points 

to additional prism <a> slip. 

In summary, the eclogites and metasediments document ongoing deformation during the 

complete exhumational path of the EZ. Dynamic recrystallization and formation of a pronounced 

CPO of both, omphacite, and glaucophane revealed deformation from peak conditions at eclogite 

facies up to the exhumation to blueschist facies. Si-contents of the metasediments are lower than 

those of the eclogites and show that deformation in the metasediments outlasted that of the 

eclogites. 

3. Summary

In this study, metasediments, fresh eclogites and retrogressed eclogites from the EZ, an exhumed 

subduction channel of the Tauern Window, were examined in terms of microstructures and CPO 

to draw conclusions on their deformation during subduction, peak conditions and exhumation. 

Our results showed that CPO forming deformation in the eclogites took place both during their 

subduction and their exhumation. Dynamic recrystallization of omphacite occurred at eclogite 

facies conditions on the prograde path, as well as during the exhumation. The analysis of 

misorientation axes confirmed that dislocation creep was the main CPO forming mechanism in 

the eclogites, although other mechanisms must have been active in addition. 

During subduction of the eclogites plane strain was dominant with some variations towards 

prolate and oblate strain (Fig. 14). During exhumation plane strain was likewise prevailing in the 

eclogites and the same strain variations are also observed. This strain lasted from eclogite facies 

towards the exhumation to blueschist facies, which is confirmed by matching CPO of omphacite 

and glaucophane in the eclogites (Fig. 14). Si-contents of white mica in the metasediments are 

lower than in the eclogites, which shows that deformation in the metasediments outlasted that of 

the eclogites. The metasediments record deformation during the final stages of exhumation of the 

EZ (Fig. 14). Signs of annealing are observed in the metasediments, which likely occurred during 

the late stage high temperature overprint of the EZ. This recovery shows that by the time of the 

high temperature overprint, deformation of the metasediments had also ceased. 
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Fig. 4.14: PT-path of the EZ after Holland, 1979; Dachs, 1986; Spear and Franz 1986; Dachs, 1990; 

Zimmermann et al., 1994; Kurz et al., 1998, including omphacite and amphibole CPO of the eclogites and 

quartz CPO of the metasediments at the approximate stage of CPO formation. 

4. Conclusions

1. The oldest observed foliation formed during prograde blueschist facies conditions,

documented by glaucophane inclusions in garnet grains of eclogites.

2. Deformation of omphacite close to peak pressure is characterized by subgrain rotation

and subsequent recrystallization, i.e. dominated by dislocation creep.

3. Strain during subduction and exhumation of the eclogites was close to plane strain with

some local variations in the prolate and oblate strain field. Plane strain deformation

corresponds to the macroscopic foliation and lineation of the eclogites.

4. The same strain persisted in the eclogites during exhumation from eclogite facies to

blueschist facies, demonstrated by matching CPO of omphacite and glaucophane.

5. Deformation of the metasediments outlasted that of the eclogites as illustrated by their

lower Si-contents of white mica. CPO and microstructures of the metasediments

document the last stages of exhumational deformation.
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6. Ongoing deformation during subduction, peak pressure, as well as the exhumation of the

EZ was demonstrated, offering insights into the deformational processes within

subduction channels.
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5. Discussion, conclusions and outlook

This PhD thesis presents the results of CPO analysis of high pressure rocks from the EZ of 

the Tauern Window, an exhumed subduction channel of the Eastern Alps. The EZ has a 

typical structure and composition of a subduction channel and the conclusions drawn 

from this work can be directly transferred to other exhumed high pressure units as well as 

recent subduction channels around the world. This study provides new information on 

the physical properties and the deformational processes of these highly complex shear 

zones and offers valuable insights into the method of tof neutron diffraction for CPO 

investigations. In the following sections, the results of the three individual studies are 

summarized and discussed. In addition, an outlook on possible future work in this 

research area is given. 

5.1. Manuscript #1 

Tof neutron diffraction texture analysis of polymineralic rock samples was performed at 

the SKAT diffractometer of the Frank Laboratory of Neutron Physics at JINR, Dubna, 

Russia (Ullemeyer et al., 1996). The SKAT was recently upgraded and provides three 

different detector-collimator rings at variable theta angles to adapt resolution and 

accessible d-range to the investigated samples. In this study, the effect of counting 

statistics and number of peak overlaps was analyzed by comparison of results from 

'Rietveld texture analyis' (RTA), using different d-ranges in the tof spectra for the 

calculation. Additionally, a possible reduction of exposition time was tested by 

progressively reducing the number of measured sample positions. 

Our results indicate that peak overlaps represent the most limiting factor in texture 

analysis of polymineralic rock samples. Considering d-ranges at higher d-spacings leads to 

better results, despite lower counting statistics. A higher resolution allows for a better 

separation of peaks and strongly increases the quality of texture results. 

RTA of a four phase sample, which was artificially created by summing up spectra of three 

individual samples, showed that fairly good results can be achieved for samples of 

medium complexity, despite overlapping peaks in the spectra. Maxima in pole figures of 

relevant hkl always coincide with maxima of reference pole figures, which were 
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calculated from tof spectra of the three individual samples and are therefore considered 

true texture. Small differences in texture strength in comparison to the reference are 

observed. The differences are fairly minor, however, and the RTA results for the four 

phase sample are considered reliable for the calculation of rock physical properties, as 

well as for geological interpretations. 

RTA of an eclogite sample containing seven mineral phases with medium or low 

symmetry yielded more difficulties. Nevertheless, when the mineral phases constitute a 

high volume percentage (>10%) and texture is strong (f2 >1.4), eligible results are 

achieved, provided that the detector-collimator configuration with highest resolution is 

used for the measurement. 

RTA results from a successively thinned out measuring grid were evaluated by 

comparison to reference textures calculated from a fully covered grid. The results 

demonstrate that the number of measured sample orientations can be severely reduced 

without the loss of CPO quality. In samples with an intermediate amount of mineral 

phases, the limit for high quality texture is the use of about 300-340 spectra for the 

calculation. Concerning monophase samples, the lower limit applies to about 150 spectra. 

When larger step sizes (e.g. fewer spectra) are used, missing points on the grid can lead to 

a reduction in texture strength, if the maximum of the pole figure is very precise. 

Locations of maxima, however, still coincide with the reference, illustrating that the 

number of spectra could be further reduced, if texture is needed for geological 

interpretations, only. These results show that bulk exposition time for tof neutron 

diffraction can be severely reduced without loss of information. 

5.2. Manuscript #2 

In this study, CPOs of eclogites and metasediments from the EZ were measured by means 

of tof neutron diffraction at the SKAT. As illustrated in Manuscript #1, this method allows 

the investigation of large polymineralic rock samples and the application of full pattern fit 

methods for texture evaluation. 30 models for P-wave velocity were calculated using the 

CPO and known single crystal elastic properties of the constituent minerals (Mainprice 

and Humbert, 1994). In addition Vp/Vs ratios were calculated for all samples. 
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Eclogites preserving their high-pressure assemblage Grt + Omph ± Phe ± Qtz ± accessories 

yield a pronounced omphacite and mica CPO. Anisotropies of these fresh eclogites are 

fairly low with an average of 1.5%. The location of P-wave maxima is determined by the 

distribution of omphacite [001], which is mostly aligned with the lineation and sometimes 

distributed in the foliation plane. Mica basal planes always exhibit a strong alignment in 

the foliation and high mica contents additionally increase P-wave velocities within the 

foliation plane of the eclogites. 

Retrogressed eclogites further contain glaucophane, which likewise displays a 

pronounced CPO. Frequently it matches the CPO of omphacite concerning the 

distribution of [001] axes. The growth and deformation of glaucophane raises the elastic 

anisotropy of the eclogites to up to 3.7%. If the glaucophane CPO deviates from that of 

omphacite, it furthermore effects the location of P-wave velocity maxima. These results 

illustrate a large impact of retrogression during subduction on the physical properties of 

eclogites. 

In addition to modeling the elastic properties, P-wave velocities were measured on 

spherical samples of a retrogressed and a fresh eclogite in 132 directions in a pressure 

vessel filled with hydraulic oil (Pros et al., 1998). Pressure can be increased to up to 400 

MPa, simulating conditions at depth. The experimentally derived P-wave velocities are 

lower than those calculated from the CPO, but the locations of maxima coincide. The 

elastic anisotropy is 40-65% higher, when calculated from the measured P-wave 

velocities, which confirms previous experimental studies (e.g. Fountain et al., 1994). This 

difference is caused by the presence of a shape preferred orientation of the grains and by 

microcracks in the rocks, which are still partially present despite high-pressure conditions 

(e.g. Siegesmund et al., 1993). Microcracks are particularly important in mica rich 

samples, since microcracks are mostly oriented parallel to the mica foliation. The studied 

eclogite samples contain high amounts of phengite and the discrepancy between 

measured and modeled P-wave velocities is best explained this way. 

CPO analysis of the metasedimentary samples yielded a relatively weak calcite CPO in the 

marble sample. The a-axes show an alignment in lineation direction, while the c-axes are 

mostly found normal to the foliation plane. The elastic metasediments exhibit a 

pronounced quartz and mica CPO. As in the eclogites, the mica basal plane is strongly 

aligned in the foliation plane. The modeled elastic anisotropy of the metasediments is 
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higher than that of the eclogites. The marble sample yields an anisotropy of 5%, 

determined by the distribution of calcite a-axes, whereas elastic anisotropies of the elastic 

metasediments reach values of up to 7.5%, mostly induced by a pronounced mica CPO. 

Correspondingly the mica rich metasediments yield high velocities within the foliation 

plane. In quartz-rich samples {50-90%), on the other hand, the anisotropy is further 

influenced by a pronounced quartz CPO. 

Calculated Vp/Vs ratios of the fresh eclogites are about 1.70-1.75, whereas in 

retrogressed samples this value increases to up to 1.78. This shows that a distinction 

between fresh and retrogressed eclogites in the subduction channel might be possible. 

The metasediments have much lower Vp/Vs ratios of 1.5-1.6 with the exception of the 

marble, which has a Vp/Vs ratio of 1.85. These distinctly different values show the 

potential for detecting subducted elastic sediments or carbonate platforms within 

subduction channels at depth. 

5.3. Manuscript #3 

In this study, the microfabrics of metasediments, as well as fresh and retrogressed 

eclogites, were investigated by means of EBSD analysis and light optical microscopy to 

determine the deformational history of the EZ. 

Light optical microscopy of eclogite thin sections showed aligned glaucophane inclusions 

in garnet grains, which point to foliation forming deformation during prograde blueschist 

facies conditions. SEM studies displayed an increasing jadeite content from core to rim in 

omphacite grains of fresh eclogites, illustrating their prograde growth during eclogite 

facies conditions. EBSD analyses revealed the formation of subgrains and small 

recrystallized grains. The recrystallized grains exhibit the highest jadeite content, which 

points to recrystallization close to peak pressure. The analysis of misorientation axes 

revealed the activity of several different slip systems indicating dislocation creep. 

However other deformation mechanisms were active in addition, as confirmed by a 

relatively scattered distribution of misorientation axes. Bulk omphacite CPO of fresh 

eclogites show an SL-type fabric pointing to plane strain during subduction. The jadeite 

rich recrystallized grains, on the other hand, exhibit an L-type CPO pointing to a change of 

the deformational regime towards prolate strain during the final stages of subduction. 
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Furthermore, the formation of subgrains in garnet indicates that strain was high enough 

for ductile deformation of garnet during subduction (Terry and Heidelbach, 2004). 

In the retrogressed eclogites, omphacite porphyroclasts mostly display Jadeite-rich cores 

and a decreasing Jadeite-content towards the rim, indicating their growth on the 

retrograde path. They also show signs of subgrain formation and dynamic 

recrystallization. The recrystallized grains exhibit lower jadeite contents than the 

porphyroclasts, confirming recrystallization during exhumation. CPO of ompacite of the 

retrogressed eclogite samples displays S-type, SL-type and L-type fabrics pointing to 

oblate, plain strain, and prolate strain, respectively. SL-type fabrics are most common, 

which indicates that plain strain was dominant. The CPO of glaucophane always matches 

that of omphacite, which shows that despite the strain variability within the shear zone, 

locally the same strain regime was constant from eclogite facies conditions towards the 

exhumation to blueschist facies conditions. This contradicts the study of Neufeld et al. 

(2008), who suggested that all CPO forming deformation of the eclogites took place on 

the prograde path. 

Microstructural investigation of micaqartzites revealed irregular shapes and lobate grain 

boundaries of quartz, which indicates grain boundary migration recrystallization and 

points to a deformation at high temperatures. Furthermore, 120° triple junctions suggest 

a local annealing. Quartz grains in the paragneisses show signs of subgrain formation, 

bulging and recrystallization, which points to deformation at low to medium 

temperatures (e.g. Stipp et al, 2002). This shows that some of the metasediments might 

have been overprinted by the late stage high temperature pulse that took place in the EZ, 

while others escaped this Barrovian overprint. Quartz CPO in both the paragneisses and 

the micaquartzites exhibits an asymmetry, indicating simple shear deformation. This 

asymmetry is in contrast to the omphacite and glaucophane CPO in the eclogites, which is 

gerenally symmetric. The non-coaxial deformation of the metasediments is likely due to 

their higher viscosity, which led to a more prevalent accommodation of strain compared 

to the competent eclogite lenses. 

116 



5.4. Synopsis 

In this PhD thesis a complete deformational history of subduction channel rocks is 

provided. The study includes both fresh eclogites still exhibiting their high pressure 

mineral assemblage and eclogites that were retrogressed during exhumation. This 

allowed conclusions on the different deformation stages at various depths, e.g. a 

correlation to subduction related and exhumation related processes in the subduction 

channel, respectively. In addition, the metasediments sorrounding the eclogite lenses in 

the subduction channel were part of the investigation, permitting a reconstruction of the 

evolution of subduction channels as a whole. Data from neutron diffraction texture 

analysis and EBSD analysis revealed that the eclogite lenses in subduction channels 

undergo continuous deformation from blueschist facies during subduction, over peak 

conditions at eclogite facies to the exhumation back to blueschist facies conditions. 

Previous studies investigating textures of subduction channel rocks focused on fresh 

eclogites and analysed only omphacite CPO (e.g. Abalos et al., 2010; Mauler et al., 2001; 

Kurz et al., 2004; Neufeld et al., 2008}. In the present study, retrogressed eclogites were 

included and it was revealed that CPO forming deformation does not only take place 

during subduction, but continous during the exhumation in large parts of the eclogite 

lenses. For the first time the CPO of retrograde glaucophane in the eclogites was 

investigated and showed a match with the omphacite CPO, which which confirms a 

constant strain regime from eclogite facies to the exhumation to blueschist facies in the 

subduction channel. Microprobe analysis of white mica (phengite and muscovite) in both 

eclogites and metasediments showed lower silica contents in the metasediments as 

compared to the eclogites. This indicates that deformation in the metasediments 

outlasted deformation in the eclogites. Quartz CPO of the metasediments is strongly 

asymmetric, which is in contrast to the eclogite lenses. This shows that simple shear was 

dominant during the final stages of subduction and was accommodated by the 

metasedimentary matrix of the subduction channel. 

Many recent subduction channels are active today, however, an examination at depth is 

only possible through seismic imaging. Although low velocity layers of a few km thickness 

are frequently observed above the downgoing lithospheric plate (Langston, 1981; 

Helffrich and Stein, 1993; Abers et al., 1996; Audet et al., 2010), pointing to the existence 
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of active subduction channels, a deconvolution of the internal structures within these 

zones was not possible so far. In part, seismic investigations are hampered by a lack of 

knowledge regarding the velocity structure and elastic anisotropies of the rocks 

comprising the subduction channel. In the present study, the elastic properties of a large 

set of different subduction channel rocks were calculated from the CPO of their 

constituent mineral phases. As mentioned above, previous studies investigating CPO of 

eclogites focused on rocks, which still exhibit their high pressure mineral assemblage. 

Therefore, only elastic properties of fresh eclogites have been examined so far. On the 

basis of the data presented in this PhD thesis it was revealed that retrogression has in fact 

a strong influence on the elastic properties of subduction channel rocks, both lowering 

their P-wave velocity and increasing their elastic anisotropy. Furthermore, it was 

illustrated that the combination of P-wave velocity, elastic anisotropy and V
p
/V5 ratio is 

specific to different rock types found in subduction channels, which illustrates that each 

rock type yields a very specific seismic signal. This makes is possible to differentiate 

between fresh and retrogressed eclogites and to distinguish both from the 

metasediments in the subduction channel based on their elastic properties. Even a 

distinction between elastic metasediments and subducted carbonate plattforms is 

feasable. Although, at present, resolution of seismic imaging is not high enough to reveal 

the internal structure of these shear zones, which have a thickness of only a few 

kilometers, the instrumental techniques tremendously improved in the last decades and 

it is assumable that a detection will be possible in the future. Even today, the data 

presented here is highly useful. The seismic signal expected from subduction channels can 

be evaluated by numerical modeling of seismic waves (e.g. Essen et al., 2009; Friedrich et 

al., 2014). An incorporation of elastic anisotropy in these models will highly improve the 

preciseness of the mode led signal. 

To guaranty the quality of elastic properties calculated from CPO of rocks, precise CPO 

data is essential. Subduction channel rocks are generally mineralogically complex and 

contain a high number of phases. In this PhD thesis the accuracy of CPO analysis of 

complex rock samples using tof neutron diffraction was proven. This is not only useful for 

the CPO investigation of subduction channel rocks, but in fact all crustal rocks, which are 

mostly polymineralic and highly complex. 
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S.S. Outlook 

While this PhD thesis provides useful information on the physical properties of 

subduction channel rocks and offers insights into their deformational history, it also raises 

new questions and reveals some existing gaps in this research area. 

Knowledge of elastic wave velocities and anisotropies of rocks are extremely useful for 

seismic data processing and their interpretation (Lin et al. 2010). In our work, detailed 

information on elastic anisotropies of subduction channel rocks was presented, however, 

the resolution of seismic imaging is currently too low to clearly image the internal 

structures of deep subduction channels. Yet, enormous progress in the technology was 

made in the last decade and numerical simulations of seismic waves can use the data on 

elastic properties of high pressure rocks to explore a possible detection of subduction 

channel rocks in the future. Friedrich et al., (2014) for example modeled the seismic 

signals produced by a deep subduction channel with a block in matrix structure. In their 

study, the seismic anisotropies of the rocks were neglected. Our investigations, however, 

show that anisotropy of subduction channel rocks can be considerably high in case of the 

metasedimentary matrix. An incorporation of this anisotropy data in numerical 

simulations could highly increase the precision of their results. 

