
Increasing the Throughput of Pipe-and-Filter
Architectures by Integrating the Task Farm

Parallelization Pattern
Christian Wulf

Software Engineering Group
Kiel University

24098 Kiel, Germany
Email: chw@informatik.uni-kiel.de

Christian Claus Wiechmann
Software Engineering Group

Kiel University
24098 Kiel, Germany

Email: ccw@informatik.uni-kiel.de

Wilhelm Hasselbring
Software Engineering Group

Kiel University
24098 Kiel, Germany

Email: wha@informatik.uni-kiel.de

Abstract—The Pipe-and-Filter style represents a well-known
family of component-based architectures. By executing each filter
on a dedicated processing unit, it is also possible to leverage
contemporary distributed systems and multi-core systems for a
high throughput.

However, this simple parallelization approach is not very
effective when (1) the workload is uneven distributed over all
filters and when (2) the number of available processing units
exceeds the number of filters. In the first case, parallelizing all
filters can lead to a waste of resources since only the slowest
filter is responsible for the overall throughput. In the second
case, some processing units remain unused.

In this paper, we present an automatic parallelization approach
providing high throughput and utilizing the available processing
units. Our main idea is to provide a composite filter that is
wrapped around an existing filter to increase its throughput.
We call this composite filter the Task Farm Filter since it
implements the Task Farm parallelization pattern. It creates and
executes multiple instances of the underlying filter in parallel.
Moreover, we present a modular, self-adaptive mechanism that
automatically adapts the number of instances at runtime to
achieve the highest possible throughput.

Finally, we present an extensive experimental evaluation of
our self-adaptive task farm filter by employing a CPU-intensive,
an I/O-intensive, and a hybrid scenario. The evaluation shows
that our task farm automatically parallelize the underlying filter
and thus increases the overall throughput. Furthermore, the
evaluation shows that our task farm scales well with the workload
of the executed Pipe-and-Filter architecture.

Index Terms—Parallel processing, Software performance, Soft-
ware architecture

I. INTRODUCTION

The Pipe-and-Filter (P&F) architectural style [1]–[3] divides
a complex task into several successive subtasks such that each
of them is implemented by a separate, independent so-called
filter. Filters communicate with each other by transferring data
via pipes. An example P&F architecture is shown in Figure 1.
It represents Parnas’ Keyword In Context program [4] as P&F
implementation [5]. It reads a text file, produces circular shifts
of the lines, alphabetizes these shifts, and prints out the results.

With the use and adoption of big data, P&F gained an
increased popularity both in industry and in research. Recent
research [6]–[9] addresses the problem of how to leverage

Read
text file

Circular
shift

Alpha-
betize

Print out
result

Fig. 1: An example pipeline: Parnas’ Keyword In Context
program [4] as P&F implementation [5]

and to optimize contemporary multi-core systems for a high
throughput. One simple approach is to execute each filter
concurrently. However, we always need to ensure that the
computation effort outweighs the communication effort. Oth-
erwise the performance of a multi-core implementation could
even become worse than the performance of a single-core
implementation due to additional synchronization costs. More-
over, an unevenly distributed workload can lead to a waste
of resources as only the slowest filter determines the overall
throughput. Finally, if there are less filters than processing
units available, the underlying hardware is not fully utilized.

In this paper, we propose an automatic parallelization ap-
proach to increase the throughput of P&F architectures on
contemporary multi-core systems. Our main idea is to provide
a composite filter that is wrapped around an existing filter.
It automatically duplicates the underlying filter and executes
their instances in parallel. We call this composite filter the Task
Farm Filter since it implements the Task Farm parallelization
pattern [6]. In this way, it is possible to parallelize as many
instances of the slowest filter as processing units are available.

In addition to the task farm filter, we also propose an
associated self-adaptation manager. This manager is able to
automatically adapt the number of filter instances at runtime
based on the current throughput of the given task farm filter.
In this way, a P&F architecture can achieve a high throughput
even under an unevenly distributed workload. For example, if
the workload is higher or lower than expected, the manager au-
tomatically increases or, respectively, decreases the number of
filter instances. In particular, the manager is able to remove a
filter instance if such instance does not contribute to the overall
throughput anymore. Thus, the manager simultaneously tries
to use as few processing units as possible.

We implemented both the task farm filter and the self-
adaptation manager with our Java-based P&F framework Tee-
Time [10]. Everything is available as open-source. Further-
more, we provide all data and results of our experiments as
replication package [11] for review and evaluation purposes.

Structure of this paper: First, we present some founda-
tions of the P&F architectural style (Section II) and of the task
farm parallelization pattern (Section III). Then, we present our
task farm filter in Section IV. Afterwards, we describe our self-
adaption manager in Section V. In Section VI, we present an
extensive experimental evaluation of our task farm filter in-
cluding the self-adaption manager. Finally, we discuss related
work in Section VII and conclude this paper in Section VIII.

II. THE PIPE-AND-FILTER ARCHITECTURAL STYLE

Mary Shaw is one of the first authors who explicitly de-
scribed P&F architectural style. In her work [1], she describes
it as a useful system organization that consists of filters
accepting one stream of inputs and emitting one stream of
outputs. In general, a filter is defined by its name, its execution
logic, and its input and output ports [12]. Each port is typed
such that it accepts or sends data of a particular type only.
One execution of a filter proceeds as follows: It reads data
from one or more of its input ports, transforms that data, and
writes the results to one or more of its output ports. Hence,
the P&F style also allows to model feedback loops [13] and
branches [14]. For modularity and re-usability reasons, a filter
can be composed of predefined child filters.

