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Abstract 

Improvements in sub-basalt imaging combined with petrological and geochemical 

observations from the Ocean Drilling Program (ODP) Hole 642E core provide new 

constraints on the initial breakup processes at the Vøring Margin. New and reprocessed high 

quality seismic data allow us to identify a new seismic facies unit which we define as the 

Lower Series Flows. This facies unit is seismically characterized by wavy to continuous 

subparallel reflections with an internal disrupted and hummocky shape. Drilled lithologies, 

which we correlate to this facies unit, have been interpreted as subaqueous flows extruding 

and intruding into wet sediments. Locally, the top boundary of this facies unit is defined as a 

negative in polarity reflection, and referred as the K-Reflection. This reflection can be 

correlated with the spatial extent of pyroclastic deposits, emplaced during transitional shallow 

marine to subaerial volcanic activities during the rift to drift transition. The drilled Lower 

Series Flows consist of peraluminous, cordierite bearing peperitic basaltic andesitic to dacitic 

flows interbedded with thick volcano-sedimentary deposits and intruded sills. The 

peraluminous geochemistry combined with available C (from calcite which fills vesicles and 

fractures), Sr, Nd, and Pb isotopes data point towards upper crustal rock-mantle magma 

interactions with a significant contribution of organic carbon rich pelagic sedimentary 

material during crustal anatexis. From biostratigraphic analyses, Apectodinium augustum was 

found in the The Lower Series Flows. This species is a marker for the Paleocene – Eocene 

Thermal Maximum (PETM). However, the absence of very low carbon isotope values (from 

bulk organic matter), that characterize the PETM, imply that A.augustum was reworked into 

the early Eocene sediments of this facies unit which predate the breakup time of the Vøring 

Margin.     

Finally, a plausible conceptual emplacement model for the Lower Series Flows facies unit is 

proposed. This model comprises several stages: (1) the emplacement of subaqueous peperitic 
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basaltic andesitic flows intruding and/or extruding wet sediments; (2) a subaerial to shallow 

marine volcanism and extrusion of dacitic flows; (3) a proto-breakup phase with intense 

shallow marine to subaerial explosive volcanism responsible for pyroclastic flow deposits 

which can be correlated with the seismic K-Reflection and (4) the main breakup stage with 

intense transitional tholeiitic MORB-type volcanism and large subsidence concomitant with 

the buildup of the Seaward Dipping Reflector wedge.  

 

Key words: Pre-breakup, Vøring Margin, ODP Hole 642E, Lower Series Flows, geochemistry, 

biostratigraphy, early Eocene, emplacement model.    

 

1. Introduction 

 

Continental breakup and initial seafloor spreading in Large Igneous Provinces (LIPs) are 

accompanied by widespread intrusive and extrusive magmatism and the formation of volcanic 

passive margins (White and McKenzie, 1989; Coffin and Eldholm, 1994). Extensive mantle 

melting at a volcanic passive margin occurred, before, during and after plate breakup (e.g. 

Geoffroy, 2005; Abdelmalak, 2010; Abdelmalak et al., 2012). Magmatic activity is typically 

expressed within the stretched continental crust by: (1) large wedges of seaward-dipping 

basaltic flows and tuffs extruded at the surface (Hinz, 1981; Eldholm, 1991; Planke et al., 

2000; Menzie et al., 2002); (2) massive sill/dyke intrusions within the sedimentary basin 

(Svensen et al., 2004; Planke et al., 2005); (3) melt emplacements into the upper and mid 

continental crust by mafic to ultramafic intrusions (Karson and Brooks, 1999; Klausen and 

Larsen, 2002; Lenoir et al., 2003; Geoffroy et al., 2007; Meyer et al., 2009b); and (4) a high-

velocity lower crustal body (LCB) at the base of the crust characterized by high Vp velocity 

(Vp> 7.0 km/s)  (White et al., 1987; Kelemen and Holbrook, 1995; Holbrook et al., 2001; 

Mjelde et al., 2009a; Mjelde et al., 2009b).  
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The conjugate volcanic rifted margins along the NE Atlantic are the major magmatic 

component of the North Atlantic Large Igneous Province formed during the final 

fragmentation of Pangea in the Early Cenozoic (Saunders et al., 1997; Eldholm et al., 2000; 

Torsvik et al., 2001; Meyer et al., 2007; Hansen et al., 2009; Ganerød et al., 2010). The onset 

of continental breakup marked a culmination of a ~350 Ma period of predominantly 

extensional deformation and intermediate cooling events subsequent to the Caledonian 

orogeny (Ziegler, 1988; Doré et al., 1999; Skogseid et al., 2000; Tsikalas et al., 2008). As part 

of this volcanic rift system, the Vøring Margin experienced a prolonged history of intermittent 

extension and basin formation, prior to the early Cenozoic continental breakup (Eldholm and 

Grue, 1994; Brekke, 2000; Gernigon et al., 2004; Lundin and Doré, 2005; Faleide et al., 2008; 

Faleide et al., 2010; Tsikalas et al., 2012). The final continental breakup occurred near the 

Paleocene-Eocene transition (~ 56 Ma according to Gradstein et al., 2012 timescale) just after 

a 3-6 m.y. period of massive magmatic activity (Eldholm and Grue, 1994; Eldholm et al., 

2000). Continental breakup resulted in voluminous igneous activity generating both extrusives 

and intrusives into the adjacent sedimentary basin and pre-existing (continental) crust (Hinz, 

1981; Mutter et al., 1982; White and McKenzie, 1989; Eldholm and Grue, 1994; Mjelde et al., 

2007; Breivik et al., 2014).  

The transition from a sedimentary amagmatic rift towards the formation of the volcanically 

dominated rift is highly speculative in volcanic passive margins. The thick overlying 

accumulation of extrusive and intrusive rocks always represent a challenge for seismic 

imaging methods, despite the major improvements in geophysics during the last decades to 

understand the rift to drift evolution. This unsatisfying situation led to major uncertainties of 

sub-basalt rift architecture and dynamics interpretations. However detailed petrogenic  studies 

of the breakup related igneous rocks already provided important insights into the processes 
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and the geodynamic history associated with continental breakup (Meyer et al., 2007; Meyer et 

al., 2009a; 2009b) 

In this paper we investigate in detail the pre-breakup magmatism in the North Atlantic area by 

addressing the example of the Vøring volcanic margin. For this matter, we used new and 

reprocessed seismic data, in combination with updated stratigraphic and petrological data 

from the Ocean Drilling Program (ODP) Hole 642E to constrain the nature, composition and 

emplacement mechanisms of the igneous rock successions erupted during the pre-breakup 

stages of the Vøring Margin. We finally obtained new palynological and stable carbon isotope 

data on organic material to better constrain the breakup ages of the Vøring Margin. 

 

2. Regional setting: the Vøring rifted margin  

 

The Vøring rifted margin is bounded by the Jan Mayen Fracture Zone to the southwest and 

the Bivrost Lineament to the northeast (Blystad et al., 1995). The ~500 km wide Vøring 

Margin comprises the Trøndelag Platform, the Vøring Basin and the Vøring Marginal High 

(VMH) (Fig. 1). The Vøring Margin was particularly affected by a significant late Jurassic to 

early Cretaceous crustal thinning phase and later subsidence leading to a very thick 

Cretaceous depocenter (Blystad et al., 1995; Skogseid et al., 2000; Scheck-Wenderoth et al., 

2007). This significant sedimentary Cretaceous thickness (~10 km deep) mostly concealed the 

geometry of the deeper and older syn-rift sequences in the Vøring Basin (Faleide et al., 2008). 

The thinned crust of the Vøring Margin was, again, the locus of a new phase of extensional 

deformation in the latest Cretaceous-Paleocene. This extensional phase is particularly well 

documented in the outer Vøring Basin (Eldholm et al., 2002; Gernigon et al., 2003; Ren et al., 

2003). These different extensional phases are responsible for the formation of large-scale rift 

blocks or structural highs (early Cretaceous ridges and highs: Rån Ridge, Utgard High; late 
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Cretaceous- early Paleocene ridges and highs: North/South Gjallar Ridge, Nyk High, Mimir 

High, Ygg High, Grimm High and Skoll High) (Fig. 3A). Many of these rift blocks are poorly 

imaged on seismic data in the deeper part of the basin and/or when these blocks are located 

beneath intrusive and extrusive igneous rocks. Still today, after decades of extensive research 

within this economically and academically highly important area, the present knowledge on 

the pre-Cretaceous geology within the outer Vøring Basin remains highly speculative. In the 

outer Vøring Basin, the deepest borehole calibration only reaches Early Cretaceous formation 

(e.g. Dalsnuten well 6603/5-1S located in the South Gjallar Ridge, see Fig.3A). Older 

sedimentary formations remain unconstrained. Based on seismic data, earlier extensional 

phases and pre-Cretaceous (Permian to Jurassic?) sedimentary strata  are however probable 

and locally interpreted in the southwestern Vøring Basin  (Gernigon et al., 2003).  

