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ABSTRACT

Understanding the uncertainty associated with large joint geo-
physical surveys, such as 3D seismic, gravity, and magnetotellu-
ric (MT) studies, is a challenge, conceptually and practically. By
demonstrating the use of emulators, we have adopted a Monte
Carlo forward screening scheme to globally test a prior model
space for plausibility. This methodology means that the incorpo-
ration of all types of uncertainty is made conceptually straight-
forward, by designing an appropriate prior model space, upon
which the results are dependent, from which to draw candidate
models. We have tested the approach on a salt dome target, over

which three data sets had been obtained; wide-angle seismic re-
fraction, MT and gravity data. We have considered the data sets
together using an empirically measured uncertain physical rela-
tionship connecting the three different model parameters: seismic
velocity, density, and resistivity, and we have indicated the value
of a joint approach, rather than considering individual parameter
models. The results were probability density functions over the
model parameters, together with a halite probability map. The
emulators give a considerable speed advantage over running
the full simulator codes, and we consider their use to have great
potential in the development of geophysical statistical constraint
methods.

INTRODUCTION

To map a region of earth, it is commonplace to use one or more
kinds of data sets to constrain structural models parameterized by
one or more proxy parameters, such as seismic velocity, density, or
resistivity. An interpreter will then use their geologic insight com-
bined with these models to make judgments about the region. This
may be with a view to, for example, determining where appropriate
drilling locations might lie to maximize the possibility of hydrocar-
bon extraction. There are many approaches used to constrain the
proxy models, ranging from deterministic inverse approaches to
Markov chain Monte Carlo (MCMC) search schemes (Press, 1970;
Sambridge and Mosegaard, 2002; Shapiro and Ritzwoller, 2002;
Hobro et al., 2003; Gallardo and Meju, 2004; Roy et al., 2005;
Heincke et al., 2006; Meier et al., 2007; Moorkamp et al., 2011).
Deterministic inverse schemes are optimal when the uncertainties in

the data and physical system are small, and the aim is to find the
optimum model as fast as possible. This approach works by re-
peated model update so as to minimize the difference between the
observed data and the simulator’s output. However, in many scenar-
ios, there are considerable uncertainties associated with the data and
physics concerned. In this case, statistical schemes may be adopted.
In these methods, the aim is normally to discern the entire plausible
model space for the system concerned. The character of such stat-
istical schemes varies from the entirely forward-based screening
method (Press, 1970), to the more targeted sampling strategy of the
MCMC approach (Hastings, 1970; Sambridge and Mosegaard,
2002). MCMC schemes seek to sample enough of the model space
to give a robust uncertainty estimate; however, often, the number
of forward simulations in both of these methods required to suffi-
ciently sample the space for large systems often makes these meth-
ods computationally impracticable. Thus, often in part due to the
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lack of a feasible method of assessing the uncertainty associated
with a system and also conceptual difficulties in incorporating a
particular kind of uncertainty into the constraint process, the uncer-
tainty assessments that are fed into the decision-making processes
can be ill informed.
The approach adopted here is a forward-modeling-based screen-

ing strategy. To make the process computationally feasible, we build
“emulators” for each of the forward modeling (“simulator”) codes,
trained over the prior model space. We use the term emulator to
mean a statistical model of the output generated by a complex for-
ward modeling code, or simulator. The aim of building an emulator
is to have a means of generating a fast uncertainty calibrated esti-
mate of the simulator output (which maybe be time expensive to
compute). Through providing uncertainty-calibrated rapid estimates
of the full simulator output, these emulators overcome the computa-
tional barrier of making vast numbers of complex simulator runs.
By iteratively rejecting an implausible model space and updating
the emulators, the plausible model space is discerned. In this study,
we apply the method to constrain a region of earth characterized by
a salt dome using three kinds of data: seismic refraction, magneto-
telluric (MT), and gravity data sets for a 1D seven-layered parameter-
ization, and we construct a rock-type probability map based on the
fractional salt versus sediment model acceptance for the region. As
discussed in Osypov et al. (2011) and elsewhere, proper assessment
of risk in hydrocarbon exploration requires not only the analysis of a
proxy-parameter model, but also a full analysis of the structural un-
certainty. The ability to construct a probability map in this manner
has the potential to be of considerable value in this regard.

Joint inversion

Deterministic inversion methods (Tarantola, 2005), in which the
aim is to iteratively update a model so as to reduce some objective
function, are commonly used when the data come from a single
technique. However, using such schemes in a joint framework in
which the relationship between the physical parameters (e.g., seis-
mic velocity, resistivity, and density) is empirical and uncertain,
poses philosophical challenges regarding the coupling strategy,
for example, the weighting attached to maintain structural coher-
ency across the various methods (Gallardo and Meju, 2004). Sim-
ilarly, there are also conceptual intricacies associated with properly
and quantitatively including most kinds of uncertainty associated
with the problem, for example, uncertainty in the data measure-
ments and model discrepancy (due to the fact that a model is not
a complete representation of nature). Recently however, a few au-
thors such as Roy et al. (2005), Heincke et al. (2006), and Moor-
kamp et al. (2011, 2013) make considerable progress in developing
structural coupling-based joint inversion methodologies through
crossgradient and other coupling schemes. Bodin et al. (2012) also
develop hierarchical Bayes approaches for joint inversion.

Statistical schemes

Statistical schemes designed to assess uncertainty, such as simu-
lated annealing, genetic algorithms, and MCMC approaches, can be
used when the number of model parameters is small. Sambridge and
Mosegaard (2002) give a useful review of the varied methods that
can be used and their historical development.
However, as is commented in Sambridge and Mosegaard (2002),

if the number of parameters is large, then these methods become

unfeasible because the number of complex, and possibly expensive,
forward model simulations becomes impracticably large given the
computation time required. In a few scientific fields, such as clima-
tology, volcanic hazard prediction, ocean modeling, and cosmology
(Logemann et al., 2004; Rougier, 2008; Bayarri et al., 2009; Vernon
and Goldstein, 2009), in which forward simulators are also highly
time expensive to run, emulators are often used. An emulator is a
statistical representation of the forward modeling simulator, which
gives a very rapid prediction of the simulator output, with a cali-
brated uncertainty.
Building an emulator is similar to building a neural network.

Neural networks are successfully used to solve inverse problems
in geophysics, for example, Meier et al. (2007), who develop a neu-
ral network system to invert S-wave data. Others have also devel-
oped methods of using quick approximations to a full forward code
in inversion schemes, for example, James and Ritzwoller (1999),
who use truncated perturbation expansions to approximate Ray-
leigh-wave eigenfrequencies and eigenfunctions, and Shapiro and
Ritzwoller (2002), who take a similar methodology in an MCMC
scheme to construct a global shear-velocity model of the crust and
upper mantle. In each of these cases, the aim is to minimize some
objective function or maximize a likelihood function.
Here, we adopt a statistical approach that is fundamentally differ-

ent in that it is based entirely on forward modeling, as opposed to
using any kind of objective/likelihood function or inverse step. We
simply seek to discern which areas of model space are plausible and
which are implausible, given the observed data. This approach has
been proposed in the past (e.g., Press, 1970), and it is used in a variety
of settings such as the history matching of hydrocarbon reservoir pro-
duction data (Murtha, 1994; Li et al., 2012). However, in the context
of structural constraint, it is largely sidelined in favor of more search-
efficient schemes such as those described above. We implement this
forward approach by the use of emulators to make it more computa-
tionally efficient. Roberts et al. (2012) describe our methodology for
a synthetic scenario; however, here we describe a number of mod-
ifications to achieve greater stability and efficiency. We develop
and apply the approach to observed 3D joint seismic, MT, and gravity
data sets obtained from a salt dome region, and we ultimately deter-
mine a model probability map for the profile. The method is akin to
the response surface methodologies beginning to be used in the field
of reservoir simulation (Zubarev, 2009). However in this case, we
seek to fully model the uncertainty in the simulator-prediction sys-
tem, and hence we aim to construct response clouds, rather than sur-
faces. The method is shown diagrammatically in Figure 1.
The strategy here, to exclude model space, rather than build up

the plausible space searching from some starting model, represents
a fundamentally and philosophically different “top-down” ap-
proach, to the traditional inversion, and it relies entirely on forward
computation. Because we globally sample the prior plausible model
space, seeking to exclude implausible model space, rather than
searching a part of the model space for plausible models, the un-
certainty measures which are obtained are maxima, rather than min-
ima, given the prior model space and choices of tuning parameters
made in the analysis.
Building statistical system models, or emulators, successively in

a multicycle fashion, we progressively refine the plausible space.
Because a proper consideration of uncertainty in an inverse scheme
can be conceptually difficult, often, when any consideration of
uncertainty is made, it is commonly specified to be Gaussian in

ID2 Roberts et al.
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character at times not because it is indeed Gaussian, but simply be-
cause of mathematical convenience. The fact that, in our method,
the screening process relies entirely on forward modeling means
that it is conceptually straightforward to include uncertainty pertain-
ing to any part of the system by building the appropriate distribution
over the prior model space. These uncertainties may take the form of
data uncertainty, physical uncertainty, model discrepancy, or others,
which in an inversion scheme, including physical uncertainties and
model discrepancy, among others, can be conceptually difficult.

Emulation

To overcome computational limitations in our forward screening
Monte Carlo scheme, we build and use emulators (Kennedy and
O’Hagan, 2001; Vernon et al., 2009). Like the case of a neural net-
work, an emulator is designed using training models and data sets,
and it seeks to predict the output data arising for a given model
parameter set. However, an emulator differs from a neural network
in that it seeks to not only predict the output of a system from an
input, but also to do so with a fully calibrated uncertainty. An em-
ulator treats the parametric and nonparametric parts of the system
holistically, giving a full stochastic representation of the system.
Because of this focus on uncertainty calibration, emulators can be
used to rapidly screen model space for implausibility (Goldstein and
Wooff, 2007). This would not be the case with an uncalibrated sim-
ulator-prediction system because there is no measure or criterion to
discern whether a comparative data set is sufficiently close to the

observed data set to be deemed plausible. Although the method de-
scribed here is very much a forward modeling philosophy, in that
we are simply seeking to trial sets of model parameters for plausibil-
ity, one could consider that the fitting of parametric functions to
build the emulator model of the forward simulator constitutes a
partly inverse component. However, because the forward simulator
itself, rather than the model parameters is being “inverted” for, the
emulator screening method is fundamentally different to a tradi-
tional inversion scheme.
Although there are occasional instances of emulators being de-

veloped for earth systems (Logemann et al., 2004), they have not
been widely applied in the geosciences. Here, we review and dem-
onstrate the use of an emulator (Roberts et al., 2010, 2012) to con-
strain the structure of a salt diapir using 1D profiles through a 3D
joint data set. Figure 1 summarizes the strategy adopted in this study.
The data consist of 3D seismic data, full tensor gravity (FTG) data,
and MT data from a salt dome. Examples from the three data sets are
shown in Figure 2.

