Self-Adapting Execution of
Pipe-and-Filter Systems

Master’s Thesis

Marc Adolf

March 23, 2016

KierL UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
SOFTWARE ENGINEERING (GROUP

Advised by: Prof. Dr. Wilhelm Hasselbring
M.Sc. Christian Wulf

Statutory Declaration
I declare that I have authored this thesis independently, that I have not used other than the

declared sources / resources and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.

Kiel,

ii

Abstract

To improve the performance of pipe-and-filter applications several steps can be taken. One
of these is the utilisation of different computational resources, like memory or CPU cores.
Especially the modular design can be used to employ parallelisation techniques and
distribute threads to certain filters. This resource distribution in pipe-and-filter systems
is a difficult issue. Often it has to be handled manually or the same automatic strategy
is used for every application. Especially input dependent computational efforts and a
dynamic behaviour of the system that change at runtime can’t be handled well with
these strategies. Following the MAPE-K approach, we present a realisation of the required
effectors and sensors in the used execution model, the push-model. These are utilised
to create a control loop and several service classes similar to their, so called, autonomic
manager. Our implementation can be used with different customisable strategies and
monitored properties. We extended the TeeTime pipe-and-filter framework to implement
our approach. We also evaluated the feasibility, the overhead, and the first implementations
of different policies. Thereby, we show, that our extension can change the system at runtime
and influence the performance. The measured overhead is small but varies between tested
systems. Our implemented strategies show different behaviours but are not able to improve
the performance in our first test scenarios. In a second evaluation with different benchmark
scenarios the performance can be clearly improved.

1ii

Contents

Motivation 1
11 Goals e 2
1.2 Document Structure L 3
Foundations and Technologies 5
2.1 The Pipe-and-Filter Architectural Style 5
2.2 TeeTime: a Pipe-and-Filter FrameworkinjJava 8
2.3 Autonomic Computing Systems L. 10
Requirements for the Self-Adaptation of Pipe-and-Filter Architectures 13
An Approach to Change Executing Threads of Stages at Runtime 19
4.1 Activatinga StageatRuntime oo Lo 0oL 20
4.2 Deactivating a Stage at Runtime 29
4.3 Conversion to Other Execution Models 34
44 Stage Multiplication L L o L 35
Self-Adaptive Resource Distribution 37
5.1 Structure of the Self-Adapting Assignment Extension 37
5.2 The Design of the Thread Assignment 38
5.3 The Design of the Analysis 42
5.4 The Behaviour of the Thread Assignment 46
5.5 The Behaviour of the Analysis 50
5.6 Implemented Metrics o 53
5.7 Behaviour of the Implemented Thread Assignments 54
Evaluation of the Feasibility and the Performance 59
6.1 Evaluation Methodology 59
6.2 Variable Scenarios Used in the Evaluation. 60
6.3 Feasibility of the Extension 62

6.3.1 Threats to Validity of the Feasibility Evaluation 67
6.4 Overhead of the Monitored Unsynchronised Pipe 68

6.4.1 Threats to Validity of the Overhead Evaluation 69
6.5 First Performance Evaluation of the Adaptive Assignment Algorithms 70

6.5.1 Low Computational Effort Performance Tests 70

6.5.2 Mixed Computational Effort Performance Tests 73

Contents

6.5.3 High Computational Effort Performance Tests 76

6.5.4 Conclusion of the First Performance Evaluation 78

6.5.5 Threats to Validity of the First Performance Evaluation 80

6.6 A Second Performance Evaluationonthe INTEL. 81
6.6.1 Threats to Validity of the Second Performance Evaluation 83

7 Related Work 85
8 Conclusions 87
9 Future Work 89
Bibliography 91
A Appendices 1
A1 Diagrams of the Feasibility Evaluation 1
A2 PipeComparisonData 0. 5
A.3 Performance EvaluationData 5
A31 INTELData i it 5

A32 AMDData. 12

A33 SUNData e 18

A.3.4 Second EvaluationontheINTEL 25

vi

Chapter 1

Motivation

In the field of stream processing the inputs of the applications consists of multiple elements
[Hormati et al. 2009]. The computation applied to each of them often includes different
independent steps. Hence, the structure can be divided into these steps, which each element
has to pass through. Thereby, each station uses the output of the preceding one as input
and applies the same operation to every element. This results in a network of separate
computational steps, called filters. The connection between the single filter can range from
simple function calls to complex synchronisation mechanisms. Often the pipe-and-filter
architectural style [Taylor et al. 2009; Monroe et al. 1996] is used to model such problems
in a modular way. Especially in the context of Big Data or applications with continuous
data streams, like system monitoring, this is a commonly used architecture [Burtsev et al.
2014; Wulf et al. 2014]. For example the monitoring framework Kieker [van Hoorn et al.
2012; 2009, b] uses an underlying pipe-and-filter architecture to analyse the measured system
states. Enabled by the low coupling of the single functions the user can easily choose which
part of the analysis should be done and which algorithms should be used to treat the data.
Often some or all filters are executed separately by processing units, for example
threads or processes, as soon as enough input is available. Since the single processing steps
are dependent on each other, a slow filter slows down the whole system. Additionally
the execution time and the computational effort of each filter may change if different
inputs are given. Especially if we consider branches in the network of the pipe-and-filter
architecture that represent if-statements or even loops, the computational effort can be
further scattered. A simple example may be the handling of two CSV files. An if-statement
is used to process only certain data. One only contains entries that don’t trigger such an
if-statement and the other one has multiple of such entries. For these reasons it is difficult
to distribute the available resources to the single filters in an optimal way. Often this is done
manually by the user before the execution. This can already fail in the case where different
inputs create different computational efforts. If we consider continuous data streams, these
computational efforts can even change during a single execution. This makes a good static
distribution beforehand more difficult or even impossible. Additionally the behaviour of
the system may change depending on the underlying hardware and operating system.
Frameworks for pipe-and-filter architectures like TeeTime [Wulf et al. 2014; Wulf and
Hasselbring 2016] provide the possibility for the user to build systems in this architectural
style. To support this, the executing system, pipes and basic filters are already given. Here
filters are often called stages. The user only needs to connect those and may build own

1. Motivation

stages, if needed. Currently in TeeTime the challenge to create a good resource distribution
is mostly left to the user. Only if the execution model requires it, threads are automatically
assigned to stages. Dynamic resource assignments that change during the execution are not
supported.

1.1 Goals

There are many approaches which adapt certain pipe-and-filter and stream processing
systems. Most of them provide a solution for their special use cases and underlying
systems. Some of them use threads or CPU cores to optimise the execution. Others increase
the caching or employ further methods. We will use the TeeTime framework as a reference
implementation and extend it to reach our goals. In this work we ultimately provide the
instruments to enable a general purpose pipe-and-filter framework to be automatically and
dynamically adapted at runtime. For this purpose we define the following goals.

1. We will enable a general purpose framework to change the resources distributed to
stages at runtime. Here we limit the type of resources to processes or threads that are
assigned to stages. Therefore, a thread should be able to be assigned to a stage at runtime
and to be withdrawn from it. Additionally, we want to be able to collect information of
the behaviour from the single stages and the system as a whole during the execution. For
example we want to observe if a certain stage may be the bottleneck of the system.

2. Since we want to adapt the framework at runtime and to be able to react to certain
stages of the system, we combine both functionalities of the first goal. Therefore, our second
goal is to use these instruments and create an extension which can dynamically adapt
the used framework. Thereby, we want to be able to collect the measured observations
and analyse them. With this data we want to understand how the system behaves and
where we can improve it. Again, these steps should be done during the execution. After
deciding where the application can be improved, we want to use our methods for resource
distribution to optimise the system. The measuring, analysing, planing and execution of
the desired changes will be done similar to an autonomic managing system described by
[Kephart et al. 2003; Horn 2001]. For this purpose we will build an extension for TeeTime
and only change the original code if it is necessary. The current behaviour should be
preserved and might be optional in the future. Since there exist many other approaches
and no one seems to be clearly the best, we also want to design our system to enable an
easy replacement of the used resource distribution algorithms. In this initial work we don’t
expect to find the best algorithm for this problem.

3. Owur last goal is to evaluate our approach. Thereby, we want to show the feasibility of
our implemented methods and whether we could reach the first two goals. During the

1.2. Document Structure

implementations operations are added to TeeTime, which influence the performance of the
framework even if the new control loop is not used. Therefore, we want to measure the
overhead of these operations. Hereby, the original implementation and our approach will
be compared. Especially monitoring may create such overhead, if it can’t be turned off.
In the last part of the evaluation we want to measure how our extension influences the
execution in different situations. Thereby, varying distribution strategies can be applied to
compare them.

1.2 Document Structure

In the following, in Chapter 2 we present the pipe-and-filter architectural style and give
an overview how TeeTime implements it. Furthermore, autonomic computing systems are
introduced. In Chapter 3 it is discussed how this autonomic behaviour can be transfered to
our reference framework TeeTime. Thereafter, in Chapter 4 we describe how we realise the
change of the used resources, and therefore the resource distribution, at runtime and which
problems may occur. In the next Chapter 5 we show how we gather the monitoring data
and display the design of our extension, described in the second goal. After this the results
of the evaluation are presented in Chapter 6. At last in Chapter 7 we give an overview of
the related work and summarise this work in Chapter 8. Additionally, we present options
for future improvements of our extension.

Chapter 2

Foundations and Technologies

In this chapter we first introduce the pipe-and-filter architectural style, which we want to
extend with an self-adaptive management. After this, we display how TeeTime implements
this architecture to create a general purpose framework, which allows users to build
applications in the pipe-and-filter style. We use this framework and will extend it later on.
In the last part we introduce an approach to build autonomic computing systems.

2.1 The Pipe-and-Filter Architectural Style

In the field of stream processing data from a stream consists of several elements. Often
they are manipulated element by element. This computation may require many different
steps per element. Some of these steps may be optional. Each single step may provide its
own special functionality. These steps are reused for every received element and the stream
processing as a whole is centred around the composition of these applied manipulations.
We call these steps filters or, like in TeeTime, stages. Each stage may receive elements from its
predecessor, processes some of them and then sends the processed items to its successors,
if it has some. Since the system behaves like a pipeline with different processing stages,
the connectors between them are named pipes. This architectural style is therefore called
pipe-and-filter [Taylor et al. 2009; Monroe et al. 1996].

Often Unix commands connected by Unix pipes are presented as a well known example.
An illustrative model is displayed here:

history | grep "sudo" | grep "install"

These three connected commands already represent a simple pipe-and-filter architecture.
The data processing steps, the Unix commands, are the stages. The connectors (1) are
the already mentioned pipes that transfer the output of the predecessor to the successor.
The stages in this example are history, which is the data source of this system, and two
instances of grep. At the beginning the saved commands of the user are read by history.
They are then transferred by the pipe to the first grep instance. With the parameter “sudo”
grep outputs only lines where the sudo command was used. The second grep receives only
these remaining lines. The previous data was hence filtered in the second stage. Now only
lines where the word “install” was used are kept and printed. In total this system searches

2. Foundations and Technologies

for every time where the sudo command was used in combination with install. These
example can be further extended. The used stages can be replaced without considering the
specifications of the other connected stages. Naturally this may change the outcome of the
system.

In Figure 2.1 the example from above is shown in an alternative way to visualise the
architecture. Here we illustrate it like a directed graph, with boxes representing filters and
arrows as pipes. Intuitively the direction of the data flow is the same as the direction given
by the arrows. This representation also illustrates the advantage of the natural low coupling
in pipe-and-filter architectures. The only connection between the single modules is the data
transport through the pipes. Due to this properties building a pipe-and-filter architecture
can remind of constructing a structure with “Lego blocks”, especially if a drawn graph is
used to comprehend or design the system [Taylor et al. 2009]. This style of comprehension
can be similar to other modelling tools in analogous field like Ptolemy 2 [Dept. 2016].

grep

ST “install"

Figure 2.1. A Pipe-and-Filter configuration drawn as a graph

A pipe-and-filter architecture can contain any number of stages. These stages can be ex-
tended with multiple input and output pipes. In common architectures with no restrictions
to the processed data elements, the connection may be limited to stages by their respective
produced and received data types. Even feedback loops can be formed to represent more
complex systems, like data loops [Wulf et al. 2014]. Through the strong modular design of
the stages, the transport is entirely done by the pipes. The stages don’t need to know more
than, how to get new elements and how to send the processed ones. Therefore, it is even
possible to simply distribute stages over multiple servers and just connect them with an
appropriate pipe. One can say that, regarding the stages, pipes are like wormholes where
items come by and where the finished products can be dumped.

The processed data stream itself can be finite or even continuously. In both cases it can
be advantageous to let some of the stages be computed by separate processes or threads.
Therefore the execution of a pipe-and-filter architecture divides the stages into active and
passive ones. While the passive stages don’t start acting on their own, active stages do run
on their own and trigger connected passive ones. Thus, each active stage has its own thread.
If a passive stage is invoked the thread is also used to execute the passive one. Often single
stages are also duplicated to improve the throughput of the system. During the duplication
the architecture needs to deal with state variables which potentially increases the coupling.
Many implementations choose to avoid these synchronisation problems by restricting the
stage to be stateless, like [Welsh et al. 2001].

There exist different strategies for the execution of pipe-and-filter architectures. They
differ mainly in the chosen direction of communication. Therefore, their functions specify

2.1. The Pipe-and-Filter Architectural Style

how the control flow will propagate. One strategy is called the push-model. In this model we
start with the producer stages, which create the initial elements. In some implementations
like in TeeTime [Wulf and Hasselbring 2016] every producer in the push-model has to be
active. As soon as an element is produced and sent to one successor, this successor is
invoked. In case the succeeding stage is passive, the thread of the sending stage will execute
the receiver. This is continued, if necessary, as long as the successor is passive or the last
step of the processing was done. If the following stage is active, its owning thread will
process the element. After this is done the new thread behaves like the producer thread.
In general, we can say that stages that are at the beginning of the data flow, invoke their
successors as soon as they can provide an element. Elements are pushed from the beginning
to the sink.

The second strategy is the pull-model. Here the data sinks at the end of the data flow,
are the active parts. As soon as it needs an element, the sink will invoke a predecessor,
executing it if its passive. Active stages behave analogous to the data sink, until a producer
is reached. Elements are pulled out of the stages by the sinks.

Another strategy is to mix these two procedures. Active stages that need more elements
may pull them from their predecessors and push the result through their passive successors
[Buschmann et al. 1996].

In pipe-and-filter architectures some stages can create a bottleneck. “A bottleneck can be
described as an area (one or more components) where the request arrival rate is higher
than the outgoing rate” [Michiels et al. 2002]. The stage that has the lowest ratio is the
bottleneck and thus slows down the whole system. It does not produce enough elements
for its successors to run efficiently and its predecessors may be blocked due to full pipes.
As a simple example in the push-model, assume that we have a pipe-and-filter architecture in
which each stage is executed in a different thread and each stage has one input and one
output pipe. Each stage can only process as many elements and as often as it receives them
from his predecessor. Hence if a stage is noticeably slower than the others, the successors
are slowed down by it. If we also consider a maximum buffer size in a pipe, even the
predecessors are limited by it, waiting for the pipe to have room for more elements. This
bottleneck stage is obviously slowing down the rest of the system. Since the neighbouring
stages are slowed down to the same throughput, this cascades through the whole system.
Assigning more threads to the bottleneck may increase the overall performance. It is not
always possible to optimize the program, e.g. if the data access is limited. Additionally
adding more threads than necessary can be a waste of resources and may even hurt the
performance [Suleman et al. 2010; Soulé et al. 2013]. This is similar to project management
where the longest path in a Gantt chart describes the critical path of a system. If this path
is slowed down the whole project is delayed and vice versa.

There also exist different techniques to optimise stream processing. Two examples are
the fusion and fission of stages. In the process of stage fusion two successive stages are fused
to generate a single new stage which combines the processing steps of these two. This
can be done to reduce communication overhead or to simply free resources. The opposite

2. Foundations and Technologies

technique is the fission of a stage. Here some of the processing steps, a stage employs for a
data element, are sourced out to a new stage. Hereby the computational effort of a single
stage is split into more components [Hirzel et al. 2014]. Pipe-and-filter architectures can be
used for different data processing tasks, like streaming, compression or system monitoring
[Suleman et al. 2010; Wulf et al. 2014].

2.2 TeeTime: a Pipe-and-Filter Framework in Java

TeeTime is a pipe-and-filter framework for Java [Wulf and Hasselbring 2016]. The framework
allows the user to build systems in the pipe-and-filter architectural style. The main idea
is to provide a framework for stage developers and users who employ these stages. A
system should be easy to build, like the “Lego blocks” mentioned before. For this, TeeTime
already provides some predefined basic filters. For example a merger that merges two data
streams by a certain merge strategy and provides this merged data stream is such a basic
filter. Additionally individual filters can be easily built to meet the needs of the user. The
execution itself is handled by the framework. Only has to be started by the user. In TeeTime
filters are called stages. In the following we refer to the entire pipe-and-filter architecture as a
configuration.

TeeTime implements the push-model. It restricts every producer stage to be executed
by its own thread. Therefore a producer can never be passive. The framework enables
the user to distribute the computational effort of the stages on different threads. For this
purpose, a stage can be manually set as active, which means that it will be executed in a
new thread. By default only the producers will be active at first. Due to the push-model,
the other passive stages are executed by the same threads like their predecessors, which
invoke them. Thereby the computational effort of the threads may not be evenly distributed
among them.

In TeeTime, there exits a second condition in which a stage has to be declared as active. In
Figure 2.2a a simple example scenario of this special case is displayed. Stage A and Stage
B are producer stages and hence run by their corresponding threads. Now the framework
has to decide, who is responsible for Stage C. Imagine that Stage C should only process
elements from Stage B after it has received the first item from Stage A. The first strategy
is to give only one of the producer stages the possibility to execute the third stage. If we
simply follow the definition from the last section, the stage is only executed as often as one
of the producers sends elements. In this situation not all elements will be processed. Even
if preparations are taken to avoid this, another problem arises if the responsible producer
finishes early.

The second strategy is to allow both threads the execution of Stage C. Since the stage
may be user-defined, the synchronisation may cause even more problems and may slow
down the system. The third strategy and the one used by TeeTime is to create a new thread
and assign it to Stage C. Now all pipes can be frequently checked and the stage can be
finished if both producer stages signal their end. The resulting situation is shown in Figure

2.2. TeeTime: a Pipe-and-Filter Framework in Java

2.2b. Here every stage has its own thread and the pipes are buffered and synchronized.
In TeeTime every stage that has more than one predecessor thread, has to be active. In a
pull-model one would have a similar problem with multiple succeeding threads.

Thread 1 Thread 1
A y Thread ? A %
Thread 2 i C Thread 2 E C
?
B — B
(a) Unclear responsibility for stage C (b) Solution in TeeTime for stage C

Figure 2.2. Issues arising with different preceding threads in TeeTime

As indicated by the last problem, stages communicate via different types of pipes. In
TeeTime a port connects one stage with one pipe. Both elements are initialised with fixed
type parameters. Especially the ports enable the support of type safety. Each stage may
have multiple input and output ports. To connect the ports of two stages and thereby the
owning stages, the user only needs to use the given method to create this connections. The
type of these pipes can currently be grouped into two classes. The first class of pipes is
used for the intra-thread communication. It is represented by the UnsynchedPipe. This pipe
transports the newest added element and forces the adding thread to execute the target
stage of the pipe. Thereby the element is immediately removed again. The second class
of pipes is used to handle the inter-thread communication. Here a bounded variant, the
BoundedSynchedPipe, or an unbounded but slower alternative, the UnboundedSynchedPipe, is
used.

The framework initialises all pipes with DummyPipes and replaces them later on. Before
the execution starts, the pipe-and-filter architecture is traversed. Thereby, if necessary, new
threads are created and assigned to stages. In a second visit the connecting DummyPipes
are replaced by the appropriate variant. After this, the framework starts the execution and
the starting signal is sent and thus propagated through the stages. Thereby TeeTime treats
stages, pipes and the whole configuration as the core elements that are employed [Wulf
et al. 2014; Wulf and Hasselbring 2016]. The execution of the configured pipe-and-filter
architecture will than be handled automatically by the framework.

Imagine a configuration built with TeeTime. Again we can represent this system as a
connected and directed graph. Since all producer stages and stages with multiple preceding
threads cause a new thread to be created and assigned, we can partition the graph in
different connected components. We create a partition for every thread in the system.
Thereby each stage in a subgraph can be reached and it can only be part of exactly one
partition. In the future we will often refer to the described subgraphs as partitions of such

2. Foundations and Technologies

a pipe-and-filter architecture. Naturally there exist exactly as much partitions as there are
active stages in the system.

2.3 Autonomic Computing Systems

Often optimising a system to improve its performance can only be controlled through
manual or semi-automated interfaces. It requires the user to manually gather information
about the program behaviour. Consecutively the user has to find the right settings trying
and measuring again. This is basically a trial-and-error approach, optimized by experience
and by insight knowledge of the program. In a pipe-and-filter architecture especially the
stages are designed to be reusable. Their behaviour may not be fully known to the user.
Therefore, an optimal usage is probably not even possible without extensive simulation
runs. Additional issues arise if the computational effort can change in an unpredictable
way during the computation. Contrary to this issues, there exist systems in the nature that
are able to automatically adapt themselves and their components to the current situation.
This enables the organisms to perform unconscious reactions to internal and external
influences. One famous example is the autonomous nervous system, which controls many
organs, or systems, in the body and allows the regular operation and cooperation of many
components.

In computer systems mechanisms are often used to regularly check the behaviour of
software components and to adapt them if needed. Thereby, the need for human interaction
should be minimized. Such a mechanism can be utilised in many different fields. Hence a
general purpose architecture for “autonomic computing systems” was introduced by [Horn
2001; Kephart et al. 2003]. They define it as “a computing system that senses its operating
environment, models its behaviour in that environment, and takes action to change the
environment or its behavior”[Horn 2001]. This approach is also called the MAPE-K control
loop, or just MAPE-K [Bruni et al. 2012].

In general such a system tries to keep the different observed and executed program
parts on course of a given policy. Every time the mechanism discovers a deviation to the
pre-calculated behaviour it tries to react to it and to restore a state according to the policy.
We can summarise that an autonomic, or self-adapting, system reconfigures itself to meet
its own needs. The decision to adapt the system may arise by events or through frequent
measurements of critical properties. There are various approaches to create flexible systems,
like described in [van Hoorn 2014; van Hoorn et al. 2009a] or [Weyns and Holvoet 2007],
which can also be applied in the pipe-and-filter context.

The main component of such an adaptive system is the control loop. Through this loop
the autonomic mechanism regularly analyses the system state and initiates changes. The
execution time of each loop iteration, how fast the system reacts, and how often it attempts
to change some properties are influences how often and how fast the system can react.
Dependent on the purpose of the adaptive program, a fast and reactive loop can be needed,
but it may also be necessary to delay it. This way potential overhead can be reduced and

10

2.3. Autonomic Computing Systems

Policy
Sensor Effector

Change
Request

Analyze D Plan

Change
Plan

Symptom

Knowledge

Monitor

\

Execute

/

Sensor J—IJ Effector

Figure 2.3. The MAPE-K Autonomic Manager [Kephart et al. 2003]

the computation may be more stable.

The computation of the loop can be split into two general phases. In the first phase we
analyse the system. This analysis represents the current state of the observed program. Now
this data can be used to compare the real behaviour with the expected one. In the second
phase the next actions are planned and applied. If the control loop decides that intervention
is needed, the planned actions are executed. After this two phases are completed, the loop
begins anew with data or events from the changed system [Kephart et al. 2003].

Figure 2.3 shows a more detailed version of the described MAPE-K approach. Here
an autonomic manager as a part of the architecture is shown. The analysing and changing
phases are further divided. In the beginning of every iteration data about crucial properties
is collected. This is done in the Monitor part. This data may include the status, the
performance and an identifier for the measured resource. In this way the autonomic system
is able to “rapidly organize and make sense to this data” [Kephart et al. 2003]. After
all data is collected, the loop proceeds to the Analyze part. In this part the gathered
data is assembled to create the system state. In the next step the state is analysed. It is
decided whether some change is needed. Thereby, techniques like time-series forecasting

11

2. Foundations and Technologies

can be applied to the data. After the decisions are made, what part of the program is not
performing well and should be changed, this information is transferred to the next phase
of the iteration. During the Plan part the course of action is set, which allows the system
to reach the goal described in the preceding part. In the last part, Execute, this course of
action is taken and changes are made to the system [Kephart et al. 2003].

During the adaptation process data has to be gathered to create a feedback by the control
loop. This feedback is ultimately returned to the observed components and changes are
applied to them. Every managed component provides a touchpoint. Through this interface
data can be gathered in the monitoring part. Moreover, changes in the execution phase can
be applied directly to these components. As Figure 2.3 indicates with the sensor and effector
at the top of the control loop, this autonomic manager can be part of bigger systems and can
also provide a touchpoint. Analogous, the controlled components can also vary. These can
be other subsystems, managers or other more or less complex parts. Naturally, even simple
parts, like a single classes or threads can be managed. Furthermore, the amount and the
type of the controlled system can vary. It may range from a single resource to a complex
system of multiple objects. The set can be composed of heterogeneous or homogeneous
pieces. At the end of this range a whole business system may be managed.

Autonomic computing systems can be found in many applications and shapes. [Kephart
et al. 2003] describe four possible categories: self-configuring, self-healing, self-optimizing
and self-protecting. Basically, in all these categories human intervention is reduced to a
minimum and the systems adapt themselves during runtime.

The specific area of application is very broad. Amongst other examples are variable
cloud applications, real time systems that may react to certain events and even games like
FI0w [Chen 2016], which adapts its difficulty at runtime to the ability of the user.

12

Chapter 3

Requirements for the Self-Adaptation of
Pipe-and-Filter Architectures

The main goal of this work is to enable a system that employs a pipe-and-filter to adapt
itself during execution. As an example implementation for our approach we choose TeeTime
[Wulf and Hasselbring 2016]. TeeTime is a good example for tasks that can be configured
with human interaction, but is not yet automated. The framework allows the user to
distribute threads to stages when he builds his architecture. To address this a method
called setActive() is given by the framework. Further influence is not possible and hence the
execution has to be carefully planned beforehand.

Every pipe-and-filter architecture may be part of a bigger system, that itself is admin-
istered in an autonomic way. In this first attempt for an adaptive extension we focus on
a single connected compilation of stages. Our work may later be extended to provide
touchpoints for overlaying autonomic managers, described in the MAPE-K architecture.
Other approaches like the DMonA Architecture [Michiels et al. 2002] already implemented
such a recursive management for pipe-and-filter architectures.

There already exist different approaches to dynamically adapt pipe-and-filter archi-
tectures from varying use cases. All solutions are specialised on their use case. Most
algorithms are designed to optimize the usage of the computational resources, increasing
the throughput or saving operations through reducing overhead. Often the approaches
decide how many resources are used to execute which stage. The decision which thread or
core executes a stage is also called a schedule. Since the real schedule of the threads and
processes is not changed, in terms of execution order, we will call it thread assignment or in
short just assignment.

Often the thread to stage assignment of a pipe-and-filter architecture is done before the
system is executed. This is called a static assignment. Some systems support changes at
runtime. This is especially the case, if the computational effort or the resources may change
during the execution or if a static schedule could not be computed beforehand. These
changes at runtime are called dynamic assignment [Hormati et al. 2009]. In the following
approach, our main goal is to extend TeeTime to enable the framework to use dynamic
assignments. The approach also covers static algorithms. The design is made in the style of
the autonomic computation approach [Horn 2001; Kephart et al. 2003].

Many of the already existing approaches for adaptive pipe-and-filter architectures are
designed for stateless stages, which can be easily duplicated. Additionally, in most cases

13

3. Requirements for the Self-Adaptation of Pipe-and-Filter Architectures

there seem to be no consideration of different pipe strategies for inter- and intra-thread
communication. This results in the same synchronisation mechanisms in every such case.
Alternative solutions, like the ones used by TeeTime, are often not considered [Suleman et al.
2010; Chandrasekaran et al. 2003; Soulé et al. 2013; Burtsev et al. 2014]. Stages that would
use intra-thread communication are fused in these systems. Often the internal properties
of fused stages are not explained further.