The magmatic-tectonic processes which lead to the final breakup at the Vøring Margin had 

been restricted to a 100-150 km wide region of the outer Vøring Basin and Vøring Marginal 

High presently situated to the east of the first defined oceanic magnetic chrons. At the Vøring 

Margin, significant volumes of flood basalts erupted in submarine to subaerial settings during 

the onset of breakup (e.g. Berndt et al., 2001). These peculiar volcanic successions display a 

large variety of seismic facies that are indicative of the style of volcanic emplacement, 

depositional environment and subsequent mass transport (Planke and Alvestad, 1999; Planke 

et al., 1999; Planke et al., 2000; Brendt et al., 2001; Jerram et al., 2009; Wright et al., 2012; 

Abdelmalak et al., Submitted). The volcanic sequences emplaced during the onset of the 

breakup, partially masked seismically the Late Cretaceous–Eocene and older sedimentary 

strata and continental structures inferred in the outermost part of the Vøring Margin. Outside 

and below the lava flow domains, seismic observations report voluminous magmatic 

complexes of dominantly sub-horizontal sheets (sills) intruding pre-breakup sedimentary 
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rocks. The sill intrusions cover an area of more than 85 000 km
2
 offshore mid-Norway 

(Planke et al., 2005).  

Insights about the onset of breakup in the outer part of the Vøring Margin have been provided 

from the scientific drilling campaign at the Vøring Marginal High. ODP Leg 104 Hole 642E 

has been highly successful while recovering a spectacular 900 m thick igneous rock 

succession of MORB-type basalts overlying glassy crustal anatectic peralouminous flows 

emplaced during the Vøring Margin formation (e.g. Viereck et al., 1989). The recovered 

igneous succession from Hole 642E covers the rift to drift magmatic evolution and is 

considered to provide intrinsic petrological constraints on the initial breakup history and the 

subsequent volcanic margin evolution (e.g. Meyer et al., 2009a). 

 

3. Data and Methods 

3.1. Data 

 

This work is essentially based on the interpretation of more than 500 regional 2D seismic 

lines with a total length of more than 80 000 km (with a line spacing ranging between 0.2 and 

2 km) covering the entire area of the Vøring Margin. This exceptional dataset includes 

recently recorded, in addition to reprocessed high quality seismic reflection data which 

provides an improved imaging of the deeper parts of the margin. The line coverage of the data 

is dense enough to correlate laterally the different facies units along the mid-Norwegian 

Margin. Selections of the used seismic lines inside our studied area are presented in Figure 3A. 

In this study we use the concept of seismic volcanostratigraphy for the interpretation of large 

volcanic constructions (e.g. Planke et al., 2000; Berndt et al., 2001). To support the seismic 

interpretation, we use public-domain bathymetry (e.g. GEBCO, the GEBCO_08 Grid, version 

20100927, "http://www.gebco.net") satellite gravity (Sandwell and Smith, 2009), released 
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magnetic data (EMAG2) (Maus et al., 2009) and local aeromagnetic data from the Geological 

Survey of Norway and TGS. 

The original core stratigraphy of ODP Hole 642E (e.g. Eldholm et al., 1987) with small 

modifications presented in Meyer et al. (2009a), has been correlated with our new seismic 

profiles. The ODP Hole 642E is located near the apex of the Seaward Dipping Reflector 

wedge (SDR) and situated at ~25 km west of the Vøring Escarpment (Fig. 3). In addition to 

seismic profile and petrological data, we also analysed palynology and stable carbon isotopes 

from bulk organic matter from 16 samples across the 1154.02-1211.58 mbsf (meters below 

sea floor) interval in Hole 642E. 

 

3.2. Methods 

3.2.1. Palynology 

For each sample, 5-15g was processed for palynology, using standard procedures (Sluijs et al., 

2011), including treatment with HCl and HF for carbonate and silica removal, respectively. 

Samples were sieved with water over a 250 and 15 μm mesh sieve to remove large and small 

particles, respectively. Residues were concentrated in glycerine water and mounted on 

microscope slides using glycerine jelly and analysed at 400x magnification. 

3.2.2. Stable isotope analysis of total organic carbon 

We selected 16 samples that contained abundant palynomorphs and measured stable carbon 

isotopes from total organic carbon (δ
13

CTOC). Samples were decalcified using two 1M HCl 

steps. Stable carbon isotope ratios were determined on 15-30 μg of decalcified sediment using 

an isotope ratio mass spectrometer (IRMS, Finnigan Mat Delta Plus). The influence of 

variable marine contribution to the organic matter can be assessed using the equation of 

(Sluijs and Dickens, 2012), which assumes a constant offset of 4.4‰ between marine and 
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terrestrial organic matter. Absolute reproducibility, based on international and in-house 

standards is better than 0.05‰. 

 

4. Core properties of Hole 642E  

 

Many contributions have been published about the ODP Hole 642E after the initial 

proceedings of this drilling campaign (Eldholm et al., 1987). These studies mainly focused on 

the lithostratigraphy (Eldholm et al., 1989a, b), the seismic response of the flood basalts 

(Planke, 1994; Planke and Eldholm, 1994) and the petrogenesis of the volcanic units 

recovered at Hole 642E (Parson et al., 1989; Viereck et al., 1989; Meyer et al., 2009a).  

The recovered ODP Hole 642E lithology consists of an ca. 320 m thick sequence of marine 

sedimentary rocks covering the extrusive complexes, which have been divided into an Upper 

Series and a Lower Series (Eldholm et al., 1989b) (Fig.2). These two volcanic series show 

distinct textural, structural, physical, mineralogical and chemical characteristics and also 

different composition of the interlayered volcanoclastic sediments (Eldholm, 1991).   

The Upper Series (US) is about 770 m thick and consists mainly of basaltic lava flows and 

interbedded sediments with a core recovery of 42.6%. The Upper Series comprises ca. 121 

individual tholeiitic lava flows, three intrusions (interpreted as crosscutting dykes) and 52 

volcanoclastic sedimentary layers. These sediment deposits represent around  3 to 7% of the 

stratigraphy within the Upper Series lithology (Planke and Eldholm, 1994). These rock 

successions correspond to the seismically characterized Seaward Dipping Reflector (SDR) 

and is of transitional tholeiitic mid oceanic ridge basalt (T-MORB) composition (Viereck et 

al., 1989; Meyer et al., 2009a).   

The Upper Series is overlying a ~130 m drilled Lower Series (LS) with a core recovery of 

32.4% (Eldholm et al., 1987; Eldholm et al., 1989a). Drilling activity stopped within this 
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spectacular glassy lava flow sequence. Between 1100 and 1229.4 mbsf (meters below sea 

floor), 18 extrusive flow units, 2 intrusions and 7 individual sedimentary units (representing ~ 

20% of the recorded core stratigraphy of the Lower Series) were described in the early reports 

(Eldholm et al., 1987; Eldholm et al., 1989a; Eldholm, 1991).  

The Lower Series comprises rhyolitic ignimbrites, tholeiitic basaltic intrusions, basaltic 

andesite and dacitic lava flows (Fig. 2). Below 1086.8 mbsf, an approximately 13 m-thick 

volcano-sedimentary/tuffaceous unit (S43) can be interpreted as the transition from the Upper 

Series to the Lower Series. The Lower Series is believed to result from interaction of mantle 

melts with continental crustal material and/or significant crustal melting by magmatic 

underplating (Parson et al., 1989; Meyer et al., 2009a).  

 

5. Age of volcanism 

The entire Upper Series drilled at Hole 642E shows a reversed magnetic polarity acquired 

during rapid extrusion correlated within magnetic polarity Chron C24r (i.e. between ~57 and -

54 Ma according to Gradstein et al. (2012) time-scale) (Figure 2A)  (Eldholm et al., 1989a; 

Schönharting and Abrahamsen, 1989; Eldholm, 1991; Sinton and Duncan, 1998). Ocean-ward 

the main SDR wedge shows a positive magnetic signature possibly correlated with Chrons 

C24n3n and C24n1n (i.e. between ~54-53 Ma). These magnetic signatures are now well 

documented by modern aeromagnetic surveys in the Lofoten and Norway basins but less 

clearly observed in the outer part of the Vøring Marginal High (Olesen et al., 2007; Gernigon 

et al., 2009; 2015). The magnetic polarity distribution of the Lower Series is complex due to 

widespread remagnetisation effects (Eldholm et al., 1989a; Schönharting and Abrahamsen, 

1989). A normal polarity zone was measured between 1113 and 1194 mbsf and tentatively 
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correlated with Chron C25n (57.01 to 57.6 Ma according to the chronostratigraphic time-scale 

of Gradstein et al. (2012)) (Schönharting and Abrahamsen, 1989; Eldholm, 1991).   