THEORY AND PRELIMINARIES

In performing an experiment to test a model, the scientist has a set
of output data points, a set of model parameters, and a function
(simulator or forward modeling code) f, which defines the relation-
ship between the model parameters θ and the “perfect” data ψ
(equation 1) as follows:

Fit datasets to model parameters
using suitable simple + fast functions

*Calibrate uncertainty by comparing
simulator outputs to prediction based

on reconstruction using training
models and fitted coefficients

Set of coefficients which can be used
to predict a simulator output for a

given set of model parameters

Uncertainty function associated
with emulator prediction

EMULATORS
Generate candidate

model

EMULATORS

Approximate data
prediction and emulator

uncertainty

Does approximate
predicted datasets lie within
each emulator uncertainty

Store candidate model as
plausible

YES

Discard candidate model

Have N plausible models
been generated?

NO

YES

Compare uncertainty function
to uncertainty function from

previous cycle.

First cycle?

YES

NO

STOP
All discernible

structure has now
been extracted from

the system.

START

YES

NO

Seismic, MT, gravity
simulator codes

Define prior model space over all active
parameters and processes using

Generate *1500 training MODELS for each
of the seismic, MT and gravity domains

*1500 training DATASETS for each of
the seismic, MT and gravity domains

*The value of 1500 is determined on the first cycle
by observing when the uncertainty function is no

longer updated when more models are added to the
calibration step. At this point, the model space has

been sufficiently sampled by training models

NO

THE OUTPUT
The distribution of all plausible models given our

beliefs about the physics of the system, our
uncertainties about those beliefs, the dataset, data
measurement uncertainty and model discrepancy.

PRELIMINARIES

TRAINING
SIMULATIONS

BUILDING
EMULATORS

SCREEN MODEL SPACE

THE INPUTS

Seismic, MT and gravity
simulator codes

Seismic, MT and
gravity datasets

Observed seismic,
MT and gravity data

Geophysical insight

Local geophysical insight (for prior
model space and empirical inter-

parameter relationships)

Tuning parameters such
as implausibility criteria
and number of models
required for each cycle

Figure 1. The emulator screening methodology.
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ψ ¼ fðθÞ: (1)

In the case of a heavily parameterized system, with many nodes
in the parameter models, and many output data, this function, or
simulator f can take a long time to evaluate. For a typical inversion
problem involving seismic data, many thousands of evaluations of f

maybe required, and the problem very quickly becomes impractical
to solve if the time spent evaluating f is significant.
Vernon et al. (2009) and Kennedy and O’Hagan (2001) use em-

ulators to address this kind of problem in which large numbers of
complex simulator evaluations are required. An emulator seeks to
represent the simulator function f as a combination of a computa-
tionally cheap deterministic function (e.g., a polynomial) h and a
Gaussian process g (Rasmussen and Williams, 2010):

ψ ¼ hðθÞ þ gðθÞ: (2)

The aim is not to completely replace the full simulator, but to
develop a system such that one can very quickly glean enough in-
formation from the relationship between the model parameters and
output data to make meaningful judgments about whether regions
of model space can be excluded from the analysis on the basis that
they would result in output data not compatible with the ob-
served data.
Because h and g are fast to evaluate, a considerable time savings

(of orders of magnitude) can typically be achieved by this approach.
In the study detailed here, we adopt a multistage approach (Vernon
et al., 2009) of seeking to describe the global behavior and then, as
the implausible model space is excluded, to describe increasingly
localized behavior as we develop more predictively accurate emu-
lators.

DATA, MODEL SPACE, AND THE INVERSE
PROBLEM

Data

A joint data set for this study was kindly supplied by Statoil. It is
a joint 3D seismic, FTG and MT data set recorded over a region
known to Statoil as being characterized by a salt diapiric body (Fig-
ure 2). To simplify the problem, we enforce a local 1D solution. The
MT data were transformed into the directionally independent Ber-
dichevsky invariant form (Berdichevsky and Dmitriev, 2002), seis-
mic data were picked for 1868 shot gathers and transformed into the
common midpoint (CMP) domain, and the closest CMP profiles to
each MT station were identified and used as 1D seismic data for the
purposes of the study. The FTG data were transformed to scalar
data, and the closest measurement to each MT station was identi-
fied. Results are thus generated for the series of 1D seismic, MT,
and gravity data sets collocated at the site of each MT station. In
this paper, each site is labeled “STxx”, where “xx” can take the
value 1–14, for example, in Figure 2.

Gravity datum

In addition, it was also necessary to establish a datum for the
gravity data measurements so as to make meaningful comparison
between each station. This is because if the models are allowed to
be of arbitrary total thickness, then the gravity reading could be
considered as simply as a free parameter and afford no constraint.
In practice, this is an expression of the Airy hypothesis of isostasy
(Airy, 1855). This calibration requires the tying of the measured
gravity point at one station to the simulator output at that station,
with an assumption about the structure at that station, against which
results at the other stations can be considered as being relative
to. This assumption might be that the model is of a given total
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Figure 2. Data examples: (a) seismic, (b) gravity, and (c) MT. The
red dots on the seismic gather show the first arrival wide-angle turn-
ing waves, which are being modeled in this study. On the gravity
map in panel (b), the locations of ST5, ST7, ST12, and ST13 (which
are frequently referred to in this study) are marked with purple stars,
and the track of the 2D line for which profiles are shown in later
figures. The MT data plot shows Berdichevsky invariant (Berdi-
chevsky and Dmitriev, 2002) Re(Z) and Im(z) for stations ST7
(red) and ST12 (green).
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thickness, or some other consideration about the model. We choose
to use the assumption that at a given point along the line, there is no
salt present. On the grounds that prior studies indicate that it lies
over a region of sediment, we chose to use station ST12 (Figure 2)
for the purpose of gravity calibration. The calibration was carried
out by running the code with gravity screening disabled, only gen-
erating “sediment models” and then generating density models
using the relationship in equation 7 from the plausible velocity mod-
els. Gravity measurements were then generated from these models
using the gravity simulator, and the most likely gravity measure-
ment were compared with the measured gravity value at station
ST12. The difference between these two values was then used as
a “correction” value for comparing screened gravity values to mea-
sured gravity values at all the other stations. In practice, this means
that the gravity results in this study and the “salt content” are being
measured relative to station ST12 screened with the assumption that
there is no salt there (the prior probability of salt in each layer is
set to zero, and thus no salt models are generated). However, for a
meaningful comparison (and a test of the assumption that there is no
salt at ST12), the screening process is then repeated for ST12 with
the possibility of salt models included with a probability of 0.5 in
each layer, as was the case for the other stations. A comparison
of the results prior to the gravity calibration (without gravity con-
straint) and postcalibration (the main results presented in this paper)
would provide an interesting study; however, for brevity, these pre-
liminary outputs are not discussed here.

Methods and model space

Our goal is to describe the model in terms of proxy quantities
(P-wave velocity, resistivity, and density) and also to obtain a rock
probability map for the profile along which the MT stations are lo-
cated. Although the priors in this study are somewhat illustrative, in
a scenario in which the priors are well constrained and tested, such a
probability map may be used as a more direct input to evaluate geo-
logic risk, rather than simply providing proxy-parameter models
that the scientist must then interpret. We discern the distribution of
jointly plausible models with respect to each of the seismic, gravity,
andMT data sets, given all of the uncertainties wewish to specify, by
generating candidate joint models drawn from a prior model space. In
this way, we effectively screen the model space using the interpara-
meter relationship to discriminate between salt and sediment rocks.
As is noted in Roberts et al. (2012), the simulators, particularly

the seismic simulator (Heincke et al., 2006), are more sophisticated
than required for the problem at hand; however, to facilitate future
development and allow integration and direct comparison with other
work (Heincke et al., 2006; Moorkamp et al., 2011, 2013), we use
these simulators.

Prior model space

The first consideration is the initial model space within which we
consider the plausible models for the system to lie (Figure 1). Our
focus here is on the emulation methodology as a means to screen
and constrain model space, rather than on generating robust Baye-
sian posterior distributions for the particular region used for the case
study. As such, here we have placed only a cursory emphasis on the
determination and specification of the prior model space. The final
result should, therefore, not be considered as a true Bayesian con-
straint from which a genuine geologic inference can be made about

this region. For such a result, proper consideration of appropriate
priors should be made, and proper sensitivity calibration through
sampling those priors. Accordingly, the analysis presented here
is made on the assumption that there is indeed halite present in the
region of earth under consideration and on the basis that that halite,
and indeed the surrounding material, has properties reflective of
those seen globally and in conjunction with the borehole data set
described below.
Similarly, at several points in the emulator building and screening

process, the tuning parameters are set. Again, here these are chosen
somewhat qualitatively and arbitrarily. In reality, the choices made
for these parameters also constitute part of the model space, and so
for the results of the screening process to be geologically meaning-
ful, expert judgment should be used in the choice of these param-
eters, with a prior distribution that can be fully sampled. The final
results of the analysis presented here should thus be treated as being
illustrative of the method and should be subject to all of the explicit
and implict assumptions made, rather than being authoritative as to
the earth structure in question.
Our prior joint model space is constrained primarily by three

influences: (1) the interparameter relationship linking the seismic
velocity, density, and resistivity parameters, (2) the range of geo-
physically plausible values which each of these parameters may
adopt, and (3) the prior probability of salt existing in each layer.

Physical parameter relationship.—For the purpose described
here, a rock is characterized by its combination of physical properties
(inour case, resistivity, seismicvelocity, anddensity),whichare encap-
sulated by the empirical physical parameter relationships that connect
them. In this joint setting,we therefore propose, for a given layer, com-
binations ofmodel parameters across each of the domains that are con-
nectedbyeitherasediment relationshipora“salt relationship.Bydoing
this, and then assessing the fraction of models deemed plausible gen-
erated using each relationship for a given depth, we can then make a
statement about the rejection ratio formodels generated using each re-
lationship regarding theprobability that salt or sediment exists atdiffer-
ent locations and constructing a salt likelihood map for the profile.
The interparameter relationship for sediments, although it is em-

pirical and uncertain, may be relatively easily formulated by fitting
a curve through well-log data from the survey area (Figure 3). How-
ever, the presence of salt complicates the situation somewhat, in that
for sediment there is a monotonic increase between seismic veloc-
ity, density, and resistivity. However, salt has a very characteristic
seismic velocity of 4500 m∕s, a density of around 2100 kg∕m3

(Birch, 1966), and very high resistivity (>500 Ωm; Jegen-Kulcsar
et al., 2009). Therefore, we define two relationships for our situa-
tion, as shown in equations 5–9. In this case, we have chosen the
uncertainty to be a function added to a central value. It would also
be straightforward to specify the uncertainty in other ways, for ex-
ample, as uncertainty in the values of the relationship coefficients.
In these relationships, r, ρ, and v refer to the resistivity, density, and
seismic velocity values, respectively. The value Nða; bÞ refers to a
sample from a normal distribution of mean a and standard deviation
b. The borehole data from which the sediment density/resistivity/
velocity relationship was obtained (kindly provided by Statoil) is
shown in Figure 3. The borehole is located adjacent to station
ST5 (Figure 2). Consideration of Figure 3 suggests that given that
there are a considerable number of points lying outside the bounds
shown for the salt and sediment relationships, there may be a case

