
A Pattern-based Transformation
Approach

to Parallelise Software Systems
using a System Dependency Graph

Master's Thesis

Johanna Elisabeth Krause

December 23, 2015

Kiel University

Department of Computer Science

Software Engineering Group

Advised by: Prof. Dr. Wilhelm Hasselbring
M.Sc. Christian Wulf

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

ii

Abstract

Decades ago, the first multi-core processor machines were invented. Meanwhile, most
computational devices contain two, four or more processors. Nevertheless, lots of software
developers avoid concurrent programming because it requires cautious implementation to
prevent race conditions and dead locks. However, without concurrency, the potential of
multi-core processors cannot be exhausted.

Therefore, a graph-based parallelisation approach for Java systems is demonstrated in
this thesis. We start with a System Dependency Graph (SDG) which represents Java source
code and is stored in a Neo4J graph database. As prototypes, we choose three patterns
which can become parallelised. With pattern matching, we search for these patterns in
the SDG. Then, the identified sub graphs are transformed so that they finally represent the
parallel version of the original source code. In the evaluation, we test the pattern matching
and transformation by means of several examples which all execute successfully. Also, we
analyse the occurrences of the chosen prototype patterns in existing Java applications. We
determine that two of the three prototypes exist multiple times in the examined source
code.

It is planned to generate Java source code from the transformed SDG in future work.

Zusammenfassung

Mehrkern-Prozessoren wurden schon vor Jahrzehnten erfunden. Heutzutage sind in den
meisten technischen Geräten zwei, vier oder mehr Prozessoren verbaut. Dennoch meiden
immer noch viele Software-Entwickler und -Entwicklerinnen nebenläufig zu program-
mieren, da dies viel Aufmerksamkeit erfordert, um Race Conditions und Deadlocks zu
vermeiden. Jedoch kann das Potential von Mehrkern-Prozessoren ohne Nebenläufigkeit
nicht ausgeschöpft werden.

In dieser Masterarbeit wird ein graph-basierter Ansatz zur Parallelisierung von Java
Programmen vorgestellt. Wir gehen von einem Systemabhängigkeitsgraphen aus, der
Java-Quellcode darstellt und in einer Neo4J-Graphdatenbank vorliegt. Es werden drei
parallelisierbare Entwurfsmuster als Prototypen ausgewählt. Diese Entwurfsmuster werden
mithilfe von 'Pattern Matching' – Muster-Abgleich – im Systemabhängigkeitsgraphen
erkannt. Die identifizierten Teilgraphen werden nun transformiert, sodass sie schließlich
die parallelisierte Version des originalen Quellcodes darstellen. Für die Evaluation testen
wir das Pattern Matching und die Transformation anhand verschiedener Beispiele, die alle
erfolgreich abschließen. Desweiteren analysieren wir das Vorkommen der ausgewählten
Entwurfsmuster in bekannten Java Anwendungen. Wir ermitteln, dass zwei der drei
Prototypen mehrmals im untersuchten Quellcode vorliegen.

Es ist geplant in naher Zukunft aus dem transformierten Systemabhängigkeitsgraphen
Java Quellcode zu generieren.

iii

Contents

List of Figures . vii
List of Tables . ix
Listings . xii
List of Abbreviations . xiii

1 Introduction 1
1.1 Context . 1
1.2 Goals . 2
1.3 Document Structure . 3

2 Related Work 5
2.1 Pattern Detection in Graphs . 5
2.2 Automatic Parallelisation . 6
2.3 Graph-based Parallelisation Approaches . 7

3 Approach 9

4 Foundations and Technologies 11
4.1 Graph-based Representation of Source Code 11

4.1.1 Nodes of an SDG . 12
4.1.2 Relationships of an SDG . 14

4.2 The Graph Database Neo4J . 15
4.2.1 Cypher . 16
4.2.2 Neo4J’s Java API . 19

4.3 From Java to Neo4J . 21
4.3.1 Soot – The Java Optimisation Framework 21
4.3.2 From Soot to Neo4J . 21

4.4 Characteristics of Parallel Programs . 24
4.4.1 Data Sharing . 24
4.4.2 Race Conditions . 25

5 Candidate Pattern Mining 27
5.1 Finding Concurrency . 27
5.2 Pairs of Candidate and Parallelisation Patterns 29

5.2.1 Independent Successive Method Calls 29
5.2.2 Independent For-Each Loop . 30
5.2.3 Reduction of an Array . 30

v

Contents

6 Candidate Pattern Matching 31
6.1 Correct Matching . 31
6.2 Representation of Dependencies in the SDG . 32

6.2.1 Representation of Overridden Methods 32
6.2.2 Representation of Read-Only Methods 34
6.2.3 Representation of Parallelisable Methods 35

6.3 Formalisation of Candidate Patterns . 37
6.3.1 Independent Successive Method Calls 38
6.3.2 Independent For-Each Loop . 44
6.3.3 Reduction of an Array . 49

7 Transformation to Parallelisation Pattern 53
7.1 Master/Worker Pattern . 53
7.2 Target Source Code – Design Decisions . 55

7.2.1 Java’s ExecutorService . 55
7.2.2 Callable Implementation . 57
7.2.3 Exception Handling . 58

7.3 Graph Transformation . 60
7.3.1 Inserting New Neo4J Nodes . 60
7.3.2 The ExecutorService’s Instantiation . 62
7.3.3 The New Callable Class . 64
7.3.4 Joining the Futures and ExecutorService’s Termination 65

7.4 Transformation of 'Independent Successive Method Calls' 67
7.5 Transformation of 'Independent For-Each Loop' 67
7.6 Transformation of 'Reduction of an Array' . 69

8 Evaluation 71
8.1 Goal: Demonstrating the Feasibility of the Approach 71

8.1.1 Question: Is the result of the approach correct? 71
8.2 Goal: Demonstrating the Utility of the Approach 77

8.2.1 Question: Do the Candidate Patterns Exist in Real-World Applications? 77
8.3 Extendibility of the Approach . 80

9 Conclusions and Future Work 81
9.1 Summary . 81
9.2 Future Work . 82

Bibliography 95

vi

List of Figures

1.1 Approach: semi-automatic framework for parallelising Java source code . . . 2

3.1 Approach of this thesis . 9

4.1 Example of a directed graph: G = (V, E) with V = {A, B, C, D} and E =
{(A, B), (A, C), (B, B), (C, D)} . 11

4.2 Example of a labeled property graph representing an SDG 12
4.3 Hierarchy in an SDG . 13
4.4 Example of a Cypher query creating a simple graph 17

6.1 Data flows representing write or read access 33
6.2 Formalisation of candidate patterns . 37
6.3 SDG of the source code from Listing 5.1 . 38
6.4 SDG of the candidate pattern 'Independent For-Each Loop' 44
6.5 SDG of the candidate pattern 'Reduction of an Array' 50