Besides modeling the elastic anisotropies of subduction channel rocks, we performed 

experimental measurements on two eclogite samples for comparison. The P-wave 

velocity of the spherical samples was determined in a pressure vessel filled with hydraulic 

oil. This enables measurements in several different sample directions, which allows a 

three dimensional illustration of P-wave anisotropy in the samples. This method, 

however, precludes the measurement of S-waves. To completely cover experimental data 

on elastic anisotropies of subduction channel rocks the samples should additionally be 

measured in a triaxial press apparatus, which allows the investigation of S-wave 

velocities. This would further allow a comparison between modeled and experimental 

Vp/Vs ratios, which were revealed to be an important factor for the distinction of 

different rocks in the subduction channel. 
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The work presented in this study covers the seismic properties of a wide range of 

subduction channel rocks. Serpentinite is another rock type, which frequently occurs in 

subduction channels, though it is not found in the EZ. It occurs in other exhumed 

subduction channels of the Alps, like Monviso and Zermatt Saas, where samples could be 

collected for investigation. Together with the data presented in this work, modeled elastic 

properties of serpentinites would cover the complete spectrum of subduction channel 

rocks. 

In this study, CPO analysis of retrogressed eclogites demonstrated that strain during the 

exhumation of the EZ was highly variable. Investigation of a fresh eclogite sample, on the 

other hand, revealed a switch from oblate to prolate strain during final stages of 

subduction. EBSD analysis of a larger set of fresh eclogite samples could show if this 

specific change in strain regime applied to all eclogites of the EZ during subduction, or if 

strain was actually as variable as during the exhumation of the rocks. 
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APPENDIX A 
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Fig. 1: Pole figures of relevant omphacite hkl of all investigated samples. 

124 



RIG 

(glaucophane) 

RK4 

(barroisite) 

RK8 

(glaucophane) 

RK20 

(glaucophane) 

RK49 

{glaucophane) 

TW32 
{hornblende) 

(100] 
z 

.g 

c 
::J 

II 

1--��,+-"��--4 K 

(010] (001] 

Fig. 1: Pole figures of relevant amphibole hkl of all investigated samples. 

125 

(110] 
-1.0 
-1.4 

-1.8 

-2.2 

-2.6 
-3.0 
-3.4 

-3.8 
-4.2 



cc
 

x
 

0
 

z
 

UJ
 

a..
 

a..
 

<(
 

T
a
b

le
 1

: C
o

lle
cte

d
 m

icro
p

ro
b

e
 m

e
a
su

re
m

e
n

ts o
f o

m
p

h
a
cite

 in
 fre

sh
 (R

K
l
 a

n
d

 M
S
1
1
2
) an

d
 re

tro
gre

sse
d

 (R
K

3, R
K

2
0
 a

n
d

 R
K

49
) e

clo
gite

s. Jd
 =

 ja
d

e
itE 

R
K
l p

o
in

t m
e
a
su

re
m

e
n
ts 

R
K

l p
ro

fi
le

 
R

IG
 p

o
in

t m
e

a
s
u

re
m

e
n

ts
 

S
i0

2
 

5
6
.6

3
 

5
6
.4

0
 

5
6
.2

2
 

5
6
.6

7
 

5
6
.4

5
 

5
6
.1

2
 

5
6
.5

1
 

5
6
.6

6
 

5
7
.4

6
 

5
8
.1

6
 

5
8
.1

0
 

5
8
.5

8
 

5
7
.1

7
 

5
7
.3

2
 

5
8
.2

8
 

5
8
.2

9
 

5
8
.4

1
 

5
8
.3

6
 

5
7
.6

3
 

5
8
.5

3
 

5
7
.0

2
 

5
8
.00

 
5
8
.4

1
 

5
7
.0

9
 

T
i0

2
 

0
.0

5
 

0
.0

5
 

0
.0

6
 

0
.0

4
 

0
.0

5
 

0
.0

6
 

0
.0

6
 

0
.0

4
 

0
.0

4
 

0
.0

5
 

0
.0

4
 

0
.0

5
 

0
.0

5
 

0
.0

5
 

0
.0

6
 

0
.0

7
 

0
.0

6
 

0
.04

 
0
.0

4
 

0
.0

7
 

0
.0

3
 

0
.0

6
 

0
.0

4
 

0
.0

3
 

A
l2

0
3
 

1
1
.7

8
 

1
0
.3

4
 

1
0
.7

8
 

1
1
.3

8
 

1
1
.9

3
 

1
1
.7

6
 

1
1
.8

3
 

1
2
.1

8
 

9
.8

4
 

1
3
.6

9
 

1
3
.8

3
 

1
5
.2

9
 

1
0
.3

7
 

9
.8

4
 

1
3
.2

5
 

1
3
.5

1
 

1
3
.3

0
 

1
5
.1

2
 

1
2
.1

2
 

1
5
.6

1
 

9
.8

2
 

1
2
.8

1
 

1
3
.6

3
 

9
.2

6
 

Fe
O

 
4
.4

8
 

5
.6

3
 

5
.4

9
 

5
.0

4
 

4
.6

4
 

4
.6

2
 

4
.5

6
 

4
.8

3
 

5
.8

4
 

2
.3

9
 

2
.1

0
 

3
.8

6
 

5
.7

7
 

5
.7

6
 

2
.2

4
 

2
.6

8
 

4
.6

6
 

3
.4

9
 

5
.2

9
 

2
.2

2
 

6
.8

1
 

4
.3

1
 

2
.2

2
 

6
.8

2
 

M
n

O
 

0
.0

0
 

0
.0

1
 

0
.00

 
0
.0

7
 

0
.0

0
 

0
.0

5
 

0
.0

5
 

0
.0

2
 

0
.0

0
 

0
.0

7
 

0
.0

4
 

0
.0

1
 

0
.0

1
 

0
.0

2
 

0
.0

3
 

0
.0

0
 

0
.0

1
 

0
.0

1
 

0
.0

1
 

0
.0

0
 

0
.1

5
 

0
.04

 
0
.0

5
 

0
.00

 

M
g
O

 
8
.4

8
 

8
.8

5
 

8
.5

2
 

8
.3

5
 

8
.2

6
 

8
.3

0
 

8
.3

4
 

8
.1

1
 

8
.3

2
 

8
.1

9
 

8
.2

4
 

6
.1

2
 

8
.2

4
 

8
.6

5
 

8
.5

2
 

8
.3

9
 

6
.8

5
 

6
.4

7
 

7
.3

1
 

7
.0

1
 

7
.9

5
 

7
.3

3
 

8
.3

6
 

8
.4

6
 

ea
o

 
1
2
.5

3
 

1
3
.3

6
 

1
2
.6

1
 

1
2
.6

3
 

1
2
.3

6
 

1
2
.3

2
 

1
2
.4

8
 

1
2
.0

0
 

1
3
.6

5
 

1
2
.1

7
 

1
2
.0

4
 

9
.3

4
 

1
3
.2

6
 

1
3
.7

1
 

1
2
.5

0
 

1
2
.3

1
 

1
0
.7

4
 

9
.9

7
 

1
1
.7

8
 

1
0
.2

7
 

1
3
.6

1
 

1
1
.6

2
 

1
2
.1

7
 

1
3
.9

4
 

N
a

2
0

 
6
.7

3
 

6
.2

2
 

6
.5

1
 

6
.5

8
 

6
.8

1
 

6
.7

6
 

6
.7

6
 

6
.9

2
 

6
.1

8
 

6
.9

7
 

7
.1

1
 

8
.4

3
 

6
.4

7
 

6
.1

7
 

6
.8

2
 

6
.9

7
 

7
.7

7
 

8
.1

7
 

7
.2

7
 

8
.0

6
 

6
.2

1
 

7
.1

6
 

6
.9

8
 

6
.0

1
 

K
2
0

 
0
.0

0
 

0
.0

0
 

0
.0

0
 

0
.0

0
 

0
.0

1
 

0
.0

1
 

0
.0

0
 

0
.0

0
 

0
.0

1
 

0
.0

0
 

0
.00

 
0
.0

0
 

0
.0

0
 

0
.00

 
0
.0

0
 

0
.0

0
 

0
.0

1
 

0
.00

 
0
.0

1
 

0
.0

0
 

0
.0

0
 

0
.00

 
0
.0

0
 

0
.0

0
 

l:
 

1
00

.6
9
 

1
0
0
.9

 
1
0
0
.2

 
1
0
0
.8

 
1
0
1
 

1
0
0
.0

 
1
0
0
.6

 
1
0
1
 

1
0
1
.3

 
1
0
1
.7

 
1
0
1
.5

 
1
0
1
.7

 
1
0
1
.3

 
1
0
1
.5

 
1
0
1
.7

 
1
0
2
.2

 
1
0
1
.8

 
1
0
1
.6

 
1
0
1
.5

 
1
0
1
.8

 
1
0
1
.6

 
1
0
1
.3

 
1
0
1
.9

 
1
0
1
.6

 

jd
 

0
.4

7
 

0
.4

2
 

0
.4

5
 

0
.4

7
 

0
.4

7
 

0
.4

6
 

0
.4

7
 

0
.4

8
 

0
.4

0
9
 

0
.5

4
8
 

0
.5

5
1
 

0
.6

1
9
 

0
.4

3
1
 

0
.4

0
8
 

0
.5

3
6
 

0
.5

3
2
 

0
.5

4
 

0
.6

1
 

0
.5

0
 

0
.6

1
8
 

0
.4

0
9
 

0
.5

2
5
 

0
.5

5
 

0
.3

9
 

S
i 

7
.9

7
 

7
.9

9
 

7
.9

9
 

7
.9

9
 

7
.9

6
 

7
.9

6
 

7
.9

6
 

7
.9

7
 

8
.1

0
 

7
.9

9
 

7
.9

8
 

8
.0

4
 

8
.0

5
 

8
.0

7
 

8
.0

1
 

7
.9

8
 

8
.0

8
 

8
.0

2
 

8
.0

5
 

7
.9

8
 

8
.0

6
 

8
.0

6
 

8
.0

0
 

8
.0

7
 

T
i 

0
.0

0
5
 

0
.0

0
5
 

0
.0

0
7
 

0
.0

0
5
 

0
.0

0
6
 

0
.0

0
7
 

0
.0

0
6
 

0
.0

0
4
 

0
.00

4
 

0
.0

0
5
 

0
.00

5
 

0
.00

6
 

0
.00

5
 

0
.0

0
6
 

0
.00

6
 

0
.00

7
 

0
.00

6
 

0
.0

0
5
 

0
.00

5
 

0
.00

7
 

0
.00

3
 

0
.00

6
 

0
.00

4
 

0
.0

04
 

A
l 

1
.9

5
 

1
.7

3
 

1
.8

1
 

1
.8

9
 

1
.9

8
 

1
.9

7
 

1
.9

7
 

2
.0

2
 

2
.0

6
 

2
.2

2
 

2
.2

4
 

2
.4

7
 

1
.7

2
 

1
.6

3
 

2
.1

5
 

2
.1

8
 

2
.1

7
 

2
.4

5
 

2
.00

 
2
.5

1
 

1
.64

 
2
.1

0
 

2
.2

0
 

1
.5

4
 

F
e

 
0
.5

3
 

0
.6

7
 

0
.6

5
 

0
.6

0
 

0
.5

5
 

0
.5

5
 

0
.5

4
 

0
.5

7
 

0
.6

9
 

0
.2

8
 

0
.2

4
 

0
.4

4
 

0
.6

8
 

0
.6

8
 

0
.2

6
 

0
.3

1
 

0
.5

4
 

0
.4

0
 

0
.6

2
 

0
.2

5
 

0
.8

1
 

0
.5

0
 

0
.2

6
 

0
.8

1
 

M
n
 

0
.0

00
 

0
.0

0
2
 

0
.0

0
0
 

0
.0

0
8
 

0
.0

0
0
 

0
.0

0
6
 

0
.0

0
6
 

0
.0

0
3
 

0
.0

0
0
 

0
.0

0
8
 

0
.0

0
4
 

0
.0

0
2
 

0
.0

0
1
 

0
.0

0
3
 

0
.0

0
3
 

0
.0

0
0
 

0
.00

1
 

0
.0

0
2
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

1
8
 

0
.0

0
5
 

0
.0

0
6
 

0
.0

0
0
 

M
g
 

1
.7

8
 

1
.8

7
 

1
.8

1
 

1
.7

6
 

1
.7

4
 

1
.7

6
 

1
.7

5
 

1
.7

0
 

1
.7

5
 

1
.6

8
 

1
.6

9
 

1
.2

5
 

1
.7

3
 

1
.8

2
 

1
.7

4
 

1
.7

1
 

1
.4

1
 

1
.3

3
 

1
.5

2
 

1
.4

3
 

1
.6

8
 

1
.5

2
 

1
.7

1
 

1
.7

8
 

C
a

 
1
.9

0
 

2
.0

3
 

1
.9

2
 

1
.9

1
 

1
.8

7
 

1
.8

7
 

1
.8

8
 

1
.8

1
 

2
.0

6
 

1
.7

9
 

1
.7

7
 

1
.3

7
 

2
.0

0
 

2
.0

7
 

1
.8

4
 

1
.8

1
 

1
.5

9
 

1
.4

7
 

1
.7

6
 

1
.5

0
 

2
.0

6
 

1
.7

3
 

1
.7

9
 

2
.1

1
 

N
a

 
1
.8

4
 

1
.7

1
 

1
.8

0
 

1
.8

0
 

1
.8

6
 

1
.8

6
 

1
.8

5
 

1
.8

9
 

1
.6

9
 

1
.8

6
 

1
.8

9
 

2
.2

4
 

1
.7

7
 

1
.6

8
 

1
.8

2
 

1
.8

5
 

2
.0

8
 

2
.1

8
 

1
.9

7
 

2
.1

3
 

1
.7

0
 

1
.9

3
 

1
.8

5
 

1
.6

5
 

K
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

1
0
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

T
o

ta
l 

1
5
.9

7
 

1
6
.0

0
 

1
6
.0

0
 

1
5
.9

6
 

1
5
.9

7
 

1
5
.9

8
 

1
5
.9

7
 

1
5
.9

6
 

1
5
.9

3
 

1
5
.8

2
 

1
5
.8

4
 

1
5
.8

4
 

1
5
.9

6
 

1
5
.9

5
 

1
5
.8

2
 

1
5
.8

5
 

1
5
.8

8
 

1
5
.8

4
 

1
5
.9

3
 

1
5
.8

2
 

1
5
.9

7
 

1
5
.8

5
 

1
5
.8

2
 

1
5
.9

7
 

0
 

2
4
.00

 
2
4
.0

0
 

2
4
.00

 
2
4
.0

0
 

2
4
.0

0
 

2
4
.00

 
2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.00

 
2
4
.00

 
2
4
.00

 
2
4
.0

0
 

2
4
.0

0
 

2
4
.00

 
2
4
.00

 
2
4
.0

0
 

2
4
.0

0
 

2
4
.00

 
2
4
.0

0
 

2
4
.00

 

'°
 

N
 



T
ab

le
 1

 (c
o
n

ti
n

u
e

d
) 

R
K
2
0

 po
in

t m
e
a
s. 

R
K

2
0

 in
clu

s
io

n
s

 in
 g

a
rn

e
t 

R
K
4

9
 p

ro
file

 

S
i0

2
 

5
6

.9
5

 
5

7
.6

2
 

5
7

.1
6

 
5

7
.1

1
 

5
6

.7
4

 
5

5
.4

6
 

5
7

.0
4

 
5

7
.7

1
 

T
i0

2
 

0
.0

4
 

0
.0

5
 

0
.0

5
 

0
.0

5
 

0
.0

6
 

0
.0

4
 

0
.0

5
 

0
.0

5
 

A
l2

0
3

 
1

0
.8

4
 

1
3

.1
0

 
1

2
.3

9
 

1
3

.6
8

 
1

3
.2

1
 

8
.8

6
 

1
3

.0
0

 
1

3
.0

6
 

Fe
O

 
4

.5
7

 
2

.4
1

 
3

.0
6

 
2

.4
5

 
2

.6
0

 
6

.3
6

 
2

.2
4

 
4

.0
0

 

M
n

O
 

0
.0

0
 

0
.0

0
 

0
.0

0
 

0
.0

3
 

0
.0

1
 

0
.0

2
 

0
.0

0
 

0
.0

8
 

M
g

O
 

8
.8

5
 

8
.7

4
 

8
.8

9
 

8
.4

1
 

8
.6

8
 

9
.9

6
 

9
.2

9
 

7
.8

3
 

ca
o

 
1

3
.6

3
 

1
2

.6
1

 
1

3
.0

6
 

1
2

.5
9

 
1

2
.9

8
 

1
5

.1
8

 
1

3
.3

5
 

1
1

.7
7

 

N
a

2
0

 
6

.2
2

 
6

.9
0

 
6

.7
0

 
6

.8
2

 
6

.6
4

 
5

.0
4

 
6

.5
8

 
7

.4
7

 

K
2

0
 

0
.0

0
 

0
.0

1
 

0
.0

1
 

0
.0

0
 

0
.0

0
 

0
.0

0
 

0
.0

2
 

0
.0

1
 

:E
 

1
0

1
.1

 
1

0
1

.4
 

1
0

1
.3

 
1

0
1

.1
 

1
0

0
.9

 
1

0
0

.9
 

1
0

1
.6

 
1

0
2

.0
 

jd
 

0
.4

5
 

0
.5

0
 

0
.4

7
 

0
.4

9
 

0
.4

6
 

0
.3

1
 

0
.4

5
 

0
.5

2
 

S
i 

8
.0

0
 

7
.9

6
 

7
.9

5
 

7
.9

1
 

7
.8

9
 

7
.9

2
 

7
.8

9
 

7
.9

8
 

T
i 

0
.0

0
5

 
0

.0
0

5
 

0
.0

0
5

 
0

.0
0

6
 

0
.0

0
6

 
0

.0
0

4
 

0
.0

0
6

 
0

.0
0

6
 

A
l 

1
.8

0
 

2
.1

3
 

2
.0

3
 

2
.2

3
 

2
.1

7
 

1
.4

9
 

2
.1

2
 

2
.1

3
 

Fe
 

0
.5

4
 

0
.2

8
 

0
.3

6
 

0
.2

8
 

0
.3

0
 

0
.7

6
 

0
.2

6
 

0
.4

6
 

M
n

 
0

.0
0

0
 

0
.0

0
0

 
0

.0
0

0
 

0
.0

0
3

 
0

.0
0

1
 

0
.0

0
2

 
0

.0
0

1
 

0
.0

1
0

 

M
g

 
1

.8
5

 
1

.8
0

 
1

.8
4

 
1

.7
4

 
1

.8
0

 
2

.1
2

 
1

.9
1

 
1

.6
1

 

ea
 

2
.0

5
 

1
.8

7
 

1
.9

5
 

1
.8

7
 

1
.9

4
 

2
.3

2
 

1
.9

8
 

1
.7

4
 

N
a

 
1

.6
9

 
1

.8
5

 
1

.8
1

 
1

.8
3

 
1

.7
9

 
1

.4
0

 
1

.7
7

 
2

.0
0

 

K
 

0
.0

0
1

 
0

.0
0

0
 

0
.0

0
2

 
0

.0
0

0
 

0
.0

0
1

 
0

.0
0

1
 

0
.0

0
3

 
0

.0
0

1
 

T
o

ta
l 

1
5

.9
4

 
1

5
.8

9
 

1
5

.9
4

 
1

5
.8

8
 

1
5

.9
1

 
1

6
.0

2
 

1
5

.9
3

 
1

5
.9

5
 

0
 

2
4

.0
0

 
2

4
.00

 
2

4
.00

 
2

4
.00

 
2

4
.00

 
2

4
.00

 
2

4
.00

 
2

4
.00

 