Joint stochastic constraint of a salt dome ID5
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for including a third relationship category of “other,” to accommo-
date these currently extremal points more effectively. However, for
simplicity, here we decided to continue with the two-relationship
scheme. In this case, we have used data from this single borehole
for the entire line. A more rigorous study would seek if possible to
consider borehole data from various points along the line to account
for regional variation.
Sediment parameter relationships are given in the following

equations:

log10ðrÞ ¼ −8.72487þ 0.0127274v − 6.4247 × 10−6v2

þ 1.45839 × 10−9v3; (3)

−1.47131×10−13v4þ5.32708×10−18v5þNð0;σrðvÞÞ; (4)

σrðvÞ ¼ −2.931 × 10−2 þ 1.989 × 10−5vþ 1.058 × 10−9v2;

(5)

ρ ¼ −785.68þ 2.09851v − 4.51887 × 10−4v2

þ 3.356 × 10−8v3 þ Nð0; σdðvÞÞ; (6)

and

σρðvÞ ¼ 1.42693 × 102 − 1.11564 × 10−1v

þ 3.0898 × 10−5v2 − 2.52979 × 10−9v3: (7)

Salt parameter relationships are given in the following equations:

log10ðrÞ ¼ 2.8þ Nð0; 0.5Þ (8)

and

ρ ¼ 2073þ Nð0;45Þ: (9)

Parameter ranges.—Another important bound on the model space
is our belief about the prior plausible model parameter ranges. It is
implicit that the model parameterization should be chosen so as to
be capable of describing the full range of prior plausible models
using as few parameters as possible and also that it should be as
unique as possible. Here, we consider 1D joint common structure
models (Jegen-Kulcsar et al., 2009). Thus, we choose a parameter-
ization of velocities, densities, and resistivities for a series of layers
of common variable thickness. A fuller treatment would involve
quantitatively trialing the ability to represent appropriate geologic
formations and data sets using a range of numbers of model layers
that is in itself part of the model space definition. In this case, we
considered that after informal qualitative testing, models parameter-
ized by seven layers seemed sufficient in providing the ability for
the system to discern structure, particularly in the shallow region
and the salt body, while not overparameterizing the system given
the resolution of the observed data sets. The prior model parameter
ranges for each of these layers are shown in Table 1.

Prior salt probability.—A more subtle constraint on the prior
model space is the prior probability of salt existing in each layer.
For this study, we specify this to be 0.5 for each layer. In each
screening cycle, for each layer, salt or sediment models are gener-
ated in the ratio appropriate to the fraction of models (the likelihood
of salt present) deemed plausible for that layer from the pre-
vious cycle.

Building an emulator

Having specified the prior model space from which we intend to
draw candidate models, we now construct an emulator for each of
the seismic, gravity, and MT cases. We describe the process in detail
for the seismic case and adopt a similar approach for the MT and
gravity cases. The framework for each of these, including the full set
of governing equations, is given in Appendix A. The model space
used for training each emulator was simply defined by the range of
parameter values considered plausible in each of the velocity, resis-
tivity, density, and thickness cases (Table 1). In other words, each

0.1

1

10

100

1000

10000

100000

1000 2000 3000 4000 5000 6000 7000

R
es

is
tiv

ity
 (

Ω
m

)

Velocity (m/s)

Salt

Sediment

SaltSediment2

2.2

2.4

2.6

2.8

3

3.2

3.4

2000 3000 4000 5000 6000 7000

D
en

si
ty

 (
kg

m
–3

)

Velocity (m/s)

a)

b)

Figure 3. (a) Resistivity versus velocity and (b) density versus veloc-
ity relationships derived from well-log data. The borehole is located
adjacent to station ST5 (Figure 2). Data points were characterized by
location on the plot as being from salt or sediment, and regions de-
fined from which appropriate combinations of velocity and resistivity
parameters could be drawn. The salt region was defined as a rectan-
gular box, whereas the sediment relationship was defined by fitting a
polynomial curve (equation 5). The fitted relationship and associated
uncertainty for resistivity are shown in equations 5–7 and the equiv-
alent relations for density are given in equations 8–9. The bounds
shown here are for the 99% confidence bound (3σ). Data are kindly
provided by Statoil.
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emulator was built independently for each modeling domain (seis-
mic, gravity, and MT), using uniform distributions over the param-
eters in columns 1–4 of Table 1, and without any statement about
the origin of the models being used.

Seismic emulator

In constructing a seismic emulator, we use a method similar to
that of Roberts et al. (2010, 2012), but here we develop and improve
the results by fitting weighting coefficients to Laguerre polynomial
functions rather than fitting simple polynomial functions. We
choose to use Laguerre polynomials because of their mutual ortho-
gonality, which increases the efficiency in fitting the functions con-
cerned. Other classes of orthogonal polynomials could have been
chosen here; however, Laguerre polynomials were a convenient
choice. The exponential weighting associated with Laguerre poly-
nomials means that the fitting process here may
be more sensitive to lower parameter values. In a
more thorough treatment, this could be a focus
for investigation; however, no significant issues
were encountered here, and they were deemed fit
for purpose. Depending on the setting, other
functions may be more suitable to choose for the
bases; if the aim was to fit to periodic data, a
natural choice of basis functions would have
been a Fourier series, for example. For the first
cycle, we consider the velocity model space
shown in Table 1, parameterized by 14 parame-
ters; ðvm; smÞ7m¼1 where vi and si are the veloc-
ities and thicknesses ascribed to each of the seven
layers, as shown in Table 1. The model space is
designed such that there is finer stratification in
the shallow region. This reflects the fact that as a
result of having traveltime data out to approxi-
mately 10 km of offset, we expect greater seismic
sensitivity in the upper 3 km or so. Our aim in
building the emulator is to predict, to a calibrated
uncertainty, the seismic forward code output for
models drawn from this space. We generate a
1500 × 14 Latin hypercube (McKay et al., 1979;
Stein, 1987) and use this to create a set of 1500
models over the 14-parameter space, which fill
the space evenly. Each of these 1500 14-param-
eter models is then passed in turn to the forward
seismic simulator, producing 1500 t versus x
plots, each consisting of 100 (x, t) pairs. The sim-
ulator computes traveltimes using a finite element
method (Podvin and Lecomte, 1991; Heincke
et al., 2006). Laguerre polynomial functions are
then fitted, using a least-squares algorithm, to each
of these data sets (equation 10) to compute a vec-
tor of polynomial coefficients αx;i to represent
each of the i ¼ 1 − 1500 data sets. It was found
that Laguerre polynomials of order 3, parameter-
ized by four αx;i coefficients to weight the poly-
nomials, are sufficient to recover the form of the
data and keep the least-squares algorithm stable.
Our code is designed such that if a singularity oc-
curs in the fitting of the coefficients (i.e., overfit-
ting of the data is occurring), then the number of

coefficients is automatically decreased until a stable fit is achieved. In
early versions of the code, simple polynomials were used as basis
functions instead of Laguerre polynomials and overfitting of the data
points was commonplace; however, using Laguerre polynomials,
with the property of orthogonality over the space concerned, has
meant that such overfitting using the number of coefficients specified
here has been eliminated. Thus, we reduce each plot of 100 data
points to a set of four coefficients. In using these polynomial coef-
ficients to represent the (x, t) data, there is a misfit function that we
denote as gxðxÞ, as follows:

t ¼
�Xpx

i¼0

αi;xxie−xLiðxÞ
�
þ gxðxÞ: (10)

Table 1. Prior parameter bounds for each layer. Ranges are shown for emulator
training, and the ranges used to sample models from each of the sediment and
salt cases. Velocity values are given in units of m∕s, resistivity values are given
in units of Ωm, density values are given in units of kg∕m, and the layer
thickness values are given in units of m.

Layer Parameter
Training
(min)

Training
(max)

Sediment
(min)

Sediment
(max)

Salt
(min)

Salt
(max)

1 Velocity 1600 5500 1600 5000 4000 5000

1 Resistivity 0.5 5000 0.5 10 100 5000

1 Density 1800 3600 1800 3600 2000 2200

1 Thickness 50 1600 50 1600 50 1600

2 Velocity 2000 5500 1600 5000 4000 5000

2 Resistivity 2.0 5000 2.0 20 100 5000

2 Density 1800 3600 1800 3600 2000 2200

2 Thickness 50 2700 50 2700 50 2700

3 Velocity 2000 6500 1600 5000 4000 5000

3 Resistivity 5.0 5000 5.0 70 100 5000

3 Density 1800 3600 1800 3600 2000 2200

3 Thickness 200 2900 200 2900 200 2900

4 Velocity 2000 6500 1600 5000 4000 5000

4 Resistivity 5.0 5000 5.0 70 100 5000

4 Density 1800 3600 1800 3600 2000 2200

4 Thickness 1200 2900 1200 2900 1200 2900

5 Velocity 2000 6500 1600 5000 4000 5000

5 Resistivity 5.0 5000 5.0 70 100 5000

5 Density 1800 3600 1800 3600 2000 2200

5 Thickness 1500 2500 1500 2500 1500 2500

6 Velocity 2000 6500 1600 5000 4000 5000

6 Resistivity 5.0 5000 5.0 70 100 5000

6 Density 1800 3600 1800 3600 2000 2200

6 Thickness 1500 2500 1500 2500 1500 2500

7 Velocity 2000 6500 1600 5000 4000 5000

7 Resistivity 5.0 5000 5.0 70 100 5000

7 Density 1800 3600 1800 3600 2000 2200

7 Thickness 1500 2500 1500 2500 1500 2500
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We then fit α4
x;i¼1 to the model parameters (in this case, the veloc-

ity and layer thickness parameters ½vm; sm�7m¼1), again using a least-
squares method to fit the weighting coefficients for Laguerre poly-
nomials. This is similarly accomplished using Laguerre polynomials
up to third order in each of the layer parameters (equations 11 and
12). The result is a set of 228 βx;ijk coefficients (four for each of the
14 model parameters, plus a zeroth-order term, for each of the four
αx;i coefficients ð¼ ð4 × 14þ 1Þ × 4Þ). Again, there is a misfit func-
tion associated with this fitting step (equation 13). Examples of the
recovery of the αx coefficients using the βx coefficients are shown
in Figure 4. Using these αx coefficients, we can then construct the
traveltime curves for a given set of model parameters. Examples com-
paring the traveltime curves obtained using the recovered αx coeffi-
cients with the simulated traveltime curves are shown in Figure 5:

θx ¼ ½v1 v2 v3 v4 v5 v6 v7 s1 s2 s3 s4 s5 s6 s7 �T
(11)

and

αi;x ¼
�Xwx

k¼1

Xqx
j¼0

βijkθ
j
k;xe

−θk;xLiðθk;xÞ
�
þ gi;xðθxÞ: (12)