7.1 Master/Worker Pattern . 54
7.2 Insertion of new statement nodes in the SDG 63
7.3 Nodes for the instantiation of the ExecutorService 63
7.4 SDG of the new Callable class . 65
7.5 SDG of joining the futures and ExecutorService’s termination 66

8.1 Approach of this thesis . 72

9.1 Example SDG of the candidate pattern 'Independent Successive Method Calls' 88
9.2 Example SDG of the parallelisation pattern 'Independent Successive Method

Calls' . 89
9.3 Continuation of the example parallelisation pattern: SDG of the Callable with

Assignment . 90
9.4 Continuation of the example parallelisation pattern: SDG of the Callable

without Assignment . 91

vii

List of Tables

4.1 Cypher label for different node types . 22
4.2 Relationship types and their utilisation . 23

8.1 Evaluation 'Independent Successive Method Calls' 74
8.2 Evaluation 'Independent For-Each Loop' . 75
8.3 Evaluation 'Reduction of an Array' . 76
8.4 Nodes in the SDG of Checkstyle and Findbugs 78
8.5 Occurrences of 'Independent Successive Method Calls'in Checkstyle and

Findbugs . 78
8.6 Occurrences of 'Independent For-Each Loop'in Checkstyle and Findbugs . . 79
8.7 Occurrences of 'Reduction of an Array'in Checkstyle and Findbugs 80

ix

Listings

4.1 Example CMQ . 18
4.2 Example CUQ . 18
4.3 Structure of a Transaction . 19
4.4 Executing a Cypher query from Java . 20
5.1 Example source code representing a match for the candidate pattern 'Inde-

pendent Successive Method Calls' . 29
5.2 Example source code for the candidate pattern 'Independent For-Each Loop' 30
5.3 Example source code for candidate pattern 'Accumulation of an Array' . . . 30
6.1 Cypher Query which marks overridden method declarations 33
6.2 Cypher Query which marks read-only method declarations for completely

analysed SDGs . 34
6.3 Cypher Query which marks direct read-only method declarations 34
6.4 Cypher Query which marks indirect read-only method declarations 35
6.5 Cypher Query which marks overridden parallelisable method declarations . 36
] . 38
6.6 Cypher query excluding direct dependencies between method calls 40
6.7 CMQ for candidate pattern 'Independent Successive Method Calls'without

writing access . 40
6.8 CMQ for candidate pattern 'Independent Successive Method Calls'without

overridden methods . 43
6.9 CMQ for for-each-loop . 45
6.10 CMQ for foreach-loop with runtime constraints 46
6.11 CMQ for foreach-loop without interruptions . 46
6.12 CMQ for foreach-loop without dependencies 48
6.13 Cypher Match Query (CMQ) of the candidate pattern 'Reduction of an Array' 51
6.14 CMQ of the candidate pattern 'Reduction of an array pattern' 51
7.1 Example source code for candidate pattern 'Independent For-Each Loop' . . 55
7.2 Parallelised source code example for the candidate pattern 'Independent

For-Each Loop' . 56
7.3 Cypher queries for retrieving variable names in the scope of the current

method . 61
7.4 Source code for inserting new statements . 62
8.1 1. Example source code for 'Independent Successive Method Calls' 72
8.2 2. Example Source Code for 'Independent Successive Method Calls' 73
8.3 3. Example source code for 'Independent Successive Method Calls' 73
8.4 4. Example source code for 'Independent Successive Method Calls' 73

xi

Listings

8.5 5. Example source code for not matching 'Independent Successive Method
Calls' . 73

8.6 1. Example source code for 'Independent For-Each Loop' 74
8.7 2. Example source code for Not Matching 'Independent For-Each Loop' . . . 75
8.8 3. Example source code for 'Independent For-Each Loop' 75
8.9 4. Example source code for not matching 'Independent For-Each Loop' . . . 75
8.10 1. Example source code for 'Reduction of an Array' 76
8.11 2. Example source code for 'Reduction of an Array' 76
8.12 3. Example source code for not matching 'Reduction of an Array' 76
9.1 Complete CMQ for 'Independent Successive Method Calls' 85
9.2 2. Example Source Code for 'Independent Successive Method Calls' 87
9.3 Parallelised source code example for the candidate pattern 'Independent

For-Each Loop' . 92

xii

List of Abbreviations

AST Abstract Syntax Tree

fqn fully qualified name

SDG System Dependency Graph

CMQ Cypher Match Query

CUQ Cypher Update Query

PEs Processing Elements

xiii

Chapter 1

Introduction

Parallel and distributed programming is an important subject in today’s IT as current
hardware is able to execute multiple tasks simultaneously. Hence, parallel programs tend to
be faster than their sequential equivalent. However, in case the parallel tasks are dependent
on each other or on the same resources, the development becomes more complex: Errors
due to race conditions and dead locks as a result of mutual exclusions have to be avoided.
Since parallel programming might be more complicated, not all software developers exploit
potential parallelism. So, a lot of existing programs only use a single core, thus do not
exhaust the underlying hardware resources. These programs contain a high potential of
performance improvements through parallelisation.

For example, legacy systems in enterprises are often highly customized and therefore
difficult to replace. They are often outdated, but nevertheless, they are critical for the
business. A transformation of such a legacy system into a parallelised application would
potentially improve the performance of the existing system so that it better fits today’s
requirements.

1.1 Context

This thesis contributes to the approach of Christian Wulf who develops a semi-automatic
framework for parallelising sequential Java source code [Wulf 2014]. In Figure 1.1, his
approach is visualised: With the help of static and dynamic code analysis, an SDG of the
sequential program is automatically extracted and stored in a graph database (S1-S3).
Afterwards, the sub graphs of the source code are ranked in a parallelism plan ordered by
the parallelisation potential (S4). For the following transformation, patterns that can be
parallelised are specified as well as their parallelised version. We call the sequential pattern
which can become parallelised candidate pattern; the correspondent target version is entitled
parallelisation pattern. In the semi-automatic transformation step, the specified candidate
patterns are seeked by pattern matching and then transformed into their parallelised
version (S5,S6). Finally, Java source code is generated from the transformed graph (S7).

In the following, we make contributions to S5 and S6 of the approach mentioned above.

1

1. IntroductionOur Approach [Wu14]

Christian Wulf ― 18.02.2015

Legend:
S1: SDG Construction
S2: Gathering
S3: SDG Enrichment
S4: Ranking
S5: Pattern Detection
S6: Transformation
S7: Code Generation

System dependency
graph (SDG)

Parallelism
plan

S4

S6

S5

Semi-automatic transformation

Runtime
information

Static
information

Parallelization
pattern

Candidate
pattern

Sequential program

Parallel program

S7

S3

13Pattern-based Detection and Utilization of Potential Parallelism in Software Systems
Figure 1.1. Approach: semi-automatic framework for parallelising Java source code [Wulf 2014].