5
7

.4
9

 
5

7
.4

6
 

5
7

.5
1

 
5

7
.8

0
 

5
7

.6
0

 
5

6
.8

7
 

5
7

.4
9

 

0
.0

6
 

0
.0

5
 

0
.0

4
 

0
.0

5
 

0
.0

5
 

0
.0

3
 

0
.0

5
 

1
4

.2
5

 
1
3

.4
8
 

1
3

.8
4

 
1

4
.4

4
 

1
4

.3
8
 

1
3

.0
4

 
1

3
.0

7
 

1
.8

3
 

2
.0

3
 

3
.0

4
 

2
.3

1
 

2
.1

7
 

2
.3

6
 

2
.3

0
 

0
.0

4
 

0
.0

7
 

0
.0

0
 

0
.0

1
 

0
.0

3
 

0
.0

0
 

0
.0

0
 

8
.4

9
 

8
.6

8
 

7
.6

3
 

7
.7

0
 

7
.8

5
 

9
.1

2
 

8
.9

3
 

1
1

.9
9

 
1

2
.5

5
 

1
1

.2
2

 
1

1
.2

7
 

1
1

.4
1

 
1

3
.0

8
 

1
3

.0
7

 

7
.3

1
 

6
.9

6
 

7
.6

1
 

7
.6

3
 

7
.5

7
 

6
.4

3
 

6
.5

7
 

0
.0

1
 

0
.0

0
 

0
.0

0
 

0
.0

1
 

0
.0

0
 

0
.1

2
 

0
.0

1
 

1
0

1
.5

 
1

0
1

.3
 

1
0

0
.9

 
1

0
1

.2
 

1
0

1
.1

 
1

0
1

.1
 

1
0

1
.5

 

0
.5

1
 

0
.5

0
 

0
.5

5
 

0
.5

6
 

0
.5

5
 

0
.4

6
 

0
.4

9
 

7
.9

1
 

7
.9

4
 

7
.9

8
 

7
.9

7
 

7
.9

5
 

7
.9

0
 

7
.9

4
 

0
.0

0
7

 
0

.0
0

5
 

0
.0

0
5

 
0

.0
0

6
 

0
.0

0
5

 
0

.0
0

4
 

0
.0

0
5

 

2
.3

1
 

2
.2

0
 

2
.2

6
 

2
.3

5
 

2
.3

4
 

2
.1

4
 

2
.1

3
 

0
.2

1
 

0
.2

4
 

0
.3

5
 

0
.2

7
 

0
.2

5
 

0
.2

7
 

0
.2

7
 

0
.0

0
5

 
0

.0
0

8
 

0
.0

0
0

 
0

.0
0

2
 

0
.0

0
4

 
0

.0
0

0
 

0
.0

0
0

 

1
.7

4
 

1
.7

9
 

1
.5

8
 

1
.5

8
 

1
.6

2
 

1
.8

9
 

1
.8

4
 

1
.7

7
 

1
.8

6
 

1
.6

7
 

1
.6

7
 

1
.6

9
 

1
.9

5
 

1
.9

3
 

1
.9

5
 

1
.8

6
 

2
.0

5
 

2
.0

4
 

2
.0

3
 

1
.7

3
 

1
.7

6
 

0
.0

0
2

 
0

.0
0

1
 

0
.00

0
 

0
.0

0
1

 
0

.0
0

0
 

0
.0

2
1

 
0

.0
0

2
 

1
5

.9
1

 
1

5
.8

9
 

1
5

.9
0

 
1

5
.8

8
 

1
5

.8
9
 

1
5

.9
1

 
1

5
.8

7
 

2
4

.00
 

2
4

.00
 

2
4

.0
0

 
2

4
.00

 
2

4
.00

 
2

4
.00

 
2

4
.0

0
 

R
K
4

9
 in

clu
s

io
n

s
 in

 g
a

rn
e

t 

5
7

.2
1

 
5

6
.4

5
 

5
6

.5
2

 
5

6
.6

0
 

0
.0

5
 

0
.0

6
 

0
.0

4
 

0
.0

5
 

1
1

.8
2

 
1

0
.1

6
 

1
0

.9
4

 
1

0
.8

4
 

4
.0

6
 

6
.4

8
 

6
.6

4
 

4
.8

2
 

0
.0

0
 

0
.0

9
 

0
.1

0
 

0
.0

5
 

9
.0

4
 

8
.5

9
 

7
.7

1
 

9
.3

2
 

1
3

.2
8
 

1
3

.7
7

 
1

2
.5

9
 

1
3

.8
2

 

6
.4

4
 

6
.3

2
 

6
.8

8
 

6
.1

9
 

0
.0

0
 

0
.0

0
 

0
.0

0
 

0
.0

0
 

1
0

1
.9

 
1

0
1

.9
 

1
0

1
.4

 
1

0
1

.7
 

0
.4

5
 

0
.3

9
 

0
.4

5
 

0
.4

0
 

7
.9

5
 

7
.9

6
 

7
.9

9
 

7
.9

3
 

0
.0

0
5

 
0

.00
6

 
0

.0
0

5
 

0
.0

0
5

 

1
.9

4
 

1
.6

9
 

1
.8

2
 

1
.7

9
 

0
.4

7
 

0
.7

7
 

0
.7

9
 

0
.5

7
 

0
.0

0
0

 
0

.0
1

1
 

0
.0

1
2

 
0

.0
0

6
 

1
.8

7
 

1
.8

1
 

1
.6

3
 

1
.9

5
 

1
.9

8
 

2
.0

8
 

1
.9

1
 

2
.0

8
 

1
.7

4
 

1
.7

3
 

1
.8

9
 

1
.6

8
 

0
.0

0
0

 
0

.00
0

 
0

.0
0

0
 

0
.0

0
0

 

1
5

.9
5

 
1

6
.0

5
 

1
6

.0
4

 
1

6
.0

1
 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 
2

4
.00

 

M
S
1
1

2
 in

d
iv

id
u

a
l m

e
a
su

re
m

e
n

ts 

5
7

.9
6

 
5

8
.1

2
 

5
7

.7
2

 
5

7
.4

8
 

0
.0

7
 

0
.0

5
 

0
.0

5
 

0
.0

6
 

1
2

.1
3

 
1

3
.0

8
 

1
3

.3
3

 
1

2
.6

2
 

1
.9

7
 

2
.2

9
 

1
.9

6
 

2
.2

5
 

0
.0

1
 

0
.0

2
 

0
.00

 
0

.0
0

 

9
.2

5
 

8
.5

9
 

8
.4

5
 

8
.7

5
 

1
3

.7
6

 
1

2
.6

2
 

1
2

.3
4

 
1

2
.9

3
 

5
.6

6
 

6
.7

4
 

6
.8

5
 

6
.4

6
 

0
.0

1
 

0
.0

0
 

0
.00

 
0

.0
1

 

1
0

0
.8

 
1

0
1

.S
1

0
0

.7
 

1
0
0
.6

 

0
.5

0
 

0
.5

3
 

0
.5

4
 

0
.5

2
 

8
.0

3
 

8
.0

1
 

8
.00

 
8
.0

0
 

0
.0

0
7

 
0
.00

5
 

0
.00

5
 

0
.0

0
6

 

1
.9

8
 

2
.1

2
 

2
.1

8
 

2
.0

7
 

0
.2

3
 

0
.2

6
 

0
.2

3
 

0
.2

6
 

0
.0

0
1

 
0

.0
0

2
 

0
.00

1
 

0
.0

0
0

 

1
.9

1
 

1
.7

7
 

1
.7

5
 

1
.8

2
 

2
.04

 
1
.8

6
 

1
.8

3
 

1
.9

3
 

1
.5

2
 

1
.8

0
 

1
.8

4
 

1
.7

4
 

0
.0

0
2

 
0

.00
1

 
0

.000
 

0
.00

1
 

1
5

.7
3

 
1

5
.8

3
 

1
5

.8
3

 
1

5
.8

3
 

2
4

.0
0

 
2

4
.00

 
2

4
.00

 
2
4

.00
 

['..
 

N
 

rl
 



T
ab

le
 1 (c

o
n

ti
n

u
e

d
) 

-
t

-
-+

 ---r
 -

-+
 -

-
t 

M
S

1
1
2
 in

d
ivid

u
a

l m
e
a

su
re

m
e
n

ts (c
on

ti
n

u
e
d

) 
M

S
1
1
2
 p

rofile
 1

 

S
i0

2
 

5
6
.6

7
 

5
7
.1

9
 

5
7
.2

3
 

5
7
.8

4
 

5
6
.8

5
 

5
7
.0

4
 

5
7
.4

2
 

5
7
.8

3
 

5
8
.4

0
 

5
7
.5

0
 

5
6
.0

8
 

5
5
.6

0
 

T
i0

2
 

0
.0

6
 

0
.0

5
 

0
.0

5
 

0
.0

7
 

0
.0

5
 

0
.0

5
 

0
.0

5
 

0
.0

7
 

0
.0

7
 

0
.0

5
 

0
.0

5
 

0
.0

4
 

A
l2

0
3
 

9
.1

8
 

1
0
.9

6
 

1
1
.3

5
 

1
3
.3

4
 

1
0
.1

3
 

1
0
.9

8
 

1
2
.9

3
 

1
3
.0

5
 

1
3
.7

1
 

1
1
.4

9
 

8
.1

8
 

4
.5

8
 

F
e
O

 
6
.2

5
 

4
.9

5
 

4
.8

1
 

1
.9

5
 

5
.2

9
 

4
.6

7
 

2
.2

9
 

2
.2

5
 

2
.4

6
 

4
.5

5
 

5
.8

7
 

7
.0

2
 

M
n

O
 

0
.0

2
 

0
.0

3
 

0
.0

0
 

0
.00

 
0
.0

1
 

0
.0

0
 

0
.0

0
 

0
.0

0
 

0
.0

0
 

0
.0

2
 

0
.0

4
 

0
.0

0
 

M
g

O
 

8
.7

7
 

8
.1

4
 

8
.2

1
 

8
.5

4
 

8
.9

3
 

8
.5

3
 

8
.4

4
 

8
.4

4
 

7
.7

1
 

8
.1

0
 

9
.7

2
 

1
1
.8

3
 

ea
o

 
1
4
.1

9
 

1
2
.8

5
 

1
2
.8

7
 

1
2
.5

1
 

1
3
.9

1
 

1
3
.2

7
 

1
2
.3

9
 

1
2
.3

4
 

1
1
.6

8
 

1
2
.8

3
 

1
5
.7

2
 

1
8
.5

3
 

N
a

2
0

 
5
.7

2
 

6
.4

5
 

6
.6

0
 

6
.8

5
 

5
.9

6
 

6
.4

5
 

6
.8

5
 

6
.8

7
 

7
.1

4
 

6
.5

7
 

4
.9

7
 

3
.2

2
 

K
2
0

 
0
.0

0
 

0
.0

2
 

0
.0

0
 

0
.0

0
 

0
.0

0
 

0
.0

0
 

0
.0

0
 

0
.0

0
 

0
.0

0
 

0
.0

1
 

0
.0

1
 

0
.0

0
 

:E
 

1
0
0
.9

 
1
0
0
.6

 
1
0
1
.1

 
1
0
1
.1

 
1
0
1
.1

 
1
0
1
.0

 
1
0
0
.4

 
1
0
0
.9

 
1
0
1
.2

 
1
0
1
.1

 
1
0
0
.6

 
1
0
0
.8

 

jd
 

0
.3

8
 

0
.4

6
 

0
.4

7
 

0
.5

3
 

0
.4

2
 

0
.4

6
 

0
.5

3
 

0
.5

3
 

0
.5

6
 

0
.4

7
 

0
.3

4
 

0
.2

0
 

S
i 

8
.0

7
 

8
.0

6
 

8
.0

5
 

8
.0

5
 

8
.0

2
 

8
.0

5
 

8
.0

3
 

7
.9

8
 

8
.0

5
 

8
.0

5
 

8
.0

2
 

8
.0

5
 

T
i 

0
.0

0
7
 

0
.0

0
4
 

0
.0

0
8
 

0
.0

0
5
 

0
.0

0
5
 

0
.0

0
4
 

0
.00

5
 

0
.0

0
6
 

0
.0

0
8
 

0
.00

5
 

0
.00

5
 

0
.0

0
4
 

A
l 

1
.6

3
 

1
.4

9
 

2
.2

3
 

1
.9

0
 

1
.3

8
 

0
.7

8
 

1
.9

2
 

2
.2

2
 

2
.2

3
 

1
.9

0
 

1
.3

8
 

0
.7

8
 

F
e
 

0
.6

8
 

0
.7

2
 

0
.2

8
 

0
.5

3
 

0
.7

0
 

0
.8

5
 

0
.5

1
 

0
.2

8
 

0
.2

8
 

0
.5

3
 

0
.7

0
 

0
.8

5
 

M
n

 
0
.0

0
1
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
3
 

0
.0

0
4
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
3
 

0
.0

0
4
 

0
.0

0
0
 

M
g

 
1
.7

9
 

1
.9

1
 

1
.5

8
 

1
.6

9
 

2
.0

7
 

2
.5

5
 

1
.7

2
 

1
.6

7
 

1
.5

9
 

1
.6

9
 

2
.0

7
 

2
.5

5
 

Ca
 

2
.1

1
 

2
.2

2
 

1
.7

3
 

1
.9

2
 

2
.4

1
 

2
.8

7
 

1
.9

1
 

1
.7

7
 

1
.7

3
 

1
.9

2
 

2
.4

1
 

2
.8

7
 

N
a

 
1
.6

4
 

1
.5

6
 

1
.9

1
 

1
.7

8
 

1
.3

8
 

0
.9

0
 

1
.8

1
 

1
.9

8
 

1
.9

1
 

1
.7

8
 

1
.3

8
 

0
.9

0
 

K
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
2
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
2
 

0
.0

0
1
 

T
ota

l 
1
5
.9

2
 

1
5
.9

7
 

1
5
.7

9
 

1
5
.8

9
 

1
5
.9

8
 

1
6
.0

1
 

1
5
.9

1
 

1
5
.9

0
 

1
5
.7

9
 

1
5
.8

9
 

1
5
.9

8
 

1
6
.0

1
 

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

-
-

-t
 ---+

 -
-

M
S

1
1
2
 p

rofile
 2

 

5
7
.1

7
 

5
7
.0

1
 

5
7
.4

5
 

5
7
.0

3
 

5
7
.1

0
 

5
6
.5

4
 

0
.0

5
 

0
.0

6
 

0
.0

4
 

0
.0

4
 

0
.0

4
 

0
.0

3
 

1
1
.5

7
 

1
3
.4

4
 

1
3
.1

4
 

1
1
.5

4
 

1
1
.3

3
 

9
.9

9
 

4
.3

6
 

2
.3

7
 

2
.0

1
 

4
.0

9
 

2
.9

2
 

5
.9

7
 

0
.00

 
0
.0

1
 

0
.0

4
 

0
.0

0
 

0
.0

3
 

0
.0

0
 

8
.2

2
 

8
.0

0
 

8
.8

3
 

8
.5

9
 

9
.6

7
 

8
.5

1
 

1
2
.7

0
 

1
1
.8

1
 

1
2
.9

0
 

1
3
.3

0
 

1
4
.2

0
 

1
3
.8

3
 

6
.6

4
 

7
.3

0
 

6
.8

3
 

6
.6

6
 

6
.0

0
 

6
.1

1
 

0
.0

1
 

0
.0

1
 

0
.0

1
 

0
.0

0
 

0
.0

1
 

0
.0

0
 

1
0
0
.7

 
1
0
0
.0

 
1
0
1
.2

 
1
0
1
.3

 
1
0
1
.3

 
1
0
1
.0

 

0
.4

8
 

0
.5

4
 

0
.5

0
 

0
.4

6
 

0
.4

3
 

0
.4

2
 

8
.0

3
 

7
.9

8
 

7
.9

5
 

7
.9

8
 

7
.9

6
 

8
.0

2
 

0
.0

0
5
 

0
.0

0
6
 

0
.0

0
4
 

0
.0

0
4
 

0
.0

0
4
 

0
.0

0
4
 

1
.9

2
 

2
.2

2
 

2
.1

4
 

1
.9

0
 

1
.8

6
 

1
.6

7
 

0
.5

1
 

0
.2

8
 

0
.2

3
 

0
.4

8
 

0
.3

4
 

0
.7

1
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
5
 

0
.0

0
0
 

0
.0

0
4
 

0
.0

0
0
 

1
.7

2
 

1
.6

7
 

1
.8

2
 

1
.7

9
 

2
.0

1
 

1
.8

0
 

1
.9

1
 

1
.7

7
 

1
.9

1
 

1
.9

9
 

2
.1

2
 

2
.1

0
 

1
.8

1
 

1
.9

8
 

1
.8

3
 

1
.8

1
 

1
.6

2
 

1
.6

8
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
2
 

0
.0

0
1
 

1
5
.9

1
 

1
5
.9

0
 

1
5
.9

0
 

1
5
.9

6
 

1
5
.9

2
 

1
5
.9

8
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.00

 
2
4
.0

0
 

t
 

t 
M

S
1
1
2
 p

rofil
e
 3

 

5
7
.2

9
 

5
7
.3

2
 

5
7
.3

8
 

0
.0

6
 

0
.0

4
 

0
.0

5
 

1
2
.9

9
 

1
2
.7

8
 

1
2
.9

6
 

2
.6

8
 

2
.1

1
 

2
.6

0
 

0
.0

2
 

0
.0

0
 

0
.0

0
 

8
.5

6
 

9
.1

7
 

8
.5

2
 

1
2
.5

8
 

1
3
.4

3
 

1
2
.6

0
 

6
.9

0
 

6
.4

8
 

6
.9

5
 

0
.0

0
 

0
.0

0
 

0
.0

0
 

1
0
1
.1

 
1
0
1
.3

 
1
0
1
.1

 

0
.5

0
 

0
.4

7
 

0
.5

0
 

7
.9

5
 

7
.9

3
 

7
.9

7
 

0
.0

0
6
 

0
.0

0
4
 

0
.00

5
 

2
.1

3
 

2
.0

8
 

2
.1

2
 

0
.3

1
 

0
.2

4
 

0
.3

0
 

0
.0

0
2
 

0
.0

0
0
 

0
.0

0
0
 

1
.7

7
 

1
.8

9
 

1
.7

6
 

1
.8

7
 

1
.9

9
 

1
.8

8
 

1
.8

6
 

1
.7

4
 

1
.8

7
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

1
5
.9

0
 

1
5
.8

9
 

1
5
.9

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

5
7
.5

9
 

0
.0

5
 

1
4
.00

 

1
.9

7
 

0
.0

1
 

8
.4

2
 

1
2
.2

2
 

7
.0

8
 

0
.0

0
 

1
0
1
.3

 