In predicting the parametric components of the system, we have
two sources of misfit in the process of building the emulator: gxðxÞ
and gx;iðθxÞ, as in equations 10 and 12, respectively. In equations 12–
15, we group the terms so as to separate the parametric and nonpara-
metric parts of the system and obtain the global misfit function
Gðx; θxÞ, which is a function of offset x and the model parameters
θx. A more careful treatment of the systemwould involve considering
this dependence. However, on the grounds of simplicity of calibration
given the proof-of-concept nature of this study, we chose to compute
a misfit function averaged over all model parameters. Thus, we con-
sider the misfit function GxðxÞ, as shown in equations 16 and 17:

t ¼
Xpx

i¼0

Xwx

k¼1

Xqx
j¼0

βijkθ
j
k;xe

−θk;xLiðθk;xÞxie−xLiðxÞ

þ gi;xðθxÞxie−xLiðxÞ þ gxðxÞ; (13)

¼
Xpx

i¼0

Xwx

k¼1

Xqx
j¼0

βijkθ
j
k;xe

−θk;xLiðθk;xÞxie−xLiðxÞ

þ
�Xpx

i¼0

ðgx;iðθxÞxie−xLiðxÞÞ þ gxðxÞ
�
; (14)
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¼
Xpx

i¼0

Xwx

k¼1

Xqx
j¼0

βijkθ
j
k;xe

−θk;xLiðθk;xÞxie−xLiðxÞ þ Gðx; θxÞ;

(15)

≈
Xpx

i¼0

Xwx

k¼1

Xqx
j¼0

βijkθ
j
k;xe

−θk;xLiðθk;xÞxie−xLiðxÞ þGxðxÞ;

(16)

and

GxðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnmax

n¼1 ðtem;nðxnÞ − tsim;nðxnÞÞ2
nmax

s
: (17)

To properly effect the screening of model space using a predictive
simulator proxy, it is necessary to calibrate the uncertainty on the
predictor. We calibrate the emulator uncertainty in using βx for pre-
diction by computing GxðxÞ, as in equation A-8. This is done by
generating the βx-coefficient estimated output function and the full
simulator output for each training model parameter set (Figure 5)
and computing the root mean square (rms) of the residuals with
respect to the traveltime functions used to train the emulator as a
function of x. Examples of this misfit function are shown in
Figures 6a–9a.
A key question is, “How many training models are required to

correctly estimate GxðxÞ and thus sufficiently sample the model
space?” This question is vitally important for two reasons: first, be-
cause a model’s plausibility or implausibility can only be reliably
determined if the emulator uncertainty with respect to the estimation
of the simulator output is correct and second because the aim at each
screening cycle is to exclude model space not deemed plausible; it is
crucial to properly sample the whole of the remaining space to pre-
vent the model space from being wrongly removed. If the model
coverage is not sufficient, then the emulator will underestimate the
predictive uncertainty. A more rigorous study would involve either a
more detailed assessment of the space to be sampled or the inclusion
in the sampling method of a finite probability of sampling outside
the currently constrained space. Using the criterion of two samples/
parameter, we would wish to use 214 ≈ 16000 training models (for
example, as in Sambridge and Mosegaard, 2002). For our purposes,
we chose a semiqualitative and fairly rudimentary approach of con-
sidering that if the coverage is sufficient, then the addition of further
model parameter sets to the training process will not significantly
alter the uncertainty estimate. We therefore calibrated the number of
models needed by testing cases of generating the emulator using
150, 1500, and 15,000 training models and assessing the impact
on the emulator uncertainty of adding more models to the training
process. For emulators trained over our prior model space (Table 1),
it was found that using 150 models was insufficient (Figure 5), but
that the uncertainty function estimates using 1500 and 15,000 train-
ing models give similar uncertainty functions. Over this space,
therefore, 1500 models is deemed a sufficient number with which
to train the emulator.
The set of βx coefficients and this uncertainty function GxðxÞ

together constitute the emulator, or statistical model. We use this

uncertainty function to determine whether emulated output data
of a proposed model lie sufficiently close to the observed data sets
such that the model can be deemed plausible or not. However,
GxðxÞ is calculated as the rms of the simulator-predictor residual,
and as such it is possible (and indeed, it is certainly the case in some
instances) that the actual data-representation error for a given set of
model parameters may be significantly larger than this. Hence, it
may be the case that potentially plausible models are rejected by the
emulator screening simply because the emulator prediction for that
set of model parameters was located in the tail of the uncertainty
function. The emulator screening reliability is, therefore, tested by
using this screening technique on 100 target data sets, produced by
the simulator from 100 synthetic models. A scaling factor γx for the
uncertainty function is then calculated by calibrating against these
100 target data sets, such that there is at least a 97% probability that
the emulator screening process will include the “true” model in its
selection of plausible models if the true model is included in the
candidate model space. The figure of 97% is in many senses arbi-
trary; however, we considered it suitable for the purpose at hand.
The condition for plausibility is shown in equation 18, where
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Figure 5. (a) Four example traveltime training outputs and emulator-
reconstructed outputs. Black ovals show the traveltimes generated by
the full simulator code, and the gray lines show the traveltime curves
predicted by applying the predictive β coefficients to the same sets of
model parameters. (b) Comparison of seismic emulator uncertainty
function for ST13 after eight cycles using 15,000, 1500, and 150
training models.
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temðxnÞ and ttargðxnÞ are the emulated and full simulator traveltimes
at an offset xn, respectively. The weights κx;n are user-defined
weights for each traveltime point. For example, we attach greater
importance to achieving a close fit to the short-offset traveltimes,
compared with the long-offset measurements on the basis that the
velocity gradient is typically higher in the shallow structure. Table 4
shows the values of κ used in this study. Here, we have chosen to
give all points a weighting of either 1 or 0, and varied the density of
points along the offset profile with value 1 to control the weight
given to varying parts of the traveltime curves. If preferred, the user
could easily use fractional weights:

Xnmax

n¼1

κx;n
max½jðtemðxiÞ − ttargðxiÞÞj − γxGxðxiÞ; 0�

GxðxnÞ
Pnmax

p¼1 κx;p
< nmax:

(18)

Spike emulator

To locate discontinuities in the gradient of the seismic traveltime
curves and thus constrain abrupt changes in velocity at layer boun-
daries, a “spike” emulator was built. There are a number of other
approaches (Grady and Polimeni, 2010), which could have been
taken to identify the boundary positions, such as the basic energy
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model and the total variation model. Each has strengths and weak-
nesses, particularly regarding how noise is regarded in association
with high-frequency data. A key part of the philosophy of our meth-
od is that it should be as conceptually straightforward as possible
and data driven wherever appropriate, and so we chose to imple-
ment the simple gradient detection method, described here. In build-
ing the seismic emulator, the chosen form of data reduction of using
polynomial curves to represent the t versus x curves, while being
suitable for describing the smooth trends (Figure 5), does not cap-
ture discontinuities in the traveltime gradient function dt∕dx. Rob-
erts et al. (2012) describe a strategy to consider these gradient

discontinuities, whereby the dependence of the offset position of
these gradient discontinuities is considered as a function of the seis-
mic model parameters. We adopt the same strategy here, seeking to
model such features in the data, and thus capture structural infor-
mation, with a view to optimizing the positions of the model layer
boundaries, thus best representing the substructure.
As in Roberts et al., (2012), instead of considering dt∕dx to probe

this information, we calculate the squared second derivative of the t
versus x function ψ ¼ ðd2t∕dx2Þ2 (Figure 10). In principle, given
that we are using seven-layer models, to optimize the layer boun-
dary positions, we could search for the six largest spikes. However,
the presence of six discernible spikes in many of the observed
seismic CMP gathers is unlikely (see Figure 2 for example), and
this may yield the positions of noise spikes (the positions of which
would likely be uncorrelated to any structural information). To
avoid potential computational problems as a result of misattributing
structurally sourced gradient discontinuities to noise, we choose to
only estimate the offset positions x of the three largest spikes in this
ψ ¼ ðd2t∕dx2Þ2 function. We preferentially use ðd2t∕dx2Þ2 as op-
posed to d2t∕dx2 to ensure that ψ is positive, simplifying the proc-
ess of picking the extrema, in addition to exaggerating the relative
magnitudes of the spikes in question. A key assumption of this
method is that the largest spikes do represent layer boundaries,
rather than noise. For cases in which there is a high degree of noise,
it may be necessary to either consider other methods for the detec-
tion of structural boundaries or reduce the number of model layers
and the expected output resolution.
For each seismic emulator training data set, we therefore compute

(numerically) ψ ¼ ðd2t∕dx2Þ2 and then search for the offset x
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positions of the three largest spikes. These are then fitted to the
model parameters ðvm; smÞ7m¼1 according to the formulation in
equations A-9–A-12 and the predictive uncertainty Gψ ;i, computed
by comparing the “actual” positions of the spikes to the estimates
given by βψ.

MT and gravity emulators

We built emulators for each of the MT and gravity data sets in an
analogs way; to predict complex impedance and gravitational field
strength as a function of the resistivity and density models, respec-
tively (Roberts et al., 2012). For the MT case, unlike with the seismic
data, the (ω, ReðZÞ) and (ω, ImðZÞ) functions are smooth functions,
and so we do not construct an analog for the seismic spike emulator
for the MT data set. In the case of the gravity emulator, because there
is simply a single gravity measurement at each location, rather than a
function such as (x, t) or (ω, ReðZÞ) or (ω, ImðZÞ), the initial data
reduction step is not necessary, and so we simply fit the output sim-
ulator gravity value to polynomials in the model parameters, in a sim-
ilar fashion to the method used to construct the spike emulator.