1.2 Goals

The aim of this thesis is the semi-automatic transformation of a graph representing Java
source code into its parallelised version. The construction and availability of the source code
as a graph in a graph database is a precondition and not part of this work. At first, different
patterns have to be mined which can be parallelised. We call these patterns candidate patterns.
For this thesis, we choose three prototypes for demonstrating the operational capability
of our approach. For each of these prototypes, a pattern matching query is formalised
with Cypher, which is the query language of the used graph database Neo4J. With these
matching queries, those sub graphs are identified which represent parallelisable source
code. Then, these sub graphs are transformed so that they represent a parallel version of
the originally sequential source code. In the evaluation, we examine the correctness of
the pattern matching and the transformation on the basis of several examples. Also, we
determine the occurrences of the prototype candidate patterns in two Java applications.

2

1.3. Document Structure

1.3 Document Structure

Subsequent to the introduction, Chapter 2 provides an overview of the related work
comprising parallelisation approaches and graphical representation of source code. Then,
Chapter 3 shortly describes our approach. In Chapter 4, we present fundamental knowledge
and technologies necessary for understanding the thesis’ topics. In Chapter 5, the process
of mining suitable pairs of candidate and parallelisation patterns is described. Chapter 6
examplifies the formulation of a pattern matching query in Neo4J’s query language Cypher
for identifying the occurences of the candidate pattern in an SDG. The transformation from
a candidate pattern to the corresponding parallelisation pattern is explained in Chapter 7.

Afterwards, in Chapter 8, the feasibility of our approach is evaluated and the number
of occurrences of the candidate patterns is examined. Finally, the conclusions follow in
Chapter 9.

3

Chapter 2

Related Work

This chapter summarises the related work to this thesis. It mainly divides into research
about design pattern detection in graphs and about automatic parallelisation approaches.
The combination of these areas recently emerged and deserve further studies.

2.1 Pattern Detection in Graphs

Heuzeroth et al. [2003] published their research about Automatic Design Pattern Detection in
Java programs [Heuzeroth et al. 2003]. Based upon the Observer Pattern, they present their
approach which aims for the better understanding of the software design and architecture.
Firstly, they construct an attributed Abstract Syntax Tree (AST) with the help of a static code
analysis tool called 'Recorder'. Then, they collect 'candidates' from the AST. Each candidate
is represented as a 'tuple of AST nodes with the appropriate static structure'. For instance,
the tuple for a candidate of the Observer Pattern consists of method declarations of the
form: (S.addListener, S.removeListener, S.notify, L.update). The identified parts of
the candidates are instrumented for the following dynamic analysis. During the dynamic
analysis, the candidates are observed and monitored whether they behave conform to
the 'protocol' of this design pattern. Candidates that behave contrary to the protocol are
excluded from the candidate list. As a result, it remains a list of candidates which probably
implement the design pattern and a list of candidates which were not executed during the
dynamic analysis so that no decision is possible on those. Similar to our approach, the
specification of the patterns is implemented for each pattern separately. With the help of
a specification language, Heuzeroth et al. [2003] define the static and dynamic analysis
patterns. As future work, they suppose the integration of data flow analysis and naming
conventions into the static analysis [Heuzeroth et al. 2003]. In contrast to Heuzeroth et al.
[2003], we focus on patterns that can be parallelised, also we work with an SDG instead of
an AST and we include data flow analysis. Our pattern matching completely works on the
SDG which contains all necessary data including runtime information.

Similarily, Stencel and Wegrzynowicz [2008] also use the 'Recorder' tool to construct an
AST from Java source code for their work Detection of Diverse Design Pattern Variants [Stencel
and Wegrzynowicz 2008]. From the AST, they evolve a metamodel which consists of core
elements and relations. Elements are types, methods, or instances, whereby relations
represent inheritance, calls, and assignments to variables. The metamodel is stored in a

5

2. Related Work

relational database. So, pattern matching is done with SQL. Again, this work focuses on
design patterns in general and not on parallelisation. However, in contrast to Heuzeroth
et al. [2003], Stencel and Wegrzynowicz [2008] use no dynamic analysis but data flow
information to identify design patterns. Also, their approach additionally detects variants
of the patterns. As distinguished from our approach, the metamodel of Stencel and
Wegrzynowicz [2008] also contains instances. However, our approach considers runtime
information and the storage inside a graph database allows a convenient and recursive
pattern matching. Nevertheless, our both approaches aim at not only applying Java
programs but all object-oriented programming languages, as the representation of the
source code is not language specific.

Another motive for pattern detection in graphs is identifying and resolving bugs.
Eichinger et al. [2008] have done a lot of research on finding patterns which indicate faults
in reduced call graphs [Eichinger et al. 2008; 2010, a; b; 2014]. They construct call graphs
for correct executions of the program as well as for failing executions. Then, they discover
frequent sub graphs inside the call graphs with the CloseGraph algorithm of Yan and Han
[2003]. By comparing the differences between the frequently accessed sub graphs from the
correct and failing executions, suspicious methods are identified. They further developed
their approach. They added data flow analysis and also analysed parallel programs for
race conditions and dead locks.

The research of Sun et al. [2010] is more related to our approach. They construct an SDG

from programs in C/C++ with the tool CodeSurfer1. So, all static information including
data dependencies are regarded. In the SDG, they search for self-defined 'bug patterns'.
This is done by graph matching using the graph matching algorithm GADDI [Zhang et al.
2009]. The detected bug patterns are then transformed to the corresponding 'fix patterns'.

2.2 Automatic Parallelisation

Several automatic parallelisation approaches exist. This section presents related work
for automatic parallelisation which is not based on graphs. Already in 1991, Merlin
has published his work about Techniques for the Automatic Parallelisation of ’Distributed
Fortran 90’ [Merlin 1991]. He has developed the automatic parallelisation based on array
partitioning for the programming language Fortran. Likewise, Hall et al. [2005] deal
with the parallelisation of Fortran programs. They present a parallelisation approach for
the compiler especially focussing on parallelising loops. They use interprocedural array
data-flow analysis, array privatisation and reduction recognition. As the parallelisation
happens at compile time, purely static analysis is applied. In comparison, our approach
also uses runtime information to detect parallelisable pattern. Also, we are not restricted to
loops and to Fortran, but focus on object orientation.