0
.5

2
 

7
.9

3
 

0
.00

5
 

2
.2

7
 

0
.2

3
 

0
.0

0
1
 

1
.7

3
 

1
.8

0
 

1
.8

9
 

0
.0

0
1
 

1
5
.8

7
 

2
4
.0

0
 

5
7
.4

1
 

0
.0

6
 

1
2
.9

1
 

2
.3

6
 

0
.0

4
 

8
.9

3
 

1
3
.0

3
 

6
.6

2
 

0
.0

1
 

1
0
1
.4

 

0
.4

8
 

7
.9

4
 

0
.0

0
6
 

2
.1

1
 

0
.2

7
 

0
.0

0
4
 

1
.8

4
 

1
.9

3
 

1
.7

8
 

0
.0

0
1
 

1
5
.8

9
 

2
4
.0

0
 

co
 

N
 

M
 





r 
r 

-r-
-··T

--
-r -

.,...
-
-
-
-

-

I 
I 

R
K
2

0
 g

la
u

co
p

h
a

n
e
 in

d
ivid

u
a

l m
e
a

s
u

re
m

e
n

ts
 

S
i0

2
 

5
7
.3

4
 

5
8
.1

6
 

5
8
.0

0
 

5
7
.8

9
 

5
9
.4

4
 

5
9
.3

8
 

5
8
.6

8
 

5
7
.7

0
 

5
7
.9

7
 

5
7

.7
2

 

T
i0

2
 

0
.0

7
 

0
.0

4
 

0
.0

5
 

0
.0

5
 

0
.0

2
 

0
.0

3
 

0
.0

4
 

0
.0

5
 

0
.0

6
 

0
.0

7
 

A
l2

0
3 

1
3
.1

3
 

1
3
.1

1
 

1
3
.0

4
 

1
2
.7

6
 

1
2
.6

6
 

1
2
.7

6
 

1
2
.7

9
 

1
2
.6

7
 

1
3
.0

9
 

1
2

.9
6
 

F
e

O
 

4
.2

2
 

4
.0

1
 

3
.9

8
 

3
.9

4
 

4
.1

2
 

3
.8

2
 

3
.8

5
 

3
.8

4
 

4
.3

2
 

4
.1

5
 

M
n

O
 

0
.0

1
 

0
.0

4
 

0
.0

3
 

0
.0

1
 

0
.0

0
 

0
.0

1
 

0
.0

0
 

0
.0

3
 

0
.0

0
 

0
.0

2
 

M
g
O

 
1
3

.7
0
 

1
3

.3
6
 

1
3
.5

9
 

1
4
.1

7
 

1
3
.3

6
 

1
3
.3

2
 

1
3
.7

5
 

1
4
.5

6
 

1
3
.3

7
 

1
3
.3

2
 

ca
o

 
2
.2

5
 

1
.5

3
 

1
.9

3
 

2
.0

3
 

0
.6

7
 

0
.6

4
 

1
.2

3
 

2
.2

4
 

1
.9

7
 

2
.1

1
 

N
a

2
0

 
6

.3
9

 
6
.6

0
 

6
.4

0
 

6
.3

5
 

6
.9

8
 

6
.9

8
 

6
.6

4
 

6
.4

1
 

6
.6

3
 

6
.5

5
 

K
2

0
 

0
.0

5
 

0
.0

3
 

0
.0

5
 

0
.0

7
 

0
.0

3
 

0
.0

1
 

0
.0

4
 

0
.0

7
 

0
.0

6
 

0
.0

6
 

C
r2

0
3 

0
.0

1
9
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

1
6
 

0
.0

2
6
 

0
.0

2
9
 

0
.0

3
4
 

0
.0

3
3
 

0
.0

5
7
 

L
 

9
7
.1

8
 

9
6
.8

8
 

9
7
.0

8
 

9
7
.2

7
 

9
7
.2

8
 

9
6
.9

7
 

9
7
.0

5
 

9
7
.6

1
 

9
7
.5

1
 

9
7
.0

2
 

S
i 

8
.0

6
 

8
.1

7
 

8
.1

4
 

8
.1

1
 

8
.2

9
 

8
.2

9
 

8
.2

1
 

8
.0

7
 

8
.0

9
 

8
.1

2
 

T
i 

0
.0

0
7
 

0
.0

0
4
 

0
.0

0
6
 

0
.0

0
5
 

0
.0

0
2
 

0
.0

0
3
 

0
.0

0
4
 

0
.0

0
6
 

0
.0

0
7
 

0
.0

0
7
 

A
l 

2
.1

8
 

2
.1

7
 

2
.1

6
 

2
.1

1
 

2
.0

8
 

2
.1

0
 

2
.1

1
 

2
.0

9
 

2
.1

6
 

2
.1

5
 

F
e

 
0
.5

0
 

0
.4

7
 

0
.4

7
 

0
.4

6
 

0
.4

8
 

0
.4

5
 

0
.4

5
 

0
.4

5
 

0
.5

1
 

0
.4

9
 

M
n

 
0
.0

0
1
 

0
.0

0
4
 

0
.0

0
3
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
3
 

0
.0

0
0
 

0
.0

0
3
 

M
g
 

2
.8

7
 

2
.8

0
 

2
.8

4
 

2
.9

6
 

2
.7

8
 

2
.7

7
 

2
.8

7
 

3
.0

4
 

2
.8

5
 

2
.8

0
 

ea
 

0
.3

4
 

0
.2

3
 

0
.2

9
 

0
.3

1
 

0
.1

0
 

0
.1

0
 

0
.1

8
 

0
.3

4
 

0
.2

9
 

0
.3

2
 

N
a

 
1

.7
4
 

1
.8

0
 

1
.7

4
 

1
.7

3
 

1
.8

9
 

1
.8

9
 

1
.8

0
 

1
.7

4
 

1
.8

0
 

1
.7

9
 

K
 

0
.0

1
0
 

0
.0

0
6
 

0
.0

1
0
 

0
.0

1
2
 

0
.0

0
5
 

0
.0

0
2

 
0
.0

0
6
 

0
.0

1
3
 

0
.0

1
1
 

0
.1

2
0
 

C
r 

0
.0

0
2
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
3
 

0
.0

0
3
 

0
.0

0
4
 

0
.0

0
4
 

0
.0

0
6
 

T
o

ta
l 

1
5
.7

2
 

1
5
.6

5
 

1
5
.6

5
 

1
5
.7

0
 

1
5
.6

2
 

1
5
.6

0
 

1
5
.6

4
 

1
5
.7

5
 

1
5
.7

2
 

1
5
.6

9
 

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

�
-
�
-c

-,
 -1

R
K
4
9
 g

la
u

co
p

h
a

n
e

 in
d

ivid
u

a
l m

e
a

s
u

re
m

e
n

ts
 

I

5
8
.9

7
 

5
8
.4

6
 

5
8
.8

1
 

5
8
.7

9
 

5
8
.7

3
 

5
9
.0

9
 

5
8
.4

8
 

0
.0

3
 

0
.0

4
 

0
.0

5
 

0
.0

5
 

0
.0

5
 

0
.0

3
 

0
.0

6
 

1
3
.0

0
 

1
2
.9

2
 

1
2
.9

0
 

1
3
.1

8
 

1
3
.0

7
 

1
2
.8

9
 

1
2
.9

8
 

4
.1

3
 

4
.3

7
 

3
.8

6
 

4
.2

9
 

4
.4

2
 

3
.9

6
 

4
.2

3
 

0
.0

4
 

0
.0

3
 

0
.0

4
 

0
.0

4
 

0
.0

4
 

0
.0

2
 

0
.0

3
 

1
3
.3

2
 

1
3
.2

9
 

1
3
.3

8
 

1
3
.4

7
 

1
3
.3

3
 

1
3
.2

6
 

1
3
.5

1
 

1
.0

9
 

1
.8

3
 

1
.0

0
 

1
.7

2
 

1
.8

3
 

1
.0

0
 

1
.5

6
 

6
.8

2
 

6
.6

2
 

6
.9

2
 

6
.5

5
 

6
.6

3
 

6
.8

0
 

6
.6

6
 

0
.0

2
 

0
.0

3
 

0
.0

3
 

0
.0

2
 

0
.0

2
 

0
.0

1
 

0
.0

4
 

0
.0

9
7
 

0
.0

4
0
 

0
.1

0
9
 

0
.0

6
2
 

0
.0

1
9
 

0
.0

0
2
 

0
.0

6
2
 

9
7
.5

2
 

9
7
.6

3
 

9
7
.1

0
 

9
8
.1

6
 

9
8
.1

4
 

9
7
.0

7
 

9
7
.6

1
 

8
.2

2
 

8
.1

7
 

8
.2

1
 

8
.1

6
 

8
.1

6
 

8
.2

6
 

8
.1

6
 

0
.0

0
4
 

0
.0

0
4
 

0
.0

0
6
 

0
.0

0
5
 

0
.0

0
5
 

0
.0

0
4
 

0
.0

0
6
 

2
.1

3
 

2
.1

3
 

2
.1

2
 

2
.1

6
 

2
.1

4
 

2
.1

2
 

2
.1

4
 

0
.4

8
 

0
.5

1
 

0
.4

5
 

a
.s

o
0
.5

1
 

0
.4

6
 

0
.4

9
 

0
.0

0
5
 

0
.0

0
4
 

0
.0

0
4
 

0
.0

0
4
 

0
.0

0
5
 

0
.0

0
3
 

0
.0

0
4
 

2
.7

7
 

2
.7

7
 

2
.7

9
 

2
.7

9
 

2
.7

6
 

2
.7

6
 

2
.8

1
 

0
.1

6
 

0
.2

7
 

0
.1

8
 

0
.2

6
 

0
.2

7
 

0
.1

5
 

0
.2

3
 

1
.8

4
 

1
.8

0
 

1
.8

7
 

1
.7

6
 

1
.7

9
 

1
.8

4
 

1
.8

0
 

0
.0

0
3

 
0
.0

0
5
 

0
.0

0
5
 

0
.0

0
3
 

0
.0

0
3
 

0
.0

0
2
 

0
.0

0
7
 

0
.0

1
1
 

0
.0

0
4
 

0
.0

1
2
 

0
.0

0
7
 

0
.0

0
2
 

0
.0

0
0
 

0
.0

0
6
 

1
5
.6

3
 

1
5
.6

6
 

1
5
.6

6
 

1
5
.6

4
 

1
5
.6

6
 

1
5
.6

0
 

1
5
.6

7
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

I I

5
8
.6

9
 

5
8
.2

7
 

0
.0

6
 

0
.0

5
 

1
3
.0

0
 

1
2
.8

6
 

4
.1

8
 

4
.1

0
 

0
.0

0
 

0
.0

5
 

1
2
.7

9
 

1
3
.1

2
 

1
.4

5
 

1
.5

0
 

6
.6

8
 

6
.6

0
 

0
.0

2
 

0
.0

3
 

0
.0

0
8
 

0
.3

1
1
 

9
6
.8

8
 

9
6
.8

8
 

8
.2

3
 

8
.1

9
 

0
.0

0
6
 

0
.0

0
5
 

2
.1

5
 

2
.1

3
 

0
.4

9
 

0
.4

8
 

0
.0

0
0
 

0
.0

0
6
 

2
.6

8
 

2
.7

5
 

0
.2

2
 

0
.2

3
 

1
.8

2
 

1
.8

0
 

0
.0

0
3
 

0
.0

0
5
 

0
.0

0
0
 

0
.0

3
5
 

1
5
.6

0
 

1
5
.6

2
 

2
4
.0

0
 

2
4
.0

0
 I 5

7
.9

1
 

0
.0

5
 

1
2
.7

1
 

4
.3

3
 

0
.0

2
 

1
3
.5

4
 

2
.0

6
 

6
.3

1
 

0
.0

4
 

0
.3

1
1
 

9
7
.2

7
 

8
.1

3
 

0
.0

0
5
 

2
.1

0
 

0
.5

1
 

0
.0

0
2
 

2
.8

4
 

0
.3

1
 

1
.7

2
 

0
.0

0
6
 

0
.0

3
5
 

1
5
.6

6
 

2
4
.0

0
 I 

0
 

M
 

�
 



T
a
b

le
 3

: C
o

lle
cte

d
 m

icro
p

ro
b

e
 m

e
a
su

re
m

e
n

ts o
f g

a
m

e
te

 in
 re

tro
g
re

sse
d

 (R
K
2
0
 a

n
d

 R
K
4
9
) a

n
d

 fre
sh

 (R
K
l
 a

n
d

 M
S
1
1
2
) e

clo
g
ite

s. 

A
lm

=
 a

lm
a
n

d
in

e
, P

rp
 =

 p
y
ro

p
e

, S
p

s =
 sp

e
ssa

rti
n

e
, G

A
U

=
 g

ro
ssu

la
r +

 a
n

d
ra

d
ite

 +
 u

v
a
ro

v
ite

. 

R
K
l

 g
a

rn
e

t p
ro

fi
le

 1 
R

K
l

 g
a

rn
e

t p
ro

fi
le

 2
 

S
i0

2
 

3
7
.6

0
 

3
7
.0

6
 

3
6
.7

9
 

3
7
.0

1
 

3
7
.0

5
 

3
7
.5

7
 

3
7
.3

5
 

3
6

.7
0
 

3
6
.6

7
 

3
6
.3

9
 

3
6
.4

8
 

3
6
.4

6
 

3
6
.4

9
 

3
6
.5

6
 

3
6
.7

5
 

3
6
.7

0
 

3
7
.0

8
 

3
7
.1

8
 

3
7
.4

3
 

3
7
.5

3
 

3
7
.8

6
 

T
i0

2
 

0
.0

6
 

0
.0

6
 

0
.1

0
 

0
.1

0
 

0
.0

8
 

0
.0

5
 

0
.0

5
 

0
.0

5
 

0
.0

6
 

0
.0

7
 

0
.1

1
 

0
.0

9
 

0
.1

1
 

0
.0

8
 

0
.0

8
 

0
.0

8
 

0
.0

6
 

0
.0

4
 

0
.0

4
 

0
.0

4
 

0
.0

4
 

A
l2

0
3
 

2
1
.9

0
 

2
1
.3

0
 

2
1
.1

8
 

2
1
.1

3
 

2
1
.2

3
 

2
1
.9

0
 

2
1
.7

5
 

2
1
.3

5
 

2
1
.0

4
 

2
0
.9

6
 

2
0
.9

9
 

2
0
.9

1
 

2
0
.8

4
 

2
1
.0

2
 

2
1
.0

0
 

2
1
.0

1
 

2
1
.3

5
 

2
1
.7

3
 

2
1
.9

8
 

2
2
.0

9
 

2
2
.1

6
 

F
e

O
 

2
4
.9

1
 

3
0
.3

5
 

3
1
.0

4
 

3
0
.1

0
 

3
0
.5

1
 

2
6
.6

7
 

2
3
.2

1
 

2
8
.4

7
 

3
0
.1

8
 

3
0
.7

0
 

3
1
.1

0
 

3
0
.8

8
 

3
0
.6

2
 

3
0
.0

3
 

2
9
.4

4
 

3
0
.4

5
 

2
7
.3

3
 

2
6
.6

5
 

2
5
.4

5
 

2
4
.3

3
 

2
3
.3

3
 

M
n

O
 

0
.3

8
 

0
.7

5
 

0
.7

3
 

0
.8

6
 

0
.8

3
 

0
.5

5
 

0
.3

3
 

0
.7

2
 

0
.6

6
 

0
.7

7
 

0
.7

3
 

0
.7

6
 

0
.7

2
 

0
.7

5
 

0
.7

2
 

0
.7

0
 

0
.8

0
 

0
.5

2
 

0
.4

6
 

0
.3

9
 

0
.4

1
 

M
g
O

 
5
.9

2
 

3
.5

0
 

2
.7

5
 

3
.0

7
 

2
.9

8
 

4
.5

3
 

6
.3

9
 

3
.8

4
 

3
.2

7
 

2
.8

2
 

2
.6

9
 

2
.8

2
 

2
.6

9
 

3
.1

3
 

3
.4

8
 

3
.5

5
 

4
.0

3
 

4
.7

8
 

5
.3

3
 

6
.4

3
 

6
.6

8
 

ca
o

 
8
.1

7
 

7
.2

0
 

7
.6

3
 

7
.9

0
 

7
.6

5
 

8
.4

3
 

8
.4

0
 

7
.8

7
 

7
.2

9
 

7
.4

1
 

7
.6

1
 

7
.5

5
 

7
.8

0
 

7
.8

4
 

7
.5

4
 

7
.2

1
 

8
.3

9
 

8
.2

6
 

8
.6

6
 

7
.8

9
 

8
.00

 

N
a

2
0

 
0
.0

1
0
 

0
.0

2
2
 

0
.0

4
5
 

0
.0

1
2
 

0
.0

1
1
 

0
.0

2
2
 

0
.0

3
1
 

0
.0

2
3
 

0
.0

2
3
 

0
.0

0
1
 

0
.0

1
1
 

0
.0

1
3
 

0
.0

3
1
 

0
.0

1
3
 

0
.0

1
9
 

0
.0

2
7
 

0
.0

1
4
 

0
.0

1
3
 

0
.0

0
0
 

0
.0

2
5
 

0
.0

1
9
 

K
2
0

 
0
.0

1
0
 

0
.0

0
6
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
3
 

0
.0

0
4
 

0
.0

0
3
 

0
.0

0
6
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
4
 

0
.0

0
0
 

0
.0

0
2
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
9
 

0
.0

0
9
 

0
.0

0
5
 

C
r2

0
3
 

0
.0

5
0
 

0
.0

0
9
 

0
.0

2
0
 

0
.0

0
6
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

2
4
 

0
.0

4
2
 

0
.0

0
4
 

0
,0

3
8
 

0
.0

1
1
 

0
.0

0
6
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

3
9
 

0
.0

0
9
 

0
.0

0
7
 

0
.0

2
6
 

0
.0

2
4
 

0
.0

1
2
 

0
.0

0
0
 

:E
 

9
9
.0

 
1
0
0
.3

 
1
0

0
.3

 
1
0

0
.2

 
1
0

0
.3

 
9
9
.7

 
9
7
.5

 
9
9
.1

 
9
9
.2

 
9
9
.2

 
9
9
.7

 
9
9
.5

 
9
9
.3

 
9
9
.4

 
9
9
.1

 
9
9
.7

 
9
9
.1

 
9
9
.2

 
9
9
.4

 
9
8

.7
 

9
8

.5
 

A
lm

 
5
3
.2

 
6
4
.0

 
6
5
.7

 
6

3
.4

 
6

4
.6

 
5
7
.4

 
5
0
.4

 
6
0
.6

 
6
4
.5

 
6
5
.5

 
6
5
.7

 
6
5
.2

 
6
5
.1

 
6
3
.3

 
6
2
.8

 
6
3
.7

 
5
8
.4

 
5
6
.7

 
5
3
.9

 
5
2
.0

 
5
0
.8

 

Prp
 

2
3
.1

 
1
3
.8

 
1
0
.9

 
1
2
.2

 
1
1
.8

 
1
7
.7

 
2
5
.1

 
1
5
.3

 
1
3
.1

 
1
1
.3

 
1
0
.8

 
1
1
.3

 
1
0
.8

 
1
2
.5

 
1
3
.9

 
1
4
.1

 
1
6
.0

 
1
8
.8

 
2
0
.8

 
2
5
.1

 
2
6
.0

 