These approaches also don’t consider feedback loops. Without these restrictions and
their consequences threads can be easily assigned to a many-to-many relation with stages.
Especially the allocation of one thread to two stages that have other active stages between
them, is not possible in TeeTime, but is normally allowed in other approaches. The varying,
already existing, assignment algorithms claim to be the best amongst each other, and this
may even be true for their special circumstances. Therefore, we want our extension to be
automatically able to receive and employ different assignment algorithms. For the purpose
of creating our adaptive system, we need to gather general key points of existing algorithms
in the next step.

For example the Feedback-Directed Pipeline Parallelism (FDP) approach [Suleman et al.
2010] searches for the bottleneck in the system and tries to assign more cores to it. If no
free core is available, the system changes its operational mode to a power optimising one.
The power optimisation mode searches for the two stages with the highest throughput that
run on two different cores and assigns them to the same core. The freed core is assigned to
the bottleneck . This approach tries to optimise the processing time of the elements and the
resource utilisation.

In Figure 3.1 the expected behaviour of the original FDP approach [Suleman et al. 2010]
is displayed. In the image an example system is used. All stages are allocated to cores
instead of threads. During the total execution stage three, S3, is the bottleneck of the system.
Initially three free cores are available. The other cores have exactly one stage assigned
to them. At the start of the execution the adaptive algorithm begins in the optimization
mode and identifies stage three as the bottleneck. In each iteration it assigns an additional
core to the stage until no free core is available. Then the algorithm switches to the power
saving mode, where it fuses other stages to regain resources. If no more stages can be fused
without worsening the total performance, the mode is switched again. Now all three freed
cores are again assigned to S3. At the end the algorithm can’t free new resources and can
therefore not assign more cores to the bottleneck. The configuration is now optimised for
the given resources. To provide more stability to this process, the approach does not allow
the same assignment a second time. This contrasts the needs of computational efforts that
could change during the execution. If a new assignment was used and resulted in a worse
performance the previous assighment would be restored. This approach strives to create a
stable stage to core assignment.

In [Guggi and Rinner 2013] another approach is described. Here it is assumed that
every stage is already executed with their maximal throughput. More resources can not be
given to them or would not improve their behaviour. An example for this case may be a

14

7
- [Optimized Execution]
=] 4
g’ 8 G Boore T
> | |FDP gives more cores ’ 83=Goorgs.” " S°=00MES END
o to S3 in perf-mode S3=5coreg.*”
= o*
h 1 am @ =mma@® = “ .
£ * R Vv FDP gives free cores’
2 to S3 in perf-mode

3 -+ .
& ,+® S3=3cores
? Ll FDP combines stages to ’
N 6 S3=2cores free cores in power-mode
© o
E -+ o’
° ! S3=1core
z

0 1 2 3 4 5 6 7 8 9 10 1 12 121 122 time

Number of Iterations (x 2K)

Figure 3.1. The expected behaviour of the FDP approach [Suleman et al. 2010]

configuration that is executed in a distributed system with every stage on its own node. In
this case [Guggi and Rinner 2013] choose to save resources and to slow down every other
stage to the speed of the limiting one, with the lowest throughput. This is ultimately done
by reducing or increasing the interval in which the producers create elements at runtime.

While the two previous techniques initialise the configurations with one thread per stage,
[Hormati et al. 2009] propose Flextream which tries to optimise the assignment beforehand
through metrics. In their case the amount of input and output pipes was measured. A
higher number implies a higher need for computation and therefore an own thread should
be assigned to the owning stage. The partitions created by this initialisation are used as
a hint for the runtime adaptation. Often the use cases differ for distinct approaches, so
finding the best for a general purpose framework may not be possible. Therefore, our
extension will offer a modular and configurable approach to vary the used assignment
strategy and even the used metric.

All outlined assignment algorithms have three different things in common: first of all
they measure a certain property of all stages. Often this is the throughput or the execution
time of a stage per element being processed by it. The second trait is that they try to achieve
their goal through interactions with arbitrary stages. The applied changes are mostly of the
same style. A stage gets threads assigned to or the threads are withdrawn from a stage.
The commonly agreed view seems to be that the assignment of an additional thread may
not mandatorily improve the performance, but is unlikely to worsen the execution. Lastly
they all want their systems to behave in a certain way described by the algorithms.

So, all algorithms gather data on the single components of the system and need a way

15

3. Requirements for the Self-Adaptation of Pipe-and-Filter Architectures

to influence them. The single stages can be seen as the resources managed by all of them.
Peripheral variables, like the number of assigned or free cores, are secondary resources
that are implicitly managed through manipulating the single stages. Also in the monitoring
phase the point, where the measurements are taken, are the stages themselves or the
pipes used by them. Therefore, we have to implement touchpoints for the monitoring and
execution parts, as described by the MAPE-K approach [Horn 2001; Kephart et al. 2003].
Three key points are the sensors, the effectors, and the used policy or strategy.

Sensor We decided to put our first sensor implementation into the pipes. Here we can
gather multiple pieces of information, like throughput or the remaining items in the pipe.
For that, an extension of the current pipe implementation is necessary. The throughput of
the pipes is a crucial element in the configuration and our extensions to gather and provide
information will add more overhead. Hence, after the implementation an evaluation and
a comparison of the new and the current version is important. In the push-model some
information, like the number of remaining items, is related to the target stage. So, we
decide to collect data of the input pipes of each stage to represent its state information.

Effector When we talk about resource distribution in the pipe-and-filter architecture we
ultimately talk about the number of threads directly associated to the single stages. As
mentioned earlier, we distinguish between active and passive stages. This can be generalised
to stages which have a thread assigned to them and the ones that are executed by foreign
threads. Distributing resources can be done by activating the stage which performance we
want to increase. On the other hand reducing the used resources can be done by setting
a certain stage as passive. Later on, we can extend this effector to apply multiple threads
to one stage. This step needs the possibility to duplicate stages. Through these effectors
most of the algorithms can be translated, but it needs other methods to use strategies that
employ special behaviour like [Guggi and Rinner 2013] which reduce the producer speed.

Policy The MAPE-K approach describes a point, where the user can define the behaviour
of the system and the rules and goals that should be applied to them, the so called policy.
We've already discussed this in the field of stream processing. With the pipe-and-filter
architecture multiple solutions already exist and none of them can be labelled as the best.
We've decided to give the user some predefined assignment algorithms at hand, through
which he can choose how the adaptive system will behave. This basically represents the
rules or the policy for our execution.

As a conclusion we can summarise that we have a certain system that provides us a set
of homogeneous resources in form of the stages. We need to alter the stages accordingly to
our needs and implement effectors to activate or deactivate them at runtime. At the same
time we need to gather data about the behaviour of the single stages and hence the whole
system. This data is gathered at the incoming pipes of each stage. The gathering and the

16

interfaces to provide the information also have to be implemented. These two expansions
directly influence the code of TeeTime.

In the next step we have to implement the four stages of the MAPE-K approach. Thereby,
the sensors and effectors are used. The control loop frequently gathers the data from the
stages and analyses them. The analysed information is used to feed the planning phase.
The choice of the goals and the policy of the adaptive system is done by the choice of the
assignment algorithm. In the original proposal for autonomic computation systems the
analysing part is also responsible for defining the goal for the further course of the program
[Horn 2001]. In our approach we gave this responsibility to the assignment algorithms,
since they may have different objectives. Besides, we don’t want to split these two parts
and create a system more complicated to use than necessary. In the last step we have to
define a method that takes the results of any assignment algorithm and transfers them
into changes of the system. Our vision is to create an easy orchestration of the active and
passive stages. The users may choose an existing policy or even implement their own.

The following chapters provide insights of our adaptive approach. In Chapter 4 we
discuss the implementation of the effectors and the problems that may occur during the
execution. Than in Chapter 5 an overview about the management system is given.

17

Chapter 4

An Approach to Change Executing
Threads of Stages at Runtime

We discussed in Chapter 3 the need for effectors that can initiate change to the system at
runtime. These effectors have to change the thread to stage assignment of a pipe-and-filter
architecture. Hence it is necessary to enable TeeTime, the used framework, to activate
stages at runtime. Also threads should be able to be removed from stages. This chapter
describes how the effectors are implemented in TeeTime and which problems may arise
from dynamically changing the state of a stage at runtime.

Naturally, it should also be possible to deactivate a stage and to set it passive. The
freed thread can be terminated or returned to a thread pool. In both cases we have to
exclude concurrency problems, like race conditions. TeeTime uses the push-model to execute
its configuration. Therefore our approach is designed for the push-model. This decision
causes some restrictions, especially which stages have to be active. For example every
producer stage has to be executed by its own thread. A second restriction occurs if a stage
has predecessors which are processed by different threads.

For example, assume that we have two such predecessors. If both can execute the stage,
there has to be a synchronisation mechanism, which may block the other thread by an
undetermined time. This is especially important if there are more passive successors. If we
would decide on one of the threads to be responsible for this stage, we need to ensure that
the stage is executed often enough to process every element delivered by all of the incoming
pipes. At the end of the execution no element should remain that could be processed by the
stage. Since the behaviours of the stages are user defined, this may not even be sufficient to
be fault free. In TeeTime it was chosen that every such stage has to be active to avoid this
problems.

In the following part of this chapter, we discuss at first the developed method of
activating a stage, which problems can occur, and how they were avoided. After this the
reversed case, the deactivation of stages, is presented. Afterwards we explain shortly how
our approach can be converted to other execution models. At last we give an idea how
to assign multiple threads to a single stage through stage multiplication. This can be
implemented by using the task farm approach [Wiechmann 2015].

19

4. An Approach to Change Executing Threads of Stages at Runtime

4.1 Activating a Stage at Runtime

In TeeTime we can assume that every stage that is passive can also be set as active. Since
we already explained some restrictions for the configuration, we can reduce the possible
scenarios. Therefore, we only need to consider passive stages with one predecessor thread.
Stages with zero or more than one predecessors can’t be passive and thus are already
active. So this sole predecessor thread is also the only one currently executing the stage
we want to activate. Additionally, the framework uses different pipes for inter-thread and
intra-thread communication.

Figure 4.1 displays a simple configuration, which is used as an example in the following
description. We have only two stages, which are connected by a single pipe, and one thread
is executing both of them. The pipe is the regular one used by TeeTime for intra-thread
communication, the UnsynchedPipe. Stage A is the producer stage of this configuration and
can not be passive.

Thread 1

A —>3 B

Figure 4.1. Simple configuration with a single active stage A

Now we take a look at Stage B. This stage is still passive and we want to activate it
at runtime. This means the producer is running, pushing elements through the pipe and
ultimately also using the following stages. To reduce complexity we first assume we have
only this one single pipe between this stage and its predecessor. Later on we extend this
example for multiple pipes. The behaviour and the interaction of the current stage and its
successors will stay the same.

Since Stage A is active in the beginning and Stage B is passive, Thread 1 will execute
the producer stage. The pipe is an UnsynchedPipe, represented by a plain arrow. As soon as
an element is added to the pipe, its implementation manages the workflow of the thread.
The UnsynchedPipe forces the thread to execute its target stage, if an element is added.
On the other hand one of the SynchedPipes, used for inter-thread communication, will
just ensure that the element is added to a buffer and the execution of stage is handled
by an other thread. The behaviour of the two types of pipes already gives us a hint how
our starting position and our desired result differ. Therefore, just changing the pipes and
starting a new thread would be sufficient at first glance.

Figure 4.2a and 4.2b show a faulty situation that can occur if we just follow the naive
approach. In this scenario we just assign a new thread to the stage, replace the pipe

20

4.1. Activating a Stage at Runtime

and immediately start the thread. The described issue can occur regardless of the order
of these three instructions. In Figure 4.2a the new thread is already replaced but not
started. The pipe is still the same UnsynchedPipe. The T1 symbol indicates which part of
the configuration Thread 1 is currently executing. In our scenario the thread is adding a
new element to the pipe. The next step would be to execute the second stage. Before this
happens, the stage is replaced and the new thread is started in parallel. Since Thread 1 is
still using the old pipe, it also attempts to execute the next stage, as intended by the used
pipe.

Figure 4.2b shows the resulting state. Both stages have their own thread assigned and
the connecting pipe is one used for the inter-thread communication. Therefore the state of
the configuration is fine, but, through concurrent access and change of the pipe, we created
a situation where both threads are possible executing the same code. This can result in race
conditions.

Thread 1
A []——1—>[] B

(a) State of the thread just before replacing the pipe

Thread 1 Thread 2

T2
A Hmmme B
T1

(b) Possible state of the threads after starting the new thread

Figure 4.2. Possible faulty state during the activation at runtime

Especially if Thread 2 obtains the only element in the pipe, a deadlock is created. Thread
1 may not be able to progress any further and therefore can’t produce new elements. In
TeeTime a thread is not expected to execute a passive successor without having an element
to process and hence an exception is thrown that results in the termination of the system.
If both threads would read the same element and process it, we would also get a faulty
result. Another arising issue is that elements, possibly saved in the old pipe, are lost. This

21

4. An Approach to Change Executing Threads of Stages at Runtime

creates a similar deadlock as before. Therefore, in our solution we have to implement some
sort of synchronisation that only starts the new thread if it is guaranteed that Thread 1 is
not working in the part of the partition that will be separated. Additionally while replacing
the pipe, all elements and information, like if it is closed, have to be copied.

By now we have already learned that changing the pipe at runtime is necessary for
the activation of a stage. Furthermore, the pipes can block a thread from accessing the
following stage. We can use this property to create partitions by using the appropriate
pipe. So we start by replacing the UnsynchedPipe. Creating and assigning a new thread also
causes no problems. Now we only need to know when it is safe to start the new thread.

To solve this problem we could observe the thread, the stages of the partition or the
predecessor stages. This would involve changes and gathering information of multiple
parts that may again be changed in parallel. For example, another stage that is related
to the one we want to activate is also activated by an other thread. So this could be less
reliable, may need more synchronisation and may require numerous changes with potential
overhead to the framework.

In our approach we use one part of the configuration that we have to change in any
case: the pipe. Since we also don’t want to change the code of the given pipes and reduce
their performance during their usual execution, we implemented a new type of pipes, the
WaitingPipes. The ActivatingPipe is a subclass of the WaitingPipe and is used during the
activation of a stage. The procedure is the following:

First the old pipe is replaced by the ActivatingPipe. Thereby, the references in the
corresponding ports are updated, beginning by the target port. The pointers to the pipes are
set as volatile in all ports to avoid problems during the concurrent access and replacement of
the pipe. Then all states of the old pipes are copied to the new pipe to save them. Since all
states that might be set are never toggled again, this can be done without synchronisation
considerations. In view of the mechanisms of the old pipe, no elements have to be saved
now. After these preparations are done, the new pipe waits for the next element, respectively
for the call to the add()-function. As soon as this function is used, we know for sure where
the preceding thread is: In the pipe where it wants to add an element. Now this thread
is used to execute the remaining parts of the activation. Since it is now safe to do so, it
will first replace the ActivatingPipe by a SynchedPipe. In our case we use a bounded version.
Then it adds the given element to the new pipe and copies again the state variables. After
a legal state is recreated it starts the new thread.

The activated stage is used as the synchronisation object, since all involved participants
have access to it. Creating a new pipe automatically overwrites old references in the given
input and output port. The old pipe is not changed and hence can be used without worry
to complete pending operations. To ensure a fault free usage, it is important to replace
the pipe in the output port first. In the used push model the configuration graph remains
able to navigate through. Thus, while changing or even accessing the pipe, a more complex
synchronisation is not necessary. If we would not ensure that a pipe, entered through the
input port, has already set an output port, it may cause race conditions and null pointer

22

4.1. Activating a Stage at Runtime

exceptions. To avoid this, TeeTime was modified in a way that the target port is changed
first and the input port directly afterwards.

Thread 1
e
A *

Figure 4.3. Intermediate state of the configuration during the activation

Figure 4.3 shows an intermediate state of our activation approach. By activating Stage
B the configuration will be split into two partitions. The first part is the partition with
Thread 1, represented by the green box. The new partition is indicated by the grey box. An
associated thread is created and assigned but not started. Getting to this situation requires
several steps. At the beginning of the activation Thread 2 is created and assigned to Stage
B. Then the UnsynchedPipe, connecting both stages, is replaced by an ActivatingPipe. In
Figure 4.3, the new pipe is distinguished from the others by a different symbol. We start
with an ActivatingPipe, but sever the connection between the stages. Therefore, the normal
arrow, which represents the UnsynchedPipe, is altered. Additionally the dotted arrow the
split puzzle pieces indicate the division of the partition.

In this configuration state the thread will eventually execute Stage A and afterwards
the produced element has to be given to the pipe. As soon as the add()-function is called,
we got the information about what the first thread is currently doing. We know especially
that it is not executing something of the new second partition. With this information the
synchronisation is finished. The intermediate pipe can now be replaced by the SynchedPipe.
The added element is given to the new pipe and all states are copied again. This procedure
restores a legal configuration of the original TeeTime. It is now safe to start the second
thread. Both stages are now active and the configuration is the same as if they both would
have been active from the beginning.

The actions taken after we got information of the thread can be handled in two different
ways. The first way would be to let the thread that initiates the changes wait for the
synchronisation. After this, replacing the pipe and starting the thread can be done by the
initiator. The advantage of this procedure is that the changes are guaranteed to be done
after the initiating thread finishes executing the method to change the stage state. The
disadvantage is that we are dependent on other threads to advance in our algorithms. For
example, if we wanted to activate multiple stages, we would have to wait an undetermined
time for every stage, instead of using our resources in parallel.

In the second way we would let one of the threads, executing the pipe-and-filter archi-

23

4. An Approach to Change Executing Threads of Stages at Runtime

tecture, do these procedures to finish the changes. Since one of our goals is to create a
self-adapting extension for TeeTime, which may require multiple changes each time we
want to adapt the system, we choose the second approach. Until the configuration in Figure
4.3 is reached, the initiator is in charge of handling all changes. Afterwards, the preceding,
already existing thread handles the rest of the partitions separation.

In Figure 4.4 the resulting configuration is shown. Both stages have been activated with
their own thread. Therefore the system is divided into the partitions of the two threads. The
connecting pipe is the one used for inter-thread communication with a finite buffer. Hence
the pictogram of the pipe indicates this used buffer and represents this type of pipes. A big
difference between the UnsynchedPipes and the SynchedPipes is that the unsynchronised type
forces the thread that adds an element to execute the following stage. Since this is done by
a direct function calls with low overhead, a partition of multiple stages that are executed
by the same thread can be interpreted similar to fused stages. Therefore, the activation of
one stage resembles stage fission.

Thread 1 Thread 2
A oo B

Figure 4.4. Result of the activation

TeeTime allows for a stage to have multiple input pipes. Hence a scenario, where the stage
to be activated has multiple pipes, is possible. These pipes can even origin from different
stages in the same partition. Figure 4.5 displays the starting point in such an example
scenario. A similar situation would occur if there are only two stages with multiple pipes
between them. In the given example there exist two consumer stages that are connected
to the single producer Stage A. Lastly Stage D is connected to B and C, which provide
the elements for the last stage. This configuration only needs one thread to be executed.
Imagine this system is running and processing elements. Now we intend to declare Stage
D as active. To enable our approach to handle multiple input ports, a simple extension is
sufficient. Like before, we start with creating a new thread for the new partition. Again
we need information about the already existing thread to synchronise it with the new
one. All pipes have a certain probability to be used, but we don’t know which is used
next. Therefore all pipes have to be replaced like in the single pipe scenario. Every pipe is
substituted with one of our ActivatingPipes.

The remaining process is shown in Figure 4.6. Figure 4.6a presents the system stage
after the activation and all corresponding changes are initiated. All pipes are replaced by

24

4.1. Activating a Stage at Runtime

Thread 1

Figure 4.5. Configuration with multiple input pipes but the same thread

ActivatingPipe and a new thread is created. Since it is not determined which pipe is used
next, we had to replace all incoming pipes. The task of the thread initiating the change is
now done and it is not further involved. All remaining steps are executed by Thread 1.

Like before the next step requires the acquisition of information about the running
thread. Again we use the fact that it has to provide its elements to its successor. Therefore,
we can use the add()-function as synchronisation point here as well. Figure 4.6b visualises
this step. The pipe between Stage B and Stage C, marked in blue, is eventually used in
our example. Since we only have one preceding thread, the other ActivatingPipes will not
be used any further and can be replaced by now. To enable our implementation on doing
this, all neighbouring incoming ActivatingPipes of a stage know each other.

In this way we can reduce this scenario to one in which we only have one remaining
ActivatingPipe. This case is shown in Figure 4.6¢c. The setting is very similar to the activation
with one single pipe after the UnsynchedPipe was initially replaced. Now all steps are the
same as before. The pipe is replaced, the new element is given to it and all states are copied.
At the end Thread 2 is started.

The result is presented in Figure 4.6d. All pipes have been replaced and the fission is
complete. This example reveals a possible disadvantage in our approach. If we chose to
activate a rarely used branch of the pipe-and-filter architecture, the ActivatingPipes may only
be replaced after a long time or even at no time. Since the normal state is restored as soon
as a pipe is visited, this issue does not disrupt the execution of the system. It may have to
be considered and handled in cases where such a state or original pipes are required. For
example, if we want to deactivate this activated state later on, we require that stages are
not in such an intermediate state.

During the implementation of our approach we discovered two issues that can occur
during the activation. The first one is a race condition, caused by execution details from
TeeTime. If the initiating thread changes the unsynchedPipe to a ActivatingPipe, while Thread
1is currently adding an element to the pipe, the system temporarily looses track of this item.
An example where this may happen is if the thread calls the add()-function in a situation

25

4. An Approach to Change Executing Threads of Stages at Runtime

Thread 1
o
o
*3
.
(a) At first all pipes are replaced
Thread 1
g
[Jeefrasnas Tesrasans
oA
*i
(b) Waiting for the next element
Thread 1

&*:E

(c) Replace one after another

Thread 1 Thread 2

lnl HHIIHH::i D

(d) Result of the activation

Figure 4.6. Process of the activation with multiple pipes

26

4.1. Activating a Stage at Runtime

like in Figure 4.1 and immediately after the element is added the pipe gets replaced. Now
the state displayed in Figure 4.3 is reached, but the element is not yet transferred to the
new pipe. At this point the thread resumes the execution and tries to get the item it put
in the pipe beforehand. As already mentioned, the semantic of TeeTime ensures that the
element would normally be available. Due to our interaction this assumption is not met
this time and an NotEnoughlnputException will be thrown that causes the execution to abort.
To avoid this, we added an additional synchronisation point that catches the exception and
forces the thread to wait for the pipe to have copied all values.

The second issue that arises comes with the potential existence of feedback loops in the
system. Figure 4.7 visualises the starting situation and the problem that is created with
our previous approach. It represents our currently chosen solution. We start in Figure
4.7a with a single partition that includes a feedback loop between two of the stages. It is
essential that the feedback stage is not the first in this partition. In our example the loop
itself is also created by a stage in this partition. The general issue can be extended to cases
with several already existing partitions. Since TeeTime is a general purpose framework, this
configuration is possible and legal. In the given scenario we now want to activate Stage
C. This is done like before and results in the system shown in Figure 4.7b. Usually the
whole activation would be finished by now and we assume that our configuration can run
undisrupted again. In fact the feedback loop creates a situation where Stage B has two
preceding threads. The first is the old one, executing Stage A and so far also responsible
for all following passive stages. The second one is the one created while activating Stage
C. Again our procedure would leave following passive stages in charge of the new thread.
But since we have to deal with a feedback loop, both execution assumptions are in conflict
with each other and a stage with two different predecessor threads is made.

Figure 4.7c displays the chosen solution in our approach. Like TeeTime would handle
this situation during the initialisation, the stage in question is also set as active. So to repair
our configuration, we have to visit every succeeding, passive stage and check if one of
them has multiple preceding threads. In our example it may also be possible to reduce
these three partitions into two again. But in bigger configurations this might lead to more
complex changes than intended. The advantages of our solution are twofold. First the
changes are clear and may be better comprehensible. Second the actions are compliant to
the mode of operation of the used framework. The disadvantage is that we may produce
additional overhead and use more threads than needed. Please notice that through these
additional activations the number of threads required and used can be more than one per
activation. This may not reflect the first impression of the intended behaviour.

The last type of problematic configurations is similar to the issue caused by the feedback
loops. We consider again a minimal example. The starting configuration, the occurring
problems and our solution are illustrated in Figure 4.8. We start with the system displayed
in Figure 4.8a. Again we have a single producer stage, which is directly connected to the
two other stages. The whole system is executed by a single thread. An example for this
configuration would be the representation of an if-statement with an empty else branch.

27

4. An Approach to Change Executing Threads of Stages at Runtime

Thread 1

(a) Activation of a stage with a feedback loop

Thread 1 Thread 2

[T

Thread 1

A

(¢) Result of our solution

Figure 4.7. Process of the activation with a feedback loop

Now we want to activate Stage B. This is done as described before and the resulting
configuration is shown in Figure 4.8b. As indicated in this figure, it is not defined how
Stage C should be executed. Similar to the feedback loop issue we create a situation in
which we need an additional thread to re-establish a legal state. This example can be
continued endlessly by appending stages that have input pipes coming from last stage and
its direct predecessor. An interesting fact is that every stage would have to be activated if we
try to activate the first passive one, but if we try to activate the last one, no additional thread
has to be used. This behaviour is most likely not intended by the user and needs some
restrictions. Our general approach to recognise these situations is to check the successors
if one has multiple direct predecessor stages. This implies the need for more than one
threads, but it is not a guarantee.

We have now two options to handle these cases. Both are the extreme opposite of each
other. First we can just forbid this behaviour and hence enforce that the last stage has to be
activated first. The second option would be to allow these cascading activations and risk
the overuse of resources. Since we want to avoid both extrema but don’t want to forbid

28

4.2. Deactivating a Stage at Runtime

each behaviour, we implemented a mechanism to adjust the used option.

We added a variable to determine the maximum depth in a cascading activation. If this
depth is exceeded we decline the activation of the stage. Therefore setting a stage as active
with a depths of zero would behave like the first option and only enable activation without
cascading. A very high value, like the maximum of integers, corresponds to the second
approach. Intermediate values can be used to limit the cascading and the additional used
threads. The default depths is set to allow all cascading effects. This is chosen because a
large cascade is unlikely to happen in most pipe-and-filter architectures. The added depth
also has an effect to the feedback loop issue. Since we restrict the actual number of used
extra threads, we also limit the activation of stages by these loops. The value chosen by the
user or the algorithms that use this method may be dependent on the available resources.

In Figure 4.8c the default result of our approach is shown. We have now three partitions
and can only reduce them if we set Stage B as passive. Please notice that a cascade is not
automatically reversed if the stage in question is set as passive again. Therefore activating
Stage B will use two threads but setting it as passive only frees one. This issue adds to the
cause that the user may not be sure how many threads he just created, while activating a
single stage.

Unfortunately, our presented and implemented solution for cascading activation op-
erations creates more issues. Imagine a configuration where the data stream is split and
later reunited. An example is given in Figure 4.9a. We have one producer stage and one
data sink. In Stage B the data is either distributed to Stage C, Stage D or both. Later Stage
E collects the processed elements from these two stages. At first all stages are run by the
same thread. Again this is a legal situation and it can be executed.

Now we want to set Stage B as active. Our presented mechanism recursively collects
all needed threads until it meets the next active stage or the end of the graph representing
the pipe-and-filter architecture. Remember a stage should also be activated, if the stage
in question has two different predecessor stages. In this example the algorithm would
eventually visit Stage E and classifies it as a stage that has to be active, because with Stage
C and Stage D it has two different predecessors. The result is a thread assignment like
Figure 4.9a. We need two more threads despite the fact that the partitions of Thread 2 and
Thread 3 could theoretically be fused. In our approach we did not find a solution for this
issue. Since this assignment still represents a legal state it can be used. On the other hand if
we would deactivate our cascading mechanism, changes can result in illegal configurations.
In case we would not allow cascading behaviour Stage B can’t be activated.

4.2 Deactivating a Stage at Runtime
Deactivating a stage, or setting it as passive, is also necessary for an adaptive thread
management in a pipe-and-filter architecture. As seen before, there exist special cases where

a stage has to be active. These cases can not be set as passive and remain active, even if
one tries to deactivate them. To provide some transparency we implemented a method

29

4. An Approach to Change Executing Threads of Stages at Runtime

Thread 1

(a) Activation of a stage with a potential cascade

Thread 1 Thrg?ad 2 ?

A [T -7 > C

(b) Result and issue of our approach

Thread 1 Thread 2
([T

A

(c) Result of our solution

Figure 4.8. Process of the activation with cascading effects

canBePassive() to the stages. It returns whether our algorithm can change this stage or not.

Figure 4.4 also shows the starting state of a simple example configuration. Here, we
begin with a situation that is the same as the one after the activation. Our configuration is
divided into two partitions. The first one is executed by Thread 1 and the second one by
Thread 2. Now we want to join both partitions and let Thread 1 execute all stages. Since
TeeTime employs a push-model, we can only deactivate Stage B. It is possible to take the
second thread and use it as the only thread in the resulting configuration. But since we
already have one handling the first stage, it would cause more overhead to swap these
threads and would be impractical.

In our approach to set stages as passive we employ again the strategy of pipe changing.
We start with replacing the pipe connecting both stages. As indicated by the pictogram, the
pipe between these two stages is one used for inter-thread communication and therefore
has a buffer. Since our desired UnsynchedPipe has no buffer but the current pipe has one,
there may be remaining elements in the pipe that need to be taken care of. Additionally
we have to avoid a situation where Thread 1 is already finished and we deactivate Stage

30

4.2. Deactivating a Stage at Runtime

(a) Configuration including a distributer and a merger

Thread 1 Thread 2 C

A %—« T B E E

D

(b) Result of the activation of stage B

Figure 4.9. Issues arising from our cascading solution

Thread 1

A oIInm=-

Figure 4.10. The partitions will be fused, remaining items need processing

B, thus leaving an arbitrary number of elements in the pipe. These items would never be
processed. This leads to faulty results. Therefore, we have to wait again for the first thread
to enter the WaitingPipe. Now we know that it is still alive and can handle the rest. The
next step is to signal the thread of Stage B to die. To avoid race conditions we have to wait
for its termination before we can go on. After the stage is threadless, we move on.

Figure 4.10 presents the system after we replaced the buffered SynchedPype by a De-
ActivatingPipe. The new pipe is initialised with the old buffered one to gain access to
all remaining elements, without copying them. Also the state variables are copied. After
the replacement the initiating thread is done and the remaining changes are done by the
predecessor thread. The grey box also indicates that we already terminated the second
thread. Now the remaining elements have to be processed.

There are three options, which thread could be responsible for processing the remaining

31

4. An Approach to Change Executing Threads of Stages at Runtime

items. The first is the thread that calls the function and initiates the changes, to set the stage
as passive. This would lead to a blocking behaviour and other changes to other stages may
have to wait some time. Also the resources are used inefficiently, since two other threads
are available, but aren’t doing anything. The second approach would be to let the currently
active thread finish the remaining elements. In this case we can’t guarantee that the second
thread will have finished soon after the function call. So the system may contain more
remaining threads than expected.

The third approach is to let Thread 1 do the remaining work. In this way we don’t have
to wait, but we enforce handling the elements by a single thread, which could have been
executed in parallel. Our implementation applies the third approach. The thread processes
as much elements as possible until the pipe is empty or the amount can’t be reduced any
further. The buffer is emptied element by element until the state in Figure 4.11 is reached.
Since the implementation of the stages may vary and is user defined, it may be possible
that no element is taken from the pipe in one execution. Especially if a stage has multiple
pipes this may happen, for example if there exists a clock that triggers the execution.

Thread 1
A —><—

[1
1t

Figure 4.11. In the progress of fusion, the buffer is now empty

Thereby, an issue could arise again if there are still remaining elements at the end of the
execution. For example if we can’t reduce the number of elements any further and there
are still some remaining in the pipe. Assume this was the last iteration of the used thread
and it finishes regularly. Now we have remaining items but no thread to process them. In
contrary to the first impression this is the normal and desired behaviour. If the stage would
have remained active, the number of elements couldn’t be reduced either. Additionally
since there will be no more new items produced by the predecessor thread this situation
can’t change anymore. The only difference in this case is that the DeActivatingPipe remains
in the configuration. To avoid a similar issue, created by setting a stage as passive, which
has a terminated predecessor, it is important to terminate Thread 2 only after we got
hold of Thread 1. When the pipe is empty, we can switch it again and replace it with an
UnsynchedPipe. In Figure 4.12 a regular TeeTime state is restored with one active producer.
The execution can continue or we can activate Stage B again

Now we want to consider multiple input pipes. Again all pipes are replaced like the
single pipe before, creating a situation similar to 4.6c.

32

4.2. Deactivating a Stage at Runtime

Thread 1

A 3] B

Figure 4.12. Fusion of the two partitions was completed

The used trigger is also the add()-function of one of the pipes. Therefore, every pipe
knows their neighbouring pipes and replaces them one after another as soon as they get
empty. Progress is measured if the sum of remaining elements in all DeActivatingPipes is
reduced. As long as progress is made, the executing thread will try to reduce more of the
elements. If no more progress can be made in this iteration or all pipes are empty, this step
is finished. Again it may take several tries to empty all pipes and regain a system without
DeActivatingPipes.

The feedback loop issue is also present in this approach. While setting stages at passive,
we may not be able to recognise stages that don’t have to be active. Figure 4.13 shows such
a situation. In the configuration exist three different stages. Stage A is the sole producer
stage in this case. Stage B is also active and has two input pipes. Two of the stages form a
feedback loop coming from Stage C. The other one is a SynchedPipe connecting the threads.
So the whole configuration is divided into two partitions. In Figure 4.7a we have already
seen that it is possible to have a single thread executing the whole system. If we want to
set Stage B as passive and fuse the partitions to create this configuration, our algorithm
may decline it. This is caused by the simple fact that the stage has two different preceding
threads and hence has to be active. We can avoid this false assumption by an additional
test. We simply exclude the owning thread of the partition we want to eliminate during
the comparison. Ultimately our approach iterates through all input pipes of the stage in
question and if we find two or more different threads, we know for sure that the stage can
currently not be set as passive. The result equals the configuration shown in Figure 4.7a.

Thread 1 Thread 2

5 c |

Figure 4.13. A feedback loop hindering the stage to be passive

A

T

33

4. An Approach to Change Executing Threads of Stages at Runtime

We can summarise the course of action to set an active stage as passive as follows:
Check if the stage can be passive. If this is true, we first replace all incoming pipes with
DeActivatingPipes, which contain the replaced pipes and hence the remaining items in the
buffer. Then we terminate the owning thread of this stage and wait for its termination, but
only if the other thread is still alive and well doing. As soon as an element is added, we
try to reduce the remaining elements as far as possible. If the pipes are empty, we replace
the temporary WaitingPipes with UnsynchedPipes and regain a normal and operational
configuration.

Please notice that the chosen buffer size in the pipes influences the duration for
switching pipes directly. Small buffers and hence a little item count enable the algorithm to
process the remaining items quickly and to re-establish a configuration with the original
behaviour. Since later on algorithms may tend to deactivate fast stages, the item count
will often be low due to the given circumstances. A general solution should be to take the
minimum buffer size needed for an optimal execution.

On the other hand the size of the pipe influences the system as a whole. This is still
true for the execution without the adaptive approach. A low value will indeed result in fast
changes from the active to the passive state, but it will reduce the throughput of the pipe
due to synchronisation mechanisms. A value too high will slow down the deactivation
process, since we need to empty the pipe before it can replaced. In an adaptive system
with the goal to increase the performance of the execution, it is more unlikely to set a stage
as passive if it has many items left in the pipe. Furthermore this case is much rarer than
the transfer of an element. The parameter study of TeeTime [Wulf et al. 2016] suggests a
value of 1024 allowed elements to sustain a good throughput. Therefore in all settings the
size of the BoundedSynchedPipe is set to 1024. Since the pipe size plays an important role
in the performance of the system, an extensive parameter study may further improve our
approach in the future.

4.3 Conversion to Other Execution Models

It is easily possible to adapt the presented approach to other execution models. In a pull-
model the control flow and the restrictions would be reversed. All data sinks have to be
active and stages with more than one successor thread can’t be passive. In this situation we
just need to change the outgoing pipes, instead of the incoming ones, of a stage accordingly.
Since all active stages execute their passive predecessors, the fission and fusion are always
done between the changed stage and its successor. The solutions for feedback loops and
cascading activations can also be reversed.

In a mixed execution model both modifications can be applied and synchronised accord-
ingly. If it is possible to limit the model at runtime to one of them, only the corresponding
choice has to be taken. In a mixed model it should be avoided to change neighbouring
stages at the same time. In case the model also utilises the mixed behaviour at runtime,
more complex synchronisation mechanisms have to be chosen to avoid race conditions.

34

4.4. Stage Multiplication

Additionally replacing input and output pipes altogether may be necessary and more
restrictions may have to be applied to the configuration.

4.4 Stage Multiplication

In this thesis we developed an approach for stage multiplication. As future work we
recommend to implement and test it. Since our stages are not necessarily stateless, it is
necessary to detect state variables. An automatic approach would consist of identifying
all given class variables among other things. In general this is possible even in Java, but if
we consider all variables as states unnecessary overhead may be added. Without internal
knowledge of the stage implementations we can’t group the variables. We can’t discover
which class attribute is a real state or if its values are only used as a temporary variable
for some computations. To improve this knowledge the configuration may be simulated
beforehand and information about the variable behaviour can be received. However, this
method creates even more overhead and even with this information it is not certain if
the classification is right or not. More simulation runs can increase the probability of
the identification but create even more overhead and it is still not guaranteed to have an
accurate solution.

In our approach we propose the use of annotations by the user. We think of all given
stage attributes as states except these that are annotated to be no states. In this way we can
support legacy pipe-and-filter architecture implementations for TeeTime.

With these assumptions we can avoid race conditions and reduce the overhead of our
approach. The duplication of one stage needs additional stages to distribute the input
elements and merge the results. Fortunately, a similar procedure is already implemented
by [Wiechmann 2015]. The task farm approach takes a prepared stage, adds an active
merger and an active distributer and enables the duplication of the given stage. Figure
4.14 displays an example of how this approach may be used at runtime. In 4.14a a simple
configuration is given. Assume we want to duplicate Stage B. Now all information needed
is gathered. With these the task farm can be adapted to our needs. Thereby, a wrapper
class may be useful. It may even regulate the starting and the termination of the farm
at runtime. The mentioned distributer and merger are created automatically. Since both
are active, two additional threads are needed in this environment. The result is shown
in Figure 4.14b. Here Stage B is duplicated once. How much duplications are created is
regulated by the task farm itself. The maximum number of worker threads can be specified
through the task farm configuration. The number of threads used in a certain moment of
the execution can not be predetermined. Stage B is replaced. The task farm is seen as a
new composite stage and further changes are only applied to it. Internal stages of the task
farm are solely controlled by this composite stage. Through this view it would be possible
to keep Stage C as passive, but since the work has to be done by the merger stage it can
distort the performance of the farm. Capsulation of the internal behaviour of the task farm
and the external configuration would create a similar view like the DMonA Architecture

35

4. An Approach to Change Executing Threads of Stages at Runtime

Thread 1

A (> B [F———————>{] C

(a) Simple configuration, stage B should be duplicated

TaskFarm

Thread 2

Ie

Thread 1

A}

0 Distributer‘ "
[

(b) Duplication result with the task farm

Figure 4.14. Envisioned approach of stage duplication at runtime

[Michiels et al. 2002]. It divides the system into different part and manages only these big
parts. The local strategy of these little systems is again managed by themselves.

Additionally to this multiplication approach at runtime and the needed adaptation of
the task farm, a system for type safety is needed. Also an extension to multiply stages with
more than one input or output pipe is necessary. Finally there may be some special cases
where the duplication may not be possible or create new problems during the activation or
deactivation of stages.

36

Chapter 5

Self-Adaptive Resource Distribution

In Chapter 2 we described the autonomic computing system approach and a general
proposed architecture for this purpose. Later on, in Chapter 3 we discussed how we
want to translate this general approach to the pipe-and-filter architecture. Thereby four
different components were displayed, which have to be implemented: The effectors, the
sensors, the control loop with the four different phases, and the policies. In Chapter 4 a
detailed discussion about the implementation of the effectors is given. The structure of the
remaining components is described in this chapter. Additionally we give an explanation to
the envisioned behaviour of the adaptive extension. The predefined algorithms and metrics
are also displayed later on.

In our approach we encapsulated the four phases of the control loop into two service
classes. The monitoring and the analysis is done by the AnalysisService. The planning and
execution part is controlled in the Thread AssignmentService, which again uses the analysis.
We want to give the user a way to predefine the rules for the behaviour of the adaptive
system. A set of these rules is described as policy in the autonomic computing. We already
discussed why it can be useful to employ different policies in different use cases. Since
TeeTime is a general purpose framework, which allows the user to design its own custom
pipe-and-filter architecture, the used stages can be taken from a pool of given stages or can
be implemented by the user. Thereby, varying situations can arise, which make it difficult
for a single policy to deliver optimal results. Continuing in this style we focus especially
to enable our system for an easy replacement and implementation of these rule sets. We
express them through the assignment algorithms, which choose in every loop iteration
which stages should be active or passive.

Additionally different metrics may be relevant and the results may vary depending on
the measured properties. At the same time the assignment algorithm should be independent
from the chosen metric. Both parts should be able to be combined without restrictions. We
also implement some algorithms and metrics as examples to show the feasibility of our
approach.

5.1 Structure of the Self-Adapting Assignment Extension

Figure 5.1 presents a simplified overview of how TeeTime was extended. The changes from
Chapter 4 are not displayed here. A new service class is introduced to the framework. The

37

5. Self-Adaptive Resource Distribution

ThreadAssignmentService is added to the ConfigurationContext in the style of the existing
ThreadService class. The latter is used to initialise the configurations and its threads. There
exist some minor changes in the initialisation of the execution of the configuration, its
start, and its termination. The added service coordinates the implemented functions of
the chosen Thread Assignment and the AnalysisService with its corresponding metric. The
ThreadAssignment is represented by the abstract super class for all future implementations,
the AbstractThreadAssignment. The specific classes provide algorithms to initialise the thread
to stage assignment before the executions starts. This part is sufficient to implement static
assignments.

Furthermore and most important to our goal of a self-adapting thread assignment, in a
second and dynamic part of these assignments algorithms are provided that have to decide
if the system should be changed or not. The purpose of the assignments is to provide
the planning and executions parts of the MAPE-K approach, described in Chapter 2. The
monitoring and analysing parts are contributed by the AnalysisService and the used metric.
In Figure 5.1 the metrics are again represented by an abstract class, the AbstractMetric. The
metrics apply the monitoring of specified properties. Since there exist multiple properties in
a pipe-and-filter architecture that may be used to measure the systems state, the metric should
be replaceable. Examples for measurable properties are the throughput of a stage, the
execution time per element or the remaining elements in a pipe at a certain moment. There
exist many more attributes that can be measured and hence the user can even implement
her own metric. The service class uses this data to analyse the system state, which can be
used by an assignment algorithm to plan the further course of action.

The extension is initialised with a default assignment and a metric. Currently the
implemented default assignment is static and represents the behaviour of TeeTime without
the extension. As the default metric the PullThroughputMetric is used. The Configuration is
complemented by the two methods setThread Assignment() and setMetric(). These allow the
user, who builds the configuration, to choose another algorithm and metric. The assignment
and the metrics are designed to be independent from each other. Therefore the user isn’t
bound to use the “right” combination of both parts. Instead he can combine every available
implementations. Please note that the setter methods are not designed for usage during
the execution. This would cause race conditions and may also eliminate the comparability
of the metric. In the default setting the added computation is limited to the additional
initialisation of the ThreadAssignmentService and monitoring operations. To enable system
monitoring we had to adjust the pipes to measure properties like throughput during the
execution. This adds some computations for every passing element. There are no further
big changes to the original code of TeeTime.

5.2 The Design of the Thread Assignment

Figure 5.2 displays the structure of our assignment part. The thread assignment is designed
for easy implementation and replaceability. The user should be able to use almost all

38

5.2. The Design of the Thread Assignment

threadAssignment

analysis metrics
AbstractThreadAssignment AnalysisService | MONitoring MaApstractMetric
requests system state 1
T
1 1

controls monitoring and analysis

uses and controls —\

framework

ThreadAssignmentService

1 . .
autonomic thread assignment

ConfigurationContext

Figure 5.1. Simplified overview of the extension to TeeTime

techniques that could be used to decide on the assignment that should be employed
next. To do so the dynamic thread assignment part is built around the abstract class
AbstractThread Assignment. Implementing a specific assignment requires the implementation
of two abstract methods:

setFirstAssignment() The initial thread to stage assignment is done in this method. If the
given pipe-and-filter architecture should not be changed, this function can remain empty.
Changes can be done directly by the stages, for example through declareActive(). TeeTime
resumes its own initialisation afterwards and adds necessary threads.

changeAssignmentAtRuntime() A dynamic thread assignment needs to implement the
changeAssignment AtRuntime() method. As the result a map with the stages and an associated
integer value is expected. The integer implies if a stage should be passive (0), active (1) or
even should be duplicated (> 1). If a stage is not contained by the map, the algorithm tries
to set is as passive.

A user does not need to implement more functionality to get her own usable assignment.
The abstract class has different mechanisms and implemented methods to support this
changeability. Additionally, commonly used objects like the AnalysisService are given to the
user to simplify the implementation.

39

5. Self-Adaptive Resource Distribution

dynamic This variable implies if the assignment is set as static or dynamic. The default
case is a dynamic assignment. It can only be changed through the constructor.

stages This set includes all stages that are available in the execution. The set is automati-
cally computed. Stages that aren’t reached through the execution graph are not listed.

currentThreadedStages Similar to the last variable, this set contains all currently active
stages. The set is updated automatically.

analysis In most cases an assignment is decided through monitored and analysed data.
These data are provided by the AnalysisService, which is accessible via this variable.

allowedActivationDepth As described in Chapter 4 the activation of a stage may require
to activate one or more of its following stages. Since this can cascade in big chunks of
the configuration to be activated, we chose to implement a limit to this behaviour. If an
activation would require more new threads than this variable allows, the activation is
declined. A value of 0 would forbid the activation of other stages. A high value, like the
largest integer value, will allow an arbitrary number of additional stages to be activated.

changeAssignment() This method receives the output of the user-defined function change-
AssignmentAtRuntime(). Changes are only applied if they are possible. Hindrances could be
ongoing changes or stages impossible to be set as passive. It updates the currentThreaded-
Stages set accordingly to the fulfilled changes. It is used by the control loop.

onlnitialize() This method is used immediately before the initialisation of the ThreadSer-
vice. Here the changes from the setFirstAssignment() are put in action. It is also automatically
used by the extension.

startAssignment() After the execution of the configuration is started this function is called
to start dynamic assignments and therefore the AssignmentAdaptationThread.

requiredThreadsToActivate() This method is another convenience function of the abstract
assignment. As input it requires a single stage. The result is the count of threads that are
needed to activate the given stage. A value of one implies that only the stage itself has to
be set active. The result for an already activated stage is zero, since no additional thread is
needed.

finish() At the end of an execution the adaptation thread is stopped and the currently
active stages are returned to allow their termination.

40

5.2. The Design of the Thread Assignment

]

threadAssignment

DefaultThreadAssignment
+setFirstAssignment() : void
+changeAssingmentAtRuntime() : Map<AbstractStage, Integer>

AbstractThreadAssignment

-dynamic : Boolean

#stages : Set<AbstractStage>
#currentThreadedStages : Set<AbstractStage>
#analysis : AnalysisService

+setFirstAssignment() : void

+changeAssingmentAtRuntime() : Map<AbstractStage, Integer>
+changeAssignment(newThreadedStages : Map<AbstractStage, Integer>) : ...
+onlnitialize() : void

+startAssignment() : void

+finish() : Set<AbstractStage>

AssignmentAdaptationThread
-timeToWait : long

-running : boolean = true

+run() : void

+finish() : void

Figure 5.2. Simplified overview of the assignment part

All function calls and changes at runtime are done by the AssignmentAdaptationThread.
This thread is only created and started if the assignment is a dynamic one. In the static case
the missing thread will not call the methods of the assignment class and therefore will not
use resources or create overhead. The only exceptions are the added measurements for
the metric, for example the throughput in the pipes. The methods and attributes are kept
simple.

timeToWait The timeToWait attribute is most important to the AssignmentAdaptationThread.
This variable determines how long the thread waits between each iteration in milliseconds. If
this value is low, the thread is invoked more often and completes more iterations of its main
loop and so increases the frequency how often we attempt to change the assignment. This
implies more resource usage of the system. A low value like zero may burden the system
more than a high value. Especially if the resources are limited, this has to be considered.
Of course the complexity of the given assignment algorithm and the metric can influence
this further. The monitored data is only collected by the AssignmentAdaptationThread. The
value of the timeToWait attribute plus the time needed for executing the main loop, give
an implicit interval for the collected data. In some assignment algorithms it may even be

41

5. Self-Adaptive Resource Distribution

better to have bigger intervals and hence probably more stable data about the behaviour. In
other implementations one may want to react fast to adjust the system immediately. One
example would be the simulation of trigger events.

running This boolean is used to start and stop the main loop of the thread.

run() The implemented run() method of the threads consists mainly of the while loop.
Here the monitoring, the analysis, the assignments and the applying of the changes are
brought together to create the self-adapting system. The thread initially waits for the time
given by timeToWait. It then invokes the updates of the measured properties. At first this
enables the analysis to process the first data and later on serves to let the analysis work with
the most current data. The thread next calls the implemented changeAssignmentAtRuntime()
of the specific assignment. With the result the changeAssignment() method is invoked. After
all changes are invoked the loop starts again with the thread sleeping the given time.

finish() At the end of the execution the thread is terminated. This happens to avoid
unnecessary computation and to hinder stages to be set as active whilst the configuration
is terminated.

5.3 The Design of the Analysis

Figure 5.3 provides an overview of the part of the extension used to monitor and analyse the
system. The structure is similar to the one provided for the task farm approach [Wiechmann
2015]. The task farm is also implemented in TeeTime, but unfortunately the used elements
like the History class or the algorithms used for analysing need to be rewritten for the
requirements of this approach. Since the author builds a similar self-adaptive system in the
pipe-and-filter context, we can use techniques implemented in her work and adjust them to
our needs. At the same time this means that there exist classes from the task farm and from
our approach with code that may be nearly alike. The unification of these classes could be
done in the future to meet good software engineering standards.

All access to the monitoring is done through the AnalysisService. The service connects the
History class, the chosen metric and the used AnalysisAlgorithm. It provides some attributes
necessary to fulfil its duty:

stages Similar to the AbstractThreadAssignment the service needs to know which stages
are there to be analysed. They are also set during the initialising of the services.

getNormalizedSystemState() This method uses the data measured by the metric that was
saved in the History class. The data is saved for every stage. Additionally there may be more
data than the last measured ones. All values are processed to represent the current stage

42

5.3. The Design of the Analysis

analysis
AbstractAnalysisAlgorithm
History +doAnalysis(history : History) : Map<AbstractStage, Doubl...
-entryList : Map<AbstractStage, LinkedList<HistoryEntryt>>
-maxEntries : int 1
+addEntry(newEntries : Map<AbstractStage, HistoryEntryt>) : v... analyses saved data
+removeStage(stage : AbstractStage) : void
1 AnalysisService
+getSystemState() : Map<AbstractStage, Double>
saves data in +getNormalizedSystemState() : Map<AbstractStage, Double>

saves one date) 1 [+updateData() : void

+setAnalysisAlgorithm(algorithm : AnalysisAlgorithm) : void

0..*% +addStage(stage : AbstractStage) : void
HistoryEntry +removeStage(stage : AbstractStage) : void
-owningStage : AbstractStage +replaceStage(oldStage : AbstractStage, newStage : AbstractStage) : ...

-timeStamp : long
-value : double

measures properties with

1

metrics

AbstractMetric
+NOT MEASURED : int = Integer.MIN VALUE
+getCurrentValue(stage : AbstractStage) : float
+getAllStageData(stages : Set<AbstractStage>) : Map<AbstractStage, Doub...

PullThroughputMetric
+getCurrentValue(stage : AbstractStage) : dou...

Figure 5.3. Simplified overview of the analysis part

state. For this an AnalysisAlgorithm is used. An assumption we make is that every measured
property is zero or greater. Now we can search the maximum value and normalise all
values by it. This results in all stage states being represented as a value between zero and
one, which are returned. This way the normalised value represents a comparison with all
other measurements.

getSystemState() Similar to getNormalizedSystemState() this method analyses all available
data through an AnalysisAlgorithm. This time the values are given without normalisation.

updateData() When this method is called the metric is used to gather the current data for
all stages. The measured values are enriched by the time stamp. The resulting HistoryEntries
are saved by the History.

setAnalysisAlgorithm The default analysis algorithm can be replaced with this method.
Currently all given algorithms are registered in an enum type. The implemented algorithms
are the same as given by [Wiechmann 2015].

43

5. Self-Adaptive Resource Distribution

addStage(), removeStage(), replaceStage() Usually the stages should be fixed after the
initialisation. Later on the assignment may be able to duplicate or replace stages. In cases
like this the monitored stages may change. For example if we decide to replace a stage with
the task farm [Wiechmann 2015], the stage is replaced by a composite stage with distributer,
a merger and duplications of the old stage. All internal configurations are handled by itself
and only the state of the composite stage in total matters. This can be put in comparison to
the other stages. These 3 functions are implemented to cover these cases.

The metric is the second part of the extension that is designed to be replaceable and
chooseable by the user. It is responsible to measure a property of every stage and to
transform it into a comparable number. The AbstractMetric consists of two methods of
which one has to be implemented in the chosen subclass.

NOT_MEASURED In some cases the metric may decide that a stage can not be measured.
For example if there is not enough measured data or the stage is currently changing. Since
we assume that a measured value is unlikely to be negative we chose the lowest value of
the Long range as the value of NOT_MEASURED. In fact the only metric with negative
values we could think of was the pull-push-difference, which can be transformed to the
push-pull-difference. This value is a static class attribute so it may be used in other places
to react to these invalid measures.

getCurrentValue() This method is used to measure the state of a single stage. Every
metric has to implement this function in order to measure its related properties. The
stage to measure is given as the only parameter. Through this stage we have access to
several attributes and methods of the AbstractStage. This allows, for example, to receive all
incoming and outgoing pipes and measure their characteristics. The currently implemented
metrics require the pipes to implement the IMonitorablePipe interface. This restriction is
not a fixed one. A user can decide to measure properties of pipes through other meanings
or even get data on stages. In the future this system can be extended to use a general
monitoring interface, for example using higher order functions.

getAllStageData() Gathering all stage data is done through getAllStageData(). The method
is pre implemented but can also be overwritten to meet special needs of a metric. In the
given version all stages are measured through getCurrentValue(). If a stage returns the
NOT_MEASURED value, this tuple is discarded and not saved. This doesn’t exclude future
measurements. Since it may be that a pipe doesn’t implement the monitoring interface,
ClassCastExceptions are also caught and handled the same way as invalided values. The
result is a map with all stages that got valid values. It is important to notice that the
stage with the largest value represents the one with the least potential for optimisation
or the “fastest” one. This is necessary for the AnalysisService to work the intended way.
A reimplementation has to consider this. It may even used to provide this order if the

44

5.3. The Design of the Analysis

values would deliver another one, for example if the execution time was measured. Another
important note is that all values are taken one after another and a potential time stamp
will be different from the time stamps of other values in the same iteration.

All stages that were ever measured in this configuration are saved in the History with
their data. The data is only saved a limited number of iterations. Every date is saved in a
new HistoryEntry. The History provides the following attributes and methods:

entryList The saved values are represented as a map with the stage as the key and a list
as the value. The list contains all saved measurements until a certain size is reached.

maxEntries This attribute determines the amount of the saved data per stage. For example
if maxEntries is initialised with 5 there exist only 5 or less entries per stage at the same time.
This value determines how old a measurement should be to have influence on the analysis.

addEntry() Adding a new iteration of measured values is done through addEntry(). The
input of this method is a map, with the measured stages on the key side and the current
value, encapsulated in a HistoryEntry, on the other side. Every list corresponding to a given
stage is updated. If the size of the list reaches the value of maxEntries the first and hence
the oldest value is deleted.

removeStage() In the case that we replace a stage in one way or another, we don’t want
to have remaining data about non-existent stages. These data could lead to a not intended
behaviour of the assignment algorithm and is hence removed. The new stages are added as
soon as they were measured and don’t need to be added manually.

The HistoryEntry saves different information about the measured values. Currently an
entry saves the value itself and enriches the measurement with the associated stage and
a time stamp. While most analysis algorithms don’t need the time stamp, some, like the
RegressionAlgorithm need this information. This procedure allows for a modular way of
saving information and extending the algorithms later on.

The last part of the analysis are the analysis algorithms. While many approaches like the
FDP approach [Suleman et al. 2010] or Flextream [Hormati et al. 2009] don’t describe in detail
how the monitoring is evaluated, other approaches like the task farm [Wiechmann 2015]
use advanced algorithms that consider older measurements to create a stable estimation
of the system state. They may even try to forecast the state of the stages. Since the task
farm is improved by the use of these algorithms, we adapt them and also use them in
our analysis. More analysis algorithms may be developed in the future by extending the
Abstract AnalysisAlgorithm. The currently available analysis algorithms are registered in an

45

5. Self-Adaptive Resource Distribution

enum in the AnalysisService and can be chosen through the service. There exists only one
method that has to be implemented by a specific algorithm. The RegressionAlgorithm is the
default algorithm, since it provides the best results in the study of [Wiechmann 2015].

doAnalysis() Given the History this method analyses the available data per stage. The
given stage data is reduced to a single value. This can be used to create some foresight of
the expected performance or to eliminate peaks in the measurement. It results in a map,
where the stages are returned with their corresponding analysed values.

5.4 The Behaviour of the Thread Assignment

The self-adapting approach consists of different phases. One of them is the decision, what
should be changed, based on the system state. Another part is to apply the changes to
the system. These two phases are included in this section. While the user can implement
her decision algorithm as the thread assignment, the changes computed by it will be
automatically put into action by the presented extension to TeeTime

The thread assignment distinguishes two cases: It can be static or dynamic. In the static
case, we only want to adjust the initial thread to stage assignment. After the execution of
the system has started there is no further need to monitor properties or to try to change the
active stages. This may be advantageous in configurations where the computational effort
doesn’t change and it can be determined beforehand. If the user wants to implement a static
assignment, he can enforce this behaviour in the constructor of the AbstractThreadAssignment.
In a static algorithm only the setFirstAssignment() method will be used to configure the
thread to stage assighment before the system is started. If the user has decided to set stages
as active while building her desired configuration, these settings are not discarded by the
implementation. An algorithm can decide to ignore these user wishes, but it has to set
every activated stage as passive again by itself. Since the user who builds the configuration
may know the best where active stages may be useful, we decided on this implementation.

At this point, where the configuration isn’t running, all changes to the stages are done
through the declareActive() and declarePassive() methods. Some approaches to initialise the
assignment may not be supported with this implementation. For example [Chandrasekaran
et al. 2003] simulate the execution beforehand to evaluate the performance of the stages.
This is currently not possible in our TeeTime extension.

After the initial assignment is set, TeeTime activates all stages which have two different
predecessor threads and are passive. Then the configuration is validated and started. A
static algorithm ends here and the system is executed uninfluenced. A dynamic one may
also use the setFirstAssignment() method and behaves the same way until the configuration
is started.

Changing the assignment at runtime can be done through different techniques. One
procedure would be to halt the execution and make the necessary changes. After all
changes are finished, the system is restarted. This approach would require further intrusion

46

5.4. The Behaviour of the Thread Assignment

to the original code. Furthermore it could cause performance issues or may need more
synchronisation mechanisms, for example, if we have a system with multiple active stages
and we want to set more than one as passive. Now the one thread that intends to change the
assignment has to process the remaining items in the buffered and synchronised pipes. This
has to be done for every stage we want to set passive and only afterwards the execution can
be resumed. A variant of this procedure would be to employ threads to every stage that
will change, let them do the work and synchronise them while carefully keeping a legal
state. Another way could employ flags that are set while the system is running. Checking
these flags would cause an overhead for every passing element. The synchronisation may
also be a difficult task.

Our approach to change stages at runtime, from Chapter 4, supplies us with an
intermediate technique. In our approach we only stop the regular execution of the affected
stages and replace the pipes with ones that employ temporary synchronisation mechanisms
and flags. The remaining configuration is not influenced. After all necessary elements are
processed in our example, a regular state with low overhead is restored.

We provide an abstract class for the actual assignment algorithm. It implements some
mechanisms to unify the process of changing the assignment. The user only needs to decide
if the assignment should be dynamic or not and implement the setFirstAssignment() and
changeAssignmentAtRuntime() functions. As mentioned before setFirstAssignment() is used to
provide an initial assighment through setting stages as active and passive. For a dynamic
behaviour the changeAssignmentAtRuntime() should be implemented. Through the described
behaviour of this method it is only necessary to consider stages that should be active in
the future. The AbstractThreadAssignment provides some attributes for commonly needed
objects. First of all the stages attribute contains all connected stages of the configuration
and can be used to iterate through all available stages. They are collected and given to
the algorithm as soon as the Execution environment is created. The currentThreadedStages
attribute, which keeps track of the active stages in the system, is similar. It is changes with
the results of the changeAssignmentAtRuntime() if necessary. Since TeeTime adds threads after
setFirstAssignment(), the collected active stages may not be the same as the ones used during
the first dynamic assignment of the configuration. On the other hand they are a subset of
all active stages that are created by the framework and the user, who built the configuration.
The stages added by the framework can’t be passive anyway. In most of the cases we also
want runtime information about our system to decide which assignment should be chosen.
To gather this information the AnalysisService can be used, which coordinates all monitoring
related tasks and is described in depth in the next section.

The iteration of the adaptation circle has to be executed in some manner. One variant
would be to let the configuration or one of the active stages decide if the next iteration
should be started. This may be useful if the system should be examined every time a
specific progress is made or a certain event is triggered [Welsh et al. 2001]. The advantage
would be to be able to react directly to events in the system. More augmentations of the
original code and possible need of more synchronisation would be the disadvantages.

47

5. Self-Adaptive Resource Distribution

In our approach we choose to start a new thread solely responsible for monitoring the
stages, computing new assignments and changing the system. The thread checks the system
every predefined time and decides on the course of action. In this approach the control flow
is kept inside the extension. The adaptation can be seen as influencing the configuration
from “above”, since we see the system as a whole and check it from time to time. The
disadvantage is that we can’t react directly to events and we need to start an additional
thread that consumes resources. Especially if we want to establish a limit of the maximal
used threads, this has to be manually considered by the assignment algorithms. This may
reduce the option of the potential algorithms. This solution represents the MAPE-K control
loop [Kephart et al. 2003]. A possible approach to simulate the event triggered behaviour
may be to add special stages to the configuration that register these events. The assignment
algorithm can now especially check these added stages in a high frequency. We will not
look further into the event based adaptation.

The AssignmentAdaptationThread is only started if the assignment is set as dynamic,
which is the default setting. After the framework has validated the configuration and
started it, the adaptive assignment is activated through starting the adaptation thread.
This thread runs until the configuration is terminated. Its behaviour is rather simple and
acts as the control loop mentioned before. First it waits as long as the time was set at the
initialisation. This allows the system to initially process some elements and gather data on
the stages. Afterwards the thread updates the measured data through the AnalysisService.
For the likely case that the assignment algorithm uses these monitoring data the first
iteration will already have some data available. In the third and next step we can now use
this algorithm with the latest information available. Until now all computation was done in
parallel and with no interruption to the stages. With the new assignment, given as the map
of stages and integers, the thread influences the set-up directly with the methods described
in Chapter 4. Now the loop begins anew with the thread waiting. If the (de-)activation
of a stage is not finished until we want to change it again, the new modification will not
be done. At the end of the computation the thread is signalled by the assignment to stop.
Additionally the assignment returns which stages are currently active. This allows the
framework to stop all necessary stages.

Figure 5.4 shows the behaviour of the AdaptationThread. This includes most of the
assignment adaptation and the complete dynamic part. The missing parts are especially
the initialisation and the termination of the thread. In general we can say that the thread is
started alongside the execution of the pipe-and-filter architecture and is also terminated at
the end of it. The initialisation is done during the creation of the execution environment.

After the creation of the AdaptationThread the system awaits the start of the execution
before the start signal is sent. This guarantees that all initialisation is done undisrupted
and finished before anything other is done. Directly after the thread is started we send it
to sleep. The time the thread is going to sleep in every iteration is set in the timeToWait
attribute mentioned before and can be chosen during the implementation of the assignment
algorithm. Now the system has executed some time and we can measure the properties

48

5.4. The Behaviour of the Thread Assignment

G\Iaiting for start signaD

Update

l measurements

N\ [Sleeping time expired]
Sle

-
- =~

Y
Execute changes to the ', Analyse measured \
configuration \ data]

4

(Compute new
assignment

Figure 5.4. The workflow of the AssignmentAdaptationThread

through the given metric and update our data. The new data is saved alongside a certain
chunk of older measures in the History. Of course in the first iteration no other data is
available. The gathered values and potential older ones are now used to analyse the system
state and to discover performance trends. Thereby the selected AnalysisAlgorithm is used.
In the next step the analysed system state is given to the used ThreadAssignment. This
assignment algorithm uses the implemented changeAssignmentAtRuntime() and computes
a thread to stage assignment that may improve the performance of the system. The
improvement is no given restriction. In fact even assignment algorithms with the goal to
get the worst performance or one that toggles the active and passive stages in each iteration
can be written. With the intended thread to stage assignment on hand, the AdaptationThread
enters the last phase. All changes are applied to the system if they are possible. If parts
of the new assignment are not possible, these are not executed. Other changes are not
influenced. After all changes are initialised through the effectors described in Chapter 4 the
loop begins anew with the thread sleeping. The next iteration will have more data available

49

5. Self-Adaptive Resource Distribution

until the predefined cap is reached.

There are three circles in the workflow diagram. They imply some sort of possible
user influence. The red colour stands for the analysis part and the blue represents the
assignment part. The metric can be influenced in two ways. It can be chosen by the
user while constructing the configuration. Additionally it is also possible to implement a
new metric. The AnalysisAlgorithms can indeed be adjusted the same way through given
functions but in contrary new implementations by a user are not intended, but possible.
Some settings that can be chosen are the history size or the used AnalysisAlgorithm. The
assignment algorithm behaves again like the metric. A specific one can also be chosen during
the construction and a new one can also be implemented. Here the timeToWait can be
chosen and influences the behaviour.

5.5 The Behaviour of the Analysis

A system that strives to adapt itself to certain situations or events needs to be able to
register this appearances. Since we displayed the behaviour of the assignment part in
the last section and the structure of the analysis in Section 5.3, we now want to give an
overview of the behaviour of the analysis. In a system many different observable properties
may exist. To be usable by a wide range of algorithms the interfaces have to offer well
defined return values. At the same time many metrics deliver data in different meanings
that are not necessarily comparable. Even so we want to represent a valid system state
by analysing arbitrary data and this state should be comparable and hence used by any
assignment. For example we want to be able to measure the throughput of a stage and
recognise which is the fastest. If we would measure the execution time per element and
stage in the same configuration we don’t necessary need to have the same results, but we
want to state if the order from “fastest” to “slowest” stage has changed. To enable such a
usage the AnalysisService coordinates this subsystem and is used through updateData() and
getNormalizedSystemState().

As soon as the updateData() method is called, the service requests the current mea-
surements of all stages known to it from the chosen metric. Now the getAllStageData()
method is invoked, which might be overwritten. All stages are visited one after another and
their measurements are received through the implemented getCurrentValue(). The resulting
values are assumed to have an order such that the largest value represents the stage with
the best performance. At properties, like the throughput of a stage, this is the native order.
If we would measure the needed execution time per element, the results are ordered the
other way around. This has to be handled by implementing a specific collection method in
getAllStageData(). Please notice that the sequence of measurements results in values that
are not received at exactly the same time. A time stamp may not be the same between
two measured values. Stages with invalid values can not be counted as measured and are
excluded by the given algorithm. After all stages are visited, the values are saved by the
History. This class is initialised with a certain size. Every stage can only have as much data

50

5.5. The Behaviour of the Analysis

assigned as the value of this size. This border is only applied if an already saved stage gets
a new value. If a stage can not be measured in one iteration, old values remain in the list.
The latest system data is saved and our history is up to date.

Figure 5.5 displays the general workflow of the update mechanism. The dashed lined
boxes represent loops. The first box iterates through all observed stages and measures their
current values. With these data the second box is used. Again the loop iterates through
the remaining stages. New Entries are created if needed and the old data is deleted if the
set history size is exceeded. So the first box represents the behaviour of the metric and the
second one of the history.

The saved and analysed data is retrieved by the second method, getSystemState(). A call
to this functions invokes the usage of the selected AnalysisAlgorithm. The history is given
to this algorithm. For each stage available all measured and saved values are taken and a
single value is computed with them. An example is the computation of the mean of these
values. At the end of this algorithm every stage has a single corresponding analysed value.
These values have a minimum of zero but their maximum is not predefined. To simplify
decisions based on the analysed properties and to give a better comparability, we provide
another method getNormalizedSystemState(). Here we choose to normalise all of these values
by their maximum. So we first search for the maximum and then divide all values by it. An
exception would be if the maximum is zero. This implies that all stage values are zero and
hence all are as good and as bad as the others. Now we have reduced our value range to
zero to one. A number closer to 1 implies a better performance and vice versa. The overall
result of this function call is a map, with the stages and an analysis how well they are
doing, compared to the other measured stages in the system.

Figure 5.6 displays the workflow of the analysis part. Since the normalisation is more
complex, the starting point is a call to the getNormalizedSystemState() method. Currently
this is only done by the AssignmentAdaptationThread, but in the future it may also be used
by other components. The first step is to retrieve all saved data from the History. These data
contain all stages that were ever measured and a certain number of values corresponding
to them. The chosen AnalysisAlgorithm computes the expected performance trend for every
given stage. At the end all computed values are normalised by the maximum. We decided
to separate the update functionality and the analysis part, to enable intermediate access to
the system state without compromising the data.

As mentioned before, our approach doesn’t provide support for negative measurements.
If a metric is chosen that returns such values, care should be taken that they are transformed
into positive numbers. The easiest way would be to provide a suitable implementation of the
getAllStageData() method. A second possibility would be a corresponding AnalysisAlgorithm
and an enforcement to use the metric and this algorithm at the same time. But this would
reduce the generality of approach of changeable system parts

51

5. Self-Adaptive Resource Distribution

52

—_— — — T — T — N

For every stage

f |
| |
Measure current property
| |
state
| |
| |

<<structured>>
For every measured stage

Stage measured and
saved before?

. [NO] Create new
\ entry

[YES] Save newly measured
data

[YES] History size of
the stage entry
exceeded?

Delete oldest entry

of the stage data
[NO]

Figure 5.5. The workflow of the analyse part updating the measurements

5.6. Implemented Metrics

Retrieve saved data of all stages from the
history

Compute state for every stage through the
analysis algorithm

Normalize all stages by their
maximum

Figure 5.6. The workflow of the analyse part delivering the current normalised system state

5.6 Implemented Metrics

We implemented some metrics as example to prove our concept and display how our
extension can be used. Every metric measures a certain property of a single stage, for
example the average number of items in the incoming pipes. Already this simple property
could be altered by the choice of the maximum or minimum instead of the average. Hence
the field of monitoring needs further tuning. As a current issue remains that not all of
our metrics are able to measure synchronisation overhead that results from replacing
the UnsynchedPipe with its bounded or unbounded synchronised version. While the first
pipe executes nearly the same code as by a simple function call to pass the elements, the
overhead of second class of pipes and especially of the unbounded one is bigger and can
delay the execution. In all required pipes we implement the IMonitorablePipe interface that
is provided by TeeTime, if this is necessary.

All implemented metrics use the incoming pipes to measure the properties. With this
method producer stages are not measured. Since they are fixed and can not be passive, this
behaviour is fine. Other implementations may decide to handle this issue in a different
manner. Even in other parts of the configuration metrics can be applied. Generally if a
property can be observed, a metric can be implemented to use it.

53

5. Self-Adaptive Resource Distribution

PullThroughputMetric In this metric the basic idea is that the throughput of the incoming
pipes represents how much elements the stage can process and hence how fast it is. We
specified this observation and measured only the pull throughput, since this is associated
directly to the number of items consumed by the stage. If there is more than one pipe, the
mean of all values is computed. Pipes that weren’t used and hence have a value of zero,
are not measured. All results are already in the assumed ascending order. Additionally a
throughput less than zero is not possible.

PushPullDifferenceMetric The next approach origins from the idea of measuring the
development of the execution by the unprocessed elements that are waiting in the pipes.
Therefore we want to apply a metric that can measure this property. The actual value is
easily approximated by computing the difference of the push throughput of a pipe, which
represents all added elements and the pull throughput. Again the mean of all used input
pipes is calculated for the overall stage value. In this metric a high number implies that the
stage where it occurs may be one of the bottlenecks in the system. Since a large number
is a bad value and zero is the optimal state, the expected order is not met. Furthermore
beside zero all other positive values may be reached, making it difficult to map the results
immediately in a right order. To eliminate this problem we overwrite the getAllStageData()
method, which collects all data. After all stages are measured, we swap the largest value
with the smallest, the second largest with the second smallest and so on. Thereby the
mapping is unified in a way that fast stages with the same value are mapped to the same
slow value. This combines some values but avoids viewing fast stages as slower than they
would be.

5.7 Behaviour of the Implemented Thread Assignments

As well as with the metrics we also implemented some assignment algorithms to pro-
vide example implementations and prove the validity of our extension. The assignment
algorithms offer more freedom to the implementation, since they are not dependent on
measurements of properties that may first hove to be implemented in the framework itself.
All metrics should be usable by all assignments.

DefaultThreadAssignment The DefaultThreadAssignment is used, like the name indicates,
as the default assignment of the extension. Since it is static, the generated overhead is
low and no adaptations are made at runtime. Additionally in the initialisation phase no
changes are done to the thread assignment and the behaviour desired by the user is kept.
This represents the current behaviour of TeeTime without considering the added overhead.

SimpleAssignment In this simple assignment version we place an upper limit for the
available threads. This limit is calculated by the number of assigned processors multiplied

54

5.7. Behaviour of the Implemented Thread Assignments

by two to optimize hyper-threading and avoid over-utilisation. In some other approaches
there are even restrictions that only allow one thread per available core [Min and Eom 2015;
Suleman et al. 2010]. In this first approach we don’t distinguish between real and virtual
cores. The same holds for the other assignment algorithms that initialise the configuration
in this way. This can be improved in the future.

In the initialisation phase all producer stages are gathered. Then the remaining number
of threads is computed. If some are still available, we assign them to the stages in descending
order by the number of in- and output ports. Other initial measurements are also possible
but we want to keep it simple. If two stages have the same quantity, the selection is arbitrary.
The adaptation at runtime is quite simple. The slowest stage is activated and if we need a
free thread, the fastest one is set as passive. All stages are iterated through until we find a
suitable one. Only if we can keep our limitation, a stage is activated. It may happen that
the number of available threads is lower than the stages that have to be active due to the
framework. In this situation the metric and the assignment are called but the latter is not
able to change the configuration.

EDPStageAssignment The second and more complex dynamic assignment combines the
approaches of FDP [Suleman et al. 2010] and Flextream [Hormati et al. 2009]. Similar to the
SimpleAssignment the assignment desires an optimal usage of the assigned processors. The
number of threads in the system is limited by the processor count, which is multiplied by
two. Again this is a soft limit and may be exceeded if more threads are absolutely needed.
During the initialisation the configuration graph is traversed and the required producer
threads are calculated. Additionally every stage and its corresponding number of input and
output pipes is counted. The remaining threads are distributed amongst the stages with
the highest pipe count, since they may be the most important ones for the execution. This
initialisation is inspired by the Flextream approach. The idea for the runtime adaptation
algorithm is taken from the FDP approach. A central element we added is the index of the
configuration and its subsets. The index computes the sum of all stage states, whose values
can range from 0 to 1. This sum is divided by number of used stages, to get the average
index of the system. A system state near 1 implies that most stages are near the optimum.
Additionally we want to gather data on every thread in the system.

We start the dynamic adaptation by gathering all used threads in the configuration.
These threads form partitions of the execution graph, which is saved along with some
attributes of the partition. Some of the saved properties are the start stage, stages neigh-
bouring other partitions, the slowest stage and the partition index. These data are used in
two different behaviour patterns.

The first is the optimisation mode. It tries to optimise the executed configuration by
reassigning the threads. The FDP approach only tries to activate the bottleneck of the
system if there is a free thread. We implemented two variants of this assignment. In the
first, we try to deactivate a stage if we need one. This still happens in the optimisation mode.

The activation of the stages, while there are no remaining available threads, is the most

55

5. Self-Adaptive Resource Distribution

complex procedure in this assignment algorithm. In first case the slowest stage is already
active and has no successors. If we don’t improve the bottleneck, no further improvements
can be done in this system. The only course of action we can take is to signal that the
stage should be duplicated, if possible. In case we need more threads we have to free one.
Therefore two partitions have to be fused.

In the first case the bottleneck has more succeeding stages in the same partition, one of
them is activated to reduce the load of the thread. This way the computational effort can be
reduced one by one. Threads are again freed by fusing partitions. In case the slowest stage
is not the starting stage of its partition and no thread is free, we try to fuse the last stage of
the partition with the successor partition. If one thread is available, we can just activate the
slow stage. Our second version is closer to the original idea. It isolates the optimisation
from the second mode and only activates a stage if a thread is available. It will not try to
free one here.

The second mode is the power saving mode. It will try to free threads and therefore
to reduce the needed resources of the system. Since our used framework specifies some
restrictions, we can’t simply set the fastest stage as passive. The saving mode searches for
the two neighbouring partitions that have the best combined index. In other words the two
fastest neighbouring partitions are searched and fused. Thereby exactly one thread is freed.
Naturally only stages that can be passive are deactivated and their partition is fused with
the only predecessor.

The workflow of both versions is the same. The algorithm starts with the optimisation
mode. If the average index is close to 1, we switch to the power saving mode. Else we try to
adapt the slowest stage as described. In case the optimisation can’t improve the execution,
the mode is also switched. Now the saving mode tries to fuse the fastest neighbouring
partitions to free threads until this is impossible or the performance is worsened. Meeting
this conditions causes the algorithm to switch modes again.

The behaviour should resemble the one shown in Figure 3.1. In contrary to the original
FDP approach we can’t deactivate or duplicate arbitrary stages in our system and have
to work with the partitions to free threads. This leads to a divergent behaviour of the
algorithms. An idea resulting from this circumstances is to base the assignment solely
on partitions and to balance them. To distinguish from this potential new approach the
assignment is named FDPStageAssignment. The Flextream approach [Hormati et al. 2009]
also works with partitions and tries to refine it and may inspire more algorithms.

StableTopDownAssignment Since our current implementation is not able to duplicate a
stage, the idea of this assignment is adapted from [Guggi and Rinner 2013]. We start with
activating all stages. Therefore every stage itself should provide its optimal performance.
The bottleneck is still the limiting factor in our system. In every iteration the fastest stage
is set as passive. At the moment where this procedure slows down the bottleneck, we
revert our last assignment. An important assumption in this case is that the computational
effort of the stages does not change. This assignment can be used in cases where the

56

5.7. Behaviour of the Implemented Thread Assignments

computational effort is stable and hence the optimal solution too. Furthermore the best
assignment could not be computed beforehand.

StableBottomUpAssignment Following the approach that in many use cases computa-
tional efforts don’t change very much during the execution, we build a second assignment
algorithm that tries to find the best thread to stage assignment during the current execu-
tion. In the bottom-up variant we start with only the necessary active stages. During the
execution the algorithm searches the slowest stage and tries to activate it. If it is already
active, all successors are activated one by an other. If the performance drops in this process,
the changes are reverted to the last assignment. All tried assignments are saved and the
system only changes if the constellation wasn’t already tried. Hence, at some point we
don’t have further assignments that can be tried. This algorithm also uses the assumption
that improving non-bottleneck stages will not improve the whole system.

57

Chapter 6

Evaluation of the Feasibility and the
Performance

We had to modify part of the code from our presented approach and our example imple-
mentation in TeeTime. This enables the framework to change the active and passive state
of stages at runtime. First we want to show that our approach is feasible. Thereby, this
execution state and hence the amount of used threads can be altered. During this process
we also show that this property has a big influence on the throughput of the system. To
enable a meaningful usage of these change mechanisms we need information on the system
state. Therefore we implemented sensor elements to the existing code. These sensors are
located in the pipes and create some overhead every time an element passes through them.
In this chapter we also want to evaluate this created overhead and compare our extended
pipe implementation to the original one. Putting these parts together, we implemented
some dynamic assignment algorithms as proof of concept and as a first exploration of
feasible policies. Thereby, an interesting point is, whether we can improve the performance
of TeeTime with these basic algorithms

According to this the following chapter is divided into six parts. At first we explain the
used evaluation methodology and the systems where these tests are executed. Then we
present the chosen test scenarios and how they will behave. In the third section we start
with the actual evaluation and show the feasibility tests. Additionally, the influence of used
threads and the throughput of the system is shown. After this the added pipe sensors are
tested. Then the last evaluation is done, where the single assignment algorithms, presented
in Chapter 5, are compared to the original behaviour of TeeTime. At last we display some
threats to validity and describe which points may be improved in future performance tests.

6.1 Evaluation Methodology

During a performance test of Java applications various factors have to be taken into account
to gain reliable results. Some of them are described by [Blackburn et al. 2006], who develop
the Java Benchmark Suite DaCapo and by [Georges et al. 2007].

Amongst other [Blackburn et al. 2006] provide two key points for the chosen test
scenarios. The first is to use “diverse real applications”. A Java application should be tested
in all situations it will be used in. This guarantees for the test to cover a big part of the

59

6. Evaluation of the Feasibility and the Performance

space of use cases and give an overview of the expected behaviour in the real world. Using
only good or bad use cases should be avoided. The second point is the “ease of use”.
Testing an application should be easy. A need for finding the right settings or a difficult
configuration before the test can be started should be avoided.

Additionally, they show that different executions of the same program can result in
divergent measurements. Especially the continuous successively executed test runs deliver
varying values. To avoid these obstacles and receive stable results, we apply a sufficient
number of warm-up runs before we start our real runs, which are used for the statistics.
They conclude that they “can draw dramatically divergent conclusions by simply selecting
a particular iteration, virtual machine, heap size, architecture, or benchmark.” Therefore,
we also apply multiple executions of the same performance benchmarks to gather enough
data for a proper statistic evaluation.

We use three different systems to run our performance tests on. They all differ in the
built in processor techniques and architectures. Table 6.1 shows an overview of the used
systems. In the future we will refer to them as they are labelled in the top of the table.

y I INTEL \ AMD \ SUN \
CPU Intel Xeon E5-2609 AMD Opteron 2384 | UltrasparcT2+
Clock Frequency 2.53 GHz 2.7 GHz 1.4 GHz
Number of Cores 4 4 8
RAM 24 GB 16 GB 64 GB
OS Debian Debian Solaris 10
Kernel Version 3.16.0—4 3.16.0 — 4 Version 5.11
JVM Version 7u91 — 2.6.3 — 1 deb8ul | 7u91 —2.6.3 — 1 deb8ul | 1.8.0_60 — b27

6.2 Variable Scenarios Used in the Evaluation

Since TeeTime does not yet come with build in performance benchmarks, we created a
variable computational effort configuration for this purpose. Thereby, we refer to the
computational effort each element creates if it is processed in a single stage and the total
amount of these elements. The structure of the configurations is pretty straight forward.
We always start with one single producer stage. It has a single output port and the number
of produced elements can be chosen. The output is a random number. The second part of
our benchmark configuration are the consumer stages. Each consumer consists of one input
and one output port. The computational effort can be chosen at initialisation. The stage
iterates through a loop as often as the variable defining the computational effort intends it
to do. Again in every iteration a random number is created and it is multiplied with the
value defining the computational effort to avoid possible compiler optimisations which
would eliminate this loop. After the loop has finished the latest result is sent to the next
pipe.

The configuration itself uses these two stages to create an architecture with a custom
number of consumer stages. Also a quota that describes how often a new stage will be

60

6.2. Variable Scenarios Used in the Evaluation

set as a high computational effort stage, is expected. For example a value of 3 will cause
every third consumer stage to have a high computational effort. In general if we set this
number to n every nth stage is a high computational effort stage and we could divide
our configuration with size x in x/n parts with a length of n. Naturally if the total size of
the configuration is not a multiple of 7, the last part may be shorter than n. We refrain
form using random settings in the variable computational effort, to sustain comparability
of the results. A more diverse distribution may be possible with more granularity of the
settings through parameters, but will result in a more complex interface. Through our
created variable benchmark configuration we can achieve the mentioned “ease of use”.
Unfortunately the created pipe-and-filter architectures don’t represent all possible “real
applications”. Instead we created three different scenarios that may display classes where
an autonomic adaptation at runtime may yield different results. This may depend on the
behaviour of the chosen assignment algorithm.

In our first scenario we consider a system in which every consumer stage has a high
computational effort. In theory, giving each stage it’s own thread, we should be able to
improve the performance, especially since the stages are designed to have the same work
to do. No stage is set as active by the configuration, so every algorithm can conduct its own
strategy uninfluenced. In the default setting all the stages execute the loop 200 times per
element.

In the second test configuration exist only consumer stages that have a low computa-
tional effort. The loop, described before, is only executed 10 times. This way the stages
have some work, but not too much. Adding more threads to activate stages may result in
no improvements. The performance may even get worse than before, for example due to
synchronisation overhead.

The third and last test case is a mixed one. It has stages with low computational effort
and some with high computational effort. In our default configuration we choose to let
every third stage be a high computational effort consumer. Our smallest test starts with one
producer and five consumer stages, but the structure is repeated in the style of the shown
configuration. Figure 6.1 shows a mixed configuration with only four stages. Hence, the
number of created consumer stages was set to 3. The first stage is the producer stage and
its thread is therefore executing all following stages by default. The last pointed pipe hints
the potential extension with more consumer stages. Since we set the high computational
effort ratio to 2, stage HWC1, framed in blue, is the only consumer stage in the system with
a high computational effort. Thereby, HWC and LWC denominate the consumer stages
with high respectively low computational effort. In this situation an algorithm may be able
to improve the performance of the configuration, if it activates the right stages. The shown
consumer part is repeated as often as it fits in the chosen total size. The last part may be
smaller than two stages. Thereby, stages at the end will be left out. Here, HWC2 does not
exist in the configuration with size 3. If we increase the size to 4 this stage is created at the
beginning and appended to LWC2. All stages are executed by Threadl which belongs to
the producer stage. In this example if we would set the size to 6 instead of 4, the part in

61

6. Evaluation of the Feasibility and the Performance

Thread 1

Figure 6.1. A variable Pipe-and-Filter architecture drawn as a graph

the grey oval is simply created again and appended to HWC2.

We decide not to include I/O-operations in our scenarios or even to build benchmarks
around them. Contrary to other approaches, we didn’t implement the stage duplication.
Therefore the I/O -operations, which may reduce potential parallelism, does not influence
our current extension.

The most important variable in an adaptive system is the number of stages. For some
assignment algorithms the available CPU resources are also important for the resulting
execution. We want to give a first comparison of our implemented algorithms with the
performance of the original behaviour of TeeTime and amongst each other in different
situations. To create these situations we vary the number of stages in each scenario from
five to thirty. The amount is increased by five for every performance test. Not every
algorithm is dependent on the number of available cores and we want to give a first simple
evaluation of our extension. Hence we will keep the amount of available cores the same as
given by each system and will not alter any other properties. Since we don’t want to stress
the system during the changes, we choose not to change the timeToWait. It remains at 200
milliseconds.

6.3 Feasibility of the Extension

In our first evaluation we want to show the feasibility of our approach. For this we first
show that our approach enables the dynamic changes to the system that are needed for the
self-adaptive pipe-and-filter architecture. Additionally we show that the number of active
stages in a configuration has influence to the throughput of the system.

We implemented a new assignment algorithm to create a high number of changes in
each iteration. The intention is to improve the visibility of the changes and their influence
made by our extension. The assignment is named AlternatingAssignment. As the name
suggest the algorithm tries to toggle every stage in each iteration, if possible. So stages,
except the producer that were active before the current iteration of the algorithm are set as
passive and all passive stages are handled respectively. For this feasibility evaluation we
added a special monitoring system. Every time the AssignmentAdaptationThread computes

62

6.3. Feasibility of the Extension

the new assignment and before the changes are applied, it triggers the feasibility monitoring.
The current system time, in nanoseconds, as well as the number of the currently active
stages are saved. The throughput of the system, measured by the PullThroughputMetric is
summed up and also saved along with the previous data. Hence, we gather the number of
active stages and their corresponding throughput. We do not observe which stage may be
active.

For the feasibility evaluation we choose a mixed performance configuration. Our
configuration is build with 10 consumer stages. Every second stage is a high computational
effort stage with 200 loop iterations and 10,000 elements pass through every stage. We
employ 10 warm-up runs and 5 runs afterwards that are used to gather the data. Since the
AlternatingAssignment behaves non-deterministic and we want to discuss the data of certain
timestamps of the measurement, we don’t apply statistical operations here.

The AlternatingAssignment works as follows. In the beginning before the execution
starts we set every second stage as active. Since we save all stages in a HashSet the order
of its elements can differ between different executions. During the changing phases the
algorithm does not use the gathered monitoring data. Instead it takes every stage and sets
it as active, if it has been passive. If it has been active the stage is set as passive. Naturally
the underlying mechanisms of the effectors don’t allow changes in certain situations, for
example if a stage is still changing from the last command. Nevertheless we can say that
the passive or active stage is toggled in every iteration of the AssignmentAdaptationThread.
The interval of the measured data is implicitly set through the execution time of the control
loop.

Since the behaviour of the AlternatingAssignment is non-deterministic and we want
to discuss the data of certain timestamps of the measurement, we don’t apply statistical
operations here. Instead we pick one of each runs per system. The main characteristics of
each run are the same and give insights to the behaviour of the pipe-and-filter architecture
on different systems and how they react to the frequently change of the active and passive
stages. We want to compare the behaviour on the different hardware settings. All of them
have different specifications and don’t operate with the same performance. Hence the
AssignmentAdaptationThread takes a different amount of iterations throughout the total
duration of the benchmark program. So for our diagrams we display the minimum number
of iterations from all three chosen measurements. These original diagrams are placed in
the appendix due to their size. Here we will show only excerpts of them.

In our test benchmark the used configuration includes five stages with a higher compu-
tational effort. Every such stage has to execute 20 times more operations per element than
the low computational effort variant. Since these stages have a need for more computation
than the others, they are the bottlenecks in our architecture. Like in the other approaches
giving them more resources should result in a better work balance for the threads and
generate a higher throughput of the whole system. Hence including the producer stage we
could assume that the best performance can be reached with 6 active stages, five of them
distributed over the high computational effort stages. Please note that the throughput is

63

6. Evaluation of the Feasibility and the Performance

very different in every test case. Hence the scale of the y-axis, which shows the throughput,
vary in every diagram. The data of the chosen runs can also be found in the appendix.

1200 . 12
Number of active stages

— Average Throughput
1000 10

1%}

[}

&

800 8 =

2]

[}

=

= 3
3

E_ 600 6 :(_

S 2

o 2

= 400 4 g

= S

z

0 0
12345678 910111213141516171819202122 2324252627 282930 31 3233 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Iteration

Figure 6.2. Feasibility test on the INTEL with 10 consumer stages, every second stage has high
computational effort and the AlternatingAssignment was used

In Figure 6.2 a part of the feasibility test on the INTEL system is shown. The complete
diagram is found in Figure A.1. We choose 60 continuous values of our bigger diagram.
These interval are taken from the 54th to the 113th iteration. We only display the total
number of active stages and don’t extract the particular stages. At first glance on the
algorithm we could suspect that in every iteration we likely would have a fixed number
of 6 running threads in each iteration. This could be the case since we start with 5 active
of 10 consumer stages and toggle their state in every iteration. In our first observation we
ascertain that this assumption is not true. Due to delays during the pipe changing and
combined with the arbitrary thread schedule, stages may be still changing in the following
iteration. Since changes still in progress block further (de-)activation, the number of active
stages can vary. In the displayed part it ranges from 4 to 8 threads. The total run uses every
number of threads between 2 and 10. In general the behaviour of this certain selected run
on the INTEL is seemingly stable, even in consideration of the complete run. The only
displayed spike is in Figure A.1 in the Appendix around iteration 30. This spike settles
down quickly.

Now we consider the correlation between the number of active stages and the total
throughput of the system. Noticeably, we often get a worse performance if we just put
more threads in the program. For example in iteration 42 we employ 8 active stages and
only receive a throughput of roughly 600. This is nearly the same amount as in iteration 58
where we have only 6 threads. At the same time in iteration 9 the algorithm activated 3
consumer stages and the throughput peeks with a value of 900. The highest performance
in this diagram is 4.75 times faster than the slowest iteration. If we don’t limit our values to
the same range as the other example, this factor scales up to 17.5.

Even if we employ the same amount of threads, it is not guaranteed to receive a similar

64

6.3. Feasibility of the Extension

speed-up. This leads to two conclusions. The first is an obvious one. The throughput of
the stages and therefore the system is dependent on which stages are activated. A system
with partitions that have different total computational efforts will perform worse than with
equally distributed threads. On the other hand, if we employ more threads than necessary
the performance can drop heavily. Our chosen scenarios seem to be very sensible in this
point.

4000 - 12
Number of active stages

3500 — Average Throughput

3000
2500
2000

1500

Throughput
Number of Active Stages

1000

500

0
123456 78 91011121314151617 181920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Iteration

Figure 6.3. Feasibility test on the AMD with 10 consumer stages, every second stage has high
computational effort and the AlternatingAssignment was used

In Figure A.2 the results for the AMD are found. Again we discuss a part of it in Figure
6.3. Here we cut out iteration 41 to 100. The first observation is that this benchmark varies
in the number of active stages more than the first example. This can be caused by the fact
that the AMD may be a little faster and runaways through delays may not be balanced as
quickly through other delays or the scheduler employs an other strategy. On the other hand
it may just be a arbitrary property of our example. The number of simultaneously active
stages ranges from 2 to 10, exploring most of the possible values. The second and most
important issue are the bigger performance spikes. The highest throughput is reached in
iteration 28 of Figure 6.3. The minimum is reached earlier and the throughput is only 127.
In the whole run the iteration with the most throughput is 29 times faster than the slowest
one. Thereby, nearly all iterations with the highest throughput use only two active stages.
Though not every time only two threads are used the performance is good. An example
for this is iteration 26. Overall the throughput is the best in the AMD system and has a
huge gap to the Intel

Again we can conclude that the choice of the active stages is important. Other than
the first example the speed-up gained by employing more threads is very low. While in
the INTEL we get the best results with four active stages, in the AMD the results indeed
get better. However, they are by far not as good as the iterations scenario with solely
two threads. This behaviour can be caused by the better performance of the used system.
Here the computational effort may be processed fast enough that the synchronisation
mechanisms are clearly more expensive than the gain of parallel execution of different

65

6. Evaluation of the Feasibility and the Performance

stages. Also the big maximum difference between the throughput spikes and the average
performance contributes to this assumption.

450 - 12
Number of active stages

400 — Average Throughput

350

300

250

200

150

Throughput
>
Number of Active Stages

100
50

0 0
123456 78 9101112131415161718192021 222324252627 282930313233 343536 37 383940414243 44 4546 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Iteration

Figure 6.4. Feasibility test on the SUN with 10 consumer stages, every second stage has high compu-
tational effort and the AlternatingAssignment was used

In Figure A.3 the measurements on the SUN are shown. Again we choose an interval
of sixty values to improve the representation. This smaller part is displayed in Figure 6.4.
This time we focus on the iterations from 90 to 149. On this system we see parts that have a
balanced and stable amount of active stages. There are also parts where the number of used
threads changes more keenly. Thereby, the performance gain is not as clearly correlated
to the used resources as in the two experiments before. The bigger diagram displays a
range of active stages from 3 to 8. In the whole run all possibilities from 1 to 10 are used.
In Figure 6.4 the local maximum of the throughputs is reached in iteration 31 with a value
of 417. The global maximum is not displayed and lies at 902. With a global minimum of 37
the maximum is nearly 16 times faster than this extremum. In general the SUN displays
the worst performance of our benchmark environments.

An interesting point in the displayed diagrams is that we do not have such a clear
distinction between numerous active stages with bad performance and few active ones
with high throughput. Although we can still observe this behaviour, the high number of
iterations with comparatively many threads that provide better performance, is noticeable.
For example in Figure 6.4 in iteration 56 the throughput nearly peaks up to the local
maximum of our diagram. Here 8 threads are employed. Similar behaviour can be observed
in and around iteration 10. At the same time there are again many instances where a high
number of active stages results in a low performance.

This special behaviour can be caused by the specific architecture of the Ultrasparc.
The system employs up to 128 real hardware threads and is hence specialized in parallel
computing. Therefore additional operations, for example to guarantee the lock-free property,
may not be as costly as on the other two systems. The use of multiple threads may not stress
the environment as much as the INTEL or AMD. The remaining issue may be the real delay
caused by missing elements, which happens if the pipe is be empty. On the other hand the

66

6.3. Feasibility of the Extension

SUN only offers 1.4GHz and its behaviour resembles the INTEL system, which reached the
best performance with four threads. Here a higher number of threads may be employed
before the gain is eliminated by the synchronisation. If the partitions of the threads are
well balanced, the gain is more likely to compensate for the extra synchronisation effort.

In this section we could show the feasibility of our approach. All stages can be set
as active during the execution of the system. This state can then again be toggled to
a passive one and vice versa. The number of used threads has great influence on the
performance of the system. Using only few active stages can result in a throughput that
can still be optimised. On the other hand if we use too many of them the synchronisation
costs might surmount the gain of the extra resources. Additionally it can be very important
how the partitions, created by the active stages, are composed and if they are balanced.
We could observe that every system behaves differently even if we employ the same
benchmark configuration. Therefore we can conclude that there can’t exist the “perfect”
static assignment. A main point in the resource distribution seems to be the performance of
the system itself. If we use a fast set-up fewer threads may be sufficient depending on the
computational effort of the single stages.

6.3.1 Threats to Validity of the Feasibility Evaluation

In this first evaluation of the extension to TeeTime we want to show that our approach
is feasible and we can influence the execution. In most points we act in accordance to
studies about Java performance tests [Blackburn et al. 2006; Georges et al. 2007]. For this
we use automatically generated pipe-and-filter architectures. These test scenarios give a first
overview of our system, but also have some flaws. They include only one producer thread
and are one-dimensional without branches.

In this feasibility evaluation we only measure the global state of the executing system.
The total number of active stages and the total throughput are regarded. We don’t observe
which stages are active and how the throughput of the single stages or of the partitions
of the threads changes. In addition, the influence of the timeToWait parameter and other
options still remains to be studied. Since we only use the AltertnatingAssignment in this
evaluation, the behaviour and impact of strategies implemented for real use cases are not
considered.

Another issue may be the used underlying methods that may not be suitable to be used
in parallel. A candidate for this may be the used method to create a random number in
every iteration. Other methods to create computational effort could be considered in the
future. Furthermore, real use cases and scenarios of TeeTime may be useful to evaluate the
real diversity of its applications.

There exist some external threats to the validity. We evaluate the performance of our
extension on three different test systems with different hardware and architecture. The
broadness of the underlying hardware could be increased in future tests. It also has to be
considered that we use different JVM versions on the SUN and the other two systems. Also

67

6. Evaluation of the Feasibility and the Performance

different operating systems are used. In the future, our approach can be evaluated with
other JVM versions and operating systems.

6.4 Overhead of the Monitored Unsynchronised Pipe

In Chapter 5 we described, how we modified the framework to enable the dynamic
adaptation as described by the MAPE-K approach [Kephart et al. 2003]. One key point
was to add sensors to the TeeTime framework. The currently implemented sensors apply
metrics to the pipes. To be more precise we additionally measure the throughput of the
pipe with extra operations in the add() and removeLast() methods. These sensor operations
were added in the UnsynchedPipe and the UnboundedSynchedPipe. Since every passing
element will trigger these added code parts, we want to know how much they influence
the performance of the pipes and how big the created overhead is.

In our evaluation we simulate the original UnsynchedPipe and the modified version with
our added code. Similar to [Wulf et al. 2016] we use JMH [Java Microbenchmark Harness] to
build these performance tests. We exclude the UnboundedSynchedPipe from our tests since,
the produced overhead will be roughly the same and in the future the underlying queue
can be changed such that it provides measurement similar to the BoundedSynchedPipe.

In this benchmark we measure the throughput of the simulated pipe. The method we
use as a benchmark for the pipe implementations is quite simple and the same for both
types. We initiate the benchmark with one of these types and use this object through the
entire run. During the test an element is put into the pipe and immediately after retrieved.
This is repeated until the default time limit of JMH is reached. This limit is set to one
second by default and not changed here. For the benchmark of each pipe we employ five
runs as warmup and ten real runs for the measurements. All tests are repeated in three
forks, giving a base of thirty measurements for the result.

In Figure 6.5 we show how both tested pipes behave in the benchmark. Again we
employ the three different architectures as the test systems. Therefore we compare the
monitored pipes with the corresponding result of the original pipe. The latter is set as
reference and we give the percentage of the throughput reached by each pipe. Hence
the UnsynchedPipe is always 100%. Please note that our y-axis begins at 70% and the gap
between both values may appear bigger than they are in reality. All used data can be found
in Tabular A.4 in the Appendix.

The benchmark on the INTEL provides similar results for both pipes. The modified

one is even slightly better than the old one. If we consider the measurement error of the
real data, we can reason that both implementations behave mostly equal. If the values are
considered with their error range, of both pipes overlap each other.
In the AMD system we observe the biggest performance drop due to the modified pipe.
The new variant with the implemented sensor functions is about 19% slower than the
original pipe. This can further add to the reasons of the overhead with multiple active
stages, like seen in the previous section.

68

6.4. Overhead of the Monitored Unsynchronised Pipe

105
(0]
2
o
< 100
c
k=)
o 95
Q
£
S 90
3 B Unsynchronized Pipe
c
g 8 ® Unsynchronized Pipe with
g Sensor Operations
& 80
5
[eN
<
2 75
o
<
[=
70

INTEL AMD SUN

Figure 6.5. Comparison between the UnsynchedPipe without and with sensors

Also the benchmark for the SUN shows similar results to the INTEL. The pipe with the
sensor operations is approximately 6% slower than the one without these operations. The
added time to the executions is clearly visible, but it is not big enough to be essential for
the total performance.

We can conclude that our sensors naturally add to the overhead of the pipes during each
transfer of one element. In two of our three test systems this overhead is low. However in
the AMD the added burden needs to be considered and further insights on this issue are
needed. This may be improved in the future, if other sensor methods are chosen.

6.4.1 Threats to Validity of the Overhead Evaluation

In this evaluation we study the overhead of our changes in the UnsynchedPipe. We employ
the same procedure as in the benchmarks provided by TeeTime [Wulf et al. 2014]. Hence,
our results provide a comparable quality and we can argue on the same level. As men-
tioned before, the modified UnboundedSynchedPipe is not evaluated directly. In the future
the overhead of this pipe should also be measured. Especially, a comparison between
underlying queue implementations that already provide monitoring data and our added
sensor operations could improve the system in the future. Even though we simulated the
behaviour with JMH, the implementation of the pipes in TeeTime and their behaviour in
real use cases was not evaluated. In this overhead evaluation the same external threats as
in the feasibility measurements exist.

69

6. Evaluation of the Feasibility and the Performance

6.5 First Performance Evaluation of the Adaptive Assign-
ment Algorithms

In the last part of our evaluation we want to compare the performance of our implemented
thread to stage assignments with the uninfluenced behaviour of TeeTime, which will online
activate producer stages and stages with two or more different preceding threads. We use
the three already described test benchmarks for low, mixed and high computational efforts.
The number of consumer stages are varied in steps of 5. At first the configuration consists
of the producer stage and five consumer stages. The last benchmark uses 30 consumer
stages in each computational effort scenario. In each execution run the producer provides
20,000 elements. The variables for the computational effort are set as described, 200 for
high computational effort stages and 10 for the ones with low computational effort. Again
we execute every performance test on each of our three example systems. Thereby, every
time 5 warm-up runs and 10 real runs were executed to gather stable results. The values
further used are the averages of every such benchmark. All measures taken can be found
in the Appendix.

As representation of the standard behaviour of TeeTime the DefaultAssignment is given.
It just implements the standard behaviour of the framework as a static assignment. Since
our benchmark configurations contain only one producer stage and no branches, the De-
faultAssignment utilises only 1 thread in every scenario. Furthermore we test all assignment
algorithms given in Chapter 5, including both variants of the FDPStageAssignment. We
want to compare all algorithms with the default values. Hence, we choose not to discuss
the measured values directly. Instead we want to consider the ratio of each algorithms
compared to the results of the DefaultAssignment. For this all data is normalised by the
results of this algorithm and we will reason about how much the different approaches
deviate from it. Please note, since the results and therefore the ratio vary greatly in each
benchmark, the scale of the y-axis it not the same in every image.

6.5.1 Low Computational Effort Performance Tests

We start our discussion with the low computational effort benchmarks. In Figure 6.6 our
results on the INTEL are shown for this test. At the y-axis the relative execution time is
given, in comparison to the DefaultAssignment. On the x-axis the different scenarios are
listed. Since they mostly vary on the amount of consumer stages, this number is used as
the representation. Each algorithm has a single graph with a unique symbol and colour.
Here the DefaultAssignment is shortly called Default and is represented by blue and the
triangles pointing to the left. Naturally its values are always 1. The red line with the
diamonds represents the relative values of the SimpleAssignment, or short Simple. The
StableTopDownAssignment, or StableTD and StableBottomUpAssignment, or StableBU, are
represented by the ruby coloured and the turquoise lines, which symbols are the right
arrow and the left arrow respectively. The first implementation of the FDP approach is

70

6.5. First Performance Evaluation of the Adaptive Assignment Algorithms

called FDP1 It is yellow with the arrow down. The second variant, which divides more
clearly between power saving and optimisation phase, is called FDP2. It is represented by
the green line with the arrow up. All symbols stay the same for all following images.

In this low computational effort benchmark on the INTEL system no algorithm is able
to beat the Default assignment. The execution time of the StableTD is the worst and up
to ten times worse than with the original assignment. FDP2 is the next in this ranking
with a maximum performance loss of factor 6. It is closely followed by the FDP1. From
5 to 15 stages Simple is also close to the two FPD’s, but later on it improves and even
reaches a factor of roughly 2.2. The best dynamic algorithm is the StableBU. With just 5
stages it is as good as the other algorithms, except StabelTD. In the 20 stage case Simple
temporary overtakes it. Otherwise, it is the best tested algorithm on this system. During the
25 stage scenario it even nearly reaches the performance of the default algorithm. Except
the StabelTD all algorithms have a tendency to draw closer to the Default as the number of
consumer stages increases.

12

10

2

Relative Execution Time

[> > > > >
» > > > > >

0

5 10 15 20 25 30
Scenario
(Number of Stages)
=== Default(1 Thread) === Simple StableBU FDP1 === FDP2 =p== StableTD

Figure 6.6. Relative execution time in the low computational effort scenarios on the INTEL

In Figure 6.7 the same low computational effort benchmark is executed on the AMD
system. Again no algorithm is able to improve the performance of the system. The first
impression in this diagram is the big deterioration in the usage of the StableTD. In general
the execution time of this algorithm is around 16 times worse than the default time.
Thus it is the worst dynamic algorithm in this figure. All other algorithms improve their
performance with increasing consumer stage count. Thereby FDP1, FDP2 and Simple behave

71

6. Evaluation of the Feasibility and the Performance

very similar. They start with a factor of 6, like the StableBU. The factor in other scenarios
stays around 4, but Simple again decreases to roughly 2.2. StableBU is once again the best
assignment algorithm. It improves its behaviour constantly and nearly reaches the Default
in the last scenario with 30 consumers.

18

16 > >— >
14

(O]
£
|,_
c 12
i)
5
3 10
2
nj 8
(]
= 6
E \
C 4 —
12

2 M —

0

5 10 15 20 25 30
Scenario
(Number of Stages)
=p—= Default(1 Thread) === Simple StableBU FDP1 == FDP2 === StableTD

Figure 6.7. Relative execution time in the low computational effort scenarios on the AMD

The last evaluation with this low computational effort benchmarks is done on the SUN.
Figure 6.8 contains the result of this system. Here we are able to improve the performance
compared to the original execution in two scenarios. Again the StableTD algorithm is the
worst. Its factor goes up to 5. Other than on the previous systems it improves later on and
closes the gap to the other results by a big chunk to 2.5. Again the FDP assignments and
Simple behave very similar. The FDPs deliver an execution time around twice as high as the
Default in all scenarios. Simple improves this to roughly factor 1.5 with 15 and 20 stages and
then goes up again. Here again StableBU provides the best results. At 10 and 25 it is even
better than the Default execution. Here a factor of 0.92 and 0.84 is reached. The error range
of the Default and StableBU overlap each other and this result may also represent a similar
behaviour. At the last scenario the behaviour worsens. Thereby it reaches factor 2 again,
which is bigger than the result of FDP and Simple. In general on the SUN all dynamic
assignments are closer to the Default behaviour.

72

6.5. First Performance Evaluation of the Adaptive Assignment Algorithms

Relative Execution Time
w

5 10 15 20 25 30
Scenario
(Number of Stages)
=p— Default(1 Thread) === Simple StableBU FDP1 === FDP2 =p==StableTD

Figure 6.8. Relative execution time in the low computational effort scenarios on the SUN

In the low computational effort benchmarks we could observe different points. In
general the assignment algorithms tend to improve if the resources have to be distributed
amongst more stages. Even if every added consumer has only a low computational effort,
the more stages have to be executed, the more likely it is that a new thread could improve
the performance. It is noticeable that the gap between the dynamic algorithms and Default
widens as the system provides a higher clock frequency. This results in the first real
performance improvements on the SUN. As seen in the feasibility evaluation the AMD is
the most sensitive system, if more than two threads are used. The gain from more active
stages is here most likely eliminated by the synchronisation overhead. Additionally most
algorithms try to distribute resources in a optimal way, and are unlikely to withdraw them
completely. This can explain the particular big gap in this results. Especially StableTD starts
with all stages, set as active, which may cause the bad results. On the other hand StableBU
only activates a stage permanently if the local throughput is increased. This reduces
the employed resources and thereby the added overhead. The other three assignment
algorithms mostly provide the same results, with some deviations. Hence, we can conclude
that in the low computational effort scenarios, the more complex algorithms fail to achieve
their goal compared with the simple Simple.

6.5.2 Mixed Computational Effort Performance Tests

In the next part of this section we discuss the results of the mixed computational effort
scenarios. Now every third consumer stage is declared as a high computational effort stage.

73

6. Evaluation of the Feasibility and the Performance

10

Relative Execution Time

5 10 15 20 25 30
Scenario
(Number of Stages)
=p— Default(1 Thread) === Simple StableBU FDP1 === FDP2 === StableTD

Figure 6.9. Relative execution time in the mixed computational effort scenarios on the INTEL

Again the benchmarks were executed on all three test systems. We start with the INTEL in
Figure 6.9. Other than the last benchmark on this system the worst factor is 8.75 reached
by StableTD. Again this algorithm is the worst in all scenarios but two. FDP1,2 and Simple
range from 5 to 2.2 and could also reduce the distance to Default in general. Their graphs
follow similar tendencies and none of them is clearly better. Thus all of the four discussed
assignments are closer to Default than in the low computational effort scenarios. In this
benchmark the StableBU algorithm behaves inconsistent. In some scenarios it provides the
best results and in others the worst. Due to this strong alternation this strategy does not
deliver reliable results in this example.

The results of the mixed benchmarks on the AMD are shown in Figure 6.10. Here the
results vary strongly from the ones discussed until now. Again the results of the two FDP
assignments and the StableTD are closer to 1. The first two variants perform better with the
increasing stage count and become by far the best and reach roughly 1.3. StableTD is still
the worst in most cases, but also gets better as the configuration grows bigger. These three
algorithms reduce the range of the normalised factor, compared to the low computational
effort case. Thereby, the maximum factor is also reduced to 13. Both FPDs behave very
similar and nearly reach the Default algorithm, but are not able to get better results. On the
other hand Simple and StableBU deteriorate as more consumer stages are used. Thereby,
StableBU is a little erratic and becomes the worst at 30.

The last results of the mixed computational effort benchmarks were made on the SUN.
Figure 6.11 displays the results of the tests. Again we were not able to break through

74

6.5. First Performance Evaluation of the Adaptive Assignment Algorithms

14

12

(0]
E
F 10
c e >
k=)
‘é‘ 8
g . - —t
1 e /
(0]
=
8 4
(0]
14
22 — —=
> > > > o « |
0
5 10 15 20 25 30
Scenario
(Number of Stages)
=== Default(1 Thread) === Simple StableBU FDP1 =g FDP2 === StableTD

Figure 6.10. Relative execution time in the mixed computational effort scenarios on the AMD

the wall given by Default. In the scenario with 20 consumer stages the real data reveals a
great performance drop in the Default algorithm. Since the other algorithms don’t have this
anomaly, the comparing graphs show a drop for most of the dynamic ones. The ranking is
again more similar to the same benchmark on INTEL than to the AMD. StableTD is still
the slowest algorithm. FDP1, FDP2 and Simple behave similar again. At the last scenario
the FDP variants show a tendency toward better results. This trend may correlate to the
FDP results on the AMD. This also contrasts the results of the other strategies, which tend
to worsen if more stages are used. StableBU creates the best results for most amounts of
stages. Even so in the anomaly at 20 stages this algorithm is the worst, which may indicate
a spike, like seen at the AMD. At the last scenario the algorithms reach a factor of around 3.
Therefore, overall the gap increases on the SUN compared to the former low computational
effort benchmark.

In the mixed computational effort benchmarks we can observe different key points of the
behaviour of the different assignment strategies. Additionally, the results vary once again
between each system. Overall on the Intel and the AMD the gap between the assignment
algorithms and Default closes. Contrary to this the performance of the compared strategies
got worse on the SUN in general. The ranking of the algorithms is mostly the same on every
system. StableTD is usually the worst algorithm. FDP1,2 and Simple are always close to each
other, except on the AMD. On the AMD the assignments in the FDP style provide the best
resource usage and approach the Default. On the other hand the simple Simple algorithm
clearly can’t find a good solution. The results of StabelBU are inconsistent between the

75

6. Evaluation of the Feasibility and the Performance

Relative Execution Time

1 > > > > >
» > > > > »

5 10 15 20 25 30
Scenario
(Number of Stages)
=p— Default(l Thread) === Simple StableBU FDP1 === FDP2 === StableTD

Figure 6.11. Relative execution time in the mixed computational effort scenarios on the SUN

systems. On the SUN it is once again the best. On the AMD is starts mediocre and worsens
as more stages are used. Additionally, it behaves arbitrary on the INTEL, where it alternates
between good and bad results and ultimately gets worse. Therefore, other than before the
more complex algorithms seem to get the better results in the mixed computational effort.
Though not all of them can adapt and improve to the scenarios on all systems.

6.5.3 High Computational Effort Performance Tests

The last part of this performance evaluation provides uniform scenarios again. Here
we employ high computational effort configurations. These configurations are similar
constructed as the ones used in the last two benchmarks. Now every stage is set as a
high computational effort stage. Hence, this is similar to the low computational effort
benchmark, but the overhead created by active stages may be more likely compensated by
the added computational power.

Once again we start with the INTEL system. Figure 6.12 shows the relative results of
this benchmark. Compared to the mixed computational effort results, overall the ratios are
higher again. No strategy falls below a ratio of 3. Hence, the gained speed-up of the item
processing can’t compensate the overhead here. Most of the time StableTD is once again the
slowest algorithm. Though it closes the gap to the other strategies and even reaches them,
for example at 20 stages. Simple often follows as the next best algorithm. In these runs
FDP1 shows some differences in the behaviour compared with its sibling. Both alternate

76

6.5. First Performance Evaluation of the Adaptive Assignment Algorithms

12

[y
o

©

IN

Relative Execution Time
(2]

N

Y
Y
Y
Y
Y
v

5 10 15 20 25 30
Scenario
(Number of Stages)
=== Default(1 Thread) === Simple StableBU FDP1 === FDP2 === StableTD

Figure 6.12. Relative execution time in the high computational effort scenarios on the INTEL

in the performance ranking and in the last scenario FDP1 is slightly better. The results
of StableBU are always one of the best, but they don’t clearly overtake the other ones. In
general all strategies only get slightly better or worse as the configuration size increases.
This is contrary to the other benchmarks on the INTEL.

Figure 6.13 presents the results for the same benchmarks on the AMD. Compared to the
low and mixed computational effort scenarios the algorithms behave differently. Again we
can’t beat the Default algorithm. In fact the results have properties of both previous runs
on this system. First of all StableTD still provides the worst performance and uses up to
22.7 times the execution time of the Default algorithm. As in the mixed case Simple worsens
as the configuration size increases and ranks as the second worst assignment algorithm
of this test. Unlike in the low computational effort benchmark StableBU can’t improve the
performance and gets even worse. It has not the same erratic behaviour as in the mixed
case and follows Simple as the third worst algorithm. The best results are achieved by the
FDP assignments. In this diagram FDP1 can provide execution times close to the values of
Default, but it doesn’t reach them. Especially the scenarios with 15, 20 and 25 stages result
in the values 1.32, 1.26 and 1.20 respectively. FDP2 can’t reach the same performance as
its sibling. Only at 15 stages both algorithms are close to each other. While both FDPs get
closer to the Default and roughly stay there as the number of stages increases, StableTD and
Simple get worse at the same time. StableBU worsens until 20 stages. Afterwards it shows a
tendency to improve the performance again.

Figure 6.14 displays the last benchmark on the SUN. Here all results are far away from

77

6. Evaluation of the Feasibility and the Performance

25

Relative Execution Time

Scenario
(Number of Stages)
=p— Default(1 Thread) === Simple StableBU FDP1 === FDP2 === StableTD

Figure 6.13. Relative execution time in the high computational effort scenarios on the AMD

reaching the Default. Like before we can observe properties of the both earlier benchmarks.
All strategies are close to each other and can’t be ranked as clearly as before. This is like
in the low overhead benchmark. As the number of stages increases the factor of each
algorithm increases until 15, respectively 20 stages are reached. At 25 and 30 stages all
values range between 4 and 5. This tendency is also observed in the mixed computational
effort scenarios. Even the StableBU, which has the best results in both earlier benchmarks
only provides a mixed performance, compared to the other algorithms. This also applies to
StableTD, which has the worst results in every other diagram.

In all high computational effort benchmarks we could observe a behaviour with portions
from the ones provides by the low and mixed computational effort scenarios. In general the
gap of the respectively unsuited strategies to Default increased. In fact on the SUN and the
INTEL the performance dropped further. Although the stages utilize more computations
per element the synchronisation overhead could not be compensated. On the AMD the
good tendency of the FDP assignments is kept. They are not influenced by the added
computational efforts like the other strategies. Even though StableBU is worse than in the
other benchmarks, it stopped its erratic behaviour from the mixed one.

6.5.4 Conclusion of the First Performance Evaluation

In all presented benchmarks we are not able to reach a clear improvement of the execution
time compared to the default behaviour of TeeTime. The sole point where we can provide

78

6.5. First Performance Evaluation of the Adaptive Assignment Algorithms

(O]
IS
= 5 i w— R
5 S—
g 4 — =t
(&)
2
W 3
(]
=
T 2
©
x

10 3> 3> 3> 3> >

0

5 10 15 20 25 30
Scenario
(Number of Stages)
=p— Default(1 Thread) === Simple StableBU FDP1 === FDP2 === StableTD

Figure 6.14. Relative execution time in the high computational effort scenarios on the SUN

a real increase of the performance is in the low computational effort benchmark on the
SUN. Especially in these scenarios we can observe algorithms coming close to the value
of Default. However, in all cases the values and their error range have to be considered,
especially at the two points that breach the default border. Although the measurements
show the increasing execution time for all algorithms, the set computational effort of the
high computational effort stages may be not sufficient to make an activation worthwhile.
An other point can be underlying the used methods of our evaluation scenarios that maybe
can’t be computed in parallel.

Generally, StableBU provides the best performance of all dynamic algorithms in the
low computational effort benchmark. This changes in the mixed one. Here this algorithm
provides erratic results. In the high computational effort scenario this stops, but the results
are not as good as in the first. This algorithm needs further exploration and improvements.
On the other hand StableTD is always the worst assignment algorithm. Since it starts with
all stages set as active and stops completely if it finds that the total performance has
dropped, it tends to use more active stages. Hence, the synchronisation overhead can turn
out really big and may be an explanation for these results. In general a threshold value that
catches insignificant variations in the performance monitoring, can improve the behaviour
of both Stable algorithms. Thus, more parameter studies are needed.

The FDP assignments often provide the second or third best performance throughout the
benchmarks. Especially on the AMD they are the best at the mixed and high computational
efforts. In general they use all possible resources, but not more, and try to distribute them

79

6. Evaluation of the Feasibility and the Performance

in an optimal way. Therefore, most of the time they will never deactivate stages unless
for redistribution of the threads. Since the AMD only provides 4 hardware threads and
the algorithms limits the usage of threads accordingly, these strategies automatically limit
the resource consumption and may even do less changes due to this fact. On the INTEL
and SUN more threads are provided and thus more resources will be used. In turn this
increases the synchronisation overhead. Even though both algorithms are close to each
other, FDP1 often provides slightly better results.

Simple provides its best results in the low overhead scenarios. The performance is
mediocre in the low computational effort benchmarks and gets worse in the mixed and
high ones. Since this algorithm just activates the slowest and deactivates the fastest stage, if
needed, it does not balance the computational effort on the stages in any way.

In general we could observe that the behaviour of the single strategies strongly depends
on the executed scenario and the used machine. Thereby, the number of threads and the
provided performance seem to be important. Hence, future assignment algorithms have to
consider the provided resources and adjust themselves accordingly. All of our implemented
policies seem to lack the ability to improve or even get the same results as the Default.
Especially, they can’t compensate the synchronisation overhead. In the future algorithms
should be considerate that TeeTime seems to be very sensible in this point of our benchmark
scenarios. They should only use the minimum of the provided resources that improves the
execution. Based on this evaluation StableBU and one of the FDP assignments may be the
best candidates for further improvements.

6.5.5 Threats to Validity of the First Performance Evaluation

In this performance evaluation we use again the variable computational effort configura-
tions. Our test scenarios that are built with these configurations are scalable in multiple
ways and create comparability between the single tests, their size and their computational
effort. Thereby, many options can be regulated according to the planned scenario. Again
all configurations in all scenarios are one-dimensional systems. We have no branches or
feedback loops. In the whole system exists only one producer stage, whose thread also
drives the execution in the Default strategy. This can be extended to create more complex
configurations. Also, we classify stages either as high- or low-computational effort stage.
The behaviour and their effort is the same in the same computational effort class. The high
computational effort may be too small to create enough computational effort to compensate
the costs of the synchronisation mechanisms. Another issue may be again that underlying
methods used in the variable configurations may not be able to be used in parallel.

In general many settings and options are not touched in this evaluation. Like before,
the timeToWait of the AssignmentAdaptationThread are not changed. The only used Analy-
sisAlgorithm is the regression algorithm, which provided the best results in the task farm
[Wiechmann 2015]. Other already implemented or new algorithms can be used in future
evaluations. Future benchmarks may also consider changing more aspects of the dynamic
adaptation, like the used metrics, the sizes of the pipes, the size of the History and many

80

6.6. A Second Performance Evaluation on the INTEL

more. Again, the external threads to validity from the previous evaluations are still valid
here.

6.6 A Second Performance Evaluation on the INTEL

In our previous evaluations we experienced some unexpected behaviour of all dynamic
algorithms and in the feasibility tests. Due to this we investigated our benchmark scenarios
further and changed the behaviour of the stages that provide a variable computational
effort. In our first version we utilised a loop to generate a certain load for the stage. In
this loop a random number generator is used. Since this generator often is a singleton
and not optimised for parallel usage, we replace the whole loop and use a method of
JMH [Java Microbenchmark Harness]. The computational effort variable is now given to the
consume() method of the Blackhole provided by [MH. It creates computational effort on the
CPU dependent on the given number. The computational effort rises “almost linear” [Java
Microbenchmark Harness]. We increase the computational effort of the high computational
effort stages to 2000. The remaining settings are kept as in the other performance evaluation.
Also the algorithms and the number of investigated consumer stages stay the same as before.
In this thesis we only evaluate this adapted benchmark on the INTEL. In the future other
systems have to be evaluated as well. Here we consider the mixed and high computational
effort scenarios. In the case where every stage has only a low computational effort per
element, we still can’t observe that our dynamic algorithms create a better execution time.
The overhead for the synchronisation is still to high too be compensated through the gain
of extra threads. The real data and the low effort scenario are given in the appendix.

We begin our discussion with Figure 6.15. Here the results of the mixed computational
effort scenarios ar displayed. The mapping between colours and symbols and the dynamic
assignment algorithms stays the same as before. Again the execution times are normalised
by the result of the Default assignment. Here we can achieve real improvements of the
performance. All algorithms tend to get better as the amount of consumer stages increases,
like in the other tests. Unlike in all previous results StableTD gives the best results. At the
end the algorithm performs more than 5 times as fast as the Default execution. Hereby,
an interesting observation is that in every run the execution times stay nearly the same.
The other algorithms start with an execution time greater than 1 and begin to improve
from 15, respectively 20 stages. The FDPs are the second best and reach up to 0.4 of the
original execution time. The differences between the two siblings melt as the number of
stages increases. Simple and StableBU perform the worst of all dynamic algorithms and
reach their best performance with a factor of around 0.75 at 30 stages. Again StableBU
shows indications of an erratic behaviour.

In Figure 6.16 the benchmark with the high computational effort scenarios is shown.
Again, all consumer stages in this scenarios have a high computational effort. Like before,
most algorithms perform better as the number of stages increases. StableTD provides the
best results, like in the mixed scenarios. Here it even reaches an execution time which is

81

6. Evaluation of the Feasibility and the Performance

1.8

= = =
N I o
2 ‘

=

o
©

Relative Execution Time
o
(o)}

©
IS

o
N
A 4

A J
y

—>
0
5 10 15 20 25 30
Scenario
(Number of Stages)
=p—= Default(1 Thread) === Simple StableBU FDP1 == FDP2 === StableTD

Figure 6.15. Relative execution time in the mixed computational effort scenarios on the INTEL

ten times faster than the one of the Default. In this benchmark the execution times are also
very similar in every run. With 5 stages most algorithms don’t find a better assignment
than Default. The results of the FDPs differ slightly. They perform up to 5 times better
than Default. Simple is the second last in this ranking. StableBU performs the worst and the
execution time goes up again in the 30 stage scenario. However from 15 stages onwards all
algorithms achieve a better performance than the Default behaviour.

In the evaluation with the second version of our variable configuration we can greatly
improve the execution of our chosen benchmark scenarios. Other than in the previous
evaluation all algorithms are able to improve the performance of TeeTime. Thereby, StableTD
provides the best results. This is contrary to the first results, where the algorithm was
always the worst. Especially the fact that every execution needs a similar time to finish has
to be studied further. The performance gain of Simple and StableBU is the lowest. Especially
the latter indicates a slightly erratic behaviour again. The FDPs improve the performance
as the second best algorithms. In consideration of both evaluations the FDP algorithms
provide the most consistent results. In general, if the load of some stages is high enough
for a thread to compensate the synchronisation overhead and there are no hindrances for
a parallel execution, our dynamic adaptation algorithms can improve the performance
of the system. However, such described obstructions are not diagnosed accordingly by
all algorithms and this needs further improvements. If this could be solved StableTD, can
potentially be one of the best algorithms.

82

6.6. A Second Performance Evaluation on the INTEL

v

o
o

L 2

Relative Execution Time
o o
S [ee]

0.2\ —

4
v

5 10 15 20 25 30
Scenario
(Number of Stages)
=p—= Default(1 Thread) === Simple StableBU FDP1 === FDP2 =p== StableTD

Figure 6.16. Relative execution time in the high computational effort scenarios on the INTEL

6.6.1 Threats to Validity of the Second Performance Evaluation

In the second performance evaluation, we execute our benchmark scenarios only on
the INTEL with the same JVM as before. Through the modifications in our variable
computational effort configurations we increase the potential for parallel execution in the
scenarios. Since we use other methods to produce the computational effort, the parameters,
which define this effort, are not comparable. In this evaluation the resulting execution times
of all algorithms differ from the ones measured before. Even though we could improve
the performance of the default behaviour of TeeTime, we did not compare our dynamic
algorithms with good static thread assignments. Also the scenarios remain simple and have
no branches or loops. This should be considered in future performance evaluations. The
remaining threats to validity essentially stay the same for this benchmark as in the first
performance evaluation.

83

Chapter 7

Related Work

The pipe-and-filter architectural style has many applications and similar fields, especially
the field of stream processing. It often splits the input stream into multiple elements. Each
element out of this stream has to go through,in multiple single steps to complete the
whole procession. Additionally, there exist many special use cases for the pipe-and-filter
architecture. Each of the created application may have different properties, like stateless
stage. Also the underlying hardware may vary. Hence, in the literature many approaches
to adapt and optimise such programs can be found. Thereby, often stage replication is used
to balance slow stages. Here we display some of the approaches and discuss how they
generally work and how they differ to our approach .

In the Feedback-Directed Pipeline Parallelism (FDP) approach [Suleman et al. 2010] the
authors want to adapt a given pipe-and-filter architectures to reach two goals. First, they want
to find an optimal thread to stage assignment for this application. Second, the unneeded
utilisation of cores and hence their power consumption should be avoided and minimised.
The origin of their optimised application is loop parallelisation through pipeline parallelism.
They use an implementation where one core can execute multiple stages and a single stage
can be processed by multiple cores, if needed. Especially the way how the stages are
assigned to the cores is different from our approach. The procedure of their algorithm is
used as the base of two assignment algorithms in our work.

The DMonA approach [Michiels et al. 2002] is a component bases architecture, which
extends the DiPS architecture with monitoring and adaptation strategy components. It
divides the system in balanced parts and every part is managed according to its own local
strategy and in harmony with the meta strategy of the whole system. The software is
generally seen as a pipe-and-filter architecture, but with heterogeneous elements, which may
need special care. This resembles the MAPE-K approach. The adaptation is done through
operations like stage parallelism or increased caching of data. Even though the control
design is similar to our approach, with replication and controllable caching, their effectors
offer other operations to the managed elements.

In the approach of [Guggi and Rinner 2013] it is assumed that all stages run with their
maximal throughput. Increasing the performance of a single stage is not possible. To reduce
the overhead and the unnecessary used resources the whole system is slowed down to
match the speed of the bottleneck. This is ultimately done through a reduction of the speed
in which new elements are produced. This differs from our approach, since we don’t touch
producer stages directly and try to regulate the throughput through the amount of used

85

7. Related Work

threads and their location.

Weir [Burtsev et al. 2014] “is an imperative, streaming programming language”. Its main
purpose is to be used for scripting, including at the command-line level. Thereby, the main
goal is to build analysis algorithms as a pipe-and-filter architecture. This framework provides
events as control mechanism similar to the signals in TeeTime. The execution of these events
can be controlled through a scheduler. These last two points are the main difference to our
approach. Additionally we don’t apply restrictions for the build use cases.

In Flextream pipe-and-filter architectures on multicore systems are considered. The goal of
the framework is to adapt the application at runtime to changes in the pool of available
resources. For example if a second program is running in the same system, it needs
resources for itself, like CPU cores. If this program terminates, the allocated resources are
freed and the Flextream can utilise them. Therefore, this adaptation is event based. During
the adaptation the stages and the used cores are balanced. Thereby, the system, represented
as a graph, is split into work partitions. This approach differs to our work, as it provides a
direct stage to core assignment, reacts to system events and workloads are not considered
directly.

The goals of the DANBI programming model [Min and Eom 2015] are similar to our
work. They want to provide irregular stream applications that are able to handle a varying
workload at runtime. The thread to stage assignments, here called schedules, are either
event based or rely on probabilities. They are able to use a given amount of CPU cores as
well as GPU’s. The optimisations they apply to the system are low level. This contrasts
our approach, which mostly works with the high level abstractions of the pipe-and-filter
architectural style, like pipes, ports and stages. They don’t follow the MAPE-K approach
like we do. Additionally they utilize a scheduler for each thread.

In [Chandrasekaran et al. 2003] web services and their workflows are perceived as pipe-and-
filter architectures. Even though their work is only indirectly related to our approach, they
provide the idea to simulate such systems beforehand to generate execution data.

SEDA [Welsh et al. 2001] also models web services as pipe-and-filter architectures. Resources
are automatically assigned, through the single stages of the service, as the number of
requests and hence their workloads increase. The stages in question are replicated to
distribute the load. Additionally, several options like thread pool size and the event
scheduling may be chosen. The goal in this approach is also the balancing of dynamic
workloads at runtime. Through the limitation to stateless web services the replication of
stages used for this is kept simple. Since we want to create this balancing for a general
purpose framework, our approach does not use this replication as an instrument for load
balancing.

[Hirzel et al. 2014] provide several optimisations that can be applied to a stream processing
application. They consider these systems to consist of single stages like a pipe-and-filter
architecture. They present how these applications can be optimised through different
operations on the single stages. For example the fusion and fission of stages is described.

86

Chapter 8

Conclusions

In the beginning of this thesis we defined three main goals for our extensions. Following
the MAPE-K approach our first objective was to create effectors, which can control the
resource distribution in a pipe-and-filter architecture. Thereby, we focused on the distribution
of threads to single stages. In this approach only these threads are considered as shared
resources. They can be assigned to and withdrawn from the stages. Since we considered
execution models in which one active stage with its own thread executes neighbouring
passive stages, we had to keep some restrictions in mind. For example in the push-model,
used by TeeTime, producers and stages with multiple preceding threads have to be active
all the time. Additionally every thread has only one active stage that is executed by it and
vice versa. Our approach for implementing the effectors and providing the possibility to
(de-)activate a stage at runtime uses the circumstance that the incoming pipes of it have to
change anyway. Here we created intermediate pipes, which are used to handle the occurring
concurrency issues and ultimately restore a configuration as it would be constructed by
TeeTime without the extension. This pipe changing approach to alter the executing thread
of a stage is our first contribution. It resembles the fusion and fission used by some other
approaches. For the sensor part we employed a simple pipe monitoring, which uses built-in
measurements of the throughput and related metrics. In pipe implementations where this
functionality was not given by the underlying structure, we implemented them ourselves.
In the second part we extended TeeTime with the autonomic adaptation principle. As
suggested by the MAPE-K approach, we split our computation in different phases. All
of these phases are used one after another by the control loop in the AssignmentAdapta-
tionThread. It gathers the monitored data through the sensors and then analyses it. With
this analysis it plans how the system should be configured in the next iteration and how
this goal should be reached. Thereby, policies, also called assignment algorithms, are used to
determine the course of action. At the end the effectors are used to change the configuration
at runtime. The policies can be chosen and even be implemented by the user. They can rep-
resent the different strategies described in other approaches. In our work we implemented
some algorithms as proof of concept. Also the metric, which controls the choice of the
monitored property, can be chosen as well as self-implemented. As examples we give the
choice between the pull-throughput of the pipes associated with the measured stage and
their remaining items. However, other metrics, like the execution time per element, will
need additional sensor implementations. Furthermore, other options, like the used analysis
algorithm and the time between every iteration of the control loop, can be chosen.

87

8. Conclusions

In the last part we evaluated the approach with our the example implementation
in TeeTime. All tests were done on three different systems. Thereby, we used a variable
computational effort generator, which creates simple, periodic configurations with different
computational efforts. At first we have shown that our approach is feasible. Stages can
be changed from active to passive and vice versa at runtime. Thereby, the choice and
the amount of active stages has a great influence on the performance of the system. Our
tests show that the throughput of our benchmark scenarios is sensible to the choice of
the active stages. The wrong stages or too many threads cause a heavy performance
drop. Additionally we have evaluated the overhead of our monitoring operations for the
intra-thread communication. Here, we can show that the overhead is low but can’t be
ignored on some systems. In the last part of the evaluation we measured the throughput
of the single assignment algorithms provided by us. All were compared to the default
behaviour of TeeTime. This benchmark was done in three different scenarios. The first
scenario had only stages with low computational effort. The second scenario included only
high computational effort stages. In the configurations of the last scenario stages from
both types were present. In nearly all cases the default behaviour got better results than
our adaptive algorithms. However, they often show a tendency to improve the execution
as more stages are used, especially if the stage number is bigger than the amount of
available resources. In a further investigation, we replaced the random number generator
with an other method to consume CPU cycles. We evaluated the performance again on
the INTEL. This led to real improvements of the performance of the scenarios. Therefore,
our algorithms are able to improve the execution of such scenarios at runtime, but they
need further improvements to identify situations where changes can only result in a
worse performance. We did not test environments where the computational effort changes
dynamically at runtime.

We made the first steps to enable a pipe-and-filter framework to dynamically adapt
itself and possibly react to computational effort changes during runtime. Thereby, the
MAPE-K approach was used. In the considered execution models the effectors can mostly
be implemented by changing the pipes accordingly. The performance of the execution can
be influenced by such dynamic assignments. The results of each algorithm also depend
on the chosen hardware and the executed scenarios. Therefore, it is not possible to give a
perfect static assignment for every situation. The implemented policies have to be further
refined to create a good performance even if the given configuration can’t benefit from
multiple used threads. If this hindrances are not present we could improve the execution
in our benchmarks. Dynamic computational efforts weren’t considered and have to be
evaluated in the future. The design of our extension and the given option to implement new
assignment algorithms and metrics should allow a fast refinement of the given policies and
even to develop new strategies. A more in-depth analysis of the improvement possibilities
of pipe-and-filter architectures can help in this procedure. For example, determining optimal
static assignments for simple configurations can hint how the results of their dynamic
counterparts may look like.

88

Chapter 9

Future Work

In the future the implemented assignment policies should be tuned to achieve improve-
ments in the performance of all possible scenarios of TeeTime. Especially the computational
effort balance in the single partitions of the threads has to be considered. Adding more
tolerance to the monitored data and limiting erratic behaviour can improve existing al-
gorithms. Additionally, the resource usage should be limited according to the provided
hardware. Thereby, it can happen that the options of the algorithms become restricted.
An alternative approach would be to apply load balancing algorithms like the honeybee
algorithm used in cloud computing [Randles et al. 2010]. In general, computing optimal
assignments for several scenarios can be useful to gain insight information about where the
current assignments are lacking. Thereby, approaches like the simulating runs beforehand
or balancing each stage to have the same throughput may be useful. A comparison between
good static assignments and the dynamic algorithms should be done to further explore the
gain of our approach.

Also other metrics can be tested and may improve the results. For example measuring
the execution time of a stage per element may provide another way to recognise their
resource demands. This can result in multiple sensor operations running at the same time.
However, this can lead to several extra computations that are applied to every element and
thus slowing down the whole system. To avoid this a general monitoring interface that
only applies the sensor operations if they are needed for the specific metric, can reduce the
overhead. Even composite metrics can be implemented in this way, but the AnalisesService
and the History have to be extended for this purpose. If enough resources are available,
procedures like described by [Fittkau and Hasselbring 2015] can be applied to increase the
performance if huge configurations or many metrics are used.

Future evaluations should consider a broader range of benchmark scenarios. For exam-
ple configurations with different branches and stages that vary their computational needs
according to the content of an input file provide more complex use cases. Especially the
effects of dynamic computational efforts at runtime should be analysed. Additionally, the
remaining options, like the time between every iteration of the control loop or the analysis
algorithms, can be explored. A general benchmark suite could take over this responsibility.
Furthermore, this would make it easier to provide different and reproduceable evaluation
results. Thereby, an option to import and export pipe-and-filter architectures can improve
the comparability of such frameworks in the long run.

To improve the execution itself and utilise more resources different steps can be taken.