Servetto and Potanin [2012] present their research about Automatic Parallelisation in OO
Languages with Balloons and Immutable Objects [Servetto and Potanin 2012]. It is based on

1CodeSurfer: http://www.grammatech.com/research/technologies/codesurfer

6

2.3. Graph-based Parallelisation Approaches

the language 'Ballon Immutable Java' which contains specific types of objects: ballons and
immutable objects. The balloons are used as a mechanism for restrictive encapsulation
whereas immutable objects are exclusively referenced read-only. The original program
is reduced to a version containing balloons and immutable objects where possible. Due
to their characteristics, balloons and immutable objects allow parallel execution without
interference. So, these locations are suitable for parallelisation. During compilation, the
program is parallelised at the identified locations by creating fork-join blocks. Servetto
et al. [2013] amend their research by adding ownership which allows more parallelisation.
For our parallelisation approach, a Java program is represented as an SDG. In the SDG, we
look for parallelisable patterns considering data dependencies. We do not differentiate
between separate instances. However, we employ semi-automatism, hence, we involve
the developer. In contrast to a fully automated parallelisation during compile time, this
proceeding provides more parallelisation potential.

Similar to our approach is the research of Molitorisz et al. [2012]. They use the static
code analysis tool Soot for detecting parallelisable patterns like asynchronous method
calls or loops without data dependencies. For the parallel implementation, they choose
Futures as an easy and readable solution. Futures represent a future value and hide if it
is already available or not. The parallelisation is executed fully automatically. This limits
the parallelisation potential but therefore experiences a high acceptance with concerned
developers. Molitorisz et al. [2012] plan to add runtime information in future work. For
our approach, we also use Soot for the static analysis, however, we construct the SDG from
the provided call graph. So, we can work with the graph to identify parallelisable patterns.
We assume, that our SDG is already enriched with runtime information to detect high
parallelisation potential.

2.3 Graph-based Parallelisation Approaches

Moseley et al. [2007] present their approach for identifying parallelisable loops. They
build a loop call graph which shows the nesting of loops because outer loops have a
big parallelisation potential. These profile information can help developers with manual
parallelisation. However, Moseley et al. do not examine data dependencies and race
conditions, neither do they automatically parallelise the identified loops.

The work of Asenjo et al. [2008] is more comprehensive. They present an approach for
the automatic parallelisation of source code based on heap-stored data structures. Therefore,
they abstract the data structures by shape graphs to model the heap. This shape graphs
represent possible connections of heap elements. So, interprocedural data dependencies
are detected and loop-level parallelism is exploited. This parallelisation framework is
integrated into Cetus, a compiler for science and engineering applications in C. Bae et al.
[2013] evalute Cetus. As an internal representation, Cetus features a graph representation
similar to Java’s class hierarchy. It is traversable and comprises also statements. From the
internal representation, array access-related and loop-related information are retrieved

7

2. Related Work

beside other data dependencies. Also, induction (e.g. k = k + i) is detected and substituted
where possible. Recognising these operations is necessary for identifying many loops.
The parallelisation is executed fully automatically. For the profitability, only loops with
a high workload during runtime are parallelised. For this purpose, a phase of profiling
follows to examine the profitability of the parallelisation which compares several executions
with different combinations of sequential and parallel code snippets. In contrast to Bae
et al. [2013], we aim at a semi-automatic parallelisation approach for exhausting more
parallelisation potential. Also, we work on an SDG as a source code representation which
is stored in a graph database so that we can parallelise all sorts of patterns and not only
loops. We do not strive for profiling several parallelisation combinations. However, we
assume that our SDG is enriched with runtime information so that we can focus on source
code parts with high performance improvement potential.

8

Chapter 3

Approach

The overall approach of this thesis is visualised in Figure 3.1. First of all, pairs of candidate
and parallelisation patterns have to be identified (1). Then, the candidate patterns are
formalised as Cypher Match Queries (CMQs) to find matching source code sub graphs (2).
The resulting sub graphs are transformed into their parallelised form with the help of
Cypher Update Queries (CUQs) (3). We evaluate the feasibility of our approach on the basis
of three candidate patterns. Also, we examine the occurrences of the chosen candidate
patterns in e applications (4). For the future, it is planned that after processing all favoured
patterns, Java code is generated from the graph. Then, the result could be evaluated by
comparing the performance of the transformed application and the original one.

Neo4J
Database

JAVA

JAVA
 MATCH (node1)
 -[:related_to]->
 (node2)
 WHERE ...
 RETURN node1, node2

Cypher Match Query

 MATCH node...
 WHERE ...
 CREATE/DELETE ...
 RETURN node...

Cypher Update Query

Candidate
Pattern

Parallelisation
Pattern

Pattern Mining

choose
prototype

formalise
pattern

formalise
transformation

create SDG

generateexecute

Sequential
Program

Parallelised
Program

Resulting candidates:
1)

2)

...

p
a

ra
llelise

execute

1.
2.

3.

0.
Evaluation 4.

Figure 3.1. Approach of this thesis

9

Chapter 4

Foundations and Technologies

4.1 Graph-based Representation of Source Code

Mathematically, a graph G is defined as a tuple of two sets V– the set of nodes (vertices) –
and E – the set of edges between the nodes. Thus, G = (V, E) and E Ď (V ˆV). Figure 4.1
shows a directed example graph [Edlich et al. 2011, p.209].

A

D

B

C

Figure 4.1. Example of a directed graph: G = (V, E) with V = {A, B, C, D} and E =
{(A, B), (A, C), (B, B), (C, D)}

A property graph is a graph extended by properties – key-value pairs – which are added
to the nodes and optionally also to the edges. For source code representation, a suitable
property for a node is, for instance, 'code' as key with the correspondent piece of source
code as value. Nodes and edges can have multiple properties, so that all relevant infor-
mation can be attached for later use. Concerning graph databases, in case a node shall be
deleted, all the edges from and to the node have to be deleted, too [Robinson et al. 2015, p.4].

In the following, three types of graphs visualising source code are described:

Call Graph Call graphs consist of nodes, which represent static calls, and directed edges,
which represent all static calls from one method to another [Grove and Chambers
2001] [Ryder 1979]. Hence, it shows inter-procedural calling relationships.

11

4. Foundations and Technologies

Control Flow Graph A control flow graph contains nodes which represent linear sequences
of program instructions and directed edges representing control flow paths [Allen 1970].
The edges describe the chronological order of the program execution. As the control
flow graph shows single statements in a method, it is intra-procedural.

System Dependency Graph (SDG) An SDG combines a call graph and a control flow graph
for each method and additionally represents data dependencies. Figure 4.2 shows a
property graph which is a small example of an SDG.

return “Bye.“

Object

Code
Example

Class / Method

Statement

Control flow

Data dependency

Hierarchy

Legend

sayBye sayHello @p0 == null

$v0 = “Hello
everybody!“

$v0 = “Hello “ +
@p0

return $v0 return $v0

regular exitregular exit

assignmentassignment

condition

regular exit

Class

Class

MethodMethod

Figure 4.2. Example of a labeled property graph representing an SDG

In this thesis, we operate on SDGs. In the following, the nodes and relationships of an
SDG are presented.