S
p

s 
0
.8

 
1
.7

 
1
.6

 
1

.9
 

1
.9

 
1

.2
 

0
.7

 
1
.6

 
1
.5

 
1
.7

 
1
.7

 
1
.7

 
1
.6

 
1
.7

 
1
.6

 
1
.6

 
1
.8

 
1
.2

 
1
.0

 
0
.9

 
0
.9

 

G
A

U
 

2
2
.9

 
2
0
.5

 
2
1
.8

 
2
2
.5

 
2
1
.8

 
2
3
.7

 
2
3
.8

 
2
2
.5

 
2
0
.9

 
2
1
.4

 
2
1
.9

 
2
1
.7

 
2
2
.5

 
2
2
.5

 
2
1

.6
 

2
0
.6

 
2
3
.9

 
2
3
.4

 
2
4

.3
 

2
2
.1

 
2
2
.4

 

S
i 

5
.9

1
 

5
.9

0
 

5
.8

8
 

5
.9

0
 

5
.9

0
 

5
.9

1
 

5
.9

2
 

5
.8

8
 

5
.9

0
 

5
.8

8
 

5
.8

7
 

5
.8

8
 

5
.8

9
 

5
.8

8
 

5
.9

1
 

5
.8

8
 

5
.9

1
 

5
.8

9
 

5
.8

8
 

5
.8

9
 

5
.9

3
 

T
i 

0
.0

0
7
 

0
.0

0
8
 

0
.0

1
2
 

0
.0

1
2
 

0
.0

0
9
 

0
.0

0
6
 

0
.0

0
6
 

0
.0

0
6
 

0
.0

0
8
 

0
.00

9
 

0
.0

1
3
 

0
.0

1
1
 

0
.0

1
4
 

0
.0

1
0
 

0
.0

1
0
 

0
.0

0
9
 

0
.0

0
8
 

0
.0

0
5
 

0
.00

5
 

0
.0

0
4
 

0
.0

0
4
 

A
l 

4
.0

5
 

3
.9

9
 

3
.9

9
 

3
.9

7
 

3
.9

9
 

4
.0

6
 

4
.0

6
 

4
.0

3
 

3
.9

9
 

3
.9

9
 

3
.9

8
 

3
.9

8
 

3
.9

7
 

3
.9

8
 

3
.9

8
 

3
.9

7
 

4
.0

1
 

4
.0

6
 

4
.0

7
 

4
.0

9
 

4
.0

9
 

F
e

 
3
.2

7
 

4
.0

4
 

4
.1

5
 

4
.0

1
 

4
.0

7
 

3
.5

1
 

3
.0

7
 

3
.8

1
 

4
.0

6
 

4
.1

5
 

4
.1

9
 

4
.1

7
 

4
.1

4
 

4
.0

4
 

3
.9

6
 

4
.0

8
 

3
.6

4
 

3
.5

3
 

3
.3

5
 

3
.1

9
 

3
.0

5
 

M
n

 
0
.0

5
0
 

0
.1

0
 

0
.0

9
8
 

0
.1

1
6
 

0
.1

1
3
 

0
.0

7
3
 

0
.0

4
5
 

0
.0

9
7
 

0
.0

9
0
 

0
.1

0
5
 

0
.1

0
0
 

0
.0

1
0
 

0
.0

9
9
 

0
.1

0
2
 

0
.0

9
8
 

0
.0

9
5
 

0
.1

0
8
 

0
.0

6
9
 

0
.0

6
1
 

0
.0

5
1
 

0
.0

5
4
 

M
g
 

1
.3

9
 

0
.8

3
 

0
.6

6
 

0
.7

3
 

0
.7

1
 

1
.0

6
 

1
.5

1
 

0
.9

2
 

0
.7

9
 

0
.6

8
 

0
.6

5
 

0
.6

8
 

0
.6

5
 

0
.7

5
 

0
.8

3
 

0
.8

5
 

0
.9

6
 

1
.1

3
 

1
.2

5
 

1
.5

1
 

1
.5

6
 

ea
 

1
.3

8
 

1
.2

3
 

1
.3

1
 

1
.3

5
 

1
.3

1
 

1
.4

2
 

1
.4

3
 

1
.3

5
 

1
.2

6
 

1
.2

8
 

1
.3

1
 

1
.3

1
 

1
.3

5
 

1
.3

5
 

1
.3

0
 

1
.2

4
 

1
.4

3
 

1
.4

0
 

1
.4

6
 

1
.3

3
 

1
.3

4
 

N
a

 
0
.0

0
3
 

0
.0

0
7
 

0
.0

1
4
 

0
.0

0
4
 

0
.0

0
4
 

0
.0

0
7
 

0
.0

1
0
 

0
.0

0
7
 

0
.0

0
7
 

0
.0

0
0
 

0
.0

0
3
 

0
.0

0
4
 

0
.0

1
0
 

0
.0

0
4
 

0
.0

0
6
 

0
.0

0
9
 

0
.0

0
4
 

0
.0

0
4
 

0
.0

0
0
 

0
.0

0
8
 

0
.0

0
6
 

K
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
0
 

0
.00

0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
2
 

0
.0

0
2
 

0
.0

0
1
 

C
r 

0
.0

0
7
 

0
.0

0
1
 

0
.0

0
3
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
3
 

0
.0

0
5
 

0
.0

0
1
 

0
.00

5
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
0
 

0
.00

0
 

0
.0

0
5
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
3
 

0
.00

3
 

0
.0

0
2
 

0
.0

0
0
 

T
o

ta
l 

1
6
.0

6
 

1
6
.1

0
 

1
6
.1

2
 

1
6
.1

0
 

1
6
.1

0
 

1
6
.0

6
 

1
6
.0

5
 

1
6
.1

0
 

1
6
.1

0
 

1
6
.1

1
 

1
6
.1

2
 

1
6
.1

2
 

1
6
.1

2
 

1
6
.1

2
 

6
.1

0
 

1
6
.1

3
 

1
6
.0

8
 

1
6
.0

8
 

1
6
.0

8
 

1
6
.0

7
 

1
6
.0

3
 

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.00

 
2
4
.00

 
2
4
.0

0
 

2
4
.00

 
2
4
.00

 
2
4
.00

 
2
4
.00

 
2
4
.00

 
2
4
.0

0
 

2
4
.00

 
2
4
.0

0
 

2
4
.0

0
 

2
4
.00

 
2
4
.00

 
2
4
.0

0
 

2
4
.0

0
 

2
4
.00

 
2
4
.00

 

T'-i
 

M
 

T'-i
 



t
I 

t 
-t ---� --

r
-

-
�

--,
 

t 
R

K
2

0
 p

ro
file

 

S
i0

2
 

3
8

.3
8

 
3

8
.2

5
 

3
7

.9
1

 
3

8
.2

1
 

3
8

.1
1

 
3

5
.3

4
 

3
7

.7
7

 
3

7
.4

0
 

3
7

.5
7

 
3

7
.7

1
 

3
7

.7
2

 
3

7
.4

2
 

3
7

.5
9

 

T
i0

2
 

0
.0

5
 

0
.0

6
 

0
.0

5
 

0
.0

7
 

0
.0

8
 

0
.0

5
 

0
.0

8
 

0
.0

8
 

0
.0

7
 

0
.0

9
 

0
.0

9
 

0
.1

0
 

0
.0

7
 

A
l2

0
3

 
2

2
.1

6
 

2
2

.4
2

 
2

2
.0

9
 

2
2

.2
3

 
2

2
.0

4
 

2
0

.5
6

 
2

2
.0

0
 

2
1

.7
7

 
2

1
.7

1
 

2
1

.6
8

 
2

1
.5

2
 

2
1

.7
7

 
2

1
.7

8
 

F
e

O
 

2
5

.6
4

 
2

6
.0

2
 

2
7

.8
8

 
2

8
.2

2
 

2
8

.1
0

 
2

8
.5

9
 

2
8

.4
6

 
2

8
.6

8
 

2
9

.6
0

 
2

8
.5

7
 

2
7

.6
3

 
2

8
.6

7
 

2
8

.4
8

 

M
n

O
 

0
.0

8
 

0
.2

8
 

0
.1

9
 

0
.1

7
 

0
.1

7
 

0
.2

2
 

0
.2

4
 

0
.4

1
 

0
.2

8
 

0
.2

7
 

0
.2

0
 

0
.2

8
 

0
.2

3
 

M
g
O

 
6

.8
9

 
6

.6
6

 
5

.0
5

 
5

.1
4

 
4

.6
4

 
5

.1
9

 
4

.2
6

 
3

.8
7

 
3

.5
4

 
3

.2
8

 
4

.0
4

 
3

.3
1

 
3

.5
5

 

ea
o

 
6

.6
7

 
6

.9
3

 
7

.0
7

 
7

.2
9

 
7

.6
6

 
7

.4
7

 
7

.7
1

 
8

.0
6

 
8

.2
2

 
9

.2
6

 
8

.9
3

 
9

.0
2

 
8

.5
6

 

N
a

2
0

 
0

.0
2

 
0

.0
3

 
0

.0
2

 
0

.0
3

 
0

.0
5

 
0

.0
1

 
0

.0
2

 
0

.0
1

 
0

.0
4

 
0

.0
3

 
0

.0
3

 
0

.0
4

 
0

.0
1

 

K
2

0
 

0
.0

0
0

 
0

.0
0

3
 

0
.0

0
0

 
0

.0
0

0
 

0
.0

0
0

 
0

.0
0

3
 

0
.0

0
1

 
0

.0
0

7
 

0
.0

0
4

 
0

.0
0

0
 

0
.0

0
5

 
0

.0
0

3
 

0
.0

0
4

 

C
r2

0
3

 
0

.0
2

 
0

.0
1

 
0

.0
3

 
0

.0
0

 
0

.0
2

 
0

.0
1

 
0

.0
3

 
0

.0
2

 
0

.0
1

 
0

.0
5

 
0

.0
2

 
0

.0
3

 
0

.0
6

 

I
 

9
9

.9
 

1
0

0
.7

 
1

0
0

.3
 

1
0

1
.4

 
1

0
0

.9
 

9
7

.4
 

1
0

0
.6

 
1

0
0

.3
 

1
0

1
.0

 
1

0
0

.9
 

1
0

0
.2

 
1

0
0

.6
 

1
0

0
.3

 

A
lm

 
5

4
.9

 
5

4
.8

 
6

0
.3

 
5

9
.7

 
6

0
.4

 
5

6
.7

 
6

1
.3

 
6

1
.2

 
6

2
.5

 
6

0
.6

 
5

8
.7

 
6

1
.1

 
6
1
.5

 

P
rp

 
2

6
.5

 
2

5
.5

 
1

9
.6

 
1

9
.8

 
1

7
.9

 
2

1
.1

 
1

6
.6

 
1

5
.2

 
1

3
.8

 
1

2
.8

 
1

5
.8

 
1

3
.0

 
1

3
.9

 

S
p

s 
0

.2
 

0
.6

 
0

.4
 

0
.4

 
0

.4
 

0
.5

 
0

.5
 

0
.9

 
0

.6
 

0
.6

 
0

.4
 

0
.6

 
0

.5
 

G
A

U
 

1
8

.4
 

1
9

.1
 

1
9

.7
 

2
0

.1
 

2
1

.3
 

2
1

.8
 

2
1

.6
 

2
2

.7
 

2
3

.1
 

2
6

.0
 

2
5

.1
 

2
5

.4
 

2
4

.1
 

S
i 

5
.9

4
 

5
.9

0
 

5
.9

2
 

5
.9

1
 

5
.9

3
 

5
.7

7
 

5
.9

2
 

5
.9

0
 

5
.9

0
 

5
.9

2
 

5
.9

3
 

5
.8

9
 

5
.9

2
 

T
i 

0
.0

0
5

 
0

.0
0

7
 

0
.0

0
6

 
0

.0
0

8
 

0
.0

0
9

 
0

.0
0

6
 

0
.0

0
9

 
0

.0
0

9
 

0
.0

0
8

 
0

.0
1

0
 

0
.0

1
1

 
0

.0
1

2
 

0
.0

0
8

 

A
l 

4
.0

5
 

4
.0

7
 

4
.0

7
 

4
.0

6
 

4
.0

4
 

3
.9

6
 

4
.0

6
 

4
.0

5
 

4
.0

2
 

4
.0

1
 

3
.9

9
 

4
.0

4
 

4
.0

4
 

Fe
 

3
.3

2
 

3
.3

6
 

3
.6

4
 

3
.6

5
 

3
.6

6
 

3
.9

0
 

3
.7

3
 

3
.7

8
 

3
.8

9
 

3
.7

5
 

3
.6

4
 

3
.7

8
 

3
.7

5
 

M
n

 
0

.0
1

1
 

0
.0

3
7

 
0

.0
2

5
 

0
.0

2
2

 
0

.0
2

3
 

0
.0

3
1

 
0

.0
3

1
 

0
.0

5
5

 
0

.0
3

8
 

0
.0

3
7

 
0

.0
2

7
 

0
.0

3
7

 
0

.0
3

1
 

M
g

 
1

.5
9

 
1

.5
3

 
1

.1
8

 
1

.1
9

 
1

.0
8

 
1

.2
6

 
1

.0
0

 
0

.9
1

 
0

.8
3

 
0

.7
7

 
0

.9
5

 
0

.0
4

 
0

.8
3

 

Ca
 

1
.1

1
 

1
.1

5
 

1
.1

8
 

1
.2

1
 

1
.2

8
 

1
.3

1
 

1
.2

9
 

1
.3

6
 

1
.3

8
 

1
.5

6
 

1
.5

1
 

1
.5

2
 

1
.4

5
 

N
a

 
0

.0
0

7
 

0
.0

0
9

 
0

.0
0

7
 

0
.0

0
8

 
0

.0
1

4
 

0
.0

0
4

 
0

.0
0

7
 

0
.0

0
4

 
0

.0
1

2
 

0
.0

0
8

 
0

.0
0

9
 

0
.0

1
3

 
0

.0
0

3
 

K
 

0
.0

0
0

 
0

.0
0

1
 

0
.0

0
0

 
0

.0
0

0
 

0
.0

0
0

 
0

.0
0

1
 

0
.0

0
0

 
0

.0
0

1
 

0
.0

0
1

 
0

.0
0

0
 

0
.0

0
1

 
0

.0
0

1
 

0
.0

0
1

 

C
r 

0
.0

0
2

 
0

.0
0

2
 

0
.0

0
4

 
0

.0
0

0
 

0
.0

0
3

 
0

.0
0

1
 

0
.0

0
4

 
0

.0
0

2
 

0
.0

0
1

 
0

.0
0

6
 

0
.0

0
3

 
0

.0
0

4
 

0
.0

0
8

 

T
o

ta
l 

1
6

.0
3

 
1

6
.0

6
 

1
6

.0
4

 
1

6
.0

5
 

1
6

.0
4

 
1

6
.2

5
 

1
6

.0
5

 
1

6
.0

7
 

1
6

.0
9

 
1

6
.0

7
 

1
6

.0
6

 
1

6
.0

8
 

1
6

.0
5

 

0
 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 

t 
3

7
.6

5
 

3
7

.8
3

 
3

7
.7

1
 

3
7

.7
9

 
3

8
.0

6
 

3
7

.7
7

 

0
.0

8
 

0
.0

7
 

0
.0

9
 

0
.0

6
 

0
.0

7
 

0
.0

5
 

2
2

.1
0

 
2

1
.8

6
 

2
1

.7
6

 
2

2
.0

0
 

2
2

.1
4

 
2

2
.0

6
 

2
8

.1
3

 
2

7
.4

7
 

2
7

.2
5

 
2

8
.4

3
 

2
8

.0
2

 
2

8
.7

7
 

0
.2

8
 

0
.3

8
 

0
.2

6
 

0
.2

4
 

0
.2

5
 

0
.2

0
 

4
.4

6
 

4
.5

8
 

4
.5

4
 

4
.5

8
 

5
.2

1
 

4
.8

7
 

7
.9

7
 

8
.3

4
 

8
.4

4
 

7
.7

0
 

7
.4

1
 

7
.3

6
 

0
.0

4
 

0
.0

2
 

0
.0

3
 

0
.0

2
 

0
.0

3
 

0
.0

1
 

0
.0

0
3

 
0

.0
0

0
 

0
.0

0
9

 
0

.0
0

0
 

0
.0

0
4

 
0

.0
0

5
 

0
.0

4
 

0
.0

7
 

0
.0

4
 

0
.0

3
 

0
.0

1
 

0
.0

3
 

1
0

0
.7

 
1

0
0

.6
 

1
0

0
.1

 
1

0
0

.9
 

1
0

1
.2

 
1

0
1

.1
 

5
9

.8
 

5
8

.1
 

5
8

.1
 

6
0

.2
 

5
8

.9
 

6
0

.2
 

1
7

.3
 

1
7

.8
 

1
7

.7
 

1
7

.8
 

2
0

.1
 

1
8

.8
 

0
.6

 
0

.8
 

0
.6

 
0

.5
 

0
.5

 
0

.5
 

2
2

.2
 

2
3

.3
 

2
3

.6
 

2
1

.5
 

2
0

.5
 

2
0

.5
 

5
.8

9
 

5
.9

1
 

5
.9

2
 

5
.9

0
 

5
.9

0
 

5
.8

8
 

0
.0

0
9

 
0

.0
0

8
 

0
.0

1
1

 
0

.0
0

8
 

0
.0

0
8

 
0

.0
0

6
 

4
.0

7
 

4
.0

3
 

4
.0

2
 

4
.0

5
 

4
.0

5
 

4
.0

5
 

3
.6

8
 

3
.5

9
 

3
.5

8
 

3
.7

1
 

3
.6

3
 

3
.7

5
 

0
.0

3
7

 
0

.0
5

1
 

0
.0

3
5

 
0

.0
3

2
 

0
.0

3
3

 
0

.0
2

7
 

1
.0

4
 

1
.0

7
 

1
.0

6
 

1
.0

7
 

1
.2

0
 

1
.1

3
 

1
.3

4
 

1
.4

0
 

1
.4

2
 

1
.2

9
 

1
.2

3
 

1
.2

3
 

0
.0

1
2

 
0

.0
0

5
 

0
.0

1
0

 
0

.0
0

7
 

0
.0

0
8

 
0

.0
0

3
 

0
.0

0
1

 
0

.0
0

0
 

0
.0

0
2

 
0

.0
0

0
 

0
.0

0
1

 
0

.0
0

1
 

0
.0

0
4

 
0

.0
0

9
 

0
.0

0
5

 
0

.0
0

3
 

0
.0

0
1

 
0

.0
0

4
 

1
6

.0
7

 
1

6
.0

6
 

1
6

.0
6

 
1

6
.0

7
 

1
6

.0
7

 
1

6
.0

8
 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 
2

4
.0

0
 

3
7

.7
4

 
3

7
.8

5
 

3
8

.2
3

 