Radiometric age determinations have been accomplished on different samples from the Lower 

Series to provide crystallization ages (Fig. 2B). LeHuray and Johnson (1989) provide Rb-Sr 

ages of 54.5 ± 0.2 and 57.8 ± 1.0 Ma, for the top of the Upper Series and the Lower Series 

respectively. While Taylor and Morton (1989) measured for the Lower Series samples Rb-Sr 

age of 63±19 Ma. Sinton et al. (1998) reported 
40

Ar–
39

Ar incremental heating ages of the 

Lower Series rocks. However, these authors noticed that the used samples were generally 

altered, and making them no optimal samples for radiometric dating. Their presented age 

spectra for the Lower Series were ―somewhat disturbed‖ but suggesting a crystallization age 

of 55-56 Ma (Sinton et al., 1998).     

Palynological studies of the intrabedded sedimentary layers have been used to date the 

volcanic series from Hole 642E by correlation with nannoplankton zones (Fig. 2A and  

Boulter and Manum, 1989). The Upper Series has been linked to the uppermost 

nannoplankton zone NP9 and the NP10 zone (Boulter and Manum, 1989), (indicating an age 

ranging between  55 and 54 Ma according to  Gradstein et al. (2012) time-scale). The Lower 

Series has been linked to the nannoplankton zone NP9 and the lowermost NP10 zone (Boulter 

and Manum, 1989), and postulating so an age ranging between  57.3 and 55 Ma. 

From our new biostratigraphic results, Apectodinium augustum, a marker species for the 

Paleocene – Eocene Thermal Maximum (PETM) (Schmitz et al., 2004; Sluijs et al., 2006), 

was found across the entire analysed interval (1154.02-1211.58 mbsf, Fig. 2B) as previously 

recorded by Boulter and Manum (1989). 

The PETM (55.93-55.76 Ma after Westerhold et al., 2008; 2009; or 55.53 Ma after 

Westerhold et al., 2012) is further associated with a global 2.5-8‰ negative carbon isotope 

excursion (CIE) (McInerney and Wing, 2011). This negative carbon isotope excursion can be 
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found in all carbon bearing substrates, deposited during the PETM. Based on the presence of 

A. augustum we hence expect organic matter to record extremely depleted δ
13

C values 

reflecting the low carbon isotope signature of the ocean-atmosphere during the PETM. 

However, we record very stable bulk organic δ
13

C values around -26.7 ‰ (±0.2 ‰) (Fig. 2B). 

Such values are typical for early Eocene marine sedimentary sequences (Hayes et al., 1999) 

but too high to reflect the PETM (Sluijs and Dickens, 2012). Changes in the relative 

abundance of terrestrial and marine organic matter may alter the carbon isotopic signature 

(Sluijs et al., 2012). However, observed changes are small (<5%) and hence cannot explain 

the absence of a carbon isotope excursion. This implies that the specimens of A. augustum are 

reworked into the LS and the sedimentary units of ODP Hole 642E postdate the PETM and 

give an age of early Eocene. 

6. Volcanic facies units mapping 

 

Recent advances in seismic data processing along the Vøring Margin have significantly 

improved imaging of geometries within the volcanic deposits as well as in the sediments 

below the basalts and allow better constraints on the breakup related igneous rocks. The 

regional extent of the extrusive breakup complex was re-interpreted on seismic reflection data 

primarily on the basis of its top reflection. This top basalt reflection is easily identifiable due 

to the high impedance contrast between the post-breakup sediments and the volcanics. The 

top of the basaltic sequences is an unconformity /conformity between the post-breakup 

sediments and the underlying basaltic rocks, and a represents the continent-ward continuation 

of the top oceanic basement reflection further west. It is often smooth but may locally be 

irregular, faulted and could show evidence of pseudo-escarpements (Planke et al., 2000; 

Berndt et al., 2001; Abdelmalak et al., Submitted).   
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The basal sequence boundary is generally difficult to identify. This is mainly due to imaging 

problems related to the seismic properties of the overlying basaltic constructions. The high 

impedance contrasts at the top/and within the lava pile give rise to a scattering of the seismic 

energy. In addition, the lower boundary of the volcanic extrusive complexes is often poorly 

defined. Furthermore the base of the basalt can consist of a transitional and composite zone of 

sequentially extrusive volcanics rocks mixed with subsequently intruded sills and 

volcanoclastic sediments. Locally basaltic sequences lie over the intruded sedimentary basin. 

In such case, we assumed that the base of the basalts should be above the sill intrusions 

identified on seismic profiles (Fig. 3). 

Improved multichannel seismic (MCS) data have allowed the definition and characterization 

of a more complete seismic "volcanostratigraphy"  based on reflection pattern, their shape and 

boundary reflections (Planke et al., 2000; Berndt et al., 2001). As a result, several volcanic 

seismic facies units have been identified: (1) Landward Flows, (2) Lava Delta, (3) Inner 

Flows, (4) Inner Seaward Dipping Reflectors (Inner SDR), (5) Outer High, (6) Outer SDR 

(Fig. 3). Such facies successions represent a typical volcanic rifted margin sequence and 

describe the volcano-tectonic history during the breakup. Some seismically undifferentiated 

lava flows located between the inner SDR and the normal oceanic crust are also mapped (see 

table 1). The profile A-A’ in Figure 3 illustrates the main volcanostratigraphic sequences of 

the Vøring volcanic margin tied to Hole 642E. 

By using the top and base basalt defined on seismic profiles, we established a basalt thickness 

map while considering an average velocity of 4 km/s in basalt e.g. Planke (1994). By 

assuming such a constant velocity value, the basalt thickness should increase from several 

hundred meters in the Inner Flows to more than 6 km in the SDR domain. In our study area 

(Fig. 3B), mapping results illustrate separate depocenters in the SDR domain. These features 
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could be explained by local variations in the accommodation space possibly controlled by 

tectonism during the SDRS growth. 

 

7. The Lower Series Flows facies unit (Lower Series in ODP Hole 642E) 

 

From the high quality seismic reflection data (examples of used representative seismic 

profiles are shown in Figure 3), a new seismic facies unit is defined in the 

volcanostratigraphic sequence and called hereafter the Lower Series Flows. This facies unit is 

identified below the SDR wedges, the Landward Flows (Figs. 4A and 5) and occasionally 

below the Lava Delta facies units (Fig. 4B). Tied to the ODP Hole 642E, this facies unit 

corresponds to the Lower Series (Fig. 4A). Locally, the top boundary of the Lower Series 

Flows is defined as a strong and continuously negative in polarity reflection (Fig. 4A); named 

the K-Reflection. In the seismic reflection profiles the Lower Series Flows facies unit is 

characterized by thick strong wavy to continuous high amplitude reflections (Figs. 4A and 

5A). While flattening the seismic reflection profile (e.g. Fig. 5A) by using the K-Reflection as 

a flat horizontal surface we have been able to get improved image of the internal reflection 

structures within the Lower Series Flows unit (Fig. 5B). Generally, the internal shape is 

disrupted and hummocky and usually shows parallel to subparallel reflections. Additional 

linear features have been identified and inferred to represent a part of the feeder dyke system 

of the SDR (Fig. 5B). The extent of dyke reflection along the Vøring Margin correlates the 

extent of the SDR and locally the Landward Flows. Generally the SDR growth was 

accommodated by minor extensional faulting during magma intrusion, although such active 

fault systems are not systematically observed. The faults are used as magma conduits, 

hampering their identification on seismic profiles (see also Abdelmalak et al., 2015).  
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From the average energy attribute in seismic profiles, the Lower Series Flows represents a 

high reflected energy with discontinuous and thick features compared to the inner SDR and 

underlying structures (Fig. 5C). The seismic average energy signature of the Lower Series 

Flows could be interpreted as the geophysical responses of lava flows and sill intrusions with 

interbedded sedimentary layers. The sediments are early Eocene in age for the Lower Series 

Flows. These discontinuous and thick features identified from the average energy attribute in 

seismic profile are confirmed by the core samples of Hole 642E showing volcanic units and 

thicker interbedded volcano-sedimentary units in the Lower Series Flows (Lower Series in the 

ODP Hole 642E) compared to the SDR (the Upper Series) dominated by massive lava flows.  

The K-Reflection identified at the base of the SDR is most clearly characterized by a negative 

in polarity reflection in the seismic data. This reflection has been petrologically linked with a 

12 m thick volcano-sedimentary/tuffaceous unit (S43) separating the Upper and Lower Series 

in the ODP Hole 642E. Although its continuation toward the Vøring Escarpment has been 

documented (e.g. Skogseid and Eldholm, 1987), the position of the K-Reflection is commonly 

difficult to determine. We have re-mapped the extent of the K-Reflection on the basis of its 

strong negative signal in the seismic reflection data and on the basis of reflector truncation at 

the base of the seaward dipping wedge. The K-Reflection extends to more than 2100 km
2
 and 

deepens towards the continent ocean transition as the result of tectonic and subsidence control 

during the construction of the SDR wedge (Fig. 6A).  