4.1.1 Nodes of an SDG

The nodes of an SDG can be categorised depending on what they represent: package
declarations, class declarations, method declarations, field declarations, and statements.

These categories form a hierarchy which is also visualised in Figure 4.3. The package
declarations are at the top. They contain other package declarations and class declarations.
The class declarations contain method declarations and field declarations. Constructors

12

4.1. Graph-based Representation of Source Code

com

Clazz

Class / Method

Statement

Control flow

Data dependency

Hierarchy

Legend

main

Package

Class

Method

...

Statement

com.util

Package

...

Class

...

Class

setName()

Method

getName()

Method

… …

...

Statement

…

Figure 4.3. Hierarchy in an SDG

can be either represented as methods or concrete as an additional category. The method
declarations contain statements. Statements represent the actual source code inside methods
and constructors. They can be further distinguished according to their functionality:
'assignments' if a variable is assigned, 'method calls' if a method is called, 'condition' for
if-conditions and switch cases, and eventually 'loop' for the head of a loop. The subtypes
of the statements are not exclusive, but can appear combined.

13

4. Foundations and Technologies

4.1.2 Relationships of an SDG

The nodes are connected by edges representing different types of relationships. At least
one relationship type is needed to describe the hierarchy inside the SDG, hence which
methods belong to which classes and which classes belong to which package. This type
can be named 'contains'.

The statements inside a method are connected by 'control flows'. In most cases, a
statement is followed by exactly one other statement. However, in case of if-conditions,
switch-case-expressions and loops, multiple possible control flow edges lead to different
statements. Therefore, a property is useful to distinguish the different routes, e.g. 'case'.
When a statement embodies a method call, the statement should link to the called method
as it represents the forwarding of the control flow. This relationship type can be called
'calls'. For representing data dependencies, another relationship type is required which
represents the 'data flow'. It should be distinguished between reading and writing data
flow. Also, it has to be recognisable to which object the data flow belongs.

With the hierarchy relationship type and the control flows alone, the source code can
already be depicted unambiguously. The graph would look like several trees with packages
as nodes, spreading into classes, then methods and fields and finally statements. The
representation of the method calls and data dependencies creates connections between
the sub trees. They can link directly the statement and the method, and accordingly the
statement and field, or statement and statement. Additionally, the connections can be
shown on a higher level for example from method to method or from class to class.

14

4.2. The Graph Database Neo4J

4.2 The Graph Database Neo4J

Among the wide-spread relational databases where the data is structured in tables, other
kind of database models have emerged – like graph databases, document-stores or key-
value-stores. For representing data with numerous and frequently changing relationships,
relational data models struggle with complex and inefficient join-operations and restricted
schema-changes. In contrast, graph databases like Neo4J focus on the relationships between
data and therefore store data as nodes and edges with various properties – hence as
property graph model. Nodes represent the entities in the database, whereas the edges show
the relationships between the nodes. For this reason, in the context of Neo4J, edges are
called relationships. The properties hold information about the nodes, compared to relational
database models, they can be seen as records in a table [Neo Technology 2015a].
Neo4J is ACID compliant. Hence, the four important properties of database management
systems are satisfied: atomicity, consistency, isolation and durability. This is achieved by
transactions. A transaction is either fully executed or rolled back, so that the state of the
database is always consistent [van Bruggen 2014, p.45f].

Neo4J does not require a database schema, nevertheless it is reasonable to constitute
semi-structured data. For this purpose, nodes can be semantically categorised by assigning
different labels. A node can hold zero, one or more labels [van Bruggen 2014, p.34ff]. For the
SDG, suitable labels are e.g. 'Class' for class declarations, 'Method' for method declarations
and 'Statement' for single statements. A statement which represents an assignments as
well as a method call, two labels can be assigned. The concrete representation of the SDG

processed in this thesis is described in Section 4.3.2.
Nodes as well as relationships can contain multiple properties. Properties are key-value

pairs. The key is represented as string, whereas the values can be numeric, a string, a
boolean, or an array of the mentioned values [Robinson et al. 2015, p.156]. For class and
method definitions suitable properties could be 'fqn' containing the fully qualified name.
Whereas statements could embody 'code' or 'operation' and 'varName'. Similar to relational
databases, operating on normalised data is recommended as it simplifies comparing of
properties. In an SDG, a node representing the source code int i = calculateFirstIndex()

might be represented with the labels 'Assignment' as well as 'MethodCall'. The proper-
ties could be {code: 'int i = calculateFirstIndex()'}, {assignedVar: 'i'}, {vartype:
'int'}, and {fqnCalledMethod: 'package.Class.calculateFirstIndex()'}.

Similar to the nodes' labels, relationships are assigned to a type. However, relationships
may have neither multiple types nor no type at all. They require exactly one type in Neo4J.
Yet, it is possible to have multiple relationships between the same nodes. The relationship
types needed for an SDG are primarily 'CONTAINS', 'CONTROL_FLOW', 'DATA_FLOW',
and 'CALLS'. An important property is 'case' for indicating different possible control flows,
e.g. for if-else-conditions.
The detailed structure of the SDG which is used for this thesis is presented in Section 4.3.2.

For indexing, Neo4J uses the text search engine library Apache Lucene. It is an open

15

4. Foundations and Technologies

source Java project providing efficient search algorithms [Edlich et al. 2011, p.290].1 In
Neo4J, indexes can be defined for nodes by naming the concerning label and the property
to index [Neo Technology 2015b, p.236].

Neo4J offers several interfaces for providing the graph database. For the purpose of
this thesis, we work on a locally installed Neo4J graph database and focus on its Java
API [Neo Technology 2015b, p.10]. For development, we additionally use the web browser
front end where queries can be executed and the result is presented as a graph. However,
the graphical embodiment for large graphs is not clearly arranged, so most graphs in this
thesis are designed manually.

In the following, Neo4J’s query language Cypher as well as the Java API is explained.

4.2.1 Cypher

Cypher is the query language of Neo4J. It is inspired by SQL inter alia, but optimised for
describing graph patterns.

In software engineering, design patterns describe a specific context, a problem and a
solution for recurring standard problems [Ortega-Arjona 2010, p.382]. It is an abstraction
of the source code so that it can be compared to common design structures. A graph
pattern is a specified composition of nodes and relationships which represents different
characteristics.

Nodes are depicted in round brackets, whereas the relationships are phrased similar
to arrows.2 The following Cypher queries exemplify the representations of a node and a
relationship in Cypher:

(nodeName : Label { propertyname1 : value1 , propertyname2 : value2 })

´[relName : REL_TYPE { propertyname1 : value1 }]´>

Hence, labels of a node, and the type of a relationship start with a colon; properties are
listed in curly brackets and the nodes and relationships can be named with a variable for
referencing inside this query. Depending on the pattern, not all information has to be
provided. For example, a pair of round brackets () is a valid expression for an unnamed
node [Neo Technology 2015b, p.125ff].

An example of a complete Cypher query is shown in Figure 4.4 which creates a small
graph with three nodes and two relationships [Neo Technology 2015b, p.125ff].

The three nodes are referenced by n1, n2, and n3 for creating the relationships later in
the query. They all have exactly one property which is visualised in the graph and the
different labels are expressed by the different colours of the nodes. The RETURN statement
declares which data is needed as result – similar to the SELECT key word in SQL. The

1Apache Lucene Core: https://lucene.apache.org/core/
2Neo4J Technologies: http : //neo4j.com/docs/stable/cypher ´ introduction.html

16

4.2. The Graph Database Neo4J

keyword CREATE indicates that the following pattern has to be created. If it is MATCH
instead, the query phrases a search query looking for the pattern in the graph database.

In this thesis, we distinguish two types of patterns: We refer to patterns representing
sequential source code which can be parallelised as candidate patterns. The corresponding
pattern representing the parallelised source code is called parallelisation pattern. According
to this distinction, we also differentiate between a CMQ and a Cypher Update Query (CUQ).
The CMQ describes the graph of a candidate pattern to identify matching sub graphs in
the SDG, whereas the CUQ formulates the transformation from the candidate pattern to the
parallelisation pattern.

Cypher Match Query

The CMQ is a reading query looking for sub graphs matching the candidate pattern. A CMQ

is constructed with the keywords MATCH followed by the form of the candidate pattern
and RETURN which indicates the results to display, e.g. nodes or properties. An optional
WHERE-clause can be used for restricting, for example on some properties. With the
keyword NOT, an expression can be negated [Neo Technology 2015b, p.104ff]. In Listing
4.1, a CMQ is shown which looks for 'MethodCalls' that take at least 500ms and returns the
ids of the matching nodes. The WHERE clause checks the property 'durationInMs' of the
node n. If n does not have the property 'durationInMs' or it is smaller than 500, then n does
not match the pattern. The function id(n) returns the id of the node n.

CREATE
(n1 : Class {name : ’ CodeExample ’ }) ,
(n2 : Method {name : ’ sayHello ’ }) ,
(n3 : Method {name : ’ sayBye ’ }) ,
(n1) ´[:CONTAINS]´> (n2) ,
(n1) ´[:CONTAINS]´> (n3)
RETURN n1 , n2 , n3

Figure 4.4. Example of a Cypher query creating a simple graph

17

4. Foundations and Technologies

1 MATCH
2 (n : MethodCall)
3 WHERE
4 n . durationInMs >= 500
5 RETURN id (n)

Listing 4.1. Example CMQ

1 START n=node (1 0)
2 MATCH
3 (beforeN) ´[r1 :CONTROLFLOW]´> (n) ´[r2 :CONTROLFLOW]´> (afterN)
4 WITH beforeN , afterN , r1 , r2 , n
5 CREATE (new : MethodCall { code : ’ Magic . doSomeMagic () ’ })
6 DELETE r1 , r2 , n
7 CREATE (beforeN) ´[:CONTROLFLOW]´> (new)
8 CREATE (new) ´[:CONTROLFLOW]´> (afterN)

Listing 4.2. Example CUQ

Cypher Update Query

The CUQ is a reading and writing query. For transforming the graph, the keywords CREATE
and DELETE are used for creating and deleting nodes and relationships. In contrast, the
keywords SET and REMOVE are used for setting and removing labels and properties.
Typically, a CUQ starts with a matching query to identify the right location for the changes.
The keyword WITH i.a. separates the reading part of the query from the writing part.
WITH is followed by the variables that are needed in the next part of the query [Neo
Technology 2015b, p.105].

The optional starting expression START n = node(givenId) sets the start node for the
pattern matching to the node with the given id. For this query, that node is bound to the
variable n so that it can be reused. If a starting node is known, it saves time for exhaustive
pattern matching. Additionally, it ensures the location is right, in case several sub graphs
match the pattern.

Listing 4.2 shows a CUQ which is used to delete the node with the id 10 and inserts a
newly created node instead.

When deleting a node, all incoming and outgoing relationships have to be deleted
in advance. Hence, in this example, it is assumed that the node n does not have more
relationships than one incoming and one outgoing 'CONTROLFLOW'. For example, if n
has an additional 'DATAFLOW', the query will terminate with an error. If n has more than
one 'CONTROLFLOW's per direction, e.g. because of an if-then-else branch, the query
would match several times and create for each match a new node.

18

4.2. The Graph Database Neo4J

4.2.2 Neo4J’s Java API

The Neo4J community offers a Java library for managing the graph database via Java
which is well documented in the Neo4J Manual [Neo Technology 2015b, p.596-625] and as
Javadoc.3 This section is based on these documentations.

The access to the database is realised with the interface GraphDatabaseService. The
following statement shows the default creation of this fundamental access point:

1 GraphDatabaseService graphDb = new GraphDatabaseFactory ()
2 . newEmbeddedDatabase (" path/to/graphDB ") ;

The assigned path specifies the location of the database on the file system. In case there
already exists one, the database server is started; if there is none, a new, empty database
is created. The instance of the GraphDatabaseService locks the database, so that only one
instance at a time can exists. However, since starting the database server is an expensive
operation, it should not be started and shutdown again for each interaction with the
database.

After the instantiation of the GraphDatabaseService, it is recommended to register a
shutdown hook for ensuring the server is shutdown properly when the JVM exits:

1 Runtime . getRuntime () . addShutdownHook (new Thread ()
2 {
3 @Override
4 public void run ()
5 {
6 graphDb . shutdown () ;
7 }
8 }) ;

All interactions with the Neo4J graph database need to be executed within a transac-
tion. Each Transaction is bound to its creating thread, thus the current instance of the
GraphDatabaseService can be shared by multiple threads. Listing 4.3 shows the structure of
a Transaction. If an exception is thrown in the try-block, the method success() will never
be invoked. When leaving the try-block, automatically the Transaction's close() method
is invoked which will commit the transaction if it was successful and otherwise mark it for
rollback.

1 t r y (Transact ion tx = graphDb . beginTx ())
2 {
3 / / Da tabas e o p e r a t i o n s go h e r e
4 tx . success () ;
5 }

Listing 4.3. Structure of a Transaction

3Neo4J Community: http : //neo4j.com/apidocs/2.0.3/

19

4. Foundations and Technologies

Exclusively within a Transaction, database operations can be executed. Database
operations can either be formulated as a Cypher query or with the help of Neo4J’s Java
API which provides i.a. Node and Relationship objects.

Executing a Cypher query and retrieving the result is implemented as shown in List-
ing 4.4. The Result is an iterator and contains the data specified in the query's RETURN
clause. Each element in the Result represents a row which is structured as a Map and
contains the entries of each column. Each row has the same columns; the keys are the
column titles from the query's RETURN clause. The Result must be either consumed
completely or the method close() should be invoked to free the resource.

1 S t r i n g query = " . . . " ;
2 t r y (Transact ion notNeededTx = db . beginTx () ;
3 Resul t r e s u l t = db . execute (query))
4 {
5 while (r e s u l t . hasNext ())
6 {
7 Map<Str ing , Object > row = r e s u l t . next () ;
8 for (Entry <Str ing , Object > column : row . en t r yS e t ())
9 {

10 / / r e t r i e v e i n f o r m a t i o n from column
11 }
12 }
13 }

Listing 4.4. Executing a Cypher query from Java

Neo4J’s Java API also provides an object-oriented representation for nodes and relation-
ships in the graph database. The interfaces Node and Relationship can be comfortably used
inside transactions for managing nodes, properties, and relationships. This is especially
useful, as the variables in a Cypher query only exist in that query. Referencing nodes and
relationships outside of that query requires a lookup through pattern matching. Embedded
in Java, the relevant nodes and relationships can be stored for later use. The following
example shows the creation of a relationship between two Node objects.

1 node1 . c r ea t eR e l a t i on sh i pT o (node2 , RelTypes .CONTROL_FLOW) ;

When the database server is not needed any more, it has to be shutdowned properly:

1 graphDb . shutdown () ;

20

4.3. From Java to Neo4J

4.3 From Java to Neo4J

Our parallelisation approach operates on an SDG which represents Java source code and is
stored in a Neo4J graph database. The translation from Java into a Neo4J graph has been
developed by Christian Wulf [Wulf 2014]. As the SDG representation is the basis for this
thesis, the proceeding for the translation is briefly described in the following. Firstly, the
Java optimisation framework Soot is used which generates a call graph and a program
dependency graph for each method. Secondly, Soot’s call graph is traversed and a Neo4J
representation of the call graph is created.

4.3.1 Soot – The Java Optimisation Framework

Soot4 was originally developed as a Java optimisation framework. Meanwhile, it is used for
several purposes, e.g. analysing, instrumenting, optimisation, and visualisation of Java and
Android applications. Soot supports Java up to version 7. It currently does not support
Java 8 because its source code frontend extends JastAdd whose custom bytecode parser
cannot handle Java 8 code completely correct.5

As an intermediate representation, Soot provides i.a. Jimple. Jimple is a typed 3-address
code which was developed for optimisations.4 Statements in 3-address code do not contain
more than three components: one assignment and one operation which might consists of
two components. Hence, nested method calls are dissolved. For instance, the expression
x = y ˝ z is in 3-address form where ˝ represents the operation. After the original source
code is transformed into Jimple, the corresponding call graph is constructed. The call graph
is amended by the information of a points-to analysis, and intra- and inter-procedural
data-flow analysis so it contains all information of an SDG [Vallée-Rai et al. 1999].

4.3.2 From Soot to Neo4J

On the basis of the SDG constructed by Soot, the information is copied into a Neo4J graph
database. Therefore, the call graph is traversed and the nodes and edges are created as
needed for the following analysis. When the SDG is available in the graph database, by
means of Cypher and the Neo4J’s Java API, patterns can be sought and the SDG can be
manipulated.

For the representation of the source code as SDG in Neo4J, several different node and
relationship types are used which are presented in the following.

In Cypher, the types of nodes are represented by labels, where each node can have
multiple labels. The node types of our SDG with the corresponding labels are shown
in Table 4.1. The nodes with the labels Class, Interface, and Method are constructed
from the class, interface and method declarations. However, in combination with the
relationships, they represent the overall class, interface and method and not only the

4Soot: http://sable.github.io/soot/
5Soot, Issue 394: https://github.com/Sable/soot/issues/394

21

4. Foundations and Technologies

declaration. The labels Constructor and ConstructorCall are assigned additionally to
Method and MethodCall. The type statement is used for representing the source code inside
methods and constructors. According to the different expressions, different sub types
of statements are distinguished: especially 'assignments', 'method calls', and 'condition'.
The sub types of the statements are not exclusive, but are combined appropriate to the
represented source code statement.

Table 4.1. Cypher label for different node types

Node Type Cypher Label
package Package
class Class
interface Interface
field Field
method Method
constructor Constructor
statement, assignment Assignment
statement, method call MethodCall
statement, constructor call ConstructorCall
statement, condition e.g. if Condition
return statement ReturnStmt
throw statement ThrowStmt

The nodes are connected by edges representing their relationships. Table 4.2 shows the
different types of relationships and their use.

The aggregated relationships on method declaration level optimise and simplify the
pattern matching. The AGGREGATED_CALLs represent the method calls inside the method
whereas the AGGREGATED_FIELD_WRITEs and AGGREGATED_FIELD_READs represent data flow.

For performance and optimisation reasons, only the classes and methods of the regarded
application are analysed. The method definitions of the jdk and other external libraries
are included in the SDG, but without statements. As a consequence, the methods do not
indicate any aggregated calls and aggregated data flows. For avoiding errors due to missing
information, all classes and method declarations are marked with the property 'origin'.
For the analysed nodes of the application, the property 'origin=’APP’' is added, whereas
the jdk and other not analysed external libraries are marked e.g. 'origin=’jdk’'.

The basic idea of our approach is to find specified patterns in the SDG representation of
Neo4J and then transform the graph to its parallelised version. It is planned that after the
SDG is transformed, Java source code is generated again which includes the adjustments
made to the SDG. Therefore, the translation process is inverse: Firstly, the SDG has to be
transformed back to the Soot graph. Secondly, Soot is used for generating Java source code
from the call graph. The generation of Java source code from an SDG in Neo4J is not part of
this thesis.

22

4.3. From Java to Neo4J

Table 4.2. Relationship types and their utilisation

Relationship Type Utilisation
CONTAINS_TYPE packages contain classes
CONTAINS_METHOD classes contain methods
CONTAINS_CONSTRUCTOR classes contain constructors
CONTAINS_FIELD classes contain fields
EXTENDS connects super class and sub class
IMPLEMENTS connects interface and implementing class
CONTROL_ FLOW represents the control flow

connects statements
connects the method declarations with its first statement

DATA_ FLOW represents the data flow
shows data dependencies

CALLS represents the static call to a method or constructor
CALLER_ OF represents that subsequently from the assigned object, a method is called

always in conjunction with data flow
AGGREGATED_ FIELD_ WRITE represents writing field access on method declaration level
AGGREGATED_ FIELD_ READ represents reading field access on method declaration level
AGGREGATED_ CALLS represents static calls on method declaration level
THROWS represents throw exception expression on method declaration level

23

4. Foundations and Technologies

4.4 Characteristics of Parallel Programs

The following section deals with typical challenges in parallel programming. Section 4.4.1
deals with data sharing. Then, Section 4.4.2 continues with race conditions which result
from incorrect synchronisation of shared data.