Screening phase

Having trained an emulator for each of the seismic, spike, gravity,
and MT cases using the method described above over models gen-
erated from the parameter ranges in Table 1, we generate candidate

models to test for implausibility across the three data sets: seismic,
gravity, and MT. Our goal is to generate candidate joint models to
test for implausibility and thus discern the commonly plausible set
of models (as illustrated in Figure 11). To maximize the constraint
afforded by the process, rather than performing a single screening
phase, we repeat the screening process in a cyclic scheme, each time
using the remaining plausible model space from the previous
screening cycle to build a new emulator, which due to being trained
over a smaller space, will have a smaller GxðxÞ and thus be more
predictively accurate (see Roberts et al. [2010] and Figures 6a–9).
For each of the seismic, spike, gravity, and MT cases, we use the

respective emulator to rapidly test sets of model parameters to see if
the emulated output from each set of model parameters lies within a
given range fγqGqgq¼x;ψ ;ω;ρ of the observed wide-angle traveltime
data, gravity measurement, and ReðZÞ and ImðZÞ data observed
closest to each of the stations ST1-14.
The generation of joint models may be accomplished in a

variety of ways. We choose to generate such 28-parameter models
ðvm; rm; ρm; smÞ7m¼1 by choosing a set of (vm, sm). Resistivity and
density values (rm and ρm) are then generated using the appropriate
(salt or nonsalt) relationship from vm according to equations 5–9. In
generating joint candidate models; therefore, our first question for
each layer of the model we are generating is whether we wish that
layer to be characterized by a salt relationship or a sediment rela-
tionship (Figure 3). At the start of our analysis, we therefore specify
a probability for each layer of the model, pm with which to generate
candidate models using the salt relationship or the sediment rela-
tionship. Here, we set this probability to 0.5 for each layer. In
the first screening cycle, ðvm; smÞ7m¼1 are generated on the fly using
a Sobol algorithm (Bratley and Fox, 1988), and then the emulator
outputs are tested for plausibility against the observed data set at
the station in question. In using common layer thicknesses for
the models, we are imposing the additional constraint of structural
coherency across the models. We then generate (rm, ρm) from vm
according to the salt/sediment probability vector pm. Note that in
doing so, the prior probability distributions for resistivity and den-
sity specified in Table 1 become largely implicit in the screening
process; however, in the initial emulator training step, models for
each domain are drawn independently of the coupling relationships
in equations 5–9.
On generating each candidate model, we use each of the four

emulators to generate an estimated data output in each case. We
define the condition for implausibility for an individual method
as follows: A weighted mean of the emulator-predicted data resid-
uals with respect to the observed data is less than γxGxðxÞ, γψGψ ,
γωGωðωÞ, or γρGρ as appropriate. A joint model is considered com-
monly plausible, and thus suitable for use in the subsequent cycle, if
it is found to be not implausible with respect to all three methods:
seismic (including spike), MT, and gravity, based on the plausibility
conditions shown in equations A-31–A-35 (Figure 11). By gener-
ating and testing model parameter sets in this way, we reject the
implausible model space and we build up a population of plausible
models. This is then repeated in a cyclic fashion; when 1500
plausible models have been found, they are used to build a new
emulator, which is used alongside the previous emulators to screen
further models from the reduced model space. A more careful treat-
ment would calibrate the number of training runs for each cycle
(by determining when the addition of further training runs has a
negligible impact on the uncertainty estimate).

Seismic:
196559

Gravity: 215540

All: 1500
MT+Gravity

21846

Seismic+Grav:
195194

seismic+MT:
2865

MT: 23211

Figure 11. Commonly plausible model statistics using the seismic,
gravity, and MT emulators to generate a population of 1500 plau-
sible models for one screening cycle at station ST12. In each case,
the numbers show the number of models deemed plausible by each
screening method: seismic (including spike), gravity, and MT.
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Figure 10. First arrival traveltime picks from station ST12 (gray),
with (scaled) ψ ¼ ðd2t∕dx2Þ2 overlaid (black). The aim of the spike
emulator is, to within a known uncertainty, predict the positions of
the maxima of the (x, ψ) function. In this example, ψmax are seen at
x ≈ 5500, x ≈ 5900.
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Note that for cycle n, where n > 1, the condition for a candidate
model to be considered plausible is not simply that it is not consid-
ered implausible by the test described using the emulators con-
structed for cycle n using the plausible models from cycle n − 1,
but that it is also not considered implausible for each of the preced-
ing cycles. Thus, for a given candidate model at cycle n, it must pass
the screening test for 4n sets of emulated data outputs (one for each
of the n cycles, over each of the four methods [seismic, spike, grav-
ity, and MT]). However, as soon as a model is deemed implausible
by a single screening, then that candidate model can be discarded
and a new candidate model can be generated. To maximize screen-
ing efficiency, we choose to compute the emulated output for a
given model for whichever of the emulators (seismic, spike, gravity,
or MT) is fastest to run, including computation of the plausibility
condition (equations A-31–A-35). In this case, testing against the
gravity measurement was fastest because it is just a single point.
After the first cycle, to maximize efficiency, rather than using the

Sobol sampling strategy, we use a method to sample from the joint
model parameter distribution. Sampling from the joint distribution
is not a trivial task, and there are a number of ways of accomplish-
ing this, for example, the method of Osypov et al. (2011). One of the
key considerations is that although we have 1500 models, which
sufficiently sample the model space, we do not wish to sample in
a bootstrap manner from this distribution of point values, but from
the continuous distribution described by these points. If we were to
repeatedly sample simply from the distribution of point values from
the previous cycle, then after a few cycles, the resulting distribution
will tend toward that of a number of discrete spikes. To avoid this
issue, we use a scheme of sampling the combinations of velocity
and thickness parameters (vm;i and sm;i) from the previous cycle,
each perturbed by a value sampled from a uniform distribution with
a width of 1% of the marginal plausible parameter range from the
previous cycle. In this manner, we generate new sets of ðvm; smÞ7m¼1

values which are close to those deemed plausible in the previous
cycle, according to the formulation in equation A-36. The pertur-
bation of 1% was chosen after testing a range of values. The greater
the value that is chosen, the greater is the continuity of the overall
distribution, at the expense of smearing the information available.
We make the perturbation using a uniform distribution rather than a
normal distribution to avoid issues relating to leakage, particularly
when sampling from close to the bounds of the previous cycle
parameter distributions on the grounds that Uða; bÞ is bounded be-
tween a and b, whereas Nðx̄; σÞ is unbounded. Other distributions,
such as a β-distribution, could be used here, and they may be con-
sidered to be better choices; however, in this case, we chose to use a
uniform distribution for conceptual and computational simplicity.
The choice of perturbation method affects how the distributions
are sampled, and thus they are something upon which the final re-
sults are dependent, and so they should be given proper thought.
The total number of screening cycles used can be determined by

one of several methods: that the size of the emulator uncertainty
functions fGqgq¼x;ψ ;ω;ρ fall below some threshold value, or that
they cease to reduce further (at which point, all discernible paramet-
ric information, given our emulator parameterization, has been ex-
tracted from the system), or at some arbitrary fixed number. In our
case, we choose to use a fixed number of 25 cycles. We consider
that setting an arbitrary cutoff in this fashion is not the most rigorous
method, and for a robustly interpretable result, this should be
given greater consideration; however, we deemed it suitable for

the purpose at hand of demonstrating the screening methodology.
The result from a screening cycle is the joint distribution of models
not deemed implausible. Figure 12 shows example marginal distri-
butions of model parameters for the plausible models after 25 screen-
ing cycles for station ST5. These do not represent the full information
available from the joint distribution; however, they are useful in
understanding how the parameter space is being constrained. We
consider it to be of much greater interpretative value, however, to
consider the acceptance ratio plots of Figures 13–16 (after Flecha
et al., 2013), which show the prior model space and the acceptance
ratio for model parameters in parameter-depth space.
After each screening cycle, the population of plausible models is

analyzed to ascertain the proportion of models that are characterized
by salt or sediment for each layer (this can be considered an extra
model parameter). This proportion is then used to update the prob-
ability vector p7

m¼1 during the subsequent screening cycle that a par-
ticular layer in each candidate model will be generated using the salt
or sediment relationship (equations 5–9). The parameter bounds are
similarly updated based on the newly refined model space.
By averaging, or computing particular parameter quantiles over

the depth range, and interpolating between the station, parameter
maps such as Figures 17–19 can be generated. These plots are
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Figure 12. Marginal velocity, density, resistivity, and thickness
parameter histograms for ST5, located over the transition zone be-
tween predominantly salt (layer 3) and sediment rock (layer 4).
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useful for gaining a broad overview of the geophysical features
along the profile; however, particularly in cases where there is
strong multimodality in the plausible model parameter distributions
(as is seen in several cases in Figures 13–16), they can be strongly
misleading in that in such cases the average model may lie close to a
minimum in acceptance ratio, rather than representing a maximum
likelihood estimate. This is considered further in the “Discussion”
section.
As well as the ability to consider the distribution of parameter

likelihood, this method also allows the construction of a rock prob-
ability map, as in Figure 20. This is constructed by calculating the
fraction of salt and sediment physical parameter relationships that
were deemed plausible at depth nodes down the profile.

Model validation

Well-log data

Figure 16 shows log data from a well located close to station ST5,
the location of which is shown in Figure 2. Note that, as can be seen
from Figures 17–19, the well track is not vertical at the location of
ST5 (in fact, it is much closer to ST6 at depth), and so this overlay is
only semiapplicable, and it should not be used for detailed compari-
son purposes. However, it can be seen from Figures 16–19 that the
screening process has done a reasonable job in seeing the structural
variation observed in the borehole.

In the case of resistivity, the well-log plot is close to the upper end
of the 10%–90% band through most of the depth range and the
median quantile is far from the well-log plot. Note that these quan-
tiles are not used for any screening purpose, but they are shown for
illustrative and visualization purposes. The presence of the “ground
truth” well-log plot toward the edge of the plausible model space
further emphasizes that simply adopting some maximum likelihood,
mean, or median model can be misleading, and that simply adopting
a median/mean/modal model as being representative of the model
space would not be appropriate in this case.
The density log overlay of density profile shown in Figures 16

and 17–19 is less useful because the log only starts near the top of
the salt body. However, within the joint setting of the screening
process, the method correctly identifies the top of the salt body
structure. Note that the density log is best described by the lower
density quantile shown in Figure 19c, reflecting the likely presence
of salt.

Deterministic inversion

Coworkers on the Joint Inversion with Bayesian Analysis (JIBA)
project carried out a 3D deterministic inversion of the same joint
data set using the method of Moorkamp et al. (2011, 2013). Their
result for the velocity profile is shown in Figure 21. For the MT and
gravity results associated with the deterministic inversion, the
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reader is referred to Moorkamp et al. (2011). Comparing this with
Figures 17a and 20, it is seen that the salt body is collocated with
that discerned through the model screening method.

DISCUSSION

Emulator versus simulator run time

A key aim of the emulator screening method is that the use of an
emulator should afford a considerable time savings over the full sim-
ulator code for the computation of outputs for a given set of model
parameters. To quantify this, an emulator construction and screening
cycle was timed for one of the stations (ST14) for the seismic sim-
ulator code (the most complex to fit). To run the 1500 training models
took 353 s with the full simulator. In the subsequent screening cycle,
11,243 models were then screened using the seismic emulator in 22 s
to obtain 1500 plausible models for the next cycle. The number of
models computed per second by the simulator and emulator are thus
those given in Table 2.
In this particular case, therefore, the emulator can screen models

around 100 times more rapidly than using the full simulator. This
illustrates the value of using an emulator in this setting, and indeed
although the probem at hand in this case is relatively simple, the more
complex the simulator code is, the greater will be the time saving that
a well-designed emulator can produce.