0
.0

6
 

0
.0

5
 

0
.0

3
 

2
1

.9
4

 
2

2
.0

3
 

2
2

.3
0

 

2
8

.6
0

 
2

8
.4

7
 

2
6

.9
6

 

0
.1

7
 

0
.2

3
 

0
.1

6
 

5
.2

0
 

5
.5

2
 

6
.6

8
 

6
.8

6
 

6
.5

6
 

6
.1

5
 

0
.0

2
 

0
.0

3
 

0
.0

4
 

0
.0

0
0

 
0

.0
0

2
 

0
.0

0
0

 

0
.0

0
 

0
.0

0
 

0
.0

3
 

1
0

0
.6

 
1

0
0

.7
 

1
0

0
.6

 

6
0

.3
 

5
9

.9
 

5
7

.0
 

2
0

.2
 

2
1
.4

 
2

5
.7

 

0
.4

 
0

.5
 

0
.4

 

1
9

.1
 

1
8

.3
 

1
7

.0
 

5
.9

0
 

5
.9

0
 

5
.9

0
 

0
.0

0
7

 
0

.0
0

6
 

0
.0

0
3

 

4
.0

4
 

4
.0

5
 

4
.0

6
 

3
.7

4
 

3
.7

1
 

3
.4

9
 

0
.0

2
2

 
0

.0
3

0
 

0
.0

2
1

 

1
.2

1
 

1
.2

8
 

1
.5

4
 

1
.1

5
 

1
.1

0
 

1
.0

2
 

0
.0

0
6

 
0

.0
1

0
 

0
.0

1
2

 

0
.0

0
0

 
0

.0
0

0
 

0
.0

0
0

 

0
.0

0
0

 
0

.0
0

0
 

0
.0

0
4

 

1
6

.0
8

 
1

6
.0

8
 

1
6

.0
6

 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 

3
8

.4
5

 

0
.0

4
 

2
2

.4
6

 

2
4

.9
3

 

0
.0

9
 

7
.4

9
 

6
.4

0
 

0
.0

3
 

0
.0

0
5

 

0
.0

2
 

9
9

.9
 

5
3

.5
 

2
8

.7
 

0
.2

 

1
7

.6
 

5
.9

3
 

0
.0

0
5

 

4
.0

8
 

3
.2

1
 

0
.0

1
1

 

1
.7

2
 

1
.0

6
 

0
.0

0
9

 

0
.0

0
1

 

0
.0

0
2

 

1
6

.0
3

 

2
4

.0
0

 

3
8

.8
2

 

0
.0

3
 

2
2

.7
5

 

2
4

.2
7

 

0
.1

0
 

8
.4

8
 

6
.0

7
 

0
.0

1
 

0
.0

0
6

 

0
.0

0
 

1
0

0
.5

 

5
1

.2
 

3
2

.1
 

0
.2

 

1
6

.5
 

5
.9

2
 

0
.0

0
3

 

4
.0

9
 

3
.0

9
 

0
.0

1
2

 

1
.9

3
 

0
.9

9
 

0
.0

0
3

 

0
.0

0
1

 

0
.0

0
1

 

1
6

.0
4

 

2
4

.0
0

 

N
 

M
 

.-I
 



T
ab

le
 3

 (c
o

n
ti

n
u

e
d

) 

R
K

4
9

 p
ro

file
 1

 

5
10

2
 

3
8

.2
2

 
3

8
.2

9
 

3
8

.4
2

 
3

8
.1

3
 

3
7

.9
7

 
3

7
.4

0
 

3
8

.1
6

 
3

7
.4

4
 

3
7

.4
3

 

T
i0

2
 

0
.0

2
 

0
.0

4
 

0
.0

4
 

0
.0

2
 

0
.0

2
 

0
.0

4
 

0
.0

5
 

0
.0

4
 

0
.0

4
 

A
l2

0
3

 
2

2
.4

6
 

2
2

.4
5

 
2

2
.4

9
 

2
2

.2
2

 
2

2
.2

9
 

2
1

.7
5

 
2

2
.2

6
 

2
1

.7
7

 
2

1
.8

3
 

Fe
O

 
2

2
.6

4
 

2
3

.1
6

 
2

2
.8

3
 

2
4

.4
8

 
2

4
.8

0
 

2
7

.6
7

 
2

4
.4

5
 

2
8

.8
4

 
2

8
.3

1
 

M
n

O
 

0
.8

9
 

0
.1

4
 

0
.5

6
 

0
.2

5
 

0
.2

7
 

0
.3

5
 

0
.4

2
 

0
.3

8
 

0
.5

3
 

M
gO

 
8

.8
2

 
8

.4
5

 
8

.4
6

 
7

.3
4

 
7

.2
9

 
5

.4
0

 
7

.3
3

 
4

.4
9

 
4

.3
5

 

ca
o

 
5

.7
3

 
6

.6
6

 
6

.7
8

 
6

.9
2

 
6

.7
3

 
6

.7
3

 
6

.8
3

 
7

.2
2

 
7

.8
1

 

N
a

2
0

 
0

.0
2

1
 

0
.0

3
1

 
0

.0
3

2
 

0
.0

2
8

 
0

.0
4

7
 

0
.0

1
8

 
0

.0
2

9
 

0
.0

1
4

 
0

.0
4

2
 

K
2

0
 

0
.0

4
1

 
0

.0
0

9
 

0
.0

0
3

 
0

.0
0

0
 

0
.0

0
0

 
0

.0
0

1
 

0
.0

0
0

 
0

.0
0

0
 

0
.0

0
0

 

C
r2

0
3

 
0

.0
1

0
 

0
.0

0
0

 
0

.0
2

0
 

0
.0

0
0

 
0

.0
0

0
 

0
.0

0
8

 
0

.0
0

7
 

0
.0

1
6

 
0

.0
1

8
 

l:
 

9
8

.8
 

9
9

.2
 

9
9

.6
 

9
9

.4
 

9
9

.4
 

9
9

.4
 

9
9

.5
 

1
0

0
.2

 
1

0
0

.4
 

A
lm

 
4

8
.4

 
4

9
.0

 
4

7
.9

 
5

2
.0

 
5

2
.6

 
5

9
.1

 
5

1
.9

 
6

1
.3

 
5

9
.9

 

P
rp

 
3

3
.9

 
3

2
.4

 
3

2
.3

 
2

8
.3

 
2

8
.1

 
2

1
.2

 
2

8
.2

 
1

7
.6

 
1

7
.0

 

S
p

s 
1

.9
 

0
.3

 
1

.2
 

0
.6

 
0

.6
 

0
.8

 
0

.9
 

0
.8

 
1

.2
 

G
A

U
 

1
5

.8
 

1
8

.3
 

1
8

.6
 

1
9

.2
 

1
8

.7
 

1
9

.0
 

1
8

.9
 

2
0

.3
 

2
1

.9
 

S
i 

5
.9

1
 

5
.9

1
 

5
.9

1
 

5
.9

2
 

5
.9

0
 

5
.9

0
 

5
.9

1
 

5
.9

0
 

5
.8

8
 

T
i 

0
.0

0
2

 
0

.0
0

4
 

0
.0

0
4

 
0

.0
0

3
 

0
.0

0
2

 
0

.0
0

4
 

0
.0

0
6

 
0

.0
0

5
 

0
.0

0
5

 

A
l 

4
.0

9
 

4
.0

8
 

4
.0

7
 

4
.0

7
 

4
.0

8
 

4
.0

5
 

4
.0

7
 

4
.0

4
 

4
.0

5
 

F
e

 
2

.9
3

 
2

.9
9

 
2

.9
3

 
3

.1
8

 
3

.2
2

 
3

.6
5

 
3

.1
7

 
3

.8
0

 
3

.7
2

 

M
n

 
0

.1
1

6
 

0
.0

1
8

 
0

.0
7

3
 

0
.0

3
3

 
0

.0
3

5
 

0
.0

4
7

 
0

.0
5

6
 

0
.0

5
0

 
0

.0
7

0
 

M
g

 
2

.0
3

 
1

.9
4

 
1

.9
4

 
1

.7
0

 
1

.6
9

 
1

.2
7

 
1

.7
0

 
1

.0
5

 
1

.0
2

 

ea
 

0
.9

5
 

1
.1

0
 

1
.1

2
 

1
.1

5
 

1
.1

2
 

1
.1

4
 

1
.1

3
 

1
.2

2
 

1
.3

2
 

N
a

 
0

.0
0

6
 

0
.0

0
9

 
0

.0
0

9
 

0
.0

0
9

 
0

.0
1

4
 

0
.0

0
6

 
0

.0
0

9
 

0
.0

0
4

 
0

.0
1

3
 

K
 

0
.0

0
8

 
0

.0
0

2
 

0
.0

0
1

 
0

.0
0

1
 

0
.0

0
0

 
0

.0
0

0
 

0
.0

0
0

 
0

.0
0

0
 

0
.0

0
0

 

e
r 

0
.0

0
1

 
0

.0
0

0
 

0
.0

0
2

 
0

.0
0

0
 

0
.00

2
 

0
.0

0
1

 
0

.0
0

1
 

0
.0

0
2

 
0

.0
0

2
 

T
o

ta
l 

1
6

.0
5

 
1

6
.0

5
 

1
6

.0
6

 
1

6
.0

5
 

1
6

.0
6

 
1

6
.0

7
 

1
6

.5
0

 
1

6
.0

8
 

1
6

.0
9

 

0
 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 

3
7

.3
0

 
3

7
.4

2
 

3
7

.1
6

 
3

7
.4

5
 

3
7

.4
5

 
3

7
.6

0
 

3
8

.1
4

 

0
.0

9
 

0
.0

9
 

0
.0

5
 

0
.0

5
 

0
.0

5
 

0
.0

4
 

0
.0

3
 

2
1

.7
7

 
2

1
.5

2
 

2
1

.7
6

 
2

1
.6

7
 

2
1

.8
5

 
2

2
.0

4
 

2
2

.3
2

 

2
8

.9
0

 
2

9
.3

3
 

2
9

.8
8

 
3

0
.0

7
 

2
9

.7
0

 
2

8
.5

6
 

2
6

.0
7

 

0
.5

3
 

0
.3

7
 

0
.3

7
 

0
.2

7
 

0
.2

4
 

0
.2

4
 

0
.2

9
 

3
.9

6
 

3
.9

8
 

4
.2

2
 

4
.2

0
 

4
.9

2
 

5
.8

1
 

6
.7

8
 

8
.0

2
 

7
.7

4
 

6
.8

2
 

6
.6

3
 

6
.2

2
 

5
.5

0
 

6
.3

5
 

0
.0

5
7

 
0

.0
1

2
 

0
.0

2
4

 
0

.0
2

4
 

0
.0

4
2

 
0

.0
1

6
 

0
.0

4
9

 

0
.0

0
2

 
0

.0
0

0
 

0
.0

0
8

 
0

.00
3

 
0

.0
0

0
 

0
.0

0
0

 
0

.0
0

6
 

0
.0

0
6

 
0

.0
0

0
 

0
.0

0
0

 
0

.0
0

0
 

0
.0

0
3

 
0

.0
0

0
 

0
.0

1
0

 

1
00

.6
 

1
0

0
.5

 
1

0
0

.3
 

1
0

0
.4

 
1

0
0

.5
 

9
9

.8
 

1
0

0
.0

 

6
0

.8
 

6
1

.8
 

6
3

.3
 

6
4

.2
 

6
2

.8
 

6
1

.4
 

5
5

.7
 

1
5

.5
 

1
5

.6
 

1
6

.6
 

1
6

.5
 

1
9

.2
 

2
2

.7
 

2
6

.1
 

1
.2

 
0

.8
 

0
.8

 
0

.6
 

0
.5

 
0

.5
 

0
.6

 

2
2

.6
 

2
1

.8
 

1
9

.3
 

1
8

.7
 

1
7

.S
 

1
5

.4
 

1
7

.6
 

5
.8

7
 

5
.9

0
 

5
.8

8
 

5
.9

1
 

5
.8

9
 

5
.9

0
 

5
.9

1
 

0
.0

1
0

 
0

.0
1

1
 

0
.0

0
6

 
0

.0
0

6
 

0
.0

0
6

 
0

.0
0

4
 

0
.0

0
4

 

4
.0

4
 

4
.0

0
 

4
.0

5
 

4
.0

3
 

4
.0

5
 

4
.0

8
 

4
.0

8
 

3
.8

1
 

3
.8

7
 

3
.9

5
 

3
.9

7
 

3
.9

0
 

3
.7

5
 

3
.3

8
 

0
.0

7
0

 
0

.0
5

0
 

0
.0

5
0

 
0

.0
3

7
 

0
.0

3
2

 
0

.0
3

3
 

0
.0

3
8

 

0
.9

3
 

0
.9

4
 

0
.9

9
 

0
.9

9
 

1
.1

5
 

1
.3

6
 

1
.5

7
 

1
.3

5
 

1
.3

1
 

1
.1

6
 

1
.1

2
 

1
.0

5
 

0
.9

3
 

1
.0

6
 

0
.0

1
7

 
0

.0
0

4
 

0
.0

0
7

 
0

.0
0

8
 

0
.0

1
3

 
0

.0
0

5
 

0
.1

7
4

 

0
.0

0
0

 
0

.0
0

0
 

0
.0

0
2

 
0

.0
0

1
 

0
.0

0
0

 
0

.0
0

0
 

0
.0

0
1

 

0
.0

0
1

 
0

.0
0

0
 

0
.0

0
0

 
0

.00
0

 
0

.0
0

0
 

0
.0

0
0

 
0

.0
0

1
 

1
6

.1
0

 
1

6
.0

9
 

1
6

.1
0

 
1

6
.0

7
 

1
6

.0
9

 
1

6
.0

6
 

1
6

.0
5

 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 
2

4
.0

0
 

2
4

.0
0

 

R
K

4
9

 p
ro

fi
le

 2
 

3
8

.2
2

 
3

8
.7

4
 

3
8

.6
1

 
3

7
.8

2
 

3
7

.8
5

 

0
.0

4
 

0
.0

1
 

0
.0

4
 

0
.0

3
 

0
.0

3
 

2
2

.3
3

 
2

2
.7

0
 

2
2

.6
3

 
2

2
.2

0
 

2
2

.1
1

 

2
3

.3
1

 
2

2
.4

1
 

2
4

.7
6

 
2

6
.8

3
 

2
7

.9
0

 

0
.1

9
 

1
1

.4
9

 
0

.2
4

 
0

.2
4

 
0

.2
3

 

8
.3

1
 

8
.7

2
 

7
.9

2
 

6
.4

1
 

5
.7

6
 

6
.5

6
 

6
.0

3
 

6
.2

6
 

6
.2

1
 

6
.2

6
 

0
.0

4
5

 
0

.0
3

7
 

0
.0

2
2

 
0

.0
1

3
 

0
.0

1
5

 

0
.0

1
4

 
0

.0
1

2
 

0
.0

00
 

0
.0

0
0

 
0

.0
0

0
 

0
.0

1
3

 
0

.0
0

7
 

0
.0

1
8

 
0

.0
0

3
 

0
.0

1
0

 

9
9

.0
 

1
1

0
.2

 
1

00
.S

 
9

9
.8

 
1

00
.2

 

4
9

.5
 

4
7

.9
 

5
2

.2
 

5
7

.3
 

5
9

.7
 

3
1

.9
 

3
3

.2
 

3
0

.1
 

2
4

.8
 

2
2

.3
 

0
.4

 
2

.5
 

0
.5

 
0

.5
 

0
.5

 

1
8

.1
 

1
6

.S
 

1
7

.1
 

1
7

.3
 

1
7

.5
 

5
.9

1
 

5
.9

3
 

5
.9

1
 

5
.9

0
 

5
.9

1
 

0
.0

0
4

 
0

.0
0

1
 

0
.0

0
5

 
0

.0
0

4
 

0
.0

0
4

 

4
.0

7
 

4
.0

9
 

4
.0

8
 

4
.0

8
 

4
.0

7
 

3
.0

2
 

2
.8

7
 

3
.1

7
 

3
.5

0
 

3
.6

4
 

0
.0

2
5

 
0

.1
4

9
 

0
.0

3
1

 
0

.0
3

2
 

0
.0

3
0

 

1
.9

2
 

1
.9

9
 

1
.8

1
 

1
.4

9
 

1
.3

4
 

1
.0

9
 

0
.9

9
 

1
.0

3
 

1
.0

4
 

1
.0

5
 

0
.0

1
4

 
0

.0
1

1
 

0
.0

0
6

 
0

.0
0

4
 

0
.0

0
5

 

0
.00

3
 

0
.0

0
2

 
0

.0
00

 
0

.000
 

0
.00

0
 

0
.00

2
 

0
.0

0
1

 
0

.0
0

2
 

0
.0

0
0

 
0

.00
1

 

1
6

.0
5

 
1

6
.0

3
 

1
6

.0
5

 
1

6
.0

6
 

1
6

.0
5

 

2
4

.0
0

 
2

4
.0

0
 

2
4

.00
 

2
4

.00
 

2
4

.0
0

 

3
7

.6
3

 
3

7
.6

4
 

0
.0

5
 

0
.04

 

2
1

.9
6

 
2

1
.9

0
 

2
8

.8
5

 
2

9
.2

4
 

0
.3

2
 

0
.2

1
 

5
.3

6
 

5
.0

0
 

6
.1

1
 

6
.0

6
 

0
.0

2
5

 
0

.0
0

2
 

0
.000

 
0

.0
00

 

0
.00

7
 

0
.0

0
6

 

1
0

0
.3

 
1

0
0

.1
 

6
1

.3
 

6
3

.0
 

2
0

.9
 

1
9

.5
 

0
.7

 
0

.5
 

1
7

.1
 

1
7

.0
 

5
.9

0
 

5
.9

2
 

0
.00

6
 

0
.0

0
4

 

4
.0

6
 

4
.0

6
 

3
.7

8
 

3
.8

5
 

0
.0

4
2

 
0

.0
2

8
 

1
.2

5
 

1
.1

7
 

1
.0

3
 

1
.0

2
 

0
.00

8
 

0
.0

0
1

 

0
.00

0
 

0
.0

0
0

 

0
.00

1
 

0
.0

0
1

 

1
6

.&
7

 
1

6
.0

5
 

2
4

.0
0

 
2

4
.0

0
 

3
7

.2
7

 

0
.0

4
 

2
1

.8
9

 

2
9

.3
0

 

0
.4

0
 

4
.7

4
 

6
.6

9
 

0
.0

1
8

 

0
.0

0
0

 

0
.0

1
8

 

1
00

.4
 

6
1

.8
 

1
8

.5
 

0
.9

 

1
8

.8
 

5
.8

7
 

0
.0

0
5

 

4
.0

6
 

3
.8

6
 

0
.0

5
4

 

1
.1

1
 

1
.1

3
 

0
.0

0
6

 

0
.000

 

0
.00

2
 

1
6

.1
0

 

2
4

.0
0

 

3
7

.2
0

 

0
.0

8
 

2
1

.8
5

 

2
8

.9
3

 

0
.4

5
 

4
.5

9
 

7
.1

0
 

0
.0

2
8

 

0
.0

0
8

 

0
.0

1
4

 

1
0

0
.3

 

6
1

.0
 

1
8

.0
 

1
.0

 

2
0

.0
 

5
.8

7
 

0
.0

1
0

 

4
.0

6
 

3
.8

2
 

0
.0

6
0

 

1
.0

8
 

1
.2

0
 

0
.0

0
9

 

0
.0

0
2

 

0
.00

2
 

1
6

.1
0

 

2
4

.0
0

 

CV}
 

CV}
 

rl
 



T
ab

le
 3 (co

n
ti

n
u

e
d

) 

R
K
4
9
 p

ro
file

 2
 co

n
ti

n
u

e
d

 
M

S
1
1
2
 p

ro
fi

le
 

S
i0

2
 

3
7
.2

9
 

3
7
.2

8
 

3
7
.2

9
 

3
7
.3

3
 

3
7
.1

8
 

3
6
.9

7
 

3
6
.9

7
 

3
7
.3

0
 

3
7
.1

8
 

3
7
.6

6
 

3
7
.5

6
 

3
7
.5

2
 

3
7
.2

0
 

3
7
.1

3
 

T
i0

2
 

0
.0

6
 

0
.0

6
 

0
.0

7
 

0
.0

8
 

0
.0

6
 

0
.0

8
 

0
.0

7
 

0
.0

7
 

0
.0

5
 

0
.0

5
 

0
.0

4
 

0
.0

6
 

0
.0

9
 

0
.1

3
 

A
l2

0
3
 

2
1
.8

2
 

2
1
.6

2
 

2
1
.6

6
 

2
1
.7

4
 

2
1
.7

2
 

2
1
.8

6
 

2
1
.7

1
 

2
1
.9

5
 

2
1
.9

2
 

2
2
.0

3
 

2
1
.9

7
 

2
2
.1

3
 

2
1
.6

5
 

2
1
.5

4
 

Fe
O

 
3
0
.2

1
 

2
9
.2

5
 

3
0
.2

9
 

2
9
.4

9
 

3
0
.0

5
 

2
9
.9

5
 

3
0
.1

9
 

2
8
.6

9
 

2
9
.0

2
 

2
6
.4

9
 

2
5
.8

8
 

2
8
.5

7
 

2
9
.1

3
 

2
8
.6

1
 

M
n

O
 

0
.4

3
 

0
.4

1
 

0
.4

6
 

0
.4

9
 

0
.4

6
 

0
.4

7
 

0
.2

9
 

0
.3

2
 

0
.2

8
 

0
.2

5
 

0
.1

2
 

0
.2

2
 

0
.5

6
 

0
.8

4
 

M
g
O

 
3
.6

2
 

3
.9

2
 

3
.6

7
 

3
.9

5
 

3
.9

6
 

4
.00

 
4
.0

3
 

4
.7

9
 

4
.9

9
 

6
.7

0
 

6
.8

6
 

5
.2

1
 

3
.5

2
 

3
.1

5
 

ca
o

 
7
.0

7
 

7
.7

7
 

7
.6

9
 

7
.6

0
 

7
.0

7
 

7
.5

9
 

6
.9

9
 

7
.0

9
 

6
.4

4
 

6
.2

9
 

6
.6

9
 

6
.6

5
 

8
.2

9
 

8
.7

6
 

N
a

2
0

 
0
.00

0
 

0
.0

1
5
 

0
.0

1
7
 

0
.0

2
6
 

0
.0

2
6
 

0
.0

5
2
 

0
.0

4
0
 

0
.0

2
3
 

0
.0

2
2
 

0
.0

2
5
 

0
.0

3
8
 

0
.0

1
7
 

0
.0

2
4
 

0
.0

2
3
 

K
2
0

 
0
.00

0
 

0
.0

0
0
 

0
.0

0
4
 

0
.0

0
0
 

0
.000

 
0
.0

0
7
 

0
.0

0
0
 

0
.0

00
 

0
.00

1
 

0
.0

0
9
 

0
.0

0
3
 

0
.0

0
4
 

0
.000

 
0
.00

3
 

C
r2

0
3
 

0
.00

0
 

0
.0

0
0
 

0
.0

0
4
 

0
.0

1
4
 

0
.00

0
 

0
.0

00
 

0
.0

0
5
 

0
.0

04
 

0
.00

2
 

0
.0

0
3
 

0
.0

00
 

0
.0

1
6
 

0
.0

2
1
 

0
.0

2
7
 

l:
 

1
00

.5
 

1
0

0
.3

 
1

0
1

.2
 

1
00

.7
 

1
0

0
.5

 
1

0
1

.0
 

1
0

0
.3

 
1

0
0

.2
 

9
9

.9
 

9
9

.5
 

9
9

.2
 

1
0

0
.4

 
1

0
0

.5
 

1
0

0
.2

 

A
lm

 
6
4
.9

 
6
1
.8

 
6
3
.0

 
6
2
.1

 
6
3
.5

 
6
1
.9

 
6
3
.7

 
6
0
.6

 
6
1
.7

 
5
5
.9

 
5
4
.3

 
6
0
.7

 
6
1
.5

 
6
0
.9

 

P
rp

 
1
4
.2

 
1
5
.4

 
1
4
.4

 
1
5
.5

 
1
5
.5

 
1
5
.7

 
1
5
.9

 
1
8
.7

 
1
9
.6

 
2
6
.0

 
2
6
.7

 
2
0
.3

 
1
3
.8

 
1
2
.4

 

S
p

s 
1
.0

 
0
.9

 
1
.0

 
1
.1

 
1
.0

 
1
.0

 
0
.6

 
0
.7

 
0
.6

 
0
.5

 
0
.3

 
0
.5

 
1

.3
 

1
.9

 

G
A

U
 

2
0
.0

 
2

1
.9

 
2
1
.6

 
2
1
.4

 
1
9
.9

 
2
1
.4

 
1
9
.8

 
1
9
.9

 
1
8
.1

 
1
7
.6

 
1
8
.7

 
1
8
.6

 
2
3
.4

 
2
4
.8

 

S
i 

5
.8

9
 

5
.8

9
 

5
.8

7
 

5
.8

8
 

5
.8

8
 

5
.8

3
 

5
.8

6
 

5
.8

7
 

5
.8

7
 

5
.8

9
 

5
.8

8
 

5
.8

8
 

5
.8

6
 

5
.8

8
 

T
i 

0
.00

7
 

0
.0

0
8
 

0
.00

9
 

0
.0

1
0
 

0
.00

7
 

0
.0

1
0
 

0
.0

0
9
 

0
.0

0
9
 

0
.00

6
 

0
.0

0
6
 

0
.00

4
 

0
.0

0
7
 

0
.00

9
 

0
.0

1
1
 

A
l 

4
.0

7
 

4
.0

3
 

4
.0

2
 

4
.0

4
 

4
.0

5
 

4
.06

 
4
.0

5
 

4
.0

7
 

4
.0

8
 

4
.0

6
 

4
.0

6
 

4
.0

9
 

4
.0

9
 

4
.0

3
 

Fe
 

3
.9

9
 

3
.8

7
 

3
.9

9
 

3
.8

8
 

3
.9

7
 

3
.9

4
 

4
.0

0
 

3
.7

8
 

3
.8

3
 

3
.4

7
 

3
.3

9
 

3
.7

4
 

3
.7

7
 

3
.8

5
 

M
n

 
0
.0

5
7
 

0
.0

5
4
 

0
.0

6
2
 

0
.0

6
6
 

0
.0

6
2
 

0
.0

6
2
 

0
.0

3
9
 

0
.0

4
3
 

0
.0

3
7
 

0
.0

3
3
 

0
.0

1
6
 

0
.0

2
9
 

0
.0

4
6
 

0
.0

7
5
 

M
g
 

0
.8

5
 

9
.9

2
 

0
.8

6
 

0
.9

3
 

0
.0

9
 

0
.9

4
 

0
.9

5
 

1
.1

2
 

1
.1

7
 

1
.5

6
 

1
.6

0
 

1
.2

2
 

1
.0

5
 

0
.8

3
 

ea
 

1
.2

0
 

1
.3

2
 

1
.3

0
 

1
.2

8
 

1
.2

0
 

1
.2

8
 

1
.1

9
 

1
.2

0
 

1
.0

9
 

1
.0

6
 

1
.1

2
 

1
.1

2
 

1
.2

5
 

1
.4

0
 

N
a

 
0
.0

0
0
 

0
.0

0
5
 

0
.0

0
5
 

0
.0

0
8
 

0
.00

8
 

0
.0

1
6
 

0
.0

1
2
 

0
.0

0
7
 

0
.0

0
7
 

0
.0

0
8
 

0
.0

1
2
 

0
.0

0
5
 

0
.0

1
5
 

0
.0

0
7
 

K
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
0
 

0
.00

0
 

0
.0

0
2
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
2
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
0
 

C
r 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
2
 

0
.00

0
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
0
 

0
.00

0
 

0
.0

0
2
 

0
.0

0
1
 

0
.0

0
3
 

T
o

ta
l 

1
6
.0

7
 

1
6
.0

9
 

1
6
.1

1
 

1
6
.1

0
 

1
6
.1

0
 

1
6
.1

4
 

1
6
.1

1
 

1
6
.0

9
 

1
6
.0

9
 

1
6
.0

8
 

1
6
.0

9
 

1
6
.0

8
 

1
6
.0

9
 

1
6
.1

0
 

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.00

 
2
4
.00

 

3
6
.8

0
 

3
6
.7

5
 

3
6
.4

2
 

3
7
.2

9
 

3
6
.2

4
 

0
.0

5
 

0
.1

5
 

0
.1

0
 

0
.0

7
 

0
.1

5
 

2
1
.8

2
 

2
1
.5

3
 

2
1
.5

2
 

2
2
.0

3
 

2
1
.2

4
 

2
6
.4

2
 

2
5
.1

1
 

2
5
.5

8
 

2
6
.4

0
 

2
2
.3

1
 

2
.0

4
 

1
.8

1
 

4
.5

9
 

1
.3

2
 

7
.5

0
 

2
.9

2
 

2
.8

5
 

1
.00

 
4
.3

7
 

0
.8

8
 

9
.7

4
 

1
1
.5

6
 

1
1
.2

9
 

8
.7

0
 

1
1
.9

1
 

0
.00

1
 

0
.0

3
9
 

0
.0

3
2
 

0
.0

4
7
 

0
.0

3
6
 

0
.0

0
2
 

0
.0

0
0
 

0
.0

0
2
 

0
.00

1
 

0
.0

0
0
 

0
.04

8
 

0
.0

4
9
 

0
.0

0
0
 

0
.0

2
1
 

0
.0

1
4
 

9
9

.8
 

9
9

.8
 

1
0

0
.5

 
1

0
0

.3
 

1
00

.3
 

5
6
.2

 
5
1
.9

 
5
3
.4

 
5
5
.6

 
4
5
.3

 

1
1
.5

 
1
1
.2

 
4
.0

 
1
7
.1

 
3
.5

 

4
.6

 
4
.1

 
1
0
.4

 
2
.9

 
1
7
.0

 

2
7
.7

 
3
2
.8

 
3
2
.3

 
2
4
.4

 
3
4
.2

 

5
.8

9
 

5
.8

5
 

5
.8

4
 

5
.8

3
 

5
.8

6
 

0
.0

1
5
 

0
.0

0
6
 

0
.0

1
8
 

0
.0

1
2
 

0
.0

0
9
 

4
.0

3
 

4
.0

9
 

4
.0

3
 

4
.0

6
 

4
.0

8
 

3
.8

0
 

3
.5

1
 

3
.3

4
 

3
.4

2
 

3
.4

7
 

0
.1

1
3
 

0
.2

7
0
 

0
.2

4
0
 

0
.6

2
0
 

0
.1

7
6
 

0
.7

5
 

0
.6

9
 

0
.6

8
 

0
.2

4
 

1
.0

3
 

1
.4

9
 

1
.6

6
 

1
.9

7
 

1
.9

4
 

1
.4

7
 

0
.0

0
7
 

0
.0

0
0
 

0
.0

1
2
 

0
.0

1
0
 

0
.0

1
5
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
3
 

0
.0

0
6
 

0
.0

0
6
 

0
.0

0
0
 

0
.0

0
3
 

1
6
.0

9
 

1
6
.1

0
 

1
6
.1

3
 

1
6
.1

4
 

1
6
.1

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 

2
4
.0

0
 r

 -
�

-
1

 
-

I 

3
6
.3

1
 

3
7
.1

1
 

3
6
.7

6
 

3
7
.1

7
 

3
7
.4

1
 

3
7
.5

8
 

0
.2

3
 

0
.1

4
 

0
.2

5
 

0
.0

9
 

0
.0

4
 

0
.0

2
 

2
1
.2

5
 

2
2
.1

6
 

2
1
.7

8
 

2
2
.1

3
 

2
2
.1

0
 

2
2
.4

4
 

2
1
.0

0
 

2
6
.0

4
 

2
9
.6

4
 

2
9
.3

6
 

2
9
.1

9
 

2
6
.8

1
 

8
.1

9
 

0
.6

7
 

0
.5

0
 

0
.3

6
 

0
.1

3
 

0
.1

6
 

0
.6

5
 

5
.4

6
 

3
.4

0
 

4
.2

2
 

4
.9

7
 

6
.3

3
 

1
2
.2

3
 

8
.0

5
 

8
.2

8
 

7
.2

7
 

6
.4

1
 

6
.1

3
 

0
.0

3
4
 

0
.00

9
 

0
.0

3
2
 

0
.0

2
3
 

0
.0

4
2
 

0
.0

1
8
 

0
.0

0
1
 

0
.00

2
 

0
.0

0
0
 

0
.0

00
 

0
.00

1
 

0
.0

0
9
 

0
.0

1
0
 

0
.00

3
 

0
.0

1
7
 

0
.0

0
2
 

0
.00

0
 

0
.0

2
6
 

9
9

.9
 

9
9

.6
 

1
0

0
.7

 
1

0
0

.6
 

1
0

0
.3

 
9

9
.5

 

4
3
.6

 
5
4
.6

 
6
2
.1

 
6
2
.3

 
6
2
.4

 
5
7
.9

 

2
.6

 
2
1
.3

 
1
3
.4

 
1
6
.5

 
1
9
.4

 
2
4
.6

 

1
8
.6

 
1
.5

 
1
.1

 
0
.8

 
0
.3

 
0
.4

 

3
5
.1

 
2
2
.6

 
2
3
.4

 
2
0
.4

 
1
8
.0

 
1
7
.1

 

5
.8

2
 

5
.8

4
 

5
.8

3
 

5
.8

2
 

5
.8

5
 

5
.8

4
 

0
.0

1
8
 

0
.0

2
8
 

0
.0

1
7
 

0
.0

2
9
 

0
.0

1
0
 

0
.0

0
9
 

4
.0

2
 

4
.0

3
 

4
.1

0
 

4
.0

6
 

4
.1

0
 

4
.1

3
 

3
.0

0
 

2
.8

3
 

3
.4

2
 

3
.9

2
 

3
.8

6
 

3
.7

5
 

1
.0

2
0
 

1
.1

2
0
 

0
.0

8
9
 

0
.0

6
7
 

0
.0

4
8
 

0
.0

4
0
 

0
.2

1
 

0
.1

6
 

1
.2

8
 

0
.8

0
 

0
.9

9
 

1
.1

4
 

2
.0

5
 

2
.1

0
 

1
.3

6
 

1
.4

1
 

1
.2

3
 

1
.1

6
 

0
.0

1
1
 

0
.0

1
1
 

0
.0

0
3
 

0
.0

1
0
 

0
.0

0
7
 

0
.0

0
9
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

00
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
2
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
2
 

0
.00

0
 

0
.0

0
2
 

1
6
.1

5
 

1
6
.1

2
 

1
6
.1

0
 

1
6
.1

2
 

1
6
.1

0
 

1
6
.0

9
 

2
4
.0

0
 

2
4
.00

 
2
4
.00

 
2
4
.00

 
2
4
.0

0
 

2
4
.0

0
 

-.:!'
 

M
 

�
 



T
a
b
le

 4
: C

o
lle

cte
d

 m
icro

p
ro

b
e

 m
e

a
su

re
m

e
n

ts o
f w

h
ite

 m
ica

 in
 re

tro
gre

sse
d

 (R
K
4
9
) a

n
d

 fre
sh

 (R
K
l
 a

n
d

 M
S1

1
2
) e

clo
gite

s a
n

d
 

m
e

ta
se

d
im

e
n

ts (R
K
S
 a

n
d

 R
K
2
8

). 
t
 

R
K

l
 p

h
e

n
g
ite

 p
o

in
t m

e
a
s
u

re
m

e
n

ts 
R

KS
 p

h
e

n
g

ite
 p

ro
file

 1 
R

KS
 p

h
e

n
g

ite
 p

ro
file

 1 
R

K2
8

 p
h

e
n
g

ite
 p

ro
file

 

Si0
2
 

5
0
.7

1
 

5
0
.7

5
 

5
0
.1

7
 

5
0
.5

1
 

5
1
.5

8
 

4
9
.2

0
 

4
7
.8

6
 

4
8
.7

8
 

4
7
.7

3
 
4
8
.9

0
 

4
9
.6

3
 

4
6
.7

1
 

4
9
.1

3
 

4
9
.3

0
 

4
8
.6

0
 

4
8
.9

4
 

4
8
.9

4
 

4
9
.0

6
 

4
9
.4

4
 

4
7.87 

4
7
.9

9
 
4
7
.9

2
 

4
7
.5

5
 

T
i0

2
 

0
.2

3
 

0
.2

1
 

0
.2

2
 

0
.2

5
 

0
.2

6
 

0
.3

2
 

0
.3

0
 

0
.3

0
 

0
.2

8
 

0
.2

6
 

0
.2

5
 

0
.2

6
 

0
.2

9
 

0
.2

6
 

0.28 
0.15 

0.22 
0.33 

0.27 
0
.3

1
 

0
.3

7
 

0.37 
0
.2

7
 

A
l2

0
3
 2

8
.8

8
 

2
9
.4

4
 

3
0
.0

2
 

2
8.9

1 
2
9
.4

9
 

3
1
.4

5
 

3
0
.8

3
 

3
1
.1

4
 

3
1
.8

6
 

3
2
.5

8
 

3
2
.0

3
 

3
3
.1

6
 

3
1
.3

8
 

3
2
.2

4
 

3
1
.0

9
 

3
1
.7

7
 

3
1
.1

5
 

3
1
.7

7
 

3
1
.6

1
 

3
3
.1

8
 

3
3
.1

4
 
3
3
.1

0
 

3
3
.7

3
 

Fe
O

 
2
.0

2
 

1
.8

5
 

1
.9

6
 

2
.1

6
 

2
.3

3
 

2
.0

8
 

1
.9

2
 

2
.1

4
 

1
.9

6
 

2
.0

2
 

2
.1

2
 

2
.0

2
 

2
.0

3
 

1
.9

2
 

2
.0

0
 

2
.4

0 
2
.2

4
 

1
.9

4
 

2
.0

6
 

2.34
 

2
.2

7
 

2
.2

4
 

2
.2

4
 

M
n

O
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

1
3
 

0
.0

0
0
 
0
.0

2
6
 

0
.0

1
7 

0
.0

0
0
 

0
.0

1
9
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

1
5
 

0
.00

1
 

0
.0

0
0
 

0
.0

00
 

0
.0

0
3
 
0
.0

1
5
 

0
.0

1
8
 

M
g
O

 
3.82 

3
.76

 
3
.4

5
 

4
.1

6
 

3
.7

4
 

2
.6

2
 

2
.6

7
 

2
.5

9
 

2
.5

1 
2
.5

7
 

2
.6

5
 

1
.9

3
 

2
.6

0
 

2
.6

3
 

2
.6

1
 

2
.5

3
 

2
.4

2
 

2
.6

9
 

2
.7

2
 

1
.7

3
 

1
.8

5
 

1.9
0
 

0
.9

9
 

ca
o

 
0
.0

0
 

0
.0

0
 

0
.0

0
 

0
.0

3
 

0
.0

4
 

0
.0

1
 

0
.0

1
 

0
.0

5
 

0
.0

2
 

0
.0

1
 

0.00 
0
.0

2
 

0
.0

1
 

0
.0

0
 

0
.0

4
 

0
.0

0
 

0
.0

4
 

0
.0

0
 

0
.0

0
 

0
.0

1
 

0
.0

0
 

0
.0

0
 

0
.0

0
 

N
a

2
0

 
0
.6

6
 

0
.7

3
 

0
.7

3
 

0
.6

6
 

0
.7

6
 

0
.4

1
 

0
.3

8
 

0
.3

0
 

0
.5

4
 

0
.5

4
 

0.49 
0
.5

4
 

0
.3

4
 

0
.4

9
 

0.27 
0.27 

0
.2

6
 

0
.4

0
 

0
.3

9
 

0
.5

9
 

0
.8

1
 

0
.7

7
 

0
.8

5
 

K2
0

 
1
0
.5

1
 

1
0
.4

3
 

1
0
.4

5
 

1
0
.2

3
 

1
0
.2

3
 

1
0
.8

3
 

1
0
.4

6
 

1
1
.0

8
 

1
0
.6

8
 1

0
.7

3
 

1
0
.7

9
 

1
0
.3

1
 

1
0
.9

8
 

1
0
.8

0
 

1
1
.0

3
 

1
1
.0

0
 

1
0
.8

9
 

1
0
.9

2
 

1
0
.7

9
 

1
0
.4

2
 

1
0
.1

4
 

1
0
.2

5
 

1
0
.2

0
 

:E
 

9
6
.8

3
 

9
7
.1

8
 

9
7
.0

0
 

9
6
.9

1
 

9
8
.4

3
 

9
6
.9

2
 

9
4
.4

3
 

9
6
.3

9
 

9
5
.5

7
 
9
7
.6

3
 

9
7
.9

7
 

9
4
.9

4
 

9
6
.7

8
 

9
7
.6

4
 

9
5
.9

2
 

9
7
.0

6
 

9
6
.1

8
 

9
7
.1

1
 

9
7
.2

8
 

96.4
5 

9
6
.5

7
 9

6
.5

7
 
9
5
.8

4
 

S
i 

3
.3

3
 

3
.3

2
 

3
.2

9
 

3
.3

1
 

3
.3

3
 

3
.2

3
 

3
.2

2
 

3
.2

3
 

3
.1

8
 

3
.1

9
 

3.22 
3.13 

3.23 
3
.2

1
 

3.23 
3
.2

2
 

3
.2

4
 

3
.2

2
 

3.23 
3
.1

6
 

3
.1

6
 

3
.1

6
 

3
.1

5
 

S
i 

6.66 
6.63 

6.63 
6
.5

7
 

6
.6

3
 

6
.4

6
 

6
.4

4
 

6
.4

6
 

6
.3

7
 

6
.3

8
 

6
.45

 
6
.2

6
 

6
.4

7
 

6
.4

2
 

6
.4

6
 

6
.4

3
 

6
.4

8
 

6
.4

3
 

6
.4

7
 

6
.3

2
 

6
.3

2
 

6
.3

2
 

6
.2

7 

Ti
 

0
.0

2
4
 

0
.0

2
2
 

0
.0

2
3
 

0
.0

2
3
 

0
.0

2
7
 

0
.0

3
1
 

0
.0

3
0
 

0
.0

3
0
 

0
.0

2
8 

0
.0

2
6
 

0
.0

2
4
 

0
.0

2
6
 

0.02
9
 

0.02
5
 

0.02
8 

0
.0

1
5
 

0
.0

2
2
 

0
.0

3
2
 

0
.0

2
7 

0
.0

3
1
 

0
.0

3
6
 
0
.0

3
7
 

0
.0

2
6
 

Al
 

4
.4

7
 

4
.5

4
 

4
.5

4
 

4
.64

 
4
.4

7 
4
.8

7
 

4
.8

9
 

4
.8

6
 

5
.0

1
 

5
.0

1
 

4
.9

0
 

5
.2

4
 

4
.8

7
 

4
.9

5
 

4
.8

7
 

4
.9

2
 

4
.8

6
 

4
.9

1
 

4
.8

7
 

5
.16 

5
.14

 
5.14 

5.24 

F
e
 

0
.2

4
 

0
.2

2
 

0
.2

2
 

0
.2

3
 

0
.2

6
 

0
.2

3
 

0
.2

2
 

0
.2

4
 

0
.2

2
 

0
.2

2
 

0
.2

3
 

0
.2

3
 

0
.2

2
 

0
.2

1
 

0
.2

2
 

0
.2

6
 

0
.2

5
 

0
.2

1
 

0
.2

3
 

0
.2

6
 

0
.2

5
 

0
.2

5
 

0
.2

5
 

M
n
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
2
 

0
.0

0
0
 

0
.0

0
3
 

0
.0

0
2
 

0
.0

0
0
 

0
.0

0
2
 

0
.0

0
0
 

0
.00

0
 

0
.0

00
 

0
.0

0
2
 

0
.0

0
0
 

0.000 
0
.0

0
0
 

0
.0

00
 

0
.0

0
2
 

0
.0

0
2
 

M
g
 

0
.8

2
 

0
.8

0
 

0
.8

0
 

0
.74

 
0
.89

 
0
.5

1
 

0
.5

4
 

0
.5

1
 

0
.5

0
 

0
.5

0
 

0
.5

1
 

0
.3

9
 

0
.5

1
 

0
.5

1
 

0
.5

2
 

0
.5

0
 

0
.4

8
 

0
.5

3
 

0
.5

3
 

0
.3

4
 

0
.3

6
 

0
.3

7
 

0
.3

2
 

C
a
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
0
 

0
.0

0
4
 

0
.0

0
1
 

0
.0

0
2
 

0
.0

0
7
 

0
.0

0
2
 

0
.0

0
1
 

0
.0

0
0
 

0
.0

0
2
 

0
.0

0
2
 

0
.0

0
0
 

0
.0

0
6
 

0
.0

0
1
 

0
.0

0
6
 

0
.0

0
0
 

0.000 
0.002

 
0.000 

0.000 
0
.0

0
0
 

N
a
 

0
.1

8
3
 

0
.2

0
3
 

0
.2

0
3
 

0
.2

0
4
 

0
.1

8
3
 

0
.1

0
5
 

0.12
6 

0.078 
0.139

 
0
.1

3
6
 

0.12
3 

0.139
 

0
.0

8
7
 

0
.1

2
4
 

0
.0

7
0
 

0
.0

7
0
 

0
.0

6
7
 

0
.1

0
1
 

0
.0

9
9
 

0
.1

5
1
 

0
.2

0
7
 0

.1
9
7
 

0
.2

1
7
 

K 
1
.7

6
 

1
.7

4
 

1.74
 

1.75
 

1
.7

1
 

1
.8

2
 

1
.8

0
 

1
.8

7
 

1.82
 

1
.7

9
 

1
.79

 
1
.7

6
 

1.84
 

1
.8

0
 

1.87 
1.84

 
1.84

 
1.83 

1
.80

 
1.76 

1.70 
1.72 

1.72 

:E
 

1
4
.0

5
 

1
4
.0

4
 

1
4
.0

4
 

1
4
.0

5
 

1
4
.0

5
 

1
4
.0

3
 

1
4
.0

4
 

1
4
.0

6
 

1
4
.0

8
 1

4
.0

5
 

1
4
.0

3
 

1
4
.0

5
 

1
4
.0

4
 

1
4
.0

4
 

1
4
.0

5
 

1
4
.0

5
 

1
4
.0

2
 

1
4
.0

4
 

1
4
.0

2
 

1
4
.0

2
 

1
4
.0

3
 

14
.0

4
 

14
.0

5
 

0
 

2
2
.0

0
 

2
2
.0

0
 

2
2
.00

 
2
2
.0

0
 

2
2
.0

0
 

2
2
.0

0
 

2
2
.00

 
2
2
.0

0
 

2
2
.00

 
2
2
.0

0
 

2
2
.00

 
2
2
.0

0
 

2
2
.0

0
 

2
2
.0

0
 

2
2
.0

0
 

2
2
.00

 
2
2
.00

 
2
2
.0

0
 

2
2
.0

0
 

2
2
.00

 
2
2
.00

 
2
2
.00

 
2
2
.00

 

If)
 

(Y)
 

rl
 



T
ab

le
 4

 (c
o

n
ti

n
u

e
d

) 

R
K

2
8

 p
h

e
n

g
it

e
 p

ro
file

 

S
i0

2
 

4
7

.7
6

 
4

5
.1

5
 

4
7

.6
7

 
4

7
.4

6
 

4
7

.6
3

 

T
i0

2
 

0
.2

5
 

0
.3

3
 

0
.3

0
 

0
.2

0
 

0
.2

7
 

A
l2

0
3

 
3

2
.8

9
 

3
1

.1
7

 
3

3
.6

2
 

3
2

.7
1

 
3

3
.0

1
 

F
e

O
 

3
.1

6
 

5
.7

8
 

2
.7

7
 

2
.6

2
 

2
.9

1
 

M
n

O
 

0
.0

1
6

 
0

.0
1

1
 

0
.0

1
1

 
0

.0
0

0
 

0
.0

0
6

 

M
g

O
 

1
.7

2
 

2
.7

1
 

1
.7

7
 

1
.7

9
 

1
.7

2
 

ea
o

 
0

.0
2

 
0

.0
4

 
0

.0
1

 
0

.0
0

 
0

.0
0

 

N
a

2
0

 
0

.6
6

 
0

.3
7

 
0

.7
7

 
0

.7
0

 
0

.8
3

 

K
2

0
 

1
0

.3
8

 
1

0
.7

2
 

1
0

.2
7

 
1

0
.2

1
 

1
0

.2
0

 

L
 

9
6

.8
5

 
9

6
.2

8
 

9
7

.1
9

 
9

5
.7

0
 

9
6

.5
8

 

S
i 

3
.1

5
 

3
.0

7
 

3
.1

3
 

3
.1

6
 

3
.1

5
 

S
i 

6
.3

1
 

6
.1

3
 

6
.2

6
 

6
.3

2
 

6
.3

0
 

T
i 

.. 
0

.0
2

5
 

0
.0

3
4

 
0

.0
2

9
 

0
.0

2
1

 
0

.0
2

7
 

A
l 

5
.1

2
 

5
.0

0
 

5
.2

0
 

5
.1

4
 

5
.1

5
 

F
e

 
0

.3
5

 
0

.6
6

 
0

.3
0

 
0

.2
9

 
0

.3
2

 

M
n

 
0

.0
0

2
 

0
.0

0
1

 
0

.0
0

1
 

0
.0

0
0

 
0

.0
0

1
 

M
g

 
0

.3
4

 
0

.5
5

 
0

.3
5

 
0

.3
6

 
0

.3
4

 

C
a

 
0

.0
0

2
 

0
.0

0
6

 
0

.0
0

1
 

0
.0

0
0

 
0

.0
0

0
 

N
a

 
0

.1
6

8
 

0
.0

9
8

 
0

.1
9

7
 

0
.1

8
2

 
0

.2
1

3
 

K
 

1
.7

5
 

1
.8

6
 

1
.7

2
 

1
.7

4
 

1
.7

2
 

L
 

1
4

.0
7

 
1

4
.3

2
 

1
4

.0
7

 
1

4
.0

5
 

1
4

.0
7

 

0
 

2
2

.0
0

 
2

2
.0

0
 

2
2

.0
0

 
2

2
.0

0
 

2
2

.0
0

 

RK
4

9
 p

a
ra

go
n

lt
e

 in
d

iv
id

u
a

l m
e

a
su

re
m

e
nt

s 

4
5

.9
8

 
4

5
.8

3
 

4
6

.2
8

 
4

6
.9

5
 

4
6

.9
5

 

0
.1

0
 

0
.1

0
 

0
.0

7
 

0
.0

9
 

0
.0

5
 

4
2

.4
4

 
4

2
.8

5
 

4
2

.6
0

 
4

3
.2

6
 

4
3

.2
7

 

0
.2

3
 

0
.1

8
 

0
.2

0
 

0
.1

0
 

0
.1

7
 

0
.0

0
0

 
0

.0
0

0
 

0
.0

2
9

 
0

.0
1

4
 

0
.0

0
1

 

0
.3

8
 

0
.2

2
 

0
.2

5
 

0
.2

1
 

0
.1

6
 

0
.3

1
 

0
.3

0
 

0
.3

4
 

0
.3

3
 

0
.4

4
 

6
.3

9
 

6
.4

2
 

6
.5

8
 

6
.9

0
 

6
.9

1
 

1
.2

9
 

1
.0

6
 

0
.9

6
 

0
.5

2
 

0
.3

9
 

9
7

.1
3

 
9

6
.9

7
 

9
7

.3
1

 
9

8
.3

7
 

9
8

.3
4

 

2
.8

9
 

2
.8

8
 

2
.8

9
 

2
.9

0
 

2
.9

0
 

5
.7

7
 

5
.7

5
 

5
.7

9
 

5
.7

9
 

5
.7

9
 

0
.0

0
9

 
0

.0
1

0
 

0
.0

0
7

 
0

.0
0

8
 

0
.0

0
4

 

6
.2

8
 

6
.3

4
 

6
.2

8
 

6
.2

9
 

6
.2

9
 

0
.0

2
5

 
0

.0
2

0
 

0
.0

2
1

 
0

.0
1

2
 

0
.0

1
8

 

0
.0

0
0

 
0

.0
0

0
 

0
.0

0
0

 
0

.0
0

1
 

0
.0

0
0

 

0
.0

7
2

 
0

.0
4

2
 

0
.0

4
6

 
0

.0
3

8
 

0
.0

3
0

 

0
.0

4
2

 
0

.0
4

1
 

0
.0

4
5

 
0

.0
4

4
 

0
.0

5
8

 

1
.5

5
 

1
.5

6
 

1
.6

0
 

1
.6

5
 

1
.6

5
 

0
.2

1
 

0
.1

7
 

0
.1

5
 

0
.0

8
 

0
.0

6
 

1
3

.9
6

 
1

3
.9

3
 

1
3

.9
4

 
1

3
.9

2
 

1
3

.9
1

 

2
2

.0
0

 
2

2
.0

0
 

2
2

.0
0

 
2

2
.0

0
 

2
2

.0
0

 
2

2
.0

0
 

M
S

1
1

2
 p

h
e

n
g

it
e

 p
ro

file
 

5
1

.0
0

 
4

9
.6

4
 

5
0

.1
2

 
5

0
.9

0
 

0
.2

0
 

0
.2

2
 

0
.2

5
 

0
.1

6
 

2
7

.8
7

 
3

0
.4

2
 

3
0

.0
7

 
2

7
.7

1
 

1
.0

0
 

1
.1

0
 

0
.7

1
 

1
.0

0
 

0
.0

3
9

 
0

.0
0

0
 

0
.0

0
0

 
0

.0
1

0
 

4
.4

9
 

3
.7

7
 

3
.8

8
 

4
.4

4
 

0
.0

1
 

0
.0

1
 

0
.0

0
 

0
.0

2
 

0
.3

3
 

0
.6

7
 

0
.6

9
 

0
.3

8
 

1
0

.8
0

 
1

0
.0

6
 

1
0

.3
1

 
1

0
.7

0
 

9
5

.7
4

 
9

5
.8

9
 

9
6

.0
2

 
9

5
.3

2
 

3
.3

7
 

3
.2

7
 

3
.2

9
 

3
.3

8
 

6
.7

4
 

6
.5

4
 

6
.5

9
 

6
.7

5
 

0
.0

2
0

 
0

.0
2

2
 

0
.0

2
4

 
0

.0
1

6
 

4
.3

4
 

4
.7

2
 

4
.6

6
 

4
.3

3
 

0
.1

2
 

0
.1

2
 

0
.0

8
 

0
.1

2
 

0
.0

0
4

 
0

.0
0

0
 

0
.0

0
0

 
0

.0
0

1
 

0
.8

9
 

0
.7

4
 

0
.7

6
 

0
.8

8
 

0
.0

0
1

 
0

.0
0

1
 

0
.0

0
0

 
0

.0
0

2
 

0
.0

8
4

 
0

.1
7

2
 

0
.1

7
6

 
0

.0
9

7
 

1
.8

2
 

1
.6

9
 

1
.7

3
 

1
.8

1
 

1
4

.0
2

 
1

4
.0

1
 

1
4

.0
1

 
1

4
.0

1
 

2
2

.0
0

 
2

2
.0

0
 

2
2

.0
0

 
2

2
.0

0
 

I.O
 

(Y)
 

,-4
 





... 

•.;.. . '· 

.. ,J. 

.. 



Acknowledgements 

I would kindly like to thank ... 

... Jan Behrmann for the scientific input, support and criticism throughout the last years and 

the opportunity for free development on the scientific directions of this thesis . 

... Klaus Ullemeyer and Michael Stipp for guidance, scientific input and the discussions 

throughout the past three years . 

... Florian Heidelbach for his help with the EBSD analysis and the discussions . 

... Robert Kurzawski for high help with the thermodynamic modeling . 

... all colleagues who contributed to this work for the discussions and constructive criticism 

throughout the thesis . 

... all my friends at GEOMAR for the positive atmosphere . 

... finally I would like to thank my parents for their everlasting support. 



CURRICULUM VITAE 

Ruth Keppler 

Adress: 

Marienwerderstr. 44 
24148 Kiel 

Email: 

rkeppler@geomar.de 

Personal Information: 

Date of birth: March 2151, 1985 

Place of birth: Ulm 

Nationality: German 

Status: single 

Education: 

• "Abitur" at the St. Hildegard Gymnasium, Zinglerstr. 90, 89077 Ulm:

• Diploma Study of Geology at the Steinmann lnstitut der
Rheinischen Friedrich- Wilhelms-Universitat Bonn,
Poppelsdorfer Schloss, 53115 Bonn

• Doctorate student at the department of geosciences of the
Christian Albrechts Universitat zu Kiel,
Ludewig-Meyn-Str. 10, 24118 Kiel

24. Juni, 2004

October 2005-
February, 2011 

March 2012-
March 2015 