III. THE TASK FARM PARALLELIZATION PATTERN

In 1991, Cole [15] introduced so-called Algorithmic Skele-
tons. Such a skeleton is defined as a higher-order function de-
scribing a certain computational behavior. One example is the
Task Farm parallelization pattern which has been defined by,
e.g., Aldinucci and Danelutto [16]. Semantically, it describes
the identity function of its underlying algorithm. However,
the input data stream is parallelized such that the underlying
algorithms is concurrently executed. In [6], the task farm
pattern was, among other patterns, implemented for FastFlow,
a framework for streaming applications where stages have ex-
actly one input port and one output port [17]. In the following,
we briefly describe the task farm parallelization pattern. For a
more detailed description, we refer to [16] and [18].

Context & Problem We intend to perform an operation
f on each task of a given stream of tasks as fast as possible.
For this purpose, we intend to execute f on multiple tasks in a
concurrent way. First, a task distributor is required to distribute
tasks to worker processes. Depending on the scenario, different
distribution strategies are possible, e.g., round-robin or broad-
casting. Second, it is important to determine how many worker
processes should run concurrently. Hence, we need to find
a balanced ratio between the computation cost of f and the
communication cost between the distributor and the workers.
Finally, we need to consider what we should do with the results
of the worker processes. For example, the results could be fed
back to the distributor or merged for later processing.

D

W

W

(a) Farm as
master-worker

D M

W

W

(b) Farm with a merger and
a feedback loop

D

D

W

W

(c) Farm composed of
a farm per process

D M

W W W

W W W

(d) Farm composed of a pipeline per process

Fig. 2: Different manifestations of the task farm pattern. (D)
means distributor, (W) means worker, and (M) means merger.

Solution In order to support arbitrary scenarios, the task
farm parallelization pattern provides a generic task distribu-
tor which can be declared active or passive. In the former
case, it autonomously distributes incoming tasks to one or
more worker processes according to a user-defined distribution
strategy. In the latter case, it serves as a task pool from which
worker processes fetches tasks.

Figure 2 shows some well-known manifestations of the task
farm pattern. For example, Figure 2a illustrates a version
which is also called the master/worker pattern. Here, the
distributor is responsible for both the distribution of the tasks
to the workers and the collection of the result from the
workers. Figure 2b illustrates a more modular version where
the collection of results is extracted from the distributor to
a so-called merger. Optionally, the merger can still feedback
its result to the distributor. Figure 2c shows an example for a
composite worker. Here, the workers are again composed of
a task farm. Similarly, Figure 2d shows a another composite
worker which are composed of a worker pipeline.

Typically, the number of worker processes is fixed and given
in an initialization phase (e.g., see FastFlow [17]). However,
the task farm pattern does not forbid to adapt the number of
worker processes at runtime. Cloud environments, e.g., use
the master-worker version to scale their instances according
to the workload. In Section V, we describe how we combine
a self-adaptation manager and the task farm pattern to allow
a self-adaptive behavior of P&F applications.

IV. OVERVIEW OF THE TASK FARM STAGE

In this section, we present our approach to increase the
throughput of P&F architectures. Although it can also be
applied to distributed systems, we have only implemented and
evaluated it for the execution on multi-core systems so far.
Our main idea is to provide a composite filter that is wrapped
around an existing filter in order to parallelize it. We call this

DuplicableStage

DuplicableStage

Task Farm Stage

D M

AdaptationManager

Fig. 3: Architecture of our task farm stage

composite filter the Task Farm Stage (TFS) since it utilizes
the Task Farm Parallelization Pattern [16]. The structure of
the TFS is illustrated in Figure 3. For the rest of this paper,
we will use the term stage as generalization for data sources,
filters, and data sinks, as categorized by Buschmann et al. [19].

The TFS is a composite stage with additional parallelization
functionality. Its child stages are the Dynamic Distributor
(shown as D in Figure 3), the Dynamic Merger (shown as
M in Figure 3), and the Duplicable Stage. The Duplicable
Stage represents the stage which should be parallelized. Usu-
ally, there are multiple instances of the Duplicable Stage at
runtime each running in a dedicated thread. Additionally, a
self-adaptation manager is used to monitor the TFS and to
maximize its performance (see Section V).

In general, the task farm parallelization pattern can be
applied to all P&F architectures. However, our TFS currently
defines the following assumptions regarding the P&F archi-
tecture to limit the complexity:

• The TFS in general and the Duplicable Stage in particular
may not contain feedback loops. For example, output
ports of a Duplicable Stage must not lead to the distribu-
tor of its own TFS. This limitation allows us to measure
the pipe throughputs more accurately, which is necessary
for the self-adaptation manager (see Section V).

• Each Duplicable Stage has exactly one input port and one
output port. More input and output ports would possibly
require more input and output ports for the TFS itself,
leading to a higher complexity.

Since the Duplicable Stage may be a composite stage, our
TFS covers the task farm pattern versions 2b-2d from Figure 2.

A typical traversal of any data element arriving at the
input port of the TFS is as follows. At first it arrives at the
Dynamic Distributor. The distributor chooses which instance
of the Duplicable Stage (worker stage) is going to process
the element according to a specified distribution strategy.
Afterwards, the distributor sends the element to the output
port leading to the chosen worker stage. The worker stage then
processes the data element and finally sends it to the Dynamic
Merger. The task of the merger is to merge incoming elements
to a single output stream. The concrete behavior of the merger
and the order of the elements in the output stream depends on
the specified merging strategy.

In the following sections, we discuss the components of

the TFS. In Section IV-A, we explain the behavior for the
Dynamic Distributor and the Dynamic Merger as well as some
of their strategies. Section IV-B addresses the definition of the
Duplicable Stage. Section IV-C explains the process of adding
and removing a worker stage at runtime.

A. Dynamic Distributor & Dynamic Merger

The Dynamic Distributor and the Dynamic Merger have
to process all data elements entering the TFS. Therefore, an
efficient implementation of these stages is a key requirement to
an efficient TFS. Furthermore, as we intend the self-adaptation
manager to be able to dynamically add or remove worker
stages, the distributor and merger have to be able to add and
remove ports at runtime.