Recovery of α coefficients

In general, the recovery of the coefficients (Figure 4) for the seis-
mic emulator is reasonable and there is a clear correlation between
the “real” αx coefficients obtained from fitting curves to the training
data sets, and the emulator-reconstructed αx;em, obtained by using
the predictive β coefficients with the same model parameter sets.
The gravity data points are also well reconstructed. There is a
slightly higher scatter on the MT coefficient recovery plots, mean-
ing that the MT emulator appears to be slightly less effective at pre-
dicting the form of the output data for a given input model; this does
not mean that the MT screening is less reliable. This is because the
uncertainty in prediction is absorbed by a larger uncertainty func-
tion. Hence, although the rate at which the emulator can exclude
plausible model space is lower, the reliability of the screening proc-
ess itself is not affected. The function of the emulator is not to just
rapidly predict the simulator output for a given model, but to do so
within a calibrated/known uncertainty. This highlights how concep-
tually different the emulation Monte Carlo approach is to many of the
current schemes, which seek to simply model the system as accu-
rately as possible and find the best model. Here, instead, we seek
to iteratively exclude implausible model space, until further exclusion
is not possible, and the ability to do this relies not only on the ability
to predict the data for a given model, but also on knowing the
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Figure 16. Acceptance ratio of (a) velocity, (b) resistivity, and
(c) density models at station ST5, overlaid with the wellbore meas-
urement (yellow line). The black region shows the area sampled by
the prior model space (generated using all the models sampled in the
first screening cycle). Note that the overlay is not entirely consistent
with the location (compare the borehole track in Figures 17–19),
and so the comparison should be considered as approximate.
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uncertainty of that prediction. The reliability of the emulator in doing
this is in fact thus determined as described earlier, by the scaling fac-
tor fγqgq¼x;ψ ;ω;ρ, which is applied to the uncertainty function

fGqðqÞgq¼x;ψ ;ω;ρ, which is calibrated when the emulator is built.

Spike emulator methodology

In modeling the positions of discontinuities in the seismic trav-
eltime gradient function, one approach could have been to fit a pol-
ynomial function to the derivative dt∕dx. However, we chose to
adopt the described approach of fitting the offset positions of the
spikes in the ψ ¼ ðd2t∕dx2Þ2 function. This latter approach was
favored because, given we are using a polynomial to represent
the t versus x function, if we try to fit a polynomial to the derivative
of this function, dt∕dx, the result of the least-squares fit is likely to
be the derivative of the function given by our α-coefficient polyno-
mial representation, which we could calculate analytically, and so
we would not gain further useful information. In addition, the parts

of the gradient function containing the most useful information are
the steepest-turning regions, “which are the most difficult parts to fit
using smooth functions. Another advantage of the spike-fitting ap-
proach over trying to predict the gradient function itself is that the
maximum number of data points we are aiming to fit for an n-lay-
ered model is n–1. Whether we choose to fit all n–1 points in this
way or as described in the “Methodology” section, in our case, only
three data points (the x-positions of the three largest spikes in the
ψ ¼ ðd2t∕dx2Þ2 function), the emulator screening process is consid-
erably more efficient than in the case of fitting the derivative func-
tion dt∕dx to the entire set of traveltime offsets.

Emulator uncertainty reduction and model space
rejection rate

We have seismic data with traveltime offsets to 10 km, so we
expect (by rule of thumb) a seismic resolution down to approxi-
mately a 3 km depth. In designing the seven-layer space, we there-
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Figure 17. (a) Mean, (b) upper, and (c) lower 90% quantile velocity
models. Generated by calculating the distribution of velocity param-
eters at depth nodes for each station and interpolating between sta-
tions. The borehole track is overlaid with colors indicating the log
velocity. Note that the log velocity is very similar to the upper veloc-
ity quantile in panel (b), consistent with the presence of salt in that
region.
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Figure 18. (a) Mean, (b) upper, and (c) lower 90% quantile resis-
tivity models. Generated by calculating the distribution of resistivity
parameters at depth nodes for each station and interpolating be-
tween stations. The borehole track is overlaid with colors indicating
the log resistivity. Note that the log resistivity is very similar to the
upper resistivity quantile in panel (b), consistent with the presence
of salt in that region.
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fore concentrated thin layers toward the upper 1 km of the models
(due to the nature of the method, we expect the seismic data to af-
ford the greatest constraint at shallow depths in comparison to the
MT and gravity methods). This can be seen in Table 1 by looking at
the permitted layer thickness ranges. In the histograms of Figure 12,
the prior parameter ranges are represented by the horizontal axis
widths of each histogram. These correspond to the ranges shown
in Table 1. The fact that the distribution widths of the final plausible
parameter ranges are smaller than these ranges in most cases dem-
onstrates how the system is constraining the plausible model space.
This is seen even more strikingly in the acceptance ratio plots (Fig-
ures 13–16), where the black background shows the prior model
space. This model space reduction is also reflected in the uncer-
tainty functions in Figures 6–8, which reduce at each new cycle.
The seismic and MT uncertainty functions at the end of the final
screening cycle for each station location are shown in the form
of predictive data uncertainty maps in Figure 9.
Figures 6–8 show how the predictive uncertainty of the emulator

in representing the simulator output reduces with each cycle as the
model space is refined. It is clear that the rate of this reduction (also
visible in Figure 9) varies across the profile: The rate of uncertainty
reduction at station ST7 is much lower than at station ST13, for ex-
ample. This variation is directly related to the changing plausible
model parameter space, and the nature of the interparameter relation-
ships in equations 5–9 and Figure 3; a high uncertainty in these will
reduce the rate at which model space is rejected as implausible. In this
case, there is a large uncertainty on the resistivity of salt (Figure 3) in
comparison with the uncertainty for sediment. Also in the case of salt,
there is no correlation between the resistivity, density, and velocity
values in that the value of resistivity does not further constrain the
value of velocity or density. This can be seen in Figure 3, in which
the relationship bounds for salt are simply rectangular boxes, as op-
posed to the nonzero gradient on the relationships for sediment.
As a result of these two considerations, in regions where there is

a strong salt presence, the system will be comparatively slow in
rejecting the model space because the three methods (seismic, grav-
ity, andMT) are not strongly mutually cooperative in reducing model
space. In the case of sediment, there is lower uncertainty in the rela-
tionship and a much stronger correlation between the parameter val-
ues. As a result, where there is sediment, the three methods assist one
another much more effectively in reducing the size of the model
space. The cooperation between the methods can be seen in Figure 8,
in which each of the methods is seen to be clearly more effective in
reducing the emulator predictive uncertainty at varying screening
cycles. This illustrates the value of a joint approach over a single
parameter analysis in that each method contributes information that
can be used to constrain the parameter values for the other methods.
The results of Moorkamp et al. (2011, 2013) demonstrate this point
well. In regions where there is salt, the emulator uncertainty reduction
rate is much lower (Figure 8), the result of which is that in such
regions, sediment models will be rejected less easily. The effect of
this is that where salt is present, the probability of salt presence
(Figure 20) will be underestimated, or rather, it will be biased toward
0.5, which is the prior specified salt probability across the model. The
result is that, due to the nature of each of the physical parameter cou-
pling relationships, the system will more easily discern the presence
of sediment than the presence of salt. This is reflected in Figure 20,
where the system seems more confident of the suitability of the sedi-
ment relationship being appropriate in regions of sediment. As was

commented earlier regarding Figure 3, there is a case for perhaps
including a third rock-type relationship in the analysis given there
are a number of observations lying outside the confidence ranges
of the fitted relationships.

Nonmarginal information and sampling strategies

The histograms of Figure 12, however, do not show the full extent
by which the parameter space has been shrunk. This is because they
simply show the distribution of marginal model parameters for the
plausible model space at each cycle. To maximize the efficiency
of the sampling scheme, rather than simply sampling parameters
from the univariate marginal distributions of each of the layers, as
is the case here, the scientist could sample from the full joint distri-
bution of parameters across all layers. This would mean that, for ex-
ample, emergent correlations between, for example, the velocity of
layer 1 and that of layer 2, could be used. Such a scheme is discussed
for a synthetic case in Roberts et al. (2010, 2012).
Although the principle of sampling from a prior model space and

testing models for plausibility is conceptually straightforward, the
manner in which this sampling is carried out (in particular the prior
distribution of parameters) requires some careful thought in each
case. This is because the shape of this distribution (whether it be
normal, uniform, or some other class) is, itself a positive prior state-
ment of belief about the system. It is thus of considerable impor-
tance that the sampling strategy and prior parameter distributions
are given careful thought before embarking on this kind of method.
Sampling issues — One fundamental weakness of the method as

currently used is the assumption that the plausible model space for a
given emulation cycle has been sufficiently sampled when 1500 suc-
cessful models have been found. A proper treatment of the problem
would include the consideration that at any given emulation cycle,
there is the possibility that plausible areas of model space have not
been sampled. A significant improvement to this proof-of-concept
methodology would thus include, at each emulation cycle, a finite
probability of sampling models outside the currently constrained
plausible model space (a “jumping” distribution), as is commonly
implemented in Metropolis-Hastings-based sampling schemes
(Metropolis et al., 1953; Hastings, 1970).
Given the nature of the screening-cycling method in which the

first n successful models are chosen for screening in the next cycle,
it should be borne in mind that a weakness of this screening scheme
is that over time, for bimodal distribution sampling, such as is the
case here where salt and sediment populations are being sampled,
there will be bias toward asymmetry when the local maxima are
not equal.
In addition to the prior model space and coupling parameters

(Table 1 and equations 5–9), the method presented here also in-
cludes a number of tuning parameters as inputs (Figure 1), such as
the number of models used for each screening cycle (1500) or the
perturbation of 1% in sampling model parameters from the previous
cycle. As we have presented it here, these tuning parameters have
been arbitrarily selected, rather than fully sampled. Because the re-
sults are affected by the values chosen for these tuning parameters,
although they are probabilistic and the probability map shown in
Figure 20 is not a truly Bayesian result in that it does not represent
the product of the prior salt probability and a likelihood function. A
valuable further development of this methodology would be to con-
sider the sampling of these parameters more rigorously.
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Model representation

One of the key advantages of this kind of approach is that, rather
than a single average model, and perhaps an estimate of the uncer-
tainty on it, here, the result is the plausible model space. Although the
information contained in this result is considerably richer than in the
case of an average model and an uncertainty estimate, representing
this information presents a challenge. Figures 13–15 (after those of
Flecha et al., 2013) show the acceptance ratio for model parameters
with depth at a number of stations. It is quickly seen that, while in
some cases (e.g., station ST13), there is a clear, well-defined unim-
odal parameter distribution over most of the depth range, in other
cases (particularly where it is thought that there is a considerable salt
presence, e.g., stations ST7–8), the distribution of plausible param-
eters is multimodal. This reflects the fact that, given the observed data
and the specified parameter relationships, there may be either sedi-
ment or salt present at given depths. This multimodality shows how it
can often be inappropriate to represent the resulting geophysical

parameter constraint as some uncertainty around a central average
value. In recent years, however, a few authors, such as Zhdanov et al.
(2012), have made progress in developing methods for joint inversion
schemes for multimodal parameter spaces.
This is further highlighted by Figures 16–19. From Figure 16a

and 16c, we see that over much more of the depth range, there
are two distinct populations of parameters accepted by the screening
process; in the case of velocity, the higher valued velocities are from
salt models, and the lower valued velocities are from sediment mod-
els. In the case of density, the reverse is the case (compare with
Figure 3). In this case, it is clear that representing the result by a
central average value, where the acceptance ratio is zero, or negli-
gible, would be highly misleading. In this case, it is both of the ex-
trema of the accepted parameters that more appropriately represent
the result. Figures 17 and 19 demonstrate this clearly, in that the well-
log velocity and density re much better represented by the 90% and
10% quantiles, respectively, as opposed to the means in each case.
Note that in the case of resistivity (Figures 16b and 18), there is a

more unimodal output over the depth range. It can also be seen that
the system consistently accepts resistivity values lower than does the
recorded well log. This is thought to be due to the fact that the MT

D
ep

th
 (

km
)

0

1

2

5

4

3

0 2000 4000 6000 8000 10000

Distance (m)

0.6

0.4

0

0.2

0.8

P(salt)
1.0

D
ep

th
 (

km
)

0

1

2

5

4

3

0 2000 4000 6000 8000 10000
Distance (m)

0.10

0.05

0.00
ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 ST9 ST10 ST14ST11 ST12 ST13

(P(salt))
0.15

ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 ST9 ST10 ST14ST11 ST12 ST13

σ

a)

b)
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each station, and interpolating between stations. (b) Standard devia-
tion of the probability estimate.
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recording instruments are sensitive to conductivity rather than resis-
tivity, so that layers of high conductivity/low resistivity are seen with
greater resolution than low-conductivity/high-resistivity layers.

Beyond parameter models: A rock probability map

Amajor benefit of this model sampling approach is that, from the
start, the question of discerning between two types of rock (de-
scribed by the parameter relationships in equations 5–9) has been
integral. Rather than simply seeking to test model parameters, we
have tested joint models consistent with either one parameter rela-
tionship or another (in this case, sediment or salt). This allows the
acceptance ratio for each relationship to be considered and a map of
this, as well as of the acceptance spread, to be constructed (Fig-
ure 20). This result should be understood in context, in that it gives
the model acceptance fraction given all of the prior model space
specifications and tuning parameters used in this study. As has been
commented in the methodological sections, here, the model space
and tuning parameters have been selected somewhat illustratively,
with the aim being to focus on the screening
method. The result presented here should there-
fore not be understood as a robust estimation for
the region in question. For the result to be geo-
logically meaningful and robust, suitable expert
consideration should be given to the prior model
space and tuning parameters.
From Figure 20, we immediately see how the

system has much more definitely discerned the
presence of sediment (indicated by blue colors
and acceptance ratios < 0.5) than the presence
of salt (red colors and acceptance ratios >0.5).
We consider this to be due to the nature of the
physical parameter relationships (Figures 3),
and it is something worth future investigation.
We see that the central region (ST6–9) has a
much lower likelihood of sediment presence in
the shallow subsurface in comparison to the rest
of the profile. It is very striking, on comparing
Figure 20 with Figures 13–19, that the region
in which there is apparently more salt is not nec-
essarily characterized by a well-defined param-
eter model (velocity, resistivity, or density). If
the uncertainty shown in Figures 13–19 were
presented as the result of an inversion, it would
likely be considered that the data were at fault, or
that (rightly) it was not possible to constrain the
region from the observed data. However, on con-
sidering Figure 3, we see that it is this very un-
certainty in the parameter map, which reflects the
fact that salt is more likely to be present. How-
ever, as has been noted, the peak acceptance ratio
is approximately 0.5, which is the same as
the prior probability specification, suggesting
that the system has also struggled to add dis-
cernment.

Large 3D models and data sets

The study presented here may be considered
relatively simplistic given the size of typical 3D

models and data sets, and it is a pertinent question as to how this
methodology may be scaled up to a fully 3D treatment of the prob-
lem at hand. We have shown how using emulators instead of the full
simulators can increase greatly the efficiency of screening a large
model space. However, the practical usefulness of this method de-
pends on the time required to build the emulators. For large model
spaces with large numbers of parameters, even running the number
of simulations required to build an emulator may be impractical. In

Table 2. Model computation rate for the seismic simulator
versus emulator for one screening cycle.

Data set realizations/second

Simulator 4.25

Emulator 511.04

Table 3. Mathematical symbols used in this paper.

Symbol Description

n Data point reference number (for seismic, gravity, or MT)

nmax Total number of data points (for seismic, gravity, or MT)

x, xn Offset at which traveltime t is observed

t, tn Traveltime (at data point reference n)

ω, ωn Frequency points at which MT impedance Z is observed

Z, Zn MT impedance measurements

R, I Real and imaginary parts of Z

ψ , ψn Squared second-derivative of the traveltime curve

ϕ Gravity measurements

θ Model parameters (v, r, ρ, s)

v, vm P-wave velocity of layer m

ρ, ρm Density of layer m

r, rm Resistivity of layer m

s, sm Thickness of layer m

p, pm Probability that layer m is “salt”
α, αi, αq;i Coefficients used to fit curve to data points

β, βijk, βijk;q Coefficients used to fit αi;q to model parameters θ

f Function representing the simulator code (seismic, MT, or
gravity)

h Function representing the parametric part of the emulator
(seismic, MT, or gravity)

gq Theoretical Gaussian residual function for case q

Gq Computed approximation to gq
Li Laguerre polynomial of order i

κq;n Weighting for data point n in computing plausibility condition

Superscripts p and q
and w

Numbers of α and β coefficients and layers

Subscripts q ¼ x, ωr,
ωι, ρ, ψ

Denote seismic, MT (real or imaginary), gravity, or seismic
spike domains

Subscripts em, sim,
obs, targ

Denote emulated, simulated, observed, and target values
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addition, in using an emulator-based method such as this, the sci-
entist is ultimately trading simulator accuracy with the ability to
screen a large area of model space. Ultimately, for the problem
and purpose at hand, it comes down to the questions of (1) how
one can most efficiently extract sufficient information from the sys-
tem as to which areas of the model space are plausible and which are
implausible, and (2) at what stage in the model-screening process it
is optimal to use the information contained in the system. A key
avenue for investigation in this regard may lie in considering the
way in which 3D earth models are parameterized. In this study, for
example, we reduced the number of traveltime data points by repre-
senting the traveltime functions as polynomials parameterized by a
series of α coefficients, on the basis that in general, due to a high
sampling density, there is a strong correlation between adjacent
traveltime measurements, and particularly in the early stages of
model-space screening, the resolution of or information content in the
traveltime data is much larger than is necessary to exclude a very
large amount of model space. In a similar manner, at the early stages
of a typical model-screening process, the information content in a
high-resolution 3D model is undoubtedly much larger than is neces-
sary to exclude a very large region of model space. The natural way to
take account of this may be to consider adaptive parameterization of
the model space, for example, as considered by Trinks et al. (2005)
and others, beginning with a coarse parameterization and including
more information from the data set and introducing more model
parameters as the plausible model space is refined. Along with con-
sidering parallelization of the emulator-building and screening proc-
esses, we consider this to be fundamental to the future development
and practical application of this method.

Emulator automation and tuning considerations

Although the construction and use of emulators give considerable
computer runtime savings, in this study, the emulator construction
process has itself required considerable investment of user time and
thought. In many ways, the designing of an emulator is never quite a
one-size-fits-all scenario, for example, the class of functions chosen
to represent the data functions (in this case, Laguerre polynomials),
the number of emulation cycles to cut off the analysis, the criterion
for a model to be considered plausible, or implausible, the number
of simulator runs to train an emulator within any given setting, and
many others. For a real-world scenario, formal sampling of these
tuning parameters would need to be carried out, including the in-
corporation of insight from an expert geophysicist.
This study has sought to demonstrate the potential for emulator-

type technology as an effective tool to facilitate the rapid screening
of model space. Although the choice of emulator design can never

really be divorced from a consideration of the particular scenario at
hand, through further development, including a more robust treat-
ment of the prior model space, and the various tuning parameters,
we envisage that it may be possible to develop a semiautomated
system for particular types of geophysical settings, parameterizable
by, for example, a variety of function classes with which to fit the
data to the model parameters, coupling relationships, and implau-
sibility criteria. However, at the moment, this kind of screening ap-
proach still seems to be in its infancy in the world of geophysics, and
so considerable further work is needed before this could be realized
and the method becomes commercially feasible.

Why use this kind of approach

In cases in which system uncertainty is large, and when there are
several kinds of joint data sets, as in this example, the ability to dis-
cern the full plausible model space greatly adds to the understanding
of the system concerned. The advantage of a forward Monte Carlo
approach such as that taken here is first that the whole prior plausible
model space is considered and second that joint models generated
using different physical relationships can be tested. Based on the frac-
tion of models generated using each relationship that are accepted
and rejected, conclusions can be made regarding the probability that
a particular set of rock properties are present across the profile. This is
demonstrated by the salt probability map shown in Figure 20. It is
noticeable that although each of the velocity, resistivity, and density
models shown in Figures 17–19 may be liable to be individually mis-
interpreted (and indeed here, each of these is an average model, and
so they are not in themselves best fits to the data sets) the probability
map shows us that although a wide range of velocity, resistivity, and
density models may individually fit the data sets, if one considers the
question of which set of physical relationships are preferred across
the profile, the result in Figure 20 shows where the presence of salt is
most probable.
We consider the ability to not just ask the question of what the

optimum velocity, density, or resistivity models are, and rely on
intuition to then make judgments, but to ask the direct question
“What is the probability, given the data and prior understanding,
that salt exists across the profile?” to be extremely powerful. This
study demonstrates that it represents a more robust, satisfactory, and
useful way of informing decisions than considering a central aver-
age parameter model, about which there is some specified uncer-
tainty, which is the currently accepted pseudo-standard in many
settings.
Presenting the two results together, the probabilistic analysis de-

scribed in this paper, and the result from the deterministic inversion
(Figure 21), provides a powerful tool for the geologic interpreter.

From the deterministic result, we have an opti-
mum map for the rock properties, and from
probabilistic modeling, we can make informed
judgments about the kind of rock that is present
and the uncertainty associated with drawing par-
ticular inferences about the rock types present.
The implementation of the probabilistic approach
presented here has considerable potential for de-
velopment, technically in terms of incorporating
2D and 3D information, visualisation in terms
of viewing joint multimodal information, and in
terms of the design of the emulators used to inter-
polate the model space.

Table 4. The n weights for data points used in computation of plausibility
conditions for seismic and MT screening.