89

9. Future Work

Stage duplication or even multiplication can be implemented as suggested in Chapter
4. Also a scheduler for the threads may be useful, especially if more threads are used
than cores. Corresponding to the scheduler it may be useful to balance the thread to core
assignment directly, as done in other approaches. Also GPU’s and distributed systems may
be utilised in the future. In the second case the pipe changing approach can also be applied
to redistribute stages on computation nodes. Since the pipes control the communication
and the execution flow, stages that are not changed don’t have to be touched directly. The
pipes will do the communication and can be responsible for the connection between the
single nodes.

90

Bibliography

[Blackburn et al. 2006] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovi¢, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In: Proceedings of the 21st Annual ACM SIGPLAN Conference
on Object-oriented Programming Systems, Languages, and Applications. Portland, Oregon,
USA: ACM, 2006, pages 169-190. (Cited on pages 59 and 67)

[Bruni et al. 2012] R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, and A. Vandin.
Fundamental approaches to software engineering: 15th international conference, fase
2012. In: Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. Chapter A Conceptual
Framework for Adaptation, pages 240-254. (Cited on page 10)

[Burtsev et al. 2014] A. Burtsev, N. Mishrikoti, E. Eide, and R. Ricci. Weir: A Streaming
Language for Performance Analysis. SIGOPS Oper. Syst. Rev. 48.1 (May 2014), pages 65—
70. (Cited on pages 1, 14, and 86)

[Buschmann et al. 1996] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
A system of patterns: Pattern-oriented software architecture (1996). (Cited on page 7)

[Chandrasekaran et al. 2003] S. Chandrasekaran, J. A. Miller, G. S. Silver, B. Arpinar, and
A. P. Sheth. Performance Analysis and Simulation of Composite Web Services. Electronic
Markets 13.2 (2003), pages 120-132. (Cited on pages 14, 46, and 86)

[Chen 2016]]J. Chen. Flow in Games. Visited: March 7, 2016. 2016. URL: http://www. jenovachen.
com/flowingames/. (Cited on page 12)

[Dept. 2016] U. B. E. Dept. Ptolemy Project Website, Ptolemy 2. Visited: March 7, 2016. 2016.
URL: http://ptolemy.eecs.berkeley.edu/ptolemyII/. (Cited on page 6)

[Fittkau and Hasselbring 2015] F. Fittkau and W. Hasselbring. Elastic application-level
monitoring for large software landscapes in the cloud. In: Service Oriented and Cloud

Computing. Volume 9306. Lecture Notes in Computer Science. Springer-Verlag, Sept.
2015, pages 80-94. (Cited on page 89)

[Georges et al. 2007] A. Georges, D. Buytaert, and L. Eeckhout. Statistically Rigorous Java
Performance Evaluation. SIGPLAN Not. (2007), pages 57-76. (Cited on pages 59 and 67)

[Guggi and Rinner 2013] H. Guggi and B. Rinner. Increasing Efficiency of Data-flow Based
Middleware Systems by Adapting Data Generation. In: Self-Adaptive and Self-Organizing
Systems (SASO), 2013 IEEE 7th International Conference on. 1EEE. 2013, pages 189-198.
(Cited on pages 14-16, 56, and 85)

91

http://www.jenovachen.com/flowingames/
http://www.jenovachen.com/flowingames/
http://ptolemy.eecs.berkeley.edu/ptolemyII/

Bibliography

[Hirzel et al. 2014] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm. A Catalog
of Stream Processing Optimizations. ACM Comput. Surv. 46.4 (Mar. 2014), 46:1-46:34.
(Cited on pages 8 and 86)

[Hormati et al. 2009] A. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge, and S.
Mahlke. Flextream: Adaptive Compilation of Streaming Applications for Heterogeneous
Architectures. In: Parallel Architectures and Compilation Techniques, 2009. PACT "09. 18th
International Conference on. 2009, pages 214-223. (Cited on pages 1, 13, 15, 45, 55, 56)

[Horn 2001] P. Horn. An architectural blueprint for autonomic computing. Visited: March
7, 2016. 2001. URL: http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf.
(Cited on pages 2, 10, 13, 16, 17)

[Java Microbenchmark Harness] Java Microbenchmark Harness. Visited: March 7, 2016. 2016.
URL: http://openjdk.java.net/projects/code-tools/jmh/. (Cited on pages 68 and 81)

[Kephart et al. 2003]]J. Kephart, J. Kephart, D. Chess, C. Boutilier, R. Das, J. O. Kephart,
and W. E. Walsh. An architectural blueprint for autonomic computing. IBM White paper
(2003). (Cited on pages 2, 10-13, 16, 48, and 68)

[Michiels et al. 2002] S. Michiels, L. Desmet, N. Janssens, T. Mahieu, and P. V. DistriNet. Self-
adapting Concurrency: The DMonA Architecture. In: Proceedings of the First Workshop
on Self-healing Systems. ACM, 2002, pages 43-48. (Cited on pages 7, 13, 36, and 85)

[Min and Eom 2015] C. Min and Y. I. Eom. Dynamic Scheduling of Irregular Stream Pro-
grams toward Many-Core Scalability. Parallel and Distributed Systems, IEEE Transactions
on 26.6 (June 2015), pages 1594-1607. (Cited on pages 55 and 86)

[Monroe et al. 1996] R. T. Monroe, A. Kompanek, R. Melton, and D. B. Garlan. Architectural
styles, design patterns, and objects. IEEE software (1996), page 43. (Cited on pages 1
and 5)

[Randles et al. 2010] M. Randles, D. Lamb, and A. Taleb-Bendiab. A comparative study into
distributed load balancing algorithms for cloud computing. In: Advanced Information
Networking and Applications Workshops (WAINA), 2010 IEEE 24th International Conference
on. Apr. 2010, pages 551-556. (Cited on page 89)

[Soulé et al. 2013] R. Soulé, M. I. Gordon, S. Amarasinghe, R. Grimm, and M. Hirzel.
Dynamic Expressivity with Static Optimization for Streaming Languages. In: Proceedings
of the 7th ACM International Conference on Distributed Event-based Systems. DEBS "13.
Arlington, Texas, USA: ACM, 2013, pages 159-170. (Cited on pages 7 and 14)

[Suleman et al. 2010] M. A. Suleman, M. K. Qureshi, Khubaib, and Y. N. Patt. Feedback-
directed Pipeline Parallelism. In: Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques. PACT "10. Vienna, Austria: ACM, 2010,
pages 147-156. (Cited on pages 7, 8, 14, 15, 45, 55, and 85)

[Taylor et al. 2009] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Architecture:
Foundations, Theory, and Practice. Wiley Publishing, 2009. (Cited on pages 1, 5, 6)

92

http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf
http://openjdk.java.net/projects/code-tools/jmh/

Bibliography

[Van Hoorn 2014] A. van Hoorn. Model-Driven Online Capacity Management for
Component-Based Software Systems. Doctoral thesis/PhD. Kiel, Germany, Oct. 2014.
(Cited on page 10)

[Van Hoorn et al. 2009a] A. van Hoorn, M. Rohr, I. A. Gul, and W. Hasselbring. An
Adaptation Framework Enabling Resource-efficient Operation of Software Systems. In:
Proceedings of the 2nd Warm Up Workshop (WUP 2009) for ACM/IEEE ICSE 2010. ACM,
2009, pages 41-44. (Cited on page 10)

[Van Hoorn et al. 2009b] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller,]. Ehlers, S. Frey,
and D. Kieselhorst. Continuos Monitoring of Software Services: Design and Application of
the Kieker Framework. Forschungsbericht. Kiel University, Nov. 2009. (Cited on page 1)

[Van Hoorn et al. 2012] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A Framework
for Application Performance Monitoring and Dynamic Software Analysis. In: Proceedings
of the 3rd joint ACM/SPEC International Conference on Performance Engineering (ICPE 2012).
ACM, Apr. 2012, pages 247-248. (Cited on page 1)

[Welsh et al. 2001] M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecture for Well-
conditioned, Scalable Internet Services. SIGOPS Oper. Syst. Rev. 35.5 (2001). (Cited on
pages 6, 47, and 86)

[Weyns and Holvoet 2007] D. Weyns and T. Holvoet. An Architectural Strategy for
Self-Adapting Systems. In: Proceedings of the 2007 International Workshop on Software
Engineering for Adaptive and Self-Managing Systems. SEAMS ’07. Washington, DC, USA:
IEEE Computer Society, 2007. (Cited on page 10)

[Wiechmann 2015] C. C. Wiechmann. On Improving the Performance of Pipe-and-Filter
Architectures by Adding Support for Self-Adaptive Task Farms. Master’s thesis. Kiel
University, Oct. 2015. (Cited on pages 19, 35, 42-46, and 80)

[Wulf et al. 2014] C. Wulf, N. C. Ehmke, and W. Hasselbring. Toward a Generic and
Concurrency-Aware Pipes & Filters Framework. In: Symposium on Software Performance
2014: Joint Descartes/Kieker/Palladio Days. Nov. 2014. (Cited on pages 1, 6, 8, 9, and 69)

[Wulf et al. 2016] C. Wulf, N. C. Ehmke, and W. Hasselbring. The Pipe-and-Filter Architec-
tural Style Revisited: From Basic Concepts toward Smart Framework Implementations.
In: Submitted for Review, 2016. (Cited on pages 34 and 68)

[Wulf and Hasselbring 2016] C. Wulf and W. Hasselbring. Java-based reference implementation
of the TeeTime framework. Visited: March 7, 2016. 2016. URL: http://teetime.sourceforge.net/.
(Cited on pages 1, 7-9, and 13)

93

http://teetime.sourceforge.net/

Appendix A

Appendices

A.1 Diagrams of the Feasibility Evaluation

In the feasibility diagrams the used configuration contained ten consumer stages. Every
second consumer stage is a high computational effort stage. The AlternatingAssignment is
used to activate every passive stage and deactivate every active stage in every iteration. All
results are collected with the first version of the variable workload stages.

A. Appendices

Throughput

= Number of active stages
— Average Throughput

N ;— << ‘ ‘b
ool A A r §
/ | " TN
400 4 #ﬁ# _, 1_ X E
1 VIVI\- é _,_
L \
200
o ALLALARRIREARLIRAREARIZRLARAREIZRIREAARARRARIAREARETEIARAREARIARARRIREARLAR RARRARIARAREARARRIRLARRARRARIAREARIREIIRRRRARRIAEARRARTARLARIARRARAL
E 7 10 13 16 10 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 O 94 o7 100 103 106 109 112 115 118 121 124 127 130 133 136 139 142 145 148

Iteration

Figure A.1. The Results of the Feasibility Test on the INTEL

0

Number of Active Stages

ANV 3 U0 183, AYITIqIsea ayy JO s)Nsay Y, 7'V 2mBLg

A.1. Diagrams of the Feasibility Evaluation

uonelsy|
8vT SPT 2¥T 6€T 9T €ET OET LT ¥2T TZT 8TT STT ZTIT 60T 90T €0T 00T L6 ¥6 T6 88 S8 28 6L 9L € 0L L9 v9 19 8 S5 25 6V 9v € Ov LE VE T€ 8C G2 2 6T 9T €T 0T ,
- .% =§,=E al §
i y g [W, HH < N THe 005
z- \ F. § 11
m) 000T
: LN _ [{1UIIE I[|I [[T{I}I
8 v
W ST
2
S 9 0002
¢ | | _
S
2] 00se
m‘__ |
— — 000€
ot -
oose
_ indybnouy | abelany —
sabels aAjoe Jo Jaquin mem
0r

k43

ndybnouy L

A. Appendices

Throughput

700

5 Number of active stages
— Average Throughput

12

10

[

600
500] __ ____
Il ¥
400 ——_ | M P
o _ \ _
— { > _ N
" __ | s_ L ITVTT A . Ltk
%
__) _2 z _ 1 1 /
X
100 f / s{. ," \ 2
N \
o__
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 103 106 109 112 115 118 121 124 127 130 133 136 139 142 145 148

Iteration

Figure A.3. The Results of the Feasibility Test on the SUN

Number of Active Stages

A.2. Pipe Comparison Data

A.2 Pipe Comparison Data

AMD

Unsynchronized Pipe Unsynchronized Pipe with Sensor Operations
Throughput 440.249 356.206
Error 4.504 5.792

in Operations/Microsecond

Normalized 100 80.9101213177
INTEL

Unsynchronized Pipe Unsynchronized Pipe with Sensor Operations
Throughput 380.739 386.176
Error 5.974 1.441

in Operations/Microsecond

Normalized 100 101.4280123654
SPARC

Unsynchronized Pipe Unsynchronized Pipe with Sensor Operations
Throughput 21439 20213
Error 0.001 0.003

in Operations/Microsecond
Normalized 100 94.2814496945

Figure A.4. Comparison of the pipe implementations on different systems.
All data is measured in operations per microsecond.

A.3 Performance Evaluation Data

A.3.1 INTEL Data

In these data all measured values are given in milliseconds. They represent the total
execution time of a single run in a given scenario. This scenario is identified through the
number of stages at the top of each entry. The error is computed as the standard deviation
of the values.

A. Appendices

Low Computational Efforts

Stages
Algorithm Default
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm Simple
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm FDP1
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm FDP2
Runl
Run2

46
45
45
61
63
49
46
46
46
45

49.2

6.86

201
201
201
201
201
201
201
201
201
201
201
0.00

402
211
202
201
201
201
202
201
202
202

222.5
63.14

201
201

10

88
73
64
64
63
63
64
64
63
64
67
7.96

402
202
402
402
402
402
402
403
402
402
382.1
63.28

403
605
402
403
402
202
402
202
403
402
382.6
114.24

403
201

15

96
96
95
95
95
95
95
95
95
95
95.2
0.42

403
403
403
402
403
403
402
403
404
403
402.9
0.57

403
606
403
650
404
405
403
404
403
403
448.4
95.23

403
403

20

127
128
127
127
127
126
126
126
126
126
126.6
0.70

403
403
403
403
211
201
403
403
402
403
363.5
83.04

607
405
405
767
611
606
404
807
407
404
542.3
159.09

404
686

25

158
158
158
157
158
158
158
158
158
158
157.9
0.32

404
403
403
403
404
403
403
403
403
403
403.2
0.42

866
403
807
807
808
819
813
606
619
403
695.1
176.58

824
818

30

287
259
195
190
190
249
287
263
198
190
230.8
41.94

606
404
605
404
605
605
805
403
403
603
544.3
135.63

719
404
829
674
607
824
973
608
842
403
688.3
188.36

403
1132

A.3. Performance Evaluation Data

Run3 403 604 403 703 403 791
Run4 202 402 614 402 1385 1069
Run5 201 607 404 605 1008 607
Run6 201 402 403 402 1058 405
Run7 201 402 405 404 1494 840
Run8 204 201 404 807 404 1009
Run9 209 403 403 605 807 1044
Run10 202 404 612 403 699 845
Avg 2225 402.9 445.4 542.1 890 814.5
Error 63.47 134.84 88.34 156.85 361.83 266.31

Algorithm StableTD

Runl 201 476 956 924 1290 2163
Run2 201 484 1021 856 1237 2167
Run3 206 507 1006 895 1249 2143
Run4 401 603 1019 833 1148 2151
Run5 401 522 1005 844 1346 2087
Run6 401 478 1004 886 1240 2131
Run7 202 603 1008 838 1194 2139
Run8 207 504 1004 873 1132 2162
Run9 201 669 995 1006 1179 2106
Run10 202 647 1003 845 1155 2084
Avg 262.3 549.3 1002.1 880 1217 2133.3
Error 95.73 73.75 17.90 52.91 68.09 30.92

Algorithm StableBU

Runl 201 202 202 202 403 604
Run2 201 201 202 402 603 403
Run3 201 201 201 402 203 604
Run4 201 201 202 403 202 403
Run5 201 201 202 402 402 603
Run6 201 201 202 403 603 603
Run7 201 201 202 402 201 603
Run8 202 202 202 202 402 403
Run9 202 201 201 202 603 603
Run10 201 201 201 402 212 402
Avg 201.2 201.2 201.7 342.2 383.4 523.1
Error 0.42 0.42 0.48 96.75 174.43 103.58

A. Appendices

Mixed Computational Efforts

Stages
Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2

Default

260
260
261
261
261
261
261
261
261
261
260.8
0.42

603
803
602
803
613
602
602
602
607
806
664.3
96.47

1015
1004
1005
1005
690
835
1004
804
1004
1205
957.1
143.64

1205
604

10

520
685
682
520
521
521
521
520
520
521
553.1
68.73

1233
1585
1487
1463
1867
1745
1604
1713
1846
803
1534.6
320.50

1847
1207
1978
1207
1406
1207
1694
1469
1407
1205
1462.7
285.90

1247
1207

15

895
894
894
895
894
894
894
894
894
894
894.2
0.42

3386
4658
5787
2649
2356
5657
4680
3048
4216
3993
4043
1186.68

5172
6606
2409
1623
3559
3662
2755
2010
2617
2135
3254.8
1563.57

2215
2566

20

1154
1154
1153
1153
1154
1153
1153
1153
1154
1154
1153.5
0.53

5756
5088
5303
4529
5142
4498
3613
5569
5067
4615
4918

623.44

3055
2896
4806
2403
4481
3806
9617
7761
4769
9659
5325.3
2714.74

5146
4529

25

1529
1529
1529
1530
1530
1530
1530
1529
1529
1530
1529.5
0.53

5522
5328
6014
6087
6413
6444
6395
6470
5655
6755

6108.3

471.90

7736
5478
8562
4220
8001
2613
8289
7399
7283
2610
6219.1
2317.78

2818
7424

30

1957
1950
1791
1789
1790
1791
1790
1790
1790
1790
1822.8
68.91

9593
9422
8507
9855
8292
8760
8883
9545
10216
8627
9170
641.37

10886
10482
7763
8682
2848
11477
2675
3044
6930
3209
6799.6
3593.97

2815
3223

A.3. Performance Evaluation Data

Run3 867 1475 2093 2998 6446 9998
Run4 1005 1207 2800 3073 10967 7738
Run5 604 1205 2012 4223 3013 10370
Run6 805 1407 4163 6874 7669 10777
Run7 1204 1407 3754 4851 3138 10756
Run8 638 1241 3942 6056 11659 2811
Run9 602 1607 3279 5296 5966 10486
Runi10 603 1408 2426 5770 9400 10010
Avg 813.7 13411 2925 4881.6 6850 7898.4
Error 247.88 139.51 802.97 1236.38 3219.42 3523.44

Algorithm StableTD

Runl 1002 2622 7142 6786 11774 17607
Run2 907 2316 7309 7459 10142 12660
Run3 1118 2743 7595 8562 10246 12060
Run4 1139 2807 7038 10512 9670 12341
Run5 1100 2855 7043 11211 10391 13015
Run6 1192 3044 7256 11611 10761 13021
Run7 1302 2879 7302 11417 11088 15828
Run8 1120 2814 7183 10347 9773 15835
Run9 1024 2849 7430 11241 11904 16614
Run10 1342 2756 7062 11753 10691 15872
Avg 1124.6 2768.5 7236 10089.9 10644 14485.3
Error 131.93 192.25 181.04 1820.83 764.44 2053.23

Algorithm StableBU

Runl 429 649 3254 3815 11914 6390
Run2 404 1863 4023 5212 11606 12130
Run3 1203 1475 2210 5209 9860 11904
Run4 402 1833 2408 2496 10243 10075
Run5 1003 2715 3785 1603 12604 7409
Run6 601 1645 2004 4622 12062 11280
Run7 602 3450 2405 3892 7383 11806
Run8 412 3006 3206 3475 9077 9979
Run9 802 1509 3475 4867 7087 11162
Run10 602 3915 1403 5180 11348 11426
Avg 646 2206 2817.3 4037.1 10318.4 10356.1
Error 276.46 1021.07 851.96 1237.24 1953.44 1970.03

A. Appendices

High Computational Efforts

Stages
Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2

10

604
603
604
604
603
603
604
604
604
603
603.6
0.52

1943
1640
2527
2100
2383
2268
2458
2042
1459
2153

2097.3
345.13

2466
1204
1406
3084
1205
2230
1205
2217
1616
1606

1823.9
644.23

1407
2010

10

1213
1213
1213
1213
1213
1213
1213
1214
1212
1214
1213.1
0.57

8825
8259
8438
9576
9202
7052
9376
9462
10516
9422
9012.8
936.44

5821
5909
5875
5780
4019
5131
5472
5289
3759
4750
5180.5
777.24

9319
10402

15

1817
1818
1818
1819
1979
1978
1818
1818
1817
1817
1849.9
67.78

7990
8038
10023
7737
9548
9066
8128
9429
8359
9508
8782.6
818.71

10421
10828
13542
15890
15346
14175
13712
16015
16138
14129
14019.6
2033.66

8001
8051

20

2426
2426
2587
2595
2426
2425
2426
2427
2425
2425
2458.8
69.70

23402
14939
14357
13747
13565
14990
15105
18306
13312
12611
15433.4
3201.72

13113
11322
14004
13593
18032
4737
21703
17672
22930
22136
15924.2
5695.20

10472
12989

25

3028
3027
3027
3027
3028
3028
3257
3027
3028
3026
3050.3
72.63

17750
19705
18128
19816
18815
18599
18980
18359
19546
18262
18796
708.57

13881
4218
17509
14873
19216
19614
17469
20970
18654
12003
15840.7
4942.80

19388
4410

30

3797
3793
3636
3647
3647
3636
3797
3796
3636
3796
3718.1
82.01

24327
23991
23734
24904
25265
23842
26101
21833
23981
24932
24291
1142.73

29240
4422
26365
4614
4529
23798
5087
20364
4857
26476
14975.2
11057.24

23640
16002

Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

1652
1607
1406
1606
3693
4403
2934
1429

2214.7
1080.82

StableTD

3284
3477
3496
3250
2479
2865
3342
3116
2759
2768

3083.6
346.22

StableBU

2613
2804
1402
2003
1713
2405
3405
4127
4102
2337

2691.1
935.72

5320
3362
5929
3889
4006
4942
3384
2560
5311.3
2609.93

6771
7366
6393
7401
7249
6849
6811
7225
7297
7293
7065.5
336.31

3833
3138
3809
4468
4529
4880
4305
5206
5206
4896
4427
671.82

8070
8941
14763
13602
14504
13891
17223
15895
12294.1
3621.25

18395
18686
19362
18337
18668
19037
19387
19134
18496
19303
18880.5
410.63

7383
7948
7778
7798
6647
6873
3934
6298
5143
6280
6608.2
1280.33

A.3. Performance Evaluation Data

13048
3610
12102
12934
13529
13635
14622
14531
12147.2
3227.68

15480
17999
16135
14631
15826
15201
15189
15372
16345
16114
15829.2
926.15

18806
16895
14829
17120
18517
9951
19372
15823
14454
11952
15771.9
3052.94

17044
19429
15333
21911
17576
4409
20343
20122
15996.5
6383.37

30080
30602
29403
31330
30604
30308
30073
30705
29994
30827
30392.6
537.36

12432
15284
16793
14084
8823
14799
14169
13827
15015
16859
14208.5
2313.79

4721
22133
5268
26305
23974
26112
24714
20715
19358.4
8136.21

28352
26980
27771
29658
26080
28771
28493
29480
30903
28238
28472.6
1371.56

17146
13533
16490
16273
13063
18269
16250
18079
15288
14862
15925.3
1751.80

11

A. Appendices

A.3.2 AMD Data

Low Computational Efforts

Stages
Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2

12

33
29
32
29
31
29
32
29
33
36
313
2.36

201
202
202
202
202
201
201
201
201
201

201.4

0.52

202
202
202
202
203
202
202
203
202
202

202.2

0.42

203
210

10

62
63
58
59
57
57
57
67
84
66
63
8.27

202
202
202
218
404
404
202
404
202
203
264.3
96.53

203
406
214
202
203
203
202
202
411
204
245
86.25

202
409

15

86
87
89
86
85
99
85
82
87
90
87.6
4.58

411
405
406
406
203
405
406
403
404
404
385.3
64.09

409
409
416
203
208
408
204
405
203
204
306.9
108.09

409
408

20

113
128
111
111
112
112
113
113
112
113
113.8
5.05

403
405
405
407
406
403
203
203
405
406
364.6
85.18

411
405
404
410
749
409
404
407
408
203
421
131.94

411
410

25

154
144
137
140
139
139
136
139
159
140
142.7
7.66

407
408
404
407
406
415
406
406
407
207
387.3
63.42

201
409
410
642
669
201
641
406
409
651
463.9
179.71

630
697

30

184
171
168
164
169
164
175
168
169
169
170.1
5.82

408
404
407
405
404
405
408
407
407
404
405.9
1.66

684
660
829
823
841
412
813
814
816
411
710.3
169.36

682
415

Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

203
203
202
202
201
202
202
202
203
2.54

402
401
401
403
403
407
402
602
403
402

422.6
63.06

202
201
202
202
202
202
201
201
213
201

202.7

3.65

203
214
202
203
203
203
203
404
244.6
85.41

1088
1132
1057
1157
1019
1017
1017
967
1020
1043
1051.7
58.32

202
202
202
202
202
202
202
202
201
202
201.9
0.32

403
204
413
409
202
408
407
407
367
86.47

1646
1292
1254
1454
1396
1269
1237
1351
1060
1443
1340.2
157.85

203
204
203
203
203
203
203
203
202
202
202.9
0.57

A.3. Performance Evaluation Data

410
409
408
409
204
654
404
408
412.7
106.43

1741
1750
1812
1851
1716
1681
1791
1718
1749
1849
1765.8
57.79

217
203
203
203
202
203
203
203
212
203
205.2
5.05

1068
878
815
410
661
658
408
635
686

200.04

2235
2250
2210
2526
1917
2132
2354
2390
2226
2390
2263
167.24

204
203
203
203
203
203
203
202
203
202
202.9
0.57

412
1046
882
410
822
637
823
409
653.8
23541

2873
2932
2788
2877
2508
2618
2621
2599
2494
2618
2692.8
160.38

204
203
203
204
203
203
202
203
203
201
202.9
0.88

13

A. Appendices

Mixed Computational Efforts

Stages 5 10 15 20 25 30
Algorithm Default

Runl 223 448 759 973 1300 1504
Run2 219 448 756 985 1277 1486
Run3 222 449 761 970 1277 1485
Run4 218 448 756 970 1275 1484
Run5 222 442 749 964 1280 1482
Run6 221 445 762 961 1274 1486
Run7 222 447 745 972 1282 1511
Run8 220 443 751 969 1274 1516
Run9 219 464 747 968 1290 1516
Run10 224 440 749 961 1276 1515
Avg 221 447.4 753.5 969.3 1280.5 1498.5
Error 1.94 6.57 6.08 6.96 8.38 15.09

Algorithm Simple

Runl 403 1011 3640 6013 10208 11889
Run2 403 837 2197 5400 9382 10261
Run3 403 1009 3280 6145 8786 9199
Run4 417 1096 4667 8343 9385 10156
Run5 403 604 5997 3210 9561 11589
Run6 403 1211 3928 6511 7516 9384
Run7 403 1009 1379 5976 7671 9373
Run8 402 1016 2537 6896 8681 11043
Run9 402 808 3400 6722 7236 13138
Run10 401 1211 2863 6018 7923 10160
Avg 404 981.2 3388.8 6123.4 8634.9 10619.2
Error 4.62 187.23 1302.31 1294.81 1006.80 1279.16

Algorithm FDP1

Runl 403 1237 1234 2942 1843 2035
Run2 606 1013 1461 1810 1829 2036
Run3 808 1013 1407 1422 1826 2035
Run4 698 1015 1215 1215 1829 2027
Run5 613 1212 1214 1624 1831 2034
Run6 837 1216 1214 5436 1624 2053
Run7 805 1209 1214 1621 1829 2028
Rung 811 1211 1215 1423 1825 2026
Run9 604 1212 1214 1429 1850 1824
Run10 772 1410 1416 1414 1831 1822
Avg 695.7 1174.8 1280.4 2033.6 1811.7 1992
Error 138.49 126.50 102.94 1289.10 66.42 89.39

Algorithm FDP2
Runl 698 1418 1237 1641 1868 2044
Run2 819 903 1432 1445 1834 1833

14

Run3 1008
Run4 827
Run5 403
Run6 1009
Run7 695
Run8 404
Run9 1010
Run10 820
Avg 769.3
Error 225.82
Algorithm StableTD

Runl 1797
Run2 1607
Run3 2764
Run4 1773
Run5 1005
Run6 1470
Run7 1084
Run8 1407
Run9 1466
Run10 1408
Avg 1578.1
Error 488.55
Algorithm StableBU

Runl 403
Run2 403
Run3 403
Run4 403
Run5 402
Run6 402
Run7 402
Run8 403
Run9 402
Run10 403
Avg 402.6
Error 0.52

1215
1011
1034
1457
1212
1199
1410
807
1166.6
224.31

4663
8711
4411
6105
5053
4991
7293
7755
4164
4601
5774.7
1604.17

1662
1609
604
805
604
1408
603
603
805
1289
999.2
442.72

1484
1281
1288
1418
1214
1215
1214
1414
1319.7
105.84

8973
11097
8491
6710
7949
13110
8286
9655
11558
12289
9811.8
2097.82

1336
4444
9870
6325
4329
6661
5561
4931
7380
2209
5304.6
2477.94

A.3. Performance Evaluation Data

1624
4403
1624
1435
1420
1417
2019
1423
1845.1
917.90

8417
7548
10143
12815
8696
7428
9876
7631
9898
10558
9301
1694.49

5726
2617
8704
7260
8173
2411
8854
3411
3969
7695
5882
2576.15

1630
1847
1832
1828
2031
1849
1822
1626
1816.7
116.63

14523
9640
9529

11258

12514
8994

10411

11618

21053

10976

12051.6
3551.86

4249
6420
16333
11123
4258
5503
4364
15325
7694
8435
8370.4
4494.23

2035
1839
2027
2039
2027
2027
2028
2021
1992
82,51

12185
14074
10510
10738
9643
12782
10222
14216
10410
13072
11785.2
1686.66

13339
5495
17249
2742
10665
15249
6474
13946
10418
19211
11478.8
5331.43

15

A. Appendices

High Computational Efforts

Stages
Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2

16

509
509
509
509
508
508
507
508
515
508
509
221

1513
1624
1242
1993
2017
1510
1509

907
1212
1319

1484.6
342.80

1209
4256
1010
1209
1007
1211
1009
1006
1206
2267
1539

1026.11

1009
1010

10

1018
1014
1023
1021
1015
1013
1013
1014
1034
1011
1017.6
6.90

12854
12605
11953
10040
11459
10733
12349
14338
12827
15121
12427.9
1528.21

1816
1816
4377
9525
2016
1815
2018
2016
1816
1815
2903
2456.12

4989
4114

15

1515
1527
1519
1518
1516
1544
1517
1516
1516
1518
1520.6
8.90

24921
18951
21829
19856
18488
20175
17896
23732
22992
21016
20985.6
2348.15

2047
2024
2021
1823
2041
2021
2024
2024
2019
2059
2010.3
67.17

2018
2022

20

2035
2064
2025
2016
2017
2018
2023
2021
2019
2024
2026.2
14.37

31076
26411
30254
34873
31910
27685
30261
29110
26586
31627
29979.3
2624.99

2439
2430
2646
2434
2837
2993
2423
2627
2424
2430
2568.3
204.67

2676
2487

25

2551
2523
2520
2524
2518
2525
2519
2526
2539
2522
2526.7
10.37

36462
41020
40767
43571
43252
41918
43565
42880
41573
41984
41699.2
2100.10

3042
3044
3233
3059
3035
3037
3036
2828
3028
3164
3050.6
103.83

3222
3016

30

3046
3025
3025
3027
3024
3017
3036
3024
3021
3025
3027

8.22

52282
57301
49099
50834
54086
50572
53182
49090
49508
49187
51514.1
2707.47

3244
26561
3615
3239
3415
3616
3451
3615
3414
3422
5759.2
7310.32

3440
3641

Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

1220
2202
3332
2301
1008
1005
1210
1411
1570.8

787.34

StableTD

10171
6629
4391
5570
9812
4453
5452
5508
4761
4083
6083

2190.25

StableBU

1205
967
1205
1115
987
970
803
1203
1206
1004
1066.5
140.51

1613
2016
8828
3941
6897
2016
9514
1812
4574
2947.01

18834
19080
19088
18670
20537
20220
20232
19051
19765
18752
19422.9
697.62

10049
7545
10796
3877
3411
6756
3410
7902
6013
6248
6600.7
2589.37

2032
2223
2236
2030
2023
2023
2227
2021
2085.5
98.93

29753
30748
29189
31671
28553
29952
29057
29357
29691
29308
29727.9
900.82

15434
12623
10548
19214
7461
16657
10095
15243
15864
19720
14285.9
4014.45

A.3. Performance Evaluation Data

2844
2643
29962
2614
2620
3818
2613
2631
5490.8
8606.70

40577
38157
38237
35300
36040
37095
38332
39163
38809
31678
37338.8
2503.01

24574
27743
22439
28033
21182
26175
24410
23207
17979
11991
22773.3
4852.61

3020
3219
3017
3017
3018
36520
3215
2817
6408.1
10581.00

48467
53053
53529
49935
51558
50200
52776
49745
48722
54154
51213.9
2068.84

25178
31724
32350
24290
25381
22823
32677
17160
26142
33329
27105.4
5285.26

44686
3438
3417
3256
3422
3626
3214
3432

7557.2
13046.41

100310
95052
86114
59458
57164
55273
59121
60875
58203
56461

68803.1
17665.12

26918
18073
28015
28448
29503
31678
28083
27954
30457
28170
27729.9
3667.41

17

A. Appendices

A.3.3 SUN Data

Low Computational Efforts

Stages

Algorithm Default

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm Simple

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm FDP1

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm FDP2

Runl
Run2

18

209
209
207
214
209
210
209
215
209
209
210
2.49

408
408
410
408
408
407
408
461
402
403

412.3
17.29

416
409
412
410
410
410
462
405
405
404

414.3
17.15

415
410

10

433
431
436
432
432
438
432
434
431
436
433.5
2.42

611
609
813
610
662
605
603
606
604
603
632.6
65.81

617
833
650
665
844
606
606
607
807
605
684
101.80

631
634

15

668
660
661
662
666
662
660
666
662
659
662.6
3.03

862
1021
806
807
806
806
1009
806
1414
1007
934.4
193.15

1218
1549
1225
1213
1085
1617
1445
1211
1819
1210
1359.2
235.70

1418
1215

20

915
921
907
915
912
910
916
910
912
912
913
3.92

1490
1415
1614
1284
1485
1314
1208
1410
1611
1612
14443
144.91

1644
2018
1494
2187
1529
1943
2119
2080
1961
1420
1839.5
287.52

1428
1983

25

1435
1426
1422
1431
1442
1432
1435
1434
1431
1429
1431.7
5.46

1618
2968
3053
2396
2295
2337
2349
2477
2241
2252
2398.6
398.78

2033
2064
2032
2231
1935
1827
2442
1872
1824
1842
2010.2
200.10

2062
2915

30

1437
1450
1423
1428
1428
1447
1434
1431
1430
1421
1432.9
9.48

2368
1793
4050
3313
1944
2205
1611
1811
3656
2512
2526.3
854.50

2034
2262
2447
3140
2637
1842
1835
2181
2688
2278
2334.4
407.20

2430
2028

Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

412
410
410
409
461
405
404
403

413.9
16.96

StableTD

1069
805
830
841
873
805
803
825
610
838

829.9
110.33

StableBU

409
209
411
209
209
408
458
402
202
403
332

108.55

1012
808
651
645
605
608
707

1009
731

158.80

1319
1428
1206
2323
2169
1339
2251
2334
1651
1407
1742.7
468.71

410
609
409
408
409
410
615
604
403
401
467.8
97.75

1217
1276
1820
1418
1515
1210
1211
1211
13511
199.16

2690
3749
3638
3625
3498
3792
3100
2686
2874
4670
3432.2
612.41

811
804
818
806
603
804
805
603
804
804
766.2
86.13

A.3. Performance Evaluation Data

1769
1678
2103
1619
2053
1448
2031
1429
1754.1
272.87

2399
5398
2326
5335
3011
4583
3577
3818
5318
3780
3954.5
1173.65

2251
1261
1411
1005
1207
1408
1409
1016
1207
1205
1338
352.98

2512
2250
2254
2228
2031
1675
2669
2377
2297.3
348.75

3415
3939
3419
3461
3486
3257
3376
3812
3347
3876
3538.8
242.61

1811
1681
1609
2413
1408
1615
1812
1608
1609
1206
1677.2
314.46

3965
3233
1837
3083
2620
2229
2767
2056
2624.8
657.54

4093
4888
3960
4227
3964
3880
4491
4144
3989
4095
4173.1
305.02

1811
1812
2616
1971
2013
2221
2211
2613
2610
2901
2277.9
384.75

19

A. Appendices

Mixed Computational Efforts

Stages
Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2

20

1712
1710
1710
1716
1711
1711
1711
1716
1711
1710

1711.8

2.30

2557
4476
3950
3333
3790
3566
1979
3280
3540
4591

3506.2
796.80

2448
2120
2009
3330
2508
2075
2315
2461
3421
2273
2496

493.64

2347
4243

10

3449
3449
3454
3449
3449
3455
3450
3452
3449
3454
3451

2.49

14621
10790
10459
10390
15317
11225
6927
10933
5958
6109
10272.9
3217.29

6976
5155
8164
7167
5649
10790
3341
10128
11887
8312
7756.9
2667.18

12719
5549

15

5886
5891
5879
5883
5885
5881
5878
5883
5878
5886
5883
4.16

22705
21612
21776
15932
24417
17948
25141
21543
26847
19750
21767.1
3297.59

16257
17118
23769
37213
22427
20155
15076
18278
23103
22862
21625.8
6300.98

19798
18093

20

12599
12588
12600
12598
12592
12584
12596
12590
12596
12590
12593.3
5.29

26210
27702
20495
30122
25348
24150
18308
23474
26767
24720
24729.6
3427.33

22485
22763
31807
38545
20667
25119
26241
20480
25539
34602
26824.8
6156.13

21257
30808

25

9027
9035
9021
9027
9036
9023
9026
9031
9024
9021
9027.1
5.36

33809
25843
40317
36227
26364
31497
31440
32740
31659
50452
34034.8
7151.44

25206
52552
30420
28828
29738
31279
29742
38972
41988
26267
33499.2
8502.26

60783
29635

30

11879
11873
11854
11867
11867
11867
11867
11869
11870
11866
11867.9
6.28

38986
35017
69902
39830
36985
55749
63657
49933
39954
38940
46895.3
12297.83

29184
33338
30019
40016
30966
32093
52492
29570
30682
54734
36309.4
9647.50

27429
52679

A.3. Performance Evaluation Data

Run3 2287 11846 31407 21343 26821 47949
Run4 3417 7319 27933 15303 42982 33179
Run5 2010 11369 18189 13505 30681 42454
Run6 2181 10690 19401 16359 38956 42304
Run7 2210 4630 16118 21755 43433 42280
Run8 2254 12496 19830 24633 39275 29074
Run9 3479 3409 19516 30127 55795 59868
Runi10 2933 6342 13286 24059 50367 40794
Avg 2736.1 8636.9 20357.1 21914.9 41872.8 41801
Error 747.05 3550.57 5369.71 5817.68 11274.71 10150.74

Algorithm StableTD

Runl 5874 11835 28299 21087 55130 41892
Run2 6031 12580 15299 48518 27175 52941
Run3 6258 20820 25714 26807 42476 51314
Run4 3886 20935 23976 22189 77711 104485
Run5 5237 6071 26879 27348 46497 91919
Run6 6503 5979 13043 17260 61990 125867
Run7 5914 21006 11618 25345 53366 38181
Run8 4545 16464 20291 24131 72139 33897
Run9 2173 6069 35500 22117 77524 111859
Run10 6121 11525 56143 35950 36566 60439
Avg 5254.2 13328.4 25676.2 27075.2 55057.4 71279.4
Error 1358.53 6219.92 13037.84 9012.46 17357.59 33934.76

Algorithm StableBU

Runl 3656 8328 12108 28008 34379 24171
Run2 3606 5611 17994 28324 18530 35901
Run3 3468 14967 18375 32167 31648 34573
Run4 2295 7339 30081 18070 34507 35723
Run5 4133 4211 19805 28402 46096 33630
Run6 1429 13863 17181 20775 52716 36144
Run7 3493 5232 13950 24473 24362 52725
Run8 1404 4571 18637 40357 48763 29063
Run9 3331 11935 15679 25818 36451 40217
Run10 3092 7158 9628 29979 20739 32270
Avg 2990.7 8321.5 17343.8 27637.3 34819.1 35441.7
Error 952.94 3917.22 5504.70 6154.79 11680.21 7484.15

21

A. Appendices

High Computational Efforts

Stages
Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2

22

Default

3969
3969
3969
3973
3968
3968
3970
3973
3968
3968
3969.5
1.96

Simple

13087
12123
12016
14534
8634
8129
10461
11323
8230
7619
10615.6
2380.48

11422
11931
10169
11358
8179
14464
12038
13486
12158
10313
11551.8
1759.00

9837
11070

10

7939
7936
7943
7948
7939
7943
7939
7940
7940
7943
7941

3.33

25674
26095
24502
21516
29904
24069
24404
23612
29383
27657
25681.6
2642.85

17817
26335
28500
22862
20241
25599
21790
25025
23017
28388
23957.4
3464.92

26699
30871

15

11915
11913
11907
11908
11916
11908
11908
11912
11917
11911
119115
3.69

55787
56739
52076
53913
59318
74535
55819
53511
57317
47583
56659.8
7066.00

47643
54287
51313
61620
72600
55318
53016
53657
44102
46208
53976.4
8254.57

52708
44896

20

15884
15917
15893
15902
15894
15890
15902
15892
15899
15888
15896.1
9.40

82664
68927
52123
127490
90277
62249
75248
64142
64837
59106
74706.3
21713.16

56380
84622
87302
91645
81430
80067
60224
63982
66774
96624
76905
14037.26

71198
66452

25

17669
17663
17651
17670
17672
17649
17658
17658
17664
17657
17661.1
7.87

82323
85894
63051
63187
69018
66605
62619
90218
66832
64885
71463.2
10486.54

79598
81820
93259
87960
98082
61427
69147
98525
69340
76481
81563.9
12810.92

74629
62465

30

21234
21207
21217
21231
21208
21213
21205
21222
21221
21216
21217.4
9.81

90827
104699
93654
78645
78626
97183
80635
86840
85647
81676
87843.2
8688.46

104298
96824
121510
128411
99182
85437
115173
87928
109036
114817
106261.6
14127.37

80073
85382

Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

13239
11845
11067
10418
11776
10319
11720
10406

11169.7
1004.27

StableTD

8515
20260
16398

7514

8997
21047
12635

9720
16390
20436

14191.2
5361.71

StableBU

12397
16381
12684

7479
11521
10984
10331
10086
13429
11985

11727.7
2339.74

26811
27179
32327
29639
24648
26095
21942
31112
27732.3
3231.18

22381
39179
20919
39479
24766
21557
17945
22189
26687
29859
26496.1
7511.88

21836
26367
24847
23410
21247
24969
23733
25292
29685
29627
25101.3
2857.03

46041
45384
45044
45638
69435
53310
43995
65214
51166.5
9168.47

67575
46700
46287
74703
32868
30902
79711
86642
41513
48977
55587.8
19967.35

40513
45327
59144
65150
58461
57691
38432
34615
70714
58394
52844.1
12224.17

A.3. Performance Evaluation Data

77117
104134
90383
40363
65659
99791
69048
92909
77705.4
19327.49

132612
63029
110655
130402
84380
97879
76756
111304
92602
65965
96558.4
24674.37

87311
68062
79715
62077
43429
94359
94691
105902
66268
86637
78845.1
18758.46

90411
76006
82965
83129
90659
96733
60795
112690
83048.2
15696.45

70563
64147
70417
84282
70047
74401
65347
87617
64237
125775
77683.3
18689.97

73190
83065
58103
108553
83244
64588
52759
57538
76614
73644
73129.8
16414.96

85625
81889
80372
94946
87688
87187
83329
82074
84856.5
4447.07

88959
79188
92681
83339
97451
77922
84169
81262
186915
79566
95145.2
32859.88

175075
88718
93612
61839
99835

117065
88972

116115

124410
95348

106098.9
30145.36

23

A. Appendices

24

A.3. Performance Evaluation Data

A.3.4 Second Evaluation on the INTEL

Diagram of the Low Computational Effort Execution

T A S
[a)
|_
(0]
e
[
(7]
A8
N
o
[a)
[V
—
o
T
A] w
(D)
(@)]
o 8
—
c O ©
O = S
O O =
na?
€
>
A3 £
(]
=3
£
(7]
5
©
o
o =
A o
=
8
(]
[a)]
A 0

o L o 0 o n o 0 o
< ™ [S2] N N — —

alWIL uonnaax3 anieey 25

45

A. Appendices

Low Computational Efforts

Stages
Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2

26

oo oo aaa ()]

a

51
0.32

201
201
211
201
201
201
201
201
205
201

202.4

3.27

201
202
202
222
202
202
201
201
202
202

203.7

6.45

202
201

127

201
201
201
201
202
201
201
201
201
201
201.1
0.32

201
201
201
202
201
202
201
202
202
201
201.4
0.52

202
201

15

13
13
12
13
13
13
13
13
12
13
12.8
0.42

202
202
202
201
201
201
212
202
202
202
202.7
3.30

202
202
201
202
201
202
202
202
202
213
202.9
3.57

202
202

20

17
17
17
17
17
17
18
17
18
17
17.2
0.42

201
202
202
201
202
202
202
202
202
202
201.8
0.42

203
202
203
203
202
202
204
202
202
201
202.4
0.84

202
202

25

21
20
21
21
21
22
22
21
20
20
20.9
0.74

202
202
203
214
203
202
203
202
202
202
203.5
3.72

202
202
210
202
202
202
201
202
202
202
202.7
2.58

202
202

30

25
25
26
24
25
26
26
25
27
25
25.4
0.84

202
202
202
203
202
202
202
202
202
225
204.4
7.24

203
203
203
202
202
202
203
202
202
202
202.4
0.52

202
203

Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

201
202
202
201
201
201
201
201

201.3

0.48

201
201
201
201
201
201
201
201
201
201
201
0.00

201
201
202
201
201
201
201
202
202
201

201.3

0.48

201
202
201
213
202
201
201
202
202.6
3.69

201
202
202
201
202
202
201
201
201
201
201.4
0.52

201
202
202
201
201
201
202
202
202
201
201.5
0.53

202
202
202
202
201
202
202
201
201.8
0.42

203
202
201
202
201
203
203
202
202
201
202
0.82

201
201
202
202
202
202
202
201
201
201
2015
0.53

A.3. Performance Evaluation Data

202
202
202
202
202
201
201
202
201.8
0.42

202
202
207
202
202
202
202
201
202
202
202.4
1.65

202
202
202
202
202
202
202
202
202
202
202
0.00

202
203
203
202
203
214
202
202
203.5
3.72

203
203
202
203
202
202
202
202
202
202
202.3
0.48

203
203
203
203
203
203
202
202
202
202
202.6
0.52

203
203
202
203
202
201
202
202
202.3
0.67

204
202
202
203
202
202
202
202
202
202
202.3
0.67

203
203
203
202
202
202
202
202
202
202
202.3
0.48

27

A. Appendices

Mixed Computational Efforts

Stages 5 10 15 20 25 30
Algorithm Default

Runl 232 463 807 1037 1381 1935
Run2 232 462 807 1037 1382 1773
Run3 232 463 807 1078 1382 1614
Run4 232 462 807 1191 1381 1612
Run5 232 462 807 1037 1381 1613
Run6 232 462 807 1038 1382 1612
Run7 232 463 807 1037 1381 1770
Run8 233 463 807 1039 1380 1772
Run9 232 463 806 1037 1382 1612
Run10 340 462 807 1037 1381 1774
Avg 242.9 462.5 806.9 1056.8 1381.3 1708.7
Error 34.12 0.53 0.32 48.86 0.67 112.33

Algorithm Simple

Runl 201 603 834 1144 1206 1410
Run2 401 603 1005 1037 1426 1049
Run3 402 618 1015 1017 1005 1207
Run4 201 603 607 1004 1206 1005
Run5 401 603 1005 1408 1426 1004
Run6 402 602 804 1005 1004 1412
Run7 402 613 1004 1005 1292 1205
Run8 201 602 1005 831 1206 1406
Run9 402 803 1005 1005 1450 1205
Run10 201 602 803 1222 1405 1433
Avg 321.4 625.2 908.7 1067.8 1262.6 1233.6
Error 103.62 62.72 139.93 156.64 167.50 174.43

Algorithm FDP1

Runl 403 604 606 606 607 608
Run2 402 607 611 611 614 616
Run3 403 402 609 607 613 613
Run4 402 608 611 610 606 606
Run5 402 604 608 606 613 606
Run6 405 608 605 605 605 607
Run7 402 404 606 605 605 607
Rung 201 403 604 605 607 607
Run9 412 606 605 606 605 607
Run10 402 402 604 615 608 607
Avg 383.4 524.8 606.9 607.6 608.3 608.4
Error 64.16 105.05 2.69 3.34 3.62 3.34

Algorithm FDP2

Runl
Run2

28

402
402

604
607

606
611

624
612

606
645

608
612

Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

403
402
402
402
403
412
403
201

383.2
64.09

201
201
201
201
201
201
201
201
201
201
201
0.00

401
402
402
402
402
402
402
401
401
401

401.6

0.52

402
403
607
606
607
605
604
604
564.9
85.60

201
201
201
201
201
201
201
201
201
202
201.1
0.32

602
657
602
802
602
602
601
602
802
602
647.4
83.28

608
607
608
604
604
604
605
605
606.2
2.30

201
202
201
202
202
202
201
201
202
202
201.6
0.52

1003
1003
804
1005
1003
1003
1004
802
1027
802
945.6
98.90

A.3. Performance Evaluation Data

610
607
606
611
605
605
606
605
609.1
5.86

201
202
202
202
201
202
201
202
201
202
201.6
0.52

1004
1205
1204
1204
1086
1215
1002
1204
1004
1204
1133.2
97.02

611
606
605
608
608
606
607
606
610.8
12.14

203
202
203
202
203
202
202
202
202
203
202.4
0.52

1606
1356
1204
1306
1615
1275
1004
1450
1404
1203
1342.3
188.07

611
607
607
606
607
606
606
614
608.4
2.88

205
215
202
207
203
202
202
203
202
203
204.4
4.06

1005
1406
1605
1205
1204
1767
1605
1519
1916
1204
1443.6
288.88

29

A. Appendices

High Computational Efforts

Stages
Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm
Runl
Run2

30

574
573
573
574
574
574
573
573
574
574

573.6
0.52

603
802
802
803
603
615
625
611
602
602

666.8
93.80

603
616
605
605
603
604
604
605
604
604

605.3
3.83

603
614

10

1145
1146
1145
1308
1307
1145
1145
1145
1145
1146
1177.7
68.41

1204
1004
1012
803
1004
1005
1004
1003
810
1003
985.2
112.83

624
809
630
644
607
603
603
604
604
604
633.2
63.41

604
660

15

1717
1718
1718
1717
1718
1718
1718
1717
1717
1717
17175
0.53

1434
1205
1407
1248
1273
1206
1204
1204
1522
1581
1328.4
145.03

809
611
608
607
807
604
810
604
604
716
678
96.34

612
607

20

2289
2290
2289
2288
2289
2289
2289
2290
2289
2289
2289.1
0.57

1617
1406
1442
1607
1406
1742
1760
1605
1204
1217
1500.6
197.50

644
812
620
778
658
658
666
605
624
689
675.4
68.08

816
816

25

3024
3185
3023
2861
2863
2861
2861
3024
3023
2862
2958.7
113.11

1409
1448
1529
1807
1405
1759
1687
1605
1404
1638
1569.1
152.27

817
818
700
807
728
812
636
629
624
645
721.6
85.42

814
691

30

3757
3596
3432
3433
3433
3433
3433
3434
3435
3433
3481.9
109.36

1608
1836
1782
2008
1920
2107
1833
1806
1805
1805
1851
135.63

726
816
809
704
810
638
636
809
676
809
743.3
75.76

674
679

Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

Algorithm

Runl
Run2
Run3
Run4
Run5
Run6
Run7
Run8
Run9
Run10
Avg
Error

604
604
604
603
605
605
605
604

605.1

3.21

201
201
201
201
201
201
201
201
201
201
201
0.00

640
803
602
803
802
601
619
802
802
802

727.6
97.06

810
612
607
619
804
603
618
606
654.3
82.17

201
201
201
202
201
201
201
201
201
201
201.1
0.32

1204
1090
1056
1145
1013
1404
1228
1003
1004
1369
1151.6
147.42

610
610
752
806
604
805
806
1008
722
136.64

202
202
201
201
202
201
201
202
202
202
201.6
0.52

1404
1805
1405
1437
1605
1805
1607
1065
1605
1805
1554.3
234.41

A.3. Performance Evaluation Data

864
1215
807
806
665
657
673
806
812.5
159.93

202
202
202
202
201
201
201
202
201
202
201.6
0.52

1606
1582
1806
1606
1663
1616
1426
1408
1604
1805
1612.2
131.13

654
634
670
625
641
810
687
656
688.2
68.61

202
202
203
202
202
202
202
202
203
202
202.2
0.42

2007
1443
1615
1805
1648
1529
1882
1403
1603
1804
1673.9
195.86

657
655
767
651
644
882
687
817
711.3
82.14

202
203
202
203
203
203
202
203
203
203
202.7
0.48

2065
3009
1670
2531
2754
2405
2605
2744
2731
2605
2511.9
386.61

31

	1 Motivation
	1.1 Goals
	1.2 Document Structure

	2 Foundations and Technologies
	2.1 The Pipe-and-Filter Architectural Style
	2.2 TeeTime: a Pipe-and-Filter Framework in Java
	2.3 Autonomic Computing Systems

	3 Requirements for the Self-Adaptation of Pipe-and-Filter Architectures
	4 An Approach to Change Executing Threads of Stages at Runtime
	4.1 Activating a Stage at Runtime
	4.2 Deactivating a Stage at Runtime
	4.3 Conversion to Other Execution Models
	4.4 Stage Multiplication

	5 Self-Adaptive Resource Distribution
	5.1 Structure of the Self-Adapting Assignment Extension
	5.2 The Design of the Thread Assignment
	5.3 The Design of the Analysis
	5.4 The Behaviour of the Thread Assignment
	5.5 The Behaviour of the Analysis
	5.6 Implemented Metrics
	5.7 Behaviour of the Implemented Thread Assignments

	6 Evaluation of the Feasibility and the Performance
	6.1 Evaluation Methodology
	6.2 Variable Scenarios Used in the Evaluation
	6.3 Feasibility of the Extension
	6.3.1 Threats to Validity of the Feasibility Evaluation

	6.4 Overhead of the Monitored Unsynchronised Pipe
	6.4.1 Threats to Validity of the Overhead Evaluation

	6.5 First Performance Evaluation of the Adaptive Assignment Algorithms
	6.5.1 Low Computational Effort Performance Tests
	6.5.2 Mixed Computational Effort Performance Tests
	6.5.3 High Computational Effort Performance Tests
	6.5.4 Conclusion of the First Performance Evaluation
	6.5.5 Threats to Validity of the First Performance Evaluation

	6.6 A Second Performance Evaluation on the INTEL
	6.6.1 Threats to Validity of the Second Performance Evaluation

	7 Related Work
	8 Conclusions
	9 Future Work
	Bibliography
	A Appendices
	A.1 Diagrams of the Feasibility Evaluation
	A.2 Pipe Comparison Data
	A.3 Performance Evaluation Data
	A.3.1 INTEL Data
	Low Computational Efforts
	Mixed Computational Efforts
	High Computational Efforts

	A.3.2 AMD Data
	Low Computational Efforts
	Mixed Computational Efforts
	High Computational Efforts

	A.3.3 SUN Data
	Low Computational Efforts
	Mixed Computational Efforts
	High Computational Efforts

	A.3.4 Second Evaluation on the INTEL
	Diagram of the Low Computational Effort Execution
	Low Computational Efforts
	Mixed Computational Efforts
	High Computational Efforts