As mentioned above, the task of the Dynamic Distributor in
the TFS is the distribution of each data element to a worker
stage. We can define an arbitrary strategy for the distributor
to define its exact behavior. In the following, we discuss three
possible distribution strategies.

1) CloneStrategy: The distributor duplicates each incoming
data element according to the current number of worker stages,
before sending an exact copy to each worker stage. Therefore,
all worker stages produce the same output elements which are
then merged and passed to the output port of the TFS. Al-
though this strategy trivially increases the overall throughput,
it also violates the original semantics of the Duplicable Stage.

2) BlockingRoundRobinStrategy: This strategy causes the
distributor to send the current input element to the next worker
stage selected in round-robin order. Hence, each worker stage
has approximately the same workload, assuming the process-
ing time is the same for each data element. However, as the
capacity of pipes is often bounded, a distribution strategy must
also handle the case of a full pipe. This strategy waits until
the pipe is free again, which can waste time if other worker
stages have non-full input pipes.

3) NonBlockingRoundRobinStrategy: This strategy behaves
almost exactly like the BlockingRoundRobinStrategy. How-
ever, if the input pipe of the chosen worker stage is full, it
searches for another worker stage in round-robin order. There-
fore, this distribution strategy provides the best performance.

Although the task of the Dynamic Merger is the opposite
of the task of the Dynamic Distributor, it uses very similar
concepts regarding its merging strategy. In the following, we
discuss two possible merging strategies.

1) BlockingRoundRobinStrategy: This strategy behaves al-
most analogous to its counterpart of the Dynamic Distributor.
The only difference is that this strategy skips input ports which
are no longer in use (e.g., if the corresponding worker stage
has been removed). Otherwise, we would cause a livelock or,
respectively, a deadlock depending on whether this strategy is
implemented in a busy-waiting or in a blocking-read way.

2) NonBlockingRoundRobinStrategy: This strategy behaves
analogous to its counterpart of the Dynamic Distributor. It
searches for the next non-empty input port in round-robin
order and passes the corresponding element to the merger’s

+duplicate() : ITaskFarmDuplicable<I, O>
+getInputPort() : InputPort<I>
+getOutputPort() : OutputPort<O>

<<Interface>>
ITaskFarmDuplicable<I, O>

Fig. 4: If a stage implements ITaskFarmDuplicable, our
TFS is able to duplicate it and to execute it in parallel.

output port. Due to the absence of any blocking mechanism,
this merging strategy provides the best performance.

Additionally, the Dynamic Distributor and the Dynamic
Merger need a way to dynamically add and remove output
and input ports, respectively. Therefore, we introduce two port
actions which enable the distributor and merger to provide this
functionality. The first action triggers the distributor or the
merger to add a new port to itself and to connect it with the
new worker stage. The second action triggers the distributor
or the merger to remove an existing port from itself.

Both the distributor and the merger provide a port action
interface to the self-adaptation manager. In this way, the self-
adaptation manager can dynamically add or remove worker
stages from the TFS depending on the workload.

B. Duplicable Stage

The TFS can parallelize an arbitrary (composite) stage if the
stage is a Duplicable Stage, i.e., if it implements the interface
ITaskFarmDuplicable shown in Figure 4. The interface
requires to implement three methods.

The two methods getInputPort and getOutputPort
are necessary to retrieve the input port and the output port of
the Duplicable Stage. The TFS requires access to these ports to
properly connect the worker stages to the Dynamic Distributor
and the Dynamic Merger.

The duplicate method is a crucial part of the interface.
It generates an additional worker stage from the corresponding
instance of the Duplicable Stage. Thus, the user of the TFS can
freely implement the duplication behavior of the Duplicable
Stage, providing a way to implement most use cases. The
duplication method is called whenever the self-adaptation
manager decides to add another worker stage to the TFS.

The programming effort to migrate an existing stage
to a duplicable stage is low. It only needs to implement
the interface ITaskFarmDuplicable. First, the methods
getInputPort() and getOutputPort() must return
one input port and, respectively, one output port of the existing
stage. Second, the method duplicate() must return a
new copy of the existing stage. If the stage is stateless,
an invocation of the constructor is sufficient. Otherwise, the
implementation must also ensure that the internal and shared
state attributes are copied in a correct and thread-safe way.

C. Addition and Removal of Worker Stages

The TFS achieves its parallelization by dynamically adding
and removing worker stages. The self-adaptation manager

D M

2 4

1
5 3

Fig. 5: Duplicating a stage: (1) new worker stage, (2) distrib-
utor, (3) merger, (4) new worker stage input pipe, (5) new
worker stage output pipe

D M

1

Fig. 6: Removing a duplicated stage: (1) worker stage input
pipe to be removed

monitors the workload and decides whether further paral-
lelization is reasonable. For this purpose, the TFS requires
to implement some logics for the dynamic addition and for
the dynamic removal of the worker stages.

The process to duplicate a worker stage is illustrated in
Figure 5. The first step is to create a new worker stage (1) by
using the duplication method on an arbitrary existing worker
stage inside the TFS. To prevent race conditions between the
new worker stage and its not yet exiting input and output pipes,
it does not yet process data elements. To connect the Dynamic
Distributor (2) and the Dynamic Merger (3), we then create
the worker stage input pipe (4) between the distributor and
the worker stage. As discussed in Section IV-A, we use the
CreatePortAction to connect the pipe with a new output port
of the distributor. Similarly, the worker stage output pipe (5)
between the worker stage and the merger is created. The pipe
is then also connected to the merger via the CreatePortAction.
Finally, the new worker stage (1) is started in a dedicated
thread and begins processing elements. In this way, it increases
the total throughput of the TFS.

The process to remove an existing worker stage is illustrated
in Figure 6. The only step needed to remove an existing worker
stage is to deactivate the distributor’s output port which is
connected to the worker stage’s input pipe (1). Afterwards,
the distributor will no longer send data elements to the
removed worker stage, allowing it to safely process all buffered
elements. If the removed worker stage has no further elements
to process, it terminates itself and closes its output port.
Since the merger uses the BusyWaitingRoundRobinStrategy
(see Section IV-A), it detects the closed port and proceeds
with another worker stage.

It is vital that the removal of a worker stage allows the
removed stage to work off all remaining elements buffered by
the input pipe. Otherwise, the TFS might loose some elements
whenever a worker stage is removed.

Monitoring

Analysis

Reconfiguration
3a

1

DuplicableStage

D M

DuplicableStage
Task Farm Stage

Self-Adaptation Manager

3b
2

Fig. 7: The SAM and how it interacts with the TFS: the Mon-
itoring component measures the throughput of the pipes (1),
the Analysis component computes a corresponding throughput
score (2), and the Reconfiguration component sends actions to
the distributor (3a) and to the merger (3b) to adapt the TFS.

Because a TFS has multiple worker stages at runtime, it has
to decide which available stage should be removed. We choose
the strategy to always remove the worker stage whose input
pipe has the least number of buffered data elements. Since the
lower the number of buffered elements, the less is the time to
wait for the stage to be actually removed. Hence, this strategy
usually provides a low latency for removing worker stages.

V. STRUCTURE OF THE SELF-ADAPTATION MANAGER

The task of the Self-Adaptation Manager (SAM) is to
control the addition and removal of worker stages in its
corresponding TFS. Therefore, each TFS inside the P&F
architecture requires a dedicated SAM. The design of the SAM
is based on the general design of an adaptable software system
described by van Hoorn et al. [20] and is shown in Figure 7.

The SAM consists of three components. The Monitoring
component monitors the throughput of the pipes which connect
the Dynamic Distributor and the worker stages with each
other. In this way, we measure the performance of each
worker stage. Afterwards, the Analysis component analyzes
the measurements of the Monitoring component. It calculates
how much the throughput of the TFS has changed since the last
few measurements. The last component is the Reconfiguration
component, which takes the result of the Analysis component
and decides whether the TFS should add or remove a worker
stage. The cycle as shown in Figure 7 is then completed
and starts again with the Monitoring component after a user-
defined delay (our default is 50 ms). In Section V-A to V-C,
we introduce each of the three components in more detail.

A. Monitoring Component

As mentioned above, the Monitoring component measures
the throughput of the pipes between the Dynamic Distributor

and the worker stages (see (1) in Figure 7). We compute the
throughput of a single pipe by n/td where n is the amount of
elements pulled from the pipe since the last SAM cycle and td
is the time difference between the current and the last SAM
cycle. This throughput definition directly reflects the actual
productivity of the corresponding worker stage without being
influenced by element buffering or similar issues.

The Monitoring component saves the sum as well as the
average of the throughputs of the worker stages. We save these
values for later use to make informed decisions on whether
we can further optimize the TFS performance by adding or
removing a worker stage. As we collect these measurements
in every SAM cycle, we construct a history of measurements.

B. Analysis Component

The Analysis component analyzes the most recent measure-
ment and the measurements of the Monitoring component
to calculate a so-called throughput score. The throughput
score serves as action indicator so that the Reconfiguration
component can decide whether it should add a worker stage,
remove a worker stage, or do nothing.

Let v ∈ N be the most recent measurement. Let p ∈ N
be a calculated predicted throughput based on a number of
recent history measurements. The throughput score ts ∈ R
with −1.0 < ts < 1.0 is then defined by

ts =
v − p

v + p
.

For example, let v = 3 and p = 1, i.e., the throughput
has increased since the last measurement. The corresponding
throughput score is ts = v−p

v+p = 3−1
3+1 = 0.5. In general,

a positive ts describes a throughput increase, a negative ts
describes a throughput decrease. Moreover, the higher |ts| is,
the more definitive is the change in the throughput.

To calculate p, we can choose one of multiple prediction
algorithms, each providing some unique characteristics regard-
ing their forecasting behavior.

1) Mean Algorithm: The mean algorithm uses a number of
previous throughput measurements of the TFS and calculates
the average value of it. This value will then be interpreted as
the expected value of the current point in time.

This is one of the least complex algorithms that can be
used to predict values. While it is very fast due to its low
computational effort, it does not produce acceptable results
for our use case. If the throughput is constant, the average
of the last few measurements is always a correct prediction,
leading to correct forecasts. However, the algorithm looses
this advantage for every other runtime behavior and cannot
accurately predict future throughput measurements.

2) Weighted Algorithm: The weighted algorithm is a vari-
ation of the mean algorithm. It also computes the average of
a certain number of measurements, but it additionally adds
weights in such a way that more recent measurements have
more impact on the prediction.

For our use case, this algorithm is more usable than the
mean algorithm since it reacts faster on changes of the

throughput. However, the algorithm does not behave well for
linearly and exponentially growing throughputs since it does
not extrapolate any behavior of the throughput measurements.
For an irregular runtime behavior, it in turn yields compara-
tively good results since extrapolation is not possible at all.

3) Regression Algorithm: The regression algorithm uses
a statistical regression algorithm to predict the throughput
at the current point in time. It uses at least two previous
measurements to construct a straight line y = ax+ b, where x
is a point in time, y the throughput at that time, and a, b ∈ R.
If more than two measurements are used, a straight line is
found that corresponds best to all provided data points. The
prediction can be obtained by solving the equation by setting
x to the current point in time.

This algorithm behaves very well for any nearly linear
runtime behavior of the TFS. Exponential and other regular
behavior can also be accurately predicted by using a lower
amount of data points for the line construction. This is possible
since exponential functions are mathematically nearly linear
for a small interval. However, since the regression algorithm
assumes a linear function in the runtime behavior, it can yield
very imprecise predictions for irregular behavior.

C. Reconfiguration Component

The Reconfiguration components directly controls the TFS.
It decides, depending on the throughput score calculated in the
Analysis component, whether a worker stage should be added,
removed, or kept running. For this purpose, the component
communicates with the distributor and with the merger by
sending actions to them (see (3a) and (3b) in Figure 7). There
are the following three different actions.

The add action represents the addition of a new worker
stage, resulting in a higher degree of parallelization of the
Duplicable Stage. This action is chosen if the throughput score
was positive and above a given throughput boundary, i.e., the
addition of the last worker stage gained a performance boost.

The remove action represents the removal of a worker stage.
It is triggered in two situations: either when the throughput
score has become so low that further parallelization is not
likely to provide an increase in performance, or when the
workload on the TFS has become so low that not all worker
stages are utilized anymore. By removing such a worker stage,
the associated processing unit is released. In this way, we
avoid an inefficient usage of the processing units. Moreover,
we reduce the communication overhead of the TFS’ internal
components.

The third and last action is the no-op action. It is useful
whenever we do not have enough data to reliably decide
another action. This situation occurs if the time between SAM
cycles is very low. In that case, the worker stages might not
have had enough time to produce new output elements.

VI. EVALUATION

In this section, we evaluate our task farm stage (TFS) and
the associated self-adaptation manager (SAM). Our goals and
corresponding questions are as follows:

Feasibility: we intend to increase the overall throughput of a
P&F architecture by applying our approach.
1a) Does our TFS increase the overall throughput?
1b) Does our SAM automatically adapt the number of stages

according to the current runtime workload?
Performance: we intend to maximize the overall throughput
of a P&F architecture when using our TFS and our SAM.
2a) To what extent does the throughput prediction algorithm

influence the overall throughput?
2b) To what extent does the throughput boundary influence

the overall throughput?

A. Scenarios

We consider four different scenarios in order to evalu-
ate our goals. The first scenario represents a CPU-intensive
computation with a balanced workload. Similarly, the second
scenario represents a CPU-intensive computation, though with
an unbalanced workload. The third scenario represents an I/O-
intensive computation where, e.g., the file system is accessed
most of the time. The fourth scenario represents a more
common and more realistic kind of computation. It covers
both a CPU-intensive part and an I/O-intensive part. We imple-
mented each scenario as a benchmark. Figure 8a-8c show their
corresponding P&F architectures. While Benchmark 1 and 2
use a single stage as duplicable stage, Benchmark 3 uses a
composite duplicable stage with 3 inner stages (cf. Figure 2d).

For the implementation, we used the Java-based P&F
framework TeeTime [10]. TeeTime allows to model and to
execute arbitrary P&F architectures. For example, it supports
feedback loops, multiple input/output ports per stage, and the
composition of several stages to a single one. In particular,
TeeTime is able to utilize contemporary multi-core systems
by executing stages of a P&F architecture in parallel. Hence,
we chose this framework for our evaluation.

Benchmark 1 (B1) uses the task farm to compute the origi-
nal number for a given hash value and a fixed hash function by
applying bruteforcing (see Stage 4 in Figure 8a). It generates
the hash value for every number (from 0 to max(integer))
until it matches the input hash value. Then, it outputs the
corresponding number. Stage 1 serves as a workload generator
for a sequence of either a fixed number (balanced workload) or
a linearly increasing number (unbalanced workload). Stage 2
computes the hash value of each incoming number and serves
as input for the task farm. Stage 6 represents a sink which
discards the incoming original numbers.

Benchmark 2 (B2) uses the task farm to write n characters
to a temporary text file for a given number n (see Stage 3 in
Figure 8b). Similar to B1, Stage 1 and 6 serve as a balanced
work load generator and as a sink, respectively.

Benchmark 3 (B3) uses the task farm to transform XML
files by applying a fixed XSLT transformation (see Figure 8c).
Stage 3 loads the incoming XML file, Stage 4 transforms it in
memory, and Stage 5 writes it back to the file system. Again,
Stage 1 and 7 serve as a balanced work load generator and as
a sink, respectively. For benchmarks details, we refer to our
replication package [11] and to our TeeTime-Project [21].

n md5-
BF

Task Farm Stage

D Mmd5

1 2 43 5 6

(a) Benchmark 1 represents a CPU-intensive computation with either
a balanced workload (using a constant workload generator) or an
unbalanced workload (using a linearly increasing workload generator)

n I/O-
Gen

Task Farm Stage

D M

1 2 3 4 5

(b) Benchmark 2 represents an I/O-intensive computation with a
balanced workload

XML-
File

Apply-
XSLT

Task Farm Stage

D MSaveLoad
1 2 3 4 5 6 7

(c) Benchmark 3 represents a combined CPU-I/O-intensive compu-
tation with a balanced workload

Fig. 8: Benchmarks for the performance evaluation. Each red
rectangle represents the duplicable stage of the task farm stage.

B. Experimental Setup

We executed each benchmark on four different multi-core
systems. Table I shows their hardware and software details.
Each benchmark was implemented with and executed by
TeeTime 2.0. We set the iteration interval of our SAM to
50 ms in order to measure a throughput that is greater
than one for all scenarios on all systems. We configured the
workload generator stages to produce 1,000 to 10,000 elements
depending on the benchmark and the system. Since we do not
intend to compare benchmark configurations or systems with
each other, we chose different values for each pair. In this way,
we effectively limited the execution times of the benchmarks.

We use the Oracle Java Runtime Environment (JRE)1 in
the version 1.8.0 60-b27. We set the number of Java Virtual
Machine (JVM) runs to 3, the number of warmup iterations to
3, and the measurement iterations to 5 to amortize variations
in the measurements.2 We chose this specific configuration
because it has yielded stable results on all four systems. The
final execution time of a benchmark configuration for a given
system is then defined by the median of all 15 measurements.

C. Results & Discussion

Since we evaluated our TFS for four scenarios on four
multi-core systems with three different throughput prediction
algorithms and various different throughput boundary values,

1http://www.oracle.com/technetwork/java/javase/overview/index.html
2The JVM may use different just-in-time compile strategies from run to

run. Furthermore, JVM classes are compiled not until they are accessed the
first time. Finally, they are optimized for performance on frequent access.

we are not able to present all results in detail. Thus, we first
discuss an aggregated view on the results for each benchmark
configuration on each multi-core system in Section VI-C1.
Afterwards, we exemplarily discuss the results for the INTEL
system concerning feasibility (see Section VI-C2) and per-
formance (see Section VI-C3). We chose the INTEL system
since it is the most recent system of all used systems. The
benchmarks on the other systems yield similar results. For
detailed results, we refer to our replication package [11].

1) Overview: Table II shows the lowest mean execution
times of each benchmark configuration for each system which
we have measured with and, respectively, without our TFS.
The results consistently indicate a speedup for all benchmark
configurations on all systems. Hence, our TFS successfully
increases the overall throughput. Moreover, the results show
that the lowest execution time depends on the used throughput
boundary. Different benchmark configurations and different
systems require different boundary values. Finally, the lowest
execution time also depends on the used prediction algorithm.
However, the regression algorithm yields the best results for
all benchmark configurations on all systems.

2) Goal 1 (Feasibility): Figure 9 illustrates the total
throughput at any point in time while running B1 (balanced
workload) on the INTEL system with various throughput
boundaries.3 If we consider the time axis, we see that the
fastest run of the benchmark takes about six seconds for a
throughput boundary below 0.025. All runs with a throughput
boundary greater than 0.025 take more than ten seconds.4 The
maximum peak of the throughput is reached at the third second
and is kept until the end of the run. Compared to an execution
with a higher throughput boundary, e.g., 0.15, the throughput
is 30 times higher. These measurements perfectly correlate to
the number of stages at the corresponding points in time (see
Figure 10). The higher the total throughput, the higher is the
number of stages within our TFS.

Hence, our TFS increases the overall throughput (Goal 1a).
Furthermore, our SAM automatically adapts the number of
stages according to the current runtime workload (Goal 1b).

3) Goal 2 (Performance): Figure 11a to Figure 11d illus-
trate the execution times of all four benchmarks depending
on the used prediction algorithm and the used throughput
boundary. Each figure shows that just using the TFS yields
to equal or lower execution times independent of the used
prediction algorithm. Since the TFS introduces at least two
new threads—one for the initial worker stage and one for
the merger—this common speedup is comprehensible. Nev-
ertheless, the prediction algorithms differ among each other
in a significant way concerning the execution time. In short,
the regression algorithm outperforms its alternatives in all
four scenarios provided we chose a properly set throughput
boundary. Consistent with the results shown in Table II,
Figure 11 shows that the lowest execution time on the INTEL
system is reached by a throughput boundary below 0.025.

3We increased the execution time from 3 sec. to 6 sec. for clarity.
4We omitted boundaries greater than 0.15 for clarity.

http://www.oracle.com/technetwork/java/javase/overview/index.html

System SUN AMD-I INTEL AMD-II

Processors 2 2 2 1

Processor UltraSPARC T2+ AMD Opteron 2384 Intel Xeon E5-2650 AMD Opteron 2356

Architecture SPARC V9 (64 Bit) x86-64 x86-64 x86-64

Clock/Core 1,4 GHz 2,7 GHz 2,8 GHz 2,3 GHz

Cores per processor
(hardware threads)

8 (64) 4 (4) 8 (16) 4 (4)

RAM 64 GB 16 GB 128 GB 4 GB

Disk Controller RAID1/SAS RAID1/SATA SATA RAID1/SATA

OS Solaris 10 Debian 8 Debian 8 Debian 7

TABLE I: Multi-core systems used for the evaluation

Benchmark
configuration

Duration on SUN
(w/o vs. w/ TFS)

Duration on AMD-I
(w/o vs. w/ TFS)

Duration on INTEL
(w/o vs. w/ TFS)

Duration on AMD-II
(w/o vs. w/ TFS)

B1 (balanced
workload)

21 sec./5 sec. = 4.2
boundary value = 0.025

10 sec./3 sec. = 3.3
boundary value = 0.025

17 sec./3 sec. = 5.7
boundary value = 0.025

25 sec./12 sec. = 2.1
boundary value = 0.2

B1 (unbalanced
workload)

20 sec./5 sec. = 4.0
boundary value = 0.0

35 sec./7 sec. = 5.0
boundary value = 0.025

29 sec./4 sec. = 7.3
boundary value = 0.0

20 sec./10 sec. = 2.0
boundary value = 0.2

B2 (balanced
workload)

13 sec./4 sec. = 3.3
boundary value = 0.025

49 sec./14 sec. = 3.5
boundary value = 0.225

15 sec./4 sec. = 3.8
boundary value = 0.025

26 sec./17 sec. = 1.5
boundary value = 0.2

B3 (balanced
workload)

34 sec./7 sec. = 4.9
boundary value = 0.2

13 sec./4 sec. = 3.3
boundary value = 0.025

13 sec./2 sec. = 6.5
boundary value = 0.025

9 sec./5 sec. = 1.8
boundary value = 0.2

TABLE II: Lowest mean execution times of the benchmark configurations achieved without and, respectively, with our TFS
on the four multi-core systems. For each benchmark configuration, the regression prediction algorithm was used.

0

0.1

0
2

4
6

8
10

0.05

0.15

0

50

100

Throughput BoundaryTime in seconds

T
ot
al

T
h
ro
u
g
h
p
u
t
p
er

50
m
s

Fig. 9: Total throughput at any point in time while running
B1 (balanced workload) on the INTEL system with various
throughput boundaries

Hence, the right choice of the prediction algorithm is crucial
for a high overall throughput (Goal 2a). In our benchmarks,
the regression algorithm consistently performs best. Moreover,
the throughput boundary is also important for a high overall
throughput (Goal 2b). In our benchmarks, a throughput bound-
ary between 0 and 0.225 performs best.

D. Threats to Validity

Internal validity: Although we build benchmarks that repre-
sent the four scenarios, we see potential for improvements in
the design of the benchmarks. For example, the benchmarks
could be changed to implement more realistic use cases.

0

0.1

0
2

4
6

8
10

0.05

0.15

0

20

Throughput BoundaryTime in seconds

N
u
m
b
er

of
S
ta
ge
s

Fig. 10: Total number of stages at particular points in time
while running B1 (balanced workload) on the INTEL system
with various throughput boundaries

Furthermore, the experimental results depend on our proposed
design and the TeeTime-based implementation of both the task
farm stage and the self-adaptation manager. Different designs
and implementations could lead to different results.

External validity: We evaluated our TFS for four coarse-
grained scenarios only. Further scenarios would increase the
external validity. Moreover, we evaluated our TFS only on four
multi-core systems with different hard drives. Other systems
could perform differently and might require an adjustment of
the VM/warmup/real iterations to get stable results. Further-
more, our results base on a particular JVM and OS version.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Throughput Boundary

Ti
m

e
in

se
co

nd
s

Mean
Weighted

Regression
No Task Farm

(a) Exec. times of B1 (balanced workload) for the INTEL system

0 0.2 0.4 0.6 0.8 1
0

10

20

30

Throughput Boundary

Ti
m

e
in

se
co

nd
s

Mean
Weighted

Regression
No Task Farm

(b) Exec. times of B1 (unbalanced workload) for the INTEL system

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Throughput Boundary

Ti
m

e
in

se
co

nd
s

Mean
Weighted

Regression
No Task Farm

(c) Exec. times of B2 (balanced workload) for the INTEL system

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Throughput Boundary

Ti
m

e
in

se
co

nd
s

Mean
Weighted

Regression
No Task Farm

(d) Exec. times of B3 (balanced workload) for the INTEL system

Fig. 11: Execution times of the benchmarks on the INTEL system either with the mean algorithm (blue), with the weighted
algorithm (green), with the regression algorithm (brown), or without our task farm stage (red).

VII. RELATED WORK

Some approaches prepare and optimize existing P&F archi-
tectures for contemporary distributed systems or for multi-core
systems. Probably the best known work is FastFlow [6], [17],
a framework for C++-based streaming applications. Similar to
the P&F framework TeeTime, it also supports the task farm
parallelization pattern. However, the task farm in FastFlow
does not support any self-adaptive behavior. A fixed number
of worker stages has to be specified at task farm creation. The
task farm then uses exactly the specified amount of worker
stages for the whole execution. Other P&F-like frameworks,
such as Pipes [22] and Akka [23], do not provide both a self-
adaptation mechanism and a task farm.

There are also other patterns similar to the task farm paral-
lelization pattern. For example, the Map-Reduce pattern [24]
is also able to process multiple tasks concurrently. It uses a

map-, a shuffle-, and a reduce-function to efficiently process
unstructured data, such as text files, in a distributed manner.

The Fork-Join parallelization pattern [25] is another alterna-
tive to the task farm pattern. It can also be applied to parallelize
stages on demand by forking and joining their executions.
However, when using a P&F architecture, we operate on a
stream of tasks which could lead to a performance degrade
due to the high amount of fork and join operations.

Kephart and Chess [26] propose a reference architecture for
self-adaptive software systems which implements the well-
known MAPE-K control loop. Van Hoorn [27] reviews and
discusses approaches concerning a self-adaptive capacity man-
agement for component-based software systems. Moreover, he
proposes a MAPE-K-based framework for architecture-based
online capacity management called SLAstic. Related MAPE-K
frameworks are Rainbow [28], AQuA [29], and the Adaptive
Server Framework [30]. We adopt and specialized parts of the

common MAPE-K control loop and the SLAstic [31] meta-
model to structure our self-adaptation manager.

StreamIT [32] is a language for building and executing high-
performance streaming applications. Similar to our task farm
stage, it provides a so-called split-and-join filter which is able
to automatically parallelize the underlying filter on demand.

Suleman et al. [9] use a parallelization approach which also
adapts the number of worker stages in pipelines according to
the workload. They apply an initial training phase in which
the stages are monitored to determine when a worker stage
should be added or removed. However, this training phase is
performed only once at the beginning and thus can produce
inaccurate reconfigurations for unexpected workloads.

Sugerman et al. [8] present the GRAMPS programming
model for graphics pipelines which defines two types of
stages: thread and shader stages. Thread stages are stateful
and must be manually instantiated. Shader stages are stateless
and automatically instantiated by the scheduler. Sanchez et
al. [33] present a GRAMPS-scheduler that performs fine-
grained dynamic load balancing and automatic parallelization
by scaling such shader stages on demand. Our approach is
able to scale stateless and stateful stages within the limits of
the ITaskFarmDuplicable interface.

VIII. CONCLUSION

So far, concurrency in P&F architectures is often handled,
if at all, only at a coarse-grained level for distributed cluster
systems, neglecting parallelization potential of contemporary
multi-core processor systems. Parallelizing each filter is not
very effective, especially when (1) the workload is unevenly
distributed among all filters and when (2) the number of
available processing units exceeds the number of filters.

Hence, we propose a composite filter which implements the
task farm parallelization pattern. This filter is able to paral-
lelize the underlying filter in order to increase the throughput.
Furthermore, we integrate a self-adaptation manager. It allows
to automatically adapt the number of filter instances in order to
achieve a high throughput even under an unevenly distributed
workload. We showed by an extensive experimental evaluation
that (1) our task farm filter is able to increase the throughput
of various P&F architectures and (2) that our self-adaptation
manager scales well when using the regression algorithm for
throughput forecasting. We achieved speedups ranging from
1.5 to 7.3 for our benchmarks.

As future work, we plan to identify the best throughput
boundary in an automatic fashion at runtime. In this way, the
programmer does not need to manually define and adjust it
anymore. Moreover, we plan to support duplicable stages with
more than one input port and more than one output port.

REFERENCES

[1] M. Shaw, “Larger scale systems require higher-level abstractions,”
SIGSOFT Softw. Eng. Notes, vol. 14, no. 3, 1989.

[2] G. Abowd, R. Allen, and D. Garlan, “Using Style to Understand
Descriptions of Software Architecture,” in Proc. of the 1st FSE, 1993.

[3] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:
Foundations, Theory, and Practice. Wiley Publishing, 2009.

[4] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, vol. 15, no. 12, 1972.

[5] D. Rayside, L. Mendel, and D. Jackson, “A dynamic analysis for reveal-
ing object ownership and sharing,” in Proceedings of the International
Workshop on Dynamic Systems Analysis. ACM, 2006.

[6] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, “Fastflow:
high-level and efficient streaming on multi-core,” in Programming Multi-
core and Many-core Computing Systems, ser. Parallel and Distributed
Computing, S. Pllana and F. Xhafa, Eds. Wiley, Oct. 2013, ch. 13.

[7] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs,” in Proc. of the
12th International Conference on ASPLOS, 2006.

[8] J. Sugerman, K. Fatahalian, S. Boulos, K. Akeley, and P. Hanrahan,
“Gramps: A programming model for graphics pipelines,” ACM Trans.
Graph., vol. 28, no. 1, 2009.

[9] M. A. Suleman, M. K. Qureshi, Khubaib, and Y. N. Patt, “Feedback-
directed pipeline parallelism,” in Proc. of the Int. Conf. on PACT, 2010.

[10] C. Wulf, N. C. Ehmke, and W. Hasselbring, “Toward a generic and
concurrency-aware pipes & filters framework,” in Symposium on Soft-
ware Performance: Joint Descartes/Kieker/Palladio Days, Nov. 2014.

[11] C. Wulf, C. C. Wiechmann, and W. Hasselbring, “Data for: Increasing
the Throughput of Pipe-and-Filter Architectures by Integrating the Task
Farm Parallelization Pattern,” Mar. 2016, doi: 10.5281/zenodo.46776.

[12] R. Allen and D. Garlan, “Formalizing architectural connection,” in Proc.
of the 16th ICSE. IEEE Computer Society Press, 1994.

[13] S. S. Gokhale and S. M. Yacoub, “Reliability analysis of pipe and filter
architecture style.” in the Proc. of the 18th SEKE, 2006.

[14] M. Welsh, D. Culler, and E. Brewer, “SEDA: An Architecture for
Well-conditioned, Scalable Internet Services,” SIGOPS Oper. Syst. Rev.,
vol. 35, no. 5, Oct. 2001.

[15] M. Cole, Algorithmic Skeletons: Structured Management of Parallel
Computation. MIT Press, 1991.

[16] M. Aldinucci and M. Danelutto, “Stream Parallel Skeleton Optimiza-
tion,” in Proc. of the International Conference on PDCS, 1999.

[17] “FastFlow Documentation.” [Online]. Available: http://calvados.di.unipi.
it/dokuwiki/doku.php/ffnamespace:about

[18] T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel Pro-
gramming, 1st ed. Addison-Wesley Professional, 2004.

[19] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-oriented Software Architecture: A System of Patterns. New
York, NY, USA: John Wiley & Sons, Inc., 1996.

[20] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A Framework for
Application Performance Monitoring and Dynamic Software Analysis,”
in Proc. of the ICPE, 2012.

[21] The TeeTime project. [Online]. Available: http://teetime.sf.net
[22] The TinkerPop project. [Online]. Available: http://www.tinkerpop.com
[23] The Akka Framework. [Online]. Available: http://akka.io
[24] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” in Comm. of the ACM, vol. 51, no. 1. ACM, 2008.
[25] D. Lea, “A Java fork/join framework,” in Proc. of the ACM Java Grande

2000 Conference. New York, NY, USA: ACM, 2000.
[26] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”

Computer, vol. 36, no. 1, pp. 41–50, Jan 2003.
[27] A. van Hoorn, Model-Driven Online Capacity Management for

Component-Based Software Systems, ser. Kiel Computer Science Series.
Kiel, 2014, no. 6, dissertation, Faculty of Engineering, Kiel University.

[28] D. Garlan, S. W. Cheng, A. C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: architecture-based self-adaptation with reusable infrastruc-
ture,” Computer, vol. 37, no. 10, pp. 46–54, Oct 2004.

[29] A. Diaconescu, A. Mos, and J. Murphy, “Automatic performance man-
agement in component based software systems,” in Proceedings of the
International Conference on Autonomic Computing, May 2004.

[30] I. Gorton, Y. Liu, and N. Trivedi, “An extensible and lightweight
architecture for adaptive server applications,” Software: Practice and
Experience, vol. 38, no. 8, 2008.

[31] A. van Hoorn, M. Rohr, I. A. Gul, and W. Hasselbring, “An adaptation
framework enabling resource-efficient operation of software systems,”
in Proc. of the Warm Up Workshop for the ICSE, 2009.

[32] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A Language
for Streaming Applications,” in Proc. of the Int. Conf. on CC, 2002.

[33] D. Sanchez, D. Lo, R. Yoo, J. Sugerman, and C. Kozyrakis, “Dynamic
fine-grain scheduling of pipeline parallelism,” in Proceedings of the 20th
International Conference on PACT, Oct. 2011.

http://dx.doi.org/10.5281/zenodo.46776
http://calvados.di.unipi.it/dokuwiki/doku.php/ffnamespace:about
http://calvados.di.unipi.it/dokuwiki/doku.php/ffnamespace:about
http://teetime.sf.net
http://www.tinkerpop.com
http://akka.io