4.4.1 Data Sharing

In parallel programs, often data needs to be shared between concurrent processes. Shared
data can be categorised in three categories: read-only, effective-local and read-write.

When data is read-only, its status is not changed, so we do not need any access protection.
Also, when the data is effectively-local, no access protection is needed because on each data
chunk is just operated by one task. For instance, the access to fields of an array can be
split, so that the access to the overall array is shared, but the separate fields are accessed
by only one process. The main challenge in shared data is read-write data – data which is
read and modified by different tasks. For guaranteeing that shared read-write data is valid
and available, a huge synchronisation overhead might be necessary [Mattson et al. 2004,
p.46f][Ortega-Arjona 2010, p.79].

Mattson et al. [2004] present two common read-write data problems which are referred
to as ’reduction’ and ’multiple-read/single-write’.

The reduction scenario, also mentioned as accumulation, describes patterns where the
entries of a data structure are accumulated to a single value. In functional programming,
this procedure is called ’map’. Common reductive functions are sum, minimum or maximum,
however every associative function is possible. For solving a reduction concurrently, the
calculation is decomposed to separate parts of the data structure. For each part of the
calculation, an intermediate result is computed. The combination of the intermediate
results yields the final result [Mattson et al. 2004, p.46] [McCool et al. 2012, Sec.5.1].
Multiple-read/single-write accesses mean that shared data is written by only one task,
whereas other tasks read the initial value. In this case, the shared data should be copied.
One copy is accessed by the read-only tasks providing the initial value, the other copy is
exclusively for the read-write task. The copy containing the initial value can be discarded
after use [Mattson et al. 2004, p.46].

In this thesis, no pattern is formalised which fits the multiple-read/single-write criteria,
however in future work, their potential should be exhausted. Since we start from a
sequential program, the behaviour must not change, therefore the order of the reads and
writes must not change either. So, a parallelisation with the above explained multiplication
of the shared data is possible when in the sequential program part, only the last task is
modifying the shared data.

In most cases and in this thesis, we can only parallelise patterns without read-write
dependencies. Filtering read-write dependencies is demonstrated in the pattern matching
phase in Section 6.2.

24

4.4. Characteristics of Parallel Programs

4.4.2 Race Conditions

In concurrent programs, time-dependent failures can occur if the accesses to shared data
is not properly synchronized. These failures are called 'race conditions'. Andrews [2000,
p.653] describes race conditions as a 'situation in a shared-variable concurrent program
in which one process writes a variable that a second process reads, but the first process
continues execution – namely races ahead – and changes the variable again before the
second process sees the result of the first change. This usually leads to an incorrectly
synchronized program.' Netzer and Miller distinguish two different types of race conditions:
General races and data races. 'General races cause no-ndeterministic execution and are
failures in programs intended to be deterministic. Data races cause non-atomic execution of
critical sections and are failures in (non-deterministic) programs that access and update
shared data in critical sections.' [Netzer and Miller 1992] Critical sections are blocks of
source code which need to execute as if they were atomic. Thus, only one process at a
time shall execute the critical sections and modify concerned shared data. So, the final
state of variables in the critical sections should only depend upon their initial state and the
operations by that section's source code.

As data races concern the execution of critical sections, they are local properties of the
execution. In contrast, general races are global properties of the program. Detecting general
races requires analysing all possible execution orderings of the program because they
occur if the order of the concurrent tasks has influence to the result. In parallel programs
normally the scheduling happens automatically. Since the scheduling varies, different
behaviour of non-deterministic programs can be observed – even on the same hardware
and same data. Hence, general races cannot easily be reproduced, so detecting them by
debugging is difficult. According to Netzer and Miller, the detection of general races is
more difficult than the detection of data races [Netzer and Miller 1992].

Race conditions are failures and have to be avoided. As race conditions appear when
shared data access is not correctly synchronised, candidate patterns with data dependencies
require special attendance [Mattson et al. 2004, 17f]. The different types of shared data
were presented in Section 4.4.1. In this thesis, we focus on candidate patterns without
read/write dependencies.

25

Chapter 5

Candidate Pattern Mining

Our parallelisation approach is based on pattern matching on an SDG. Therefore, potential
patterns have to be identified, i.e. mined. In this chapter, the mining of candidate patterns
is described. We start with the theoretical background of finding concurrency in source
code which also includes dependency analysis. Then, we present the three patterns which
we choose as prototypes.

5.1 Finding Concurrency

For designing a parallel program, its problems have to be decomposed into tasks. Mattson
et al. [2004] define: 'A task is a sequence of instructions that operate together as a group.
This group corresponds to some logical part of an algorithm or program.' [Mattson et al.
2004, p.16] Mattson et al. [2004] distinguish between task and data decomposition. The
differentiation represents two different points of view which they call dimensions. 'The
task-decomposition dimension views the problem as a stream of instructions that can be
broken into sequences called tasks that can execute simultaneously.' In constrast, 'The
data-decomposition dimension focuses on the data required by the tasks and how it can be
decomposed into distinct chunks.' [Mattson et al. 2004, p.26] For both decompositions, only
a large independence between the separate tasks and data chunks will result in efficient
computations. Communication and locking overhead would result in a slowdown other-
wise [Mattson et al. 2004, p.26]. For best benefiting of concurrency, the different tasks need
to be evenly distributed between the Processing Elements (PEs) like processors [Mattson
et al. 2004, p.30].

Mattson et al. [2004, p.30f] present three different locations for identifying parallelisable
tasks:

• Tasks might correspond to a method call which is sometimes called functional decomposi-
tion.

• The single iterations of a loop might be suitable tasks if the iterations are independent
and numerous.

• Tasks can also be identified in data-driven decompositions. Updates on large data
structures can be split so that distinct tasks update different chunks of the data structure.

27

5. Candidate Pattern Mining

Common examples are computations on different segments of an array and the partition
of recursive data structures like large trees [Mattson et al. 2004, p.35].

For this thesis, we choose one pattern for each of the mentioned locations as prototypes.
They are presented in in Section 5.2.

A dependency analysis examines how data is shared among different tasks which is
important for managing the access to shared data correctly [Mattson et al. 2004, p.45]. If
data sharing is implemented incorrectly, a task may return wrong results because it accesses
invalid data due to race conditions. Tasks without data dependencies can be executed
concurrently. As described in Section 4.4.1, shared data between tasks is also unproblematic
when it is read-only or effective-local. Hence, one possibility for avoiding race conditions is
to divide shared data into separate chunks that can be updated independently. Each chunk
is then delegated to a task which executes the update. Thