Supplement of Biogeosciences, 13, 1105–1118, 2016 http://www.biogeosciences.net/13/1105/2016/doi:10.5194/bg-13-1105-2016-supplement © Author(s) 2016. CC Attribution 3.0 License. ## Supplement of ## Influence of mesoscale eddies on the distribution of nitrous oxide in the eastern tropical South Pacific Damian L. Arévalo-Martínez et al. Correspondence to: Damian L. Arévalo-Martínez (darevalo@geomar.de) The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence. ## **Supplement** Figure S1. Temperature (a) and salinity (b) core anomalies (for definition see main text) from selected depth profiles across the mode water eddies A (red lines), B (black lines), and the cyclonic eddy C (blue lines) during the M90 cruise in November 2012. The name and location of the sampling stations used to compute the anomalies is indicated in Figs. 1 and 3 of the main text. Figure S2. Comparison of N_2O distribution within the center of the eddies and background conditions in the ETSP. In (a), the N_2O concentrations from stations along the 86°W section (6°S – 16°S; black circles) which were used to compute a mean open ocean profile (red lines/circles) are shown. The red horizontal lines and dots in (a) indicate the standard deviation from the mean profile (data from Kock et al. (2016)). In (b) the N_2O concentrations of stations at the center of eddies A, B, and C, as well as from stations 1612 (\triangle) and 1642 (\diamondsuit) (cf. Fig. 1) are shown. The grey dashed lines in (a) and (b) indicate the depth range of the OMZ core (waters with $O_2 < 5$ µmol L^{-1}). Figure S3. T-S diagrams from stations between about $15^{\circ}S - 18^{\circ}S$ and $86^{\circ}W - 75^{\circ}W$ (cf. Fig. 1) during the M90 (a) and M91 (b) cruises in December-November 2012. The color code corresponds to the measured O_2 concentrations.