Seismic traveltime number (n) κx;n
MT point
number (n) κωfrιg;n

−10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 34, 38, 42,
46, 50, 54, 58, 62, 66, 70, 76, 82, 88

1 all (1–20) 1

All others in the range 1–99 not listed above 0
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CONCLUSIONS

In this study, we have demonstrated the use of emulator technol-
ogy in the field of geophysical constraint. Through an initial invest-
ment of training simulator runs, we have built emulators for seismic,
gravity, and MT systems, which give a rapid uncertainty-calibrated
estimate of the forward code outputs. These emulators give a speed
increase of several orders of magnitude over the full forward code
and, as a result of the uncertainty calibration, can be used to screen
large areas of model space for plausibility.
The increased constraint using several methods in a joint regime

over using a single method has been seen in that each method (seis-
mic, MT, and gravity) provides complementary information for the
exclusion of an implausible model space.
We have seen that in cases in which a multimodal distribution of

plausible model parameters is observed, it is inappropriate, mislead-
ing, and incorrect to present the results as some central average
value about which there is an uncertainty, as is often considered
the normal accepted practice in the field of geophysical imaging.
Screening the whole of the model space, rather than a small part,

in a forward scheme such as this allows not simply for the deter-
mination of an optimum model. Because the method enables the
trialing of alternative candidate rock-physics relationships (which,
in many situations, characterize the rock itself, rather than one prop-
erty of that rock), the question of “With what probability can we say
that a given kind of structure exists?” can be directly answered, as
shown in Figure 20. Presented perhaps in conjunction with the re-
sult of a deterministic parametric joint inversion, this represents a
very powerful tool for the purpose of informing geoeconomic de-
cisions, particularly in relation to risk.
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APPENDIX A

SYMBOLOGY

The mathematical symbols used throughout this paper are de-
fined in Table 3.

Seismic emulator

Here, t refers to seismic traveltime (first-arrival wide-angle re-
fraction), x refers to the source-receiver offset, and vm and sm refer
to the velocity and thickness of layer m, respectively. The px refers
to the order of polynomial used in fitting curves to each training
data set using the coefficients αx. Equation A-1 shows how we

rerepresent the traveltime curves as a set of polynomial coefficients
αi;x and a misfit function gxðxÞ. Equations A-2 and A-3 show how
the data coefficients αi;x are then represented as a polynomial in the
model parameters θx, parameterized by a further set of polynomial
coefficients βx, and a further misfit function gi;xðθxÞ:

t ¼
�Xpx

i¼0

αi;xxie−xLiðxÞ
�
þ gxðxÞ; (A-1)

θx ¼ ½v1 v2 v3 v4 v5 v6 v7 s1 s2 s3 s4 s5 s6 s7 �T;
(A-2)

and

αi;x ¼
�Xwx

k¼1

Xqx
j¼0

βijkθ
j
k;xe

−θk;xLiðθk;xÞ
�
þ gi;xðθxÞ: (A-3)

Equations A-4–A-8 show the reorganization of the formulation
described in equations A-1–A-3 to compute the global emulator
misfit function Gðx; θxÞ. In practice, we calculate a variant of this
function GxðxÞ averaged over all model parameters. The qx and wx

are the order of polynomial used to write the data coefficients α as a
function of the model parameters θ and the number of model param-
eters θ, respectively.

t ¼
Xpx

i¼0

Xwx

k¼1

Xqx
j¼0

βijkθ
j
k;xe

−θk;xLiðθk;xÞxie−xLiðxÞ

þ gi;xðθxÞxie−xLiðxÞ þ gxðxÞ; (A-4)

¼
Xpx

i¼0

Xwx

k¼1

Xqx
j¼0

βijkθ
j
k;xe

−θk;xLiðθk;xÞxie−xLiðxÞ

þ
�Xpx

i¼0

ðgx;iðθxÞxie−xLiðxÞÞ þ gxðxÞ
�
; (A-5)

¼
Xpx

i¼0

Xwx

k¼1

Xqx
j¼0

βijkθ
j
k;xe

−θk;xLiðθk;xÞxie−xLiðxÞ þ Gðx; θxÞ;

(A-6)

≈
Xpx

i¼0

Xwx

k¼1

Xqx
j¼0

βijkθ
j
k;xe

−θk;xLiðθk;xÞxie−xLiðxÞ þ GxðxÞ;

(A-7)

and
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GxðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnmax

n¼1ðtem;nðxnÞ − tsim;nðxnÞÞ2
nmax

s
; (A-8)

where ðtn; xnÞ denote the individual (traveltime, offset) observation
points.
Equations A-13–A-30 show the analogs formulation for the MT

and gravity emulators. In each case, as with the seismic case, the
emulators consist of a set of parametric coefficients βijk;ω or βjk;ρ
and an uncertainty function GωðωÞ or Gρ.

Spike emulator

ψ ¼
�
d2t
dx2

�
2

; (A-9)

xðψmaxi
Þ ¼

�X3
k¼1

Xqψ
j¼0

βijk;ψθ
j
k;x

�
þ gi;ψðθxÞ; (A-10)

≈
�Xwψ

k¼1

Xqψ
j¼0

βijk;ψθ
j
k;x

�
þGψ ;i; (A-11)

and

Gψ ;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnmax

n¼1 ðxðψ em;maxi
Þ − xðψ sim;maxi

ÞÞ2
nmax

s
: (A-12)

MT emulator

R ¼ logðZrÞ ¼
�Xpω

i¼0

αi;ωr
ðlogðωÞÞielogðωÞLiðlogðωÞÞ

�

þ grðωÞ; (A-13)

I ¼ logðZιÞ ¼
�Xpω

i¼0

αi;ωι
ðlogðωÞÞielogðωÞLiðlogðωÞÞ

�

þ gιðωÞ; (A-14)

θMT ¼ ½r1 r2 r3 r4 r5 r6 r7 s1 s2 s3 s4 s5 s6 s7 �T;
(A-15)

αi;ω ¼
�Xwω

k¼1

Xqω
j¼0

βijk;ωθ
j
k;ωe

−θk;ωLjðθk;ωÞ
�
þ gi;ωðθωÞ;

(A-16)

R¼
Xpωr

i¼0

Xwωr

k¼1

Xqωr
j¼0

βijk;ωrθ
j
k;ωe

θk;ωLjðθk;ωÞðlogðωÞÞielogðωÞLiðlogðωÞÞ

þ
Xpωr

i¼0

ðgi;ωrðθωÞðlogðωÞÞielogðωÞLiðlogðωÞÞÞþgωrðωÞ; (A-17)

¼
Xpωr

i¼0

Xwωr

k¼1

Xqωr
j¼0

βijk;ωrθ
j
k;ωe

θk;ωLjðθk;ωÞðlogðωÞÞielogðωÞLiðlogðωÞÞ

þ
�Xpωr

i¼0

ðgi;ωrðθωÞðlogðωÞÞielogðωÞLiðlogðωÞÞÞþgωrðωÞ
�
;

(A-18)

¼
Xpωr

i¼0

Xwωr

k¼1

Xqωr
j¼0

βijk;ωrθ
j
k;ωe

θk;ωLjðθk;ωÞ

× ðlogðωÞÞielogðωÞLiðlogðωÞÞ þGðω; θωÞ; (A-19)

≈
Xpωr

i¼0

Xwωr

k¼1

Xqωr
j¼0

βijk;ωrθ
j
k;ωe

θk;ωLjðθk;ωÞ

× ðlogðωÞÞielogðωÞLiðlogðωÞÞ þ GωðωÞ; (A-20)

and

GωrðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnmax

n¼1ðRem;nðωnÞ − Rsim;nðωnÞÞ2
nmax

s
; (A-21)

where ðωn; RnÞ denotes individual (frequency, impedance) observa-
tion points.

I¼
Xpωι

i¼0

Xwωι

k¼1

Xqωι
j¼0

βijk;ωθ
j
k;ωe

θk;ωLjðθk;ωÞðlogðωÞÞielogðωÞLiðlogðωÞÞ

þ
Xpωι

i¼0

ðþgi;ωιðθωÞðlogðωÞÞielogðωÞLiðlogðωÞÞÞþgωðωÞ;

(A-22)

¼
Xpωι

i¼0

Xwωι

k¼1

Xqωι
j¼0

βijk;ωιθ
j
k;ωe

θk;ωLjðθk;ωÞðlogðωÞÞielogðωÞLiðlogðωÞÞ

þ
�Xpωι

i¼0

ðgi;ωιðθωιÞðlogðωÞÞielogðωÞLiðlogðωÞÞÞþgωðωÞ
�
;

(A-23)
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¼
Xpωι

i¼0

Xwωι

k¼1

Xqω
j¼0

βijk;ωιθ
j
k;ωe

θk;ωLjðθk;ωÞ

× ðlogðωÞÞielogðωÞLiðlogðωÞÞ þ Gðω; θωÞ; (A-24)

≈
Xpωι

i¼0

Xwωι

k¼1

Xqωι
j¼0

βijk;ωιθ
j
k;ωe

θk;ωLjðθk;ωÞ

× ðlogðωÞÞielogðωÞLiðlogðωÞÞ þGωðωÞ; (A-25)

and

GωιðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnmax

n¼1 ðIem;nðωnÞ − Isim;nðωnÞÞ2
nmax

s
; (A-26)

where ðωn; InÞ denotes individual (frequency, impedance) observa-
tion points.

Gravity emulator

θρ ¼ ½ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 s1 s2 s3 s4 s5 s6 s7 �T;
(A-27)

ϕ ¼
�Xwρ

k¼1

Xqρ
j¼0

βjk;ρθ
j
k;ρ

�
þ gρðθρÞ; (A-28)

≈
Xwρ

k¼1

Xqρ
j¼0

βjk;ρθ
j
k;ρ þ Gρ; (A-29)

and

Gρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnmax

n¼1 ðϕem;n − ϕsim;nÞ2
nmax

s
; (A-30)

where ϕn denotes individual gravity observations.

Plausibility conditions

The seismic screening plausibility condition is as follows:

Xnmax

n¼1

κx;n
max½jðtemðxnÞ − tobsðxnÞÞj − γxGxðxnÞ; 0�

GxðxnÞ
Pnmax

p¼1 κx;p
< nmax:

(A-31)

The weights κx;n are shown in Table 4.
For the seismic spike screening, the plausibility condition that

must be met for each of the i spikes is as follows:

jxemðψmaxi
Þ − xobsðψmaxi

Þj − γψGψ ;i < 0: (A-32)

For the MT screening, the plausibility condition is that both of the
following conditions must be met:

Xnmax

n¼1

κωr;n
max½jðRemðωnÞ−RobsðωnÞÞj−γωGωrðωnÞ;0�

GωrðωnÞ
Pnmax

p¼1κωr;p
<nmax;

(A-33)

and

Xnmax

n¼1

κωι;n
max½jðIemðωnÞ− IobsðωnÞÞj−γωGωιðωnÞ;0�

GωιðωnÞ
Pnmax

p¼1 κωι;p
<nmax;

(A-34)

and The weights κωfrιg;n are shown in Table 4.
The gravity screening plausibility condition is as follows:

jϕem − ϕobsj − γρGρ < 0: (A-35)

Joint sampling method

The methodology for generating a new set of velocity and thick-
ness values θ 0

i from the joint parameter distribution from the pre-
vious screening cycle (where the parameter values are given by θi)
is shown in equation A-36. The values θi;max and θi;min are the maxi-
mum and minimum bounds of θ from the previous cycle as follows:

θ 0
i ¼ θi þ Uð−0.01ðθi;max − θi;minÞ; 0.01ðθi;max − θi;minÞÞ:

(A-36)
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