From the seismic reflection imaging combined with the seismic average energy signature, we 

were able to determine the base of the Lower Series Flows facies unit. We used the top and 

the base of this facies unit described above and identified on the basis of seismic 

interpretation. The thickness of the Lower Series Flows facies unit ranges between 0.2 and 1.5 

km with a clear ocean-ward increase in thickness (Fig. 6B).   
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8. The Lower Series Flows lithology and petrology  

 

The upper 130 m of the Lower Series Flows, have been drilled and sampled in the ODP Hole 

642E (the so-called Lower Series in the ODP report, Eldholm et al. (1987)). The recovered 

igneous rock succession includes exceptional glassy dacitic lavas as well as basaltic andesitic 

lava flows interbedded with thick volcano-sedimentary deposits and intruded tholeiitic sills 

(Parson et al., 1989; Viereck et al., 1989; Meyer et al., 2009a; Fig. 2). We follow here Meyer 

et al. (2009a) who used an updated lithological subdivision for the Lower Series based on new 

petrographic and geochemical observations. During their investigation these authors deduced 

that, the recovered Lower Series lithology would consists of two major igneous groups A and 

B (previously defined by Parson et al., 1989), which can be further classified into distinct 

felsic lava flow units A1, A2, B1 and B2. Initially defined smaller individual flows have been 

reinterpreted as crystallinity variations, shear planes, and peperitic interactions within the four 

major lava flow units (Table 2).  

 

Flow Unit A1 

The base of the recovered/sampled LS is represented by the flow unit (A1). This single 

subaqueous flow of 13.4 m thickness has a porphyric texture with a glassy (ca. 25 vol.%) 

matrix and plagioclase, orthopyroxene, and clinopyroxene phenocrysts. With a content of 

around 3 wt.% Na2O and >2.5 wt.% K2O, flow unit A1 has the highest alkaline concentrations  

within the Lower Series lithology (Fig. 7A). Within the A subgroup, this flow is more evolved 

compared to A2, with a MgO abundance of around 2.5 wt.% and 55 wt. % SiO2. The 1.8 m 

thick sediment S49 caps this flow at the top (Fig. 2). A calcite filled fracture within the lowest 

part of the recovered flow has provided a δ
13

CPDB of -11.4 ‰ (Love et al., 1989), which has to 

be interpreted as a mixture of light organic carbon with ambient mantle carbon (Table 2). 
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Flow Unit A2 

This flow unit regroups the initially individual flows F118, F119, and F120 as all of these 

―flows‖ have an identical geochemistry with an SiO2 content of 51.5 wt.%, 1.3 wt.% TiO, 3.2 

wt.% Na2O, and 5.5 wt.% MgO. Due to this geochemical similarity and an identical 

petrography (ca. 90 vol. % glass, minor plagioclase, clinopyroxene, and the only flow unit 

crystallizing sanidine) these formerly interpreted individual flows can be regrouped into a 

single 11.2 m thick basaltic andesitic flow unit and/or monogentic successive flows. In 

analogy to the A1 flow unit, A2 has significantly higher alkaline contents compared to the B 

subgroup, but is notably less evolved compared to the underlying A1. The A2 flow unit has 

the most primitive geochemistry of the extrusive rocks sampled within the Lower Series 

(Table 2). Compared to the other flow units within the Lower Series, this flow is depleted in 

incompatible elements like HFSE (High Field Strength Elements)  and REE (Rare Earth 

Elements) (Meyer et al., 2009a). The lightest C-isotope data (δ
13

CPDB -11.8 ‰) within the 

Vøring igneous rock successions have been measured from a calcite filled vesicle within, the 

lowest part, of this flow unit (Love et al., 1989). This stable isotope data points also towards a 

mixture of mantle and organic carbon in the source.  

 

Flow Unit B1 

Flow unit B1 is 13.8 m thick and consists of the formerly individually characterized flows 

F114, F115, F116 and F117 are now interpreted as a glassy (ca. 90 vol.% glass) peperitic 

cordierite bearing, plagioclase, and orthopyroxene crystallizing flow unit (Table 2). 

Macroscopically this magma interacted during its emplacement with wet sediments. Similar 

as for the above described flow unit, the formerly interpreted different flows can so be 

simplistically described as the same magma intruding /extruding a congruent wet silt to sandy 

sedimentary package, of terrigenous, marine and volcanoclastic components (S44, S45, and 
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S46). Baked contacts between melt and sediments have been observed when contacts have 

been cored and recovered. Due to interactions with the wet sediments of different grain size, 

the massif glassy dacite flow with a perthitic texture is hydrothermally altered in areas with a 

high sediment/melt ratio. Consequently, this flow unit is mineralogically indistinguishable 

and reports variations in SiO2 content, partly due to alteration. Rocks of this group show the 

highest contents in HFSE and LREE (Light Rare Earth Elements) (Meyer et al., 2009a). The 

geochemical content within this peperitic flow varies mainly for SiO2 between 60 and 55 

wt.%, with more constant Na2O ≈ 3 wt.%, K2O ≈ 0.75 wt.%, and Al2O3 ≈ 16 wt.% contents. 

Available stable isotope data of δ
13

CPDB  -5.6 ‰ (Love et al., 1989) point towards slightly 

lighter carbon composition comparable to the Vøring SDRs rocks. As this peperitic flow 

shows strongest macroscopic in-situ interactions with the paleo-surface sediments and a more 

normal C isotopic composition, the isotopic data measured within the A1 and A2 flow units 

seem to represent interactions with initially organic rich material deeper in the crust. 

 

Flow Unit B2   

The upper most flow unit of the Lower Series is a massive 53.5 m thick subaqueous cordierite 

bearing plagioclase and orthpopyroxene crystallizing glassy (in its upper part) and porphyric 

(in its lowest part) dacitic lava flow. The initially defined boundaries in-between the 

geochemically similar F106, F107, F108, F109, F110, F111, F112, F113 (Fig. 2B) have to be 

understood as shear planes separating internal zones of distinctive crystallinity and 

hydrothermal alteration/devitrification within one single flow. Meyer et al. (2009a) showed 

that the initially described evolved dyke D4 is geochemically indistinguishable with the 

overlying flows F106 to F113 and represents the 21 m thick apanitic base of this massive lava 

flow (Table 2). Instead of an intruding separate dyke with exactly the same geochemistry we 

integrated this part into the geochemically identical flow. This flow unit is the most evolved 
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rock succession recovered within the Lower Series Flows (62 to 70 wt. % SiO2; ca. 15 wt. % 

Al2O3; 0.4 – 1.7 wt.% MgO; with 2.3 – 2.7 ppm U; and > 11 ppm Th). This flow lithology 

has a reported filled vesicle with a normal mantle magmatic δ
13

CPDB of -6.4‰ compared to 

the organic <-11‰ (Love et al., 1989) within the flow units A1 and A2.  

 

Sills D5s and D6s   

Distinct mafic ―dykes‖ D5 and D6 reported in the initial core descriptions are re-interpreted in 

this study as sills and named D5s and D6s. This re-interpretation is based on the fact that 

Meyer et al. (2009a) presented that these depleted igneous rocks, with a characteristic spoon 

shaped REE pattern, can petrogenetically not be directly related to the SDRs tholeiites and 

their mantle source (Table 2). The major element geochemistry of the upper part of this 

massive sill follows a trend toward higher Si content with no influence on the alkaline 

geochemistry, similar to the intruded B1 trend (Fig. 7A). In contrast to this melt evolution and 

the Vøring SDRs tholeiites, sill D6s follows the differentiation trend of the flow Units A1 and 

A2 towards higher alkaline concentrations with higher Si content. A δ
13

CPDB of -9 ‰ (Love et 

al., 1989) measured within a fracture of this sill, points also to in-situ interaction of the sill 

magma with these flow units (δ
13

CPDB < -11‰) and/or with the same organic rich crustal 

source during magma transport. Both sills are identical in trace element geochemistry, but 

systematically different compared to the felsic flow units that they intrude. Based on 

radiogenic isotopes, these sills can be interpreted as binary mixtures between the felsic crustal 

anatectic rocks and the Vøring SDRs melts, but with a REE geochemistry pointing towards a 

much more depleted mantle source being tapped. Similar LREE depleted melts are highly 

uncommon in the NE Atlantic, and have recently been observed only along the Jan Mayen 

Ridge (Meyer et al., Submitted). 
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Sedimentary deposits 

Both major Lower Series igneous flow groups (A and B) are always covered by thick 

volcanoclastic sediments (S48-47 and S43) (Fig. 2B). The stratigraphy of S48 consists of non-

welded tuff deposits overlain by a fallout sequence. The 13 m thick S43 is identified on the 

top of the Lower Series and directly underlays the SDRs at the Vøring Margin. The transition 

from the Lower Series into the SDRs is most likely a disconformity within this volcanoclastic 

deposit. This erosion unconformity separates compacted and well-graded sediments at the 

lower part from upper uncompacted tuffite sediments.  

 

9. The Lower Series Flows Geochemistry 

 

The total alkali versus silica (TAS) classification diagram (Le Bas et al., 1986) points towards 

two different melt evolutions within the Lower Series. All flows within the Lower Series 

Flows are aluminia-oversaturated, with a peraluminous to strongly peraluminous chemistry 

(Meyer et al., 2009a) (Fig. 7A). The peraluminous character of the Lower Series melts is best 

illustrated by the molecular ratios of Al2O3/(Na2O+K2O): 1.5 to 3.2 and 

Al2O3l/(CaO+Na2O+K2O): 1.2 to 1.86 within the discrimination diagram of Maniar and 

Piccoli (1989). However, as Si, Na, and K can be mobilized from glass during hydrothermal 

alteration, the presence of primary crystallized cordierite phenocrysts within the B1 and B2 

glassy flow units clearly proves the initial aluminia saturation chemistry within the Lower 

Series melts. This strongly peraluminous geochemistry demonstrates that these magmas are S 

(sedimentary) -type granitic melts. S-type granitic magmas are partial melting products of 

sedimentary source rocks composed partly of (metamorphosed) clay minerals (Chappell and 

White, 1992). As a result, dehydration crustal anataxis, due to an increased geothermal 
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gradient within a volatile bearing lithology, would be the best scenario to produce the sampled 

Lower Series Flows crustal melts.  

However due to the more mafic geochemistry of the basaltic andesitic flows, magma mixing 

between the asthenospheric melts and the crustal melts must have occurred prior to the 

emplacement. This mixing trend is recorded in the major element geochemistry of the lowest 

basaltic andesitic A1 and A2, who increase equally their alkali content with increasing silica, 

in contrast to the overlying dacitic flows, who do not show any increase in Na and K with Si.  

Interestingly the sills intruding these flow units show the same evolution characteristics as 

their respectively intruded lithologies (Fig. 7A). The present dataset is however still too small 

to distinguish if these trends within the sills are in-situ interactions with the intruded 

lithologies, and/or if these signatures would be source related and pointing towards an 

identical petrogenetic history as the intruded rocks. However, the similarity in trace element 

and radiogenic isotopes between the two sills and the intruded lithologies points towards in-

situ interactions of the intruding melts with the penetrated lithologies.  

High quality Pb isotopic compositions of the ODP Hole 642E rocks are plotted in Figures 7B 

and 8B. The Lower Series Flows rock samples have significantly higher radiogenic initial 

206
Pb/

204
Pb, 

207
Pb/

204
Pb and 

208
Pb/

204
Pb ratios compared to the most primitive Vøring SDRs 

melts (Figures 7B, 8B). The upper continental crust involved at the Vøring Margin has a Pb 

isotope geochemistry similar to anthropogenically uncontaminated North Atlantic pelagic 

sediments (e.g. Hamelin et al., 1990) unlike other potential and/or proposed crustal source 

lithologies like Moine shiste source (Meyer et al., 2009b) and definitely different to lower 

and/or middle continental crustal rocks involved at the SE Greenland margin (Fitton et al., 

1998) (Fig. 8B). 
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Pelagic sediment, as crustal melting end-member would not only be responsible for the 

measured Pb isotope geochemistry, but would also be able to explain the observed trace-

element abundances. The high concentrations of the incompatible elements Th (12 - 17 ppm, 

Meyer et al., 2009) and U (2.7 – 3.5 ppm, Meyer et al., 2009) within the isotopically most 

pelagic-like pure crustal anatectic flow Unit B2 suggests either low melting degrees, which 

would however be contradictory to the major element geochemistry, and/or a higher 

concentration of these elements in the melting source rock. Marine pelagic clay has an 

average Th concentration of 13 ppm and 2.6 ppm for U (Li, 1991) and so further supports a 

significant pelagic sediment proportion within the upper continental crustal source during 

melting. It can be concluded, that the isotope geochemistry of the Lower Series rocks points 

to primitive T-MORB-like asthenospheric melts (Meyer et al., 2009a) interacting with highly 

radiogenic pelagic upper crustal sedimentary rocks. Such mantle melt – crust interactions 

could either be based on heat transfer and dehydration partial melting of the surrounding crust 

(Lower Series dacites) and/or by magma mingling between crustal melts and asthenospheric 

melts (Lower Series basaltic andesites).  

Alternatively heat transfer due to the loss of continental crust into the asthenosphere, as 

described in Esedo et al. (2012) and later confirmed for the opening of the Central Atlantic 

(Meyer & van Wijk, 2015) could result in pure crustal melts due to an increased thermal 

difference between upper continental crust and now underlying asthenosphere. The more 

mafic basaltic andesitic melts would in such a scenario represent pure crustal melts mixing 

with decompression melts of the asthenospheric mantle (e.g. Meyer & van Wijk, 2015). The 

continental melting source material can be further constrained by available carbon isotope 

data from vesicles of the Lower Series Flows (cf. Table 2). These data are all considerably 

isotopically lighter compared to the mantle, and advocate so for significant organic carbon 

content within the melting source sediments. 
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10. Discussion 

 

 

10.1. Nature of the Lower Series Flows 

Large igneous provinces are defined as highly voluminous mafic igneous rock successions 

emplaced within a short geological time span as continental flood basalt provinces, oceanic 

plateaus and volcanic rifted margins. However, silicic volcanic rock sequences have been 

reported from several LIPs like Karoo, Parana-Etendeka, Deccan LIP (Bryan et al., 2002) 

including the North Atlantic Igneous Province (NAIP) (Meyer et al., 2009a; 2009b). While 

the mafic melts are able to cast light on mantle source, the silicic magmas allow the definition 

of melt-rock interactions processes during the LIP emplacement. In contrast to late silicic 

activities recorded in other LIPs (Bryan et al., 2002), the SiO2-rich melts of the Vøring 

volcanic margin erupted in the earlier stage of the LIP and SDR formation (e.g. Saunders et 

al., 1997; Meyer et al., 2009b).   

Pb isotopic variations of the mafic SDRs melts (
206

Pb/
204

Pb ≈ 18.45; 
207

Pb/
204

Pb ≈15.5; and 

208
Pb/

204
Pb ≈38.25) (Figures 7B, 8B) show that the involved mantle source has a higher 

radiogenic Pb isotope composition compared to initial SE Greenland mantle melts. The 

Vøring SDRs melts are even significantly more radiogenic compared to the by Ellam and 

Stuart (2000) proposed North Atlantic End-Member (NAEM) (
206

Pb/
204

Pb ≈ 17.5; 
207

Pb/
204

Pb 

≈ 15.4; and 
208

Pb/
204

Pb ≈ 37.4) but still significantly less radiogenic than the Lower Series 

Flows. The sampled sills D5s and D6s are displaced from the Vøring SDRs melts towards the 

very radiogenic Lower Series Flows, and confirm their mixture between the crustal material 

and the SDRs mantle melts 
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Most of the Lower Series lavas cluster together around 
87

Sr/
86

Sr = 0.71 and 

143
Nd/

144
Nd = 0.5122, this is significantly outside the accepted range of pristine mantle ratios 

(Meyer et al., 2009a). In addition, the Pb isotope characteristics are a prove of the S-type 

crustal anatectic nature of these sub-SDRs rocks and present a major indication of a strong 

involvement of radiogenic crustal material in the petregenesis of these rocks. In contrast to the 

lower and middle crustal contaminated magmas at the SE Greenland margin and the British 

Tertiary Igneous province, the Lower Series at the Vøring Margin point to interactions 

restricted to upper crustal material (Meyer et al., 2009a) (Fig. 8A).  

 Based on Sr and Nd isotopic data, Meyer et al. (2009b) suggested that metasedimentary rocks, 

similar to the Moine Supergroup, where likely to be the crustal anatectic melting source for 

the Lower Series Flows. However, plotting Moine schist Pb-isotope data from Geldmacher et 

al. (2002) (
206

Pb/
204

Pb = 19.27; 
207

Pb/
204

Pb = 15.56; and 
208

Pb/
204

Pb = 38.82) does not define a 

potential mixing line end-member of the Vøring mantle source and the Lower Series crustal 

melts. Thus a Moine-like rock lithology seems to be unlikely. We suggest here that based on 

the Pb isotopes the upper crustal melting source consist for a large part of pelagic sediments 

similar to anthropogenically uncontaminated North Atlantic sediments (e.g. Hamelin et al., 

1990). A high content of such pelagic sediment in the melting source is also able to explain 

the observed Sr and Nd isotope variations and high Th, U concentrations within the 

peraluminous Vøring crustal melts. The reported light carbon isotopes within vesicles of the 

Lower Series Flows (Love et al., 1989), further point towards a significant organic carbon 

content within the melting crustal segment.  

 

10.2. Emplacement age of the Lower Series Flows 

In the Vøring Basin, exploration well 6607/5-2 at the Utgard High (Fig. 3) penetrated two 
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microgabbro sills intruded into Upper Cretaceous mudstone and sandstone lithologies (Berndt 

et al., 2000). The sill geochemistry (Neumann et al., 2013) shows that these magmas are 

significantly more differentiated compared to the already fractionated Vøring SDR melts 

(Viereck et al., 1989). The 
87

Sr/
86

Sr and 
143

Nd/
144

Nd ratios of the Utgard High sills and the 

Vøring Upper Series (the SDR seismic facies unit), however overlap and point towards a 

same asthenospheric mantle-melting source (Fig. 8A). Radiometric dating provided U-Pb 

zircon refined ages of 55.66 ±0.3 and 56.36 ±0.4 Ma for these intrusions (Svensen et al., 2010; 

Neumann et al., 2013). These results are consistent with the widely believed ages of the early 

breakup volcanism stage at the Vøring Margin. 

We record Apectodinium augustum in the sedimentary unit of the Lower Series Flows. 

Although this species is a marker for the PETM (Paleocene – Eocene Thermal Maximum) 

(Schmitz et al., 2004; Sluijs et al., 2006), we did not find the extremely low δ
13

CTOC values 

that globally characterize the PETM. This implies that the specimens of A. augustum are 

reworked into more recent sediments. The evidence from biostratigraphy and carbon isotopes 

thus indicates that the emplacement of the Lower Series at Hole 642E postdates the PETM 

(55.93-55.76 Ma after Westerhold et al., 2008; 2009; or 55.53 Ma after Westerhold et al., 

2012) and is more likely early Eocene in age.  

These new stratigraphic results do not fit with the magnetic polarity distribution of the Lower 

Series Flows showing a normal polarity zone which was correlated with Chron C25n 

(Schönharting and Abrahamsen, 1989) (upper Paleocene with an age ranging between 57.01 

and 57.6 Ma). Nevertheless the widespread remagnetisation effects due to the sill intrusions 

could considerably affect the magnetic signal by heating effect. From the available 

radiometric ages for the Lower Series igneous rocks the most significant and accurate age is 

provided by Sinton et al. (1998) giving crystallization age of 55-56 Ma even if their results 

were ―somewhat disturbed‖.  
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The upper Series, directly above the Lower Series, shows a reversed magnetic polarity 

acquired during rapid extrusion correlated within magnetic polarity Chron C24r (i.e. between 

~57 and -54 Ma according to Gradstein et al. (2012) time-scale).  The Upper Series has been 

linked to the uppermost nannoplankton zone NP9 and the NP10 zone indicating an age 

ranging between 55 and 54 Ma.  

Since the emplacement of the Lower Series must postdate the PETM and probably the 

radiometric age of 55-56 Ma obtained by Sinton et al. (1998), we speculate that reworking of 

A. augustum into the Lower Series could be geologically rapid, possibly less than 1 Ma.   An 

age comprised between 55 and 56 Ma could fit also with the nannoplankton zone NP9 as 

previously recorded by Boulter and Manum (1989) and with our new results from 

palynological and stable carbon isotope. 

This age represents the latest extensional stage preceding the main volcanic event and breakup 

of the Vøring Margin. Nevertheless, the precise age of the Lower Series Flows needs to be 

confirmed by new accurate and additional high resolution radiometric dating. The new age 

defined on the basis of palynological and stable carbon isotope studies shows that the 

transition between the pre-breakup (~56-55 Ma) to the breakup stage in the Vøring Margin 

(~55-53 Ma) occurred in a very short time. Our results show that the breakup process in the 

Vøring Margin did not happen near the Paleocene-Eocene transition but during the earliest 

Eocene.  

 

10.3. Nature of the K-Reflection 

 

The K-Reflection located below the inner SDR wedge deepens progressively toward the 

oceanic domain (Fig. 3). Mutter et al. (1982) considered the continent-ocean boundary (COB) 

at/or close to the Vøring Escarpment, and interpreted the K-Reflection as a dyke-lava 
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transition within the oceanic crust. On the other hand, Hinz et al. (1982; 1984) placed the 

COB further west, near the seaward edge of the lowermost part of the dipping reflectors, and 

the K-Reflection was interpreted as a potential upper Mesozoic to lower Cenozoic surface.   

Skogseid and Eldholm (1987) argued that the entire volcanic sequences above the K-

Reflection were caused by subaerial seafloor spreading, and that the flow properties of the 

basaltic melt allowed the lava to flow over large areas of neighboring thinned continental 

crust. They located the COB just west of the K-Reflection termination, below the innermost 

part of the seaward-dipping wedge. 

For Planke and Eldholm (1994) the K-Reflection corresponds to the base of the seaward 

dipping reflector sequences rather than a transition between the Upper and the Lower Series. 

They correlate the K-Reflection with a flows in the lower part of the Upper Series basalt. For 

these authors, the laterally varying seismic character and poor continuity below K-Reflection 

suggest that the oldest basaltic lavas rest on a terrain of breakup rocks covered by dacitic 

lavas.      

In this study, we show that the significance of the K-Reflection is somewhat different than 

what had been postulated before. The K-Reflection corresponds to the S43 volcanoclastic unit 

of tuff deposited in a transitional marine to subaerial environment. The extent of the K-

Reflection corresponds to the extent of the ash and pyroclastic flow material deposited during 

explosive subaerial to shallow marine volcanic events. The deepening of this strong reflection 

toward the ocean is due to the tectonic tilting of the SDR wedge. In the same way than 

Skogseid and Eldholm (1987) and Planke and Eldholm (1994), we assume that the continent-

ocean boundary is preferentially located at the seaward termination of the K-reflection.      
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10.4. Emplacement Model 

The Lower Series Flows seismic unit is considered to be a transitional facies unit between 

normal syn-rift sedimentation to the volcanic margin stage. The Lower Series Flows 

characterize the pre-breakup volcanostratigraphic interaction. Samples from ODP Hole 642E 

core stratigraphy are characterized by intense hydrothermal alteration and devitrification 

which are separated by shear planes. The devitrified glassy flows suggest a subaqueous 

depositional environment (or interaction with shallow and wet sediments), while the 

ignimbrite layers are characteristic of subaerial environment. The geochemistry composition 

of this facies is in agreement with crustal melts and indicative of sediment assimilation and 

reports so a high degree of interaction between asthenospheric mantle melts and sedimentary 

rocks. On the Vøring Marginal High, the nature of rocks below the Lower Series Flows 

remains unclear since the seismic signal is obscured by the volcanic rocks. We have to 

emphasis that several strong reflections are identified and interpreted as sill complex beneath 

the lava flows (Figs. 3, 4 and 5). Such sill intrusions are typically characterized by high 

amplitude and abrupt termination and sometimes saucer-shaped geometry (e.g. Planke et al., 

2005; Planke et al., 2015). This observation implies the presence and preservation of sub-

basalt basins below the Lower Series Flows in the Vøring Marginal High (Abdelmalak et al., 

2015; Abdelmalak et al., Submitted). Nevertheless, neither age nor thickness of the 

sedimentary strata could be precisely determined. However, based on the known stratigraphy 

of the outer Vøring Basin described nearby the volcanic domain they may contain a certain 

amount of Cretaceous to Paleocene sedimentary rocks (e.g. Gernigon et al., 2003; Ren et al., 

2003).  

Based on sub-basalt seismic imaging constraints, combined with petrological, geochemical 

observations and available age data for the Lower Series Flows, we present a plausible and 

coherent emplacement model for this seismic facies unit. This new emplacement model 
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illustrates the onset of breakup in the Vøring Margin. The following tectono-volcanic stages 

are proposed:  

Stage 1: basaltic andesitic flows 

As drilling stopped within the basaltic andesitic flow unit, little is known prior to the eruption 

of these crustal anatectic melts. The pre-volcanic late Cretaceous-Paleocene topography is 

illustrated as Stage 1 (a) in Figure 9. During this period the outer Vøring Basin was 

characterized by low-angle normal faulting, subsidence, syn-rift sedimentation and local uplift 

(Gernigon et al., 2003; Ren et al., 2003). From the upper Cretaceous to the upper Paleocene 

(Danian /early Thanetian: 65-59 Ma) a regional uplift event is recorded both in the Vøring 

Basin and entire NE Atlantic (Brekke et al., 2001).  This uplift has been correlated with 

upwelling hot mantle and was responsible for a dramatic shallowing of the outer Vøring Basin 

and the emergence and local erosion of the pre-existing Cretaceous highs (e.g. Gjallar Ridge) 

(Brekke et al., 2001; Ren et al., 2003). The emplacement of sub-crustal magmatism possibly 

triggered a pulse of lithospheric thinning due to strain localization of the deformation as 

suggested by both analogue (Callot et al., 2001; 2002) and numerical modeling (Yamasaki 

and Gernigon, 2009). Combined with the relative thermal effects of crustal intrusions, the 

enhanced crustal geothermal gradient, directly and/or indirectly initiated by the nascent 

magmatism, was locally enough to initiate hydrous anatexis of the pre-existing upper crustal 

litologies. From the isotopic ratios results (Fig. 8A), we noticed that no interaction with sub-

continental lithospheric material nor lower crustal material is recorded within the melts in the 

Lower Series Flows. The Pb isotopic geochemistry confirms the strong interaction of mantle 

melts with sediments and/or upper-crustal rocks. Esedo et al. (2012) described that 

lithospheric removal prior to the breakup is an important process prior to continental 

fragmentation. Meyer and van Wijk (2015) showed that such lithospheric mantle removal 

could also be responsible for the loss of lower crust at a passive rifted margin. 
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The volatile rich melting event of upper continental crustal material occurred during Stage 1 

(b) and is today recorded within the crystallized basaltic andesitic lava flows (Units A1 and 

A2 in the ODP Hole 642E core stratigraphy).  

 

Stage 2: the dacitic flows  

This stage started with Stage 2 (a) characterized by an explosive silicic volcanism in a 

subaerial environment. As a result massive pyroclastic flows are deposited as ash-rich 

ignimbrite layers (S48 and S47).  

The paleo-basin character of the Vøring Site 642 is defined by a massive deposition of 

ignimbrites. The ash cloud deposit on top of the ignimbrite is believed to be a Layer 3 of a 

classical ignimbrite flow unit. This sediment has settled from the ash cloud overriding the 

pyroclastic flow. On top of the ignimbrite the sediments have a silt grain size and include 

volcanic and crustal material.   

The Stage 2 (a) is followed by the Stage 2 (b) characterized by partial melting at shallower 

level (Fig. 9). It explains the dacitic flows of units B1 and B2. Samples of these units show 

hydrothermal alteration and devitrification supporting a subaqueous environment or 

interaction with wet/ or shallow sediments. The geochemistry and the Pb isotopes ratio 

suggest an upper crustal rock mantle magma interaction with a significant contribution of 

organic carbon rich pelagic sedimentary material during crustal anataxis. Palynological and 

stable carbon studies indicate an early Eocene age (~56-55 Ma) for the Lower Series Flows, 

postdating the Paleocene – Eocene Thermal Maximum (PETM) (~55.93-55.76 Ma). 

  

Stage 3: the proto- breakup phase  

This stage is characterized by explosive volcanism. The ash fallout in a subaerial to 

subaqueous environment gave rise to the 13 m thick tuff layer S43 identified in the ODP Hole 
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642E core stratigraphy. The continuous uplift of the outer Vøring Margin due to the increased 

volcanic activity is responsible for the change of the depositional environment from shallow 

marine to subaerial. The sills D6s and D5s cross-cutting the dacitic and the andesitic flows, 

respectively, were likely intruded during this stage. 

  

Stage 4: main breakup phase  

This stage is characterized not only by an increasing of the heat flow but also by a migration 

of the eruption centers toward the proto-breakup axis. This stage started with a subaerial 

erosion of the tuff layer (Fig. 9). The main magma pulse during this stage is responsible for 

the emplacement of huge volumes of tholeiitic lava flows filling the paleorift topography. The 

continuous build-up of the extrusives gave rise to the different volcanic seismic facies unit 

identified in the 2D seismic reflection profiles. This phase coincides with the formation of 

SDR prism (the Upper Series in the ODP Hole 642E). Intense plumbing of the crust by dykes 

and sill intrusions in the near sedimentary basin characterizes this stage. The focused 

volcanism at the main injection center could, possibly, correspond to a decreasing volcanic 

activity in the landward Vøring Basin. Systematic reflector truncation on K-Reflector is due 

to both landward thinning and pinch-out of flows. Further east, the Utgard High sills showing 

the same isotope geochemistry than the Upper Series and by revealing an age of ~ 56-55 Ma, 

give an indication of the age for the early breakup phase.  

 

11. Conclusions 

 

On the Vøring Margin, sub-basalt mapping results from new and reprocessed seismic 

reflection data combined with updated petrological/geochemical reevaluation of the ODP 

Hole 642E. This provides more accurate constraints on the pre-breakup to initial breakup 

magmatic processes on the Vøring Margin. 
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Sub-basalt improved imaging allows the definition of a new seismic facies unit called the 

Lower Series Flows. This facies unit is characterized by wavy to continuous subparallel 

reflections with an internal disrupted and hummocky shape. 

The Lower Series Flows record the transition from a sedimentary amagmatic rift towards the 

formation of the magmatic dominated rift in the Vøring Margin. 

The Lower Series Flows show clear evidence of the hydrous anatexis of the pre-existing 

continental upper crust and magma contamination/assimilation before fast SDR emplacement. 

The isotope geochemistry points to MORB-like melts interacting with a highly radiogenic 

pelagic sedimentary body with significant organic carbon content within the melting crustal 

segment. 

Results from palynological and stable carbon isotope studies indicate an early Eocene age for 

the Lower Series Flows; we show that sediments postdate the Paleocene – Eocene Thermal 

Maximum (PETM) (~55.93-55.76 Ma or 55.53 Ma).  

Our results show that the breakup process in the Vøring Margin happened during the early 

Eocene. 

Our proposed evolutionary sequence for the Lower Series Flows facies unit includes (1): 

subaqueous basaltic  andesitic flows intruding and extruding into wet sediments; (2) subaerial 

to shallow marine volcanism and extrusion of the dacitic flows; (3) the proto-breakup phase 

with intense shallow marine to explosive subaerial volcanism forming pyroclastic flows 

defining the K-Reflection and (4) the main breakup stage with intense tholeiitic volcanism 

and large subsidence leading to the to the construction of the SDR wedge.  
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Figure and Table captions 

 

Fig. 1. Regional location map of the Mid-Norwegian margin based on GEBCO 

bathymetry/topography grid (The GEBCO_08 Grid, version 20100927, http://www.gebco.net). 

A: main physiographic features. AR: Aegir Ridge; BL: Bivrost Lineament; JMFZ: Jan Mayen 

Fracture Zone; JMMC: Jan Mayen Micro-Continent; MMH: Møre Marginal High; VMH: 

Vøring Marginal High. B: location of the regional map in the North Atlantic Area. EUR: 

Eurasia; GRN: Greenland; MR: Mohn’s Ridge; RR: Reykjanes Ridge.  

 

Fig. 2. A: log summary of ODP Hole 642E (Eldholm et al., 1987) showing the magneto 

stratigraphy (Schönharting and Abrahamsen, 1989) and biostratigraphy (Boulter and Manum, 

1989). The sedimentary section above the volcanic succession at ODP Hole 642E was divided 

into four lithological units (Eldholm et al., 1987). A glacial section (Unit I) lies above thick 

sequence of Miocene pelagic and hemipelagic sediments (Unit II and III) which are 

dominated by biogenic silicious muds and ooze. These open-water units are separated from an 

Eocene in age high energy near-shore unit IV by a 23 m.y. hiatus (Goll, 1989). The unit IV 

consists mainly of volcanoclastic and altered volcanoclastic muds, sandy muds and sands. 

Several ash layers were also identified within this unit and were related to the Eocene 

volcanism (Eldholm et al., 1987)  B: Lower Series log stratigraphy showing the different 

flows and sedimentary layers. The lithologies as well as some picture of some samples are 

shown. The location samples used for radiogenic age samples are indicated: (a), LeHuray and 

Johnson (1989); (b), Taylor and Morton (1989) and (c) Sinton and Duncan (1998). The new 

units A1, A2, B1 and B2 used in this study are indicated.  The Braun boxes indicate where A. 

augustum (Apectodinium augustum) was found in the Lower Series core stratigraphy. Stable 

carbon isotope values (δ
13

CTOC) are indicated. 

 

Fig. 3. A: distribution of the volcanic facies seismic units in the Vøring margin. The 2D 

seismic profiles used in this study are indicated in the map. The profile A-A’ shows an 

example of 2D mapping of the different sismic facies unit (in two way travel-time). B: basalt 

thickness map showing volcanic depocenters. COB: Continent Ocean Boundary (located at 

the termination of the K-Reflection); FG: Fenris Graben; SH: Skoll High; GH: Grimm High; 

GS, Gleipne Saddle; JMFZ: Jan Mayen Fracture Zone, LSF: Lower Series Flows; NGR: 

North Gjallar Ridge; SDR: Seaward Dipping Reflector; SGR: South Gjallar Ridge; YH: Ygg 

High. 

 

Fig. 4. A: depth converted (in km) seismic reflection profile showing the Lower Series Flows 

below the SDR in the Vøring Margin (the Upper Series in the ODP Hole 642E). The profile is 

tied to ODP Hole 642E. Locally the Lower Series Flows (the Lower Series in the ODP Hole 

642E) top is defined as a strong negative in polarity reflection named the K-Reflection. B: 

seismic reflection profile (in two way travel-time) example showing the Lower Series Flows 

below the Lava Delta. Below the Lower Series Flows several sill intrusions are identified. See 

Figure 6 for seismic profile location.  

 

 

Fig. 5. A, seismic reflection profile showing the Lower Series Flows below the SDR in the 

Vøring margin (in two way travel-time). B, flattened record on the K-Reflection allowing 

better imaging of the internal reflections structures of the Lower Series Flows. C, example of 

average energy attribute for the Lower Series Flows showing a high reflected energy 
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compared to the inner SDR and the underlying structures. IF: Inner flows; LF: Landward 

Flows; LD: Lava Delta; LS: Lower Series; US: Upper Series. See Figure 6 for seismic profile 

location. 
  

  

Fig. 6. A: the top of the K-Reflection grid tied to ODP Hole 642E. B: map of the Lower 

Series Flows thickness. The COB is assumed to be preferentially located at the seaward 

termination of K-Reflection. The grid is calculated using an average velocity of 4 km/s.   

 

Fig. 7. A: total alkali-silica (TAS) diagram used to illustrate the composition of the ODP Hole 

642E magma. The Utgaard High sills are also plotted in the diagram. B: 
206

Pb/
204

Pb vs. 
208

Pb/
204

Pb isotope ratios for the different units of the Lower Series Flows (data from Meyer 

et al., 2009a). Ut. Sills: Utgard High sills (data from Neumann et al., 2013). 

 

Fig. 8. A: comparison of the 143Nd/144Nd vs. 
87

Sr/
86

Sr isotope ratios of the Lower Series 

Flows with available data from the North Atlantic area. B: comparison of the 
206

Pb/
204

Pb vs. 
207

Pb/
204

Pb isotope ratios of the Lower Series Flows with available data from the North 

Atlantic area. NHRL: Northern Hemisphere Reference Line; MAR: Mid-Atlantic Ridge. 

 

Fig. 9: Emplacement model of the Lower Series Flows. Our proposed model includes (1): 

subaqueous basaltic/ andesitic flows intruding and extruding into wet sediments; (2) subaerial 

to shallow marine volcanism and extrusion of the dacitic flows; (3) the proto-breakup phase 

with intense shallow marine to explosive subaerial volcanism forming pyroclastic flows 

defining the K-Reflection and (4) the main breakup stage with intense tholeiitic volcanism 

and large subsidence leading to the built of the SDR wedge. Stage 1 and 2 correspond to the 

Pre/early breakup phase, and giving an age of 56-55 Ma (based on palynological and stable 

carbon isotope studies). Stage 3 and 4 correspond to the main breakup phase, and giving an 

age of ~55-53 Ma. 

 

Table 1. Description of the volcanic seismic facies units based on Planke and Alvestad (1999); 

Planke et al. (1999; 2000); Berndt et al. (2001); Rey et al. (2008); Jerram et al. (2009); Nelson 

et al. (2009).  

 

Table 2. Summary of the main lithology, mineralogy and geochemistry of the Lower Series. 

CPDB: Pee Dee Belemnite (carbon-13 standard); Cpx: clynopyroxene; opx: orthopyroxene; 

Plag: plagioclase. Results from [a]: Meyer et al. (2009a); [b] Love et al. (1989).  
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Figure 2 
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Figure 3 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Seismic 

facies unit  

  Reflections characteristics   
Volcanic facies 

  
Depositional environment 

  Shape   Boundaries   Internal     

   

  

            

 
      

Inner Flows  Sheet  Top:  high amplitude, disrupted, 

rough being onlapped or 

concordant.  

Base: negative polarity often 

obscured  

 Chaoitic sheet-like body of 

very disrupted or hummocky 

reflections 

 Massive and 

fragmented flows, 

volcanoclastics and 

hyaloclastics 

 Shallow marine deposited 

in broad basin 

                  
Lava Delta   Bank  Top: High amplitude or 

reflection truncation.                                                

Base Reflection truncation or 

termination    

 Progradational reflection 

configuration 

 Massive and 

fragmented basalts 

and volcanoclastics 

 Coastal 

                  
Landward 

Flows 

 Sheet  Top: high amplitude, smooth 

being onlapped or concordant.                        

Base: law amplitude, disrupted 

 Parallel to subparallel. High-

amplitude disrupted 

 Flood basalts  Subaerial or shallow 

marine flood basalts 

deposited on a plain or in 

broad basin 

                  
Inner SDR  Wedge  Top: Intermediate to high 

amplitude, smooth with 

pseudoescarpment.                  

Base: seldom defined  

 Divergent arcuate or 

sometimes a divergent-

planar pattern 

 Flood basalts  Subaerial flood basalts 

deposited in subsiding 

structure 

                  
 Outer High  Mound  Top: high amplitude, disrupted 

and rough.                                                       

Base: not visible 

 Chaotic   Hyaloclastic flows 

and volcanoclastics 

 Shallow marine 

environment  

                  
Outer SDR  Wedge  Top: Intermediate to high 

amplitude, smooth with 

pseudoescarpment.                  

Base: seldom defined  

 Divergent  arcuate internal 

reflectors, lower amplitude 

than the Inner SDR 

 Flood basalts 

mixed with pillow 

basalts sediments 

and sills 

 deep marine depositional 

environment  

                  
Lava Flows 

  

Sheet 

  

Top: high amplitude with 

pseudoescarpment.                       

Base: not visible   

Chaotic 

  

Flood basalts 

  

Subaerial to shallow 

submarine depositional 

environment 
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Table 1. Description of the volcanic seismic facies units based on Planke and Alvestad (1999); Planke et al. (1999; 2000); Berndt et al. (2001); 

Rey et al. (2008); Jerram et al. (2009); Nelson et al. (2009).  
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Lithological 

units 

 

Mineralogy / Glass 

content 

 

Major elements 

(wt.%) [a] 

 

Trace elements 

        [a] 

δ13
CPDB (‰) 

[b] 

 

Comments/interpretation 
 

Flow unit A1 

Porphyric texture with a 

glassy (ca. 25 Vol.%) matrix 

and plag, opx, and cpx 

phenocrysts 

SiO2 ~ 55 

Na2O ~ 3 

MgO ~ 2.5 

K2O >2.5 

 

 -11.4 ‰ 

One single flow of 13.4 m thickness including F12 

and D7. 

Within the A subgroup, this flow is more evolved 

compared to A2. 

Highest alkaline concentration in the LS. 

Flow unit A2 
Glass (ca. 90 Vol. %), minor 

plag, cpx, and the only flow 

unit crystallizing sanidine 

SiO2 ~ 51.5 

Na2O ~ 3.2 

MgO ~ 5.5 

TiO ~ 1.3 

 

Depleted in 

incompatible elements 

like HFSE and REE 

compared to the other 

units. 

-11.8 ‰) 

Regroups the initially individual flows F118, F119, 

and F120. 

A2 has the most primitive geochemistry of the 

extrusive rocks sampled within the LS. 

Flow unit B1 

Glassy (ca. 90 Vol.% glass) 

cordierite bearing, plag, and 

opx  crystallizing peperitic 

flow unit 

SiO2 ~60 to55 

Na2O ≈ 3 

K2O ≈ 0.75 

Al2O3 ≈ 16 

Rocks of this group 

show the highest 

abundances of HFSE 

and LREE 

-5.6 ‰ 

Flow unit B1 is 13.8 m thick and consists of the 

formerly individually characterized flows F114, 

F115, F116 and F117 due to its peperitic nature. 

 

 

Flow unit B2 

Plag and opx crystallizing 

glassy (in its upper part) and 

porphyric (in its lowest part) 

dacite lava flow 

SiO2~ 62 to 70 

MgO~0.4 – 1.7 

Al2O3 ~ 15 

 

U ≈ 2.3–2.7 ppm 

Th > 11 ppm 
-6.4‰ 

One single massive flow of 53 m thickness including 

F106, F107, F108, F109, F110, F111, F112, and 

F113. This flow unit is the most evolved melt 

recovered within the LS 

Sills D5s and 

D6s 
Mafic tholeiitic sills 

D5s is the most mafic unit 

within all of the Lower 

Series (MgO~8.4). 

D6s is slightly more 

differentiated (MgO~5.2). 

REE geochemistry 

pointing towards 

stronger depleted 

mantle source 

compared to SDR and 

standard North Atlantic 

-9 ‰ 

D5s (18 m) geochemistry is similar to B2 trend. 

D6s (1.4 m) follows the differentiation trend of the 

flow Units A1 and A2 

Sedimentary 

units 

Volcaniclastic sediment 

units (S48-47 and S43) of 

non-welded tuff deposits. 

Devitrified glass and 

abundant quartz xenocrysts 

 

For S48 the geochemical 

major elements are similar 

to B2 flow unit 

  

Combined sediment unit S47/S48 is interpreted as a 

fallout ash layer in the upper section of S48 and a 

non-welded ignimbrite in its lower part. Pumiceous 

glass fragments including bubble walls and tubular 

pumice are frequent in the central part of the unit 

Table 2. Summary of the main lithology, mineralogy and geochemistry of the Lower Series. CPDB: Pee Dee Belemnite (carbon-13 standard); Cpx: 

clynopyroxene; opx: orthopyroxene; Plag: plagioclase. Results from [a]: Meyer et al. (2009a); [b] Love et al. (1989). 
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Highlights 

Sub-basalt imaging improvement on the Vøring Margin  

Definition of a new seismic facies unit: the Lower Series Flows 

Significant organic carbon content within the melting crustal segment 

Apectodinium augustum marker for the PETM is reworked into the Lower Series Flows 

The Lower Series Flows, early Eocene in age, predate the Vøring Margin breakup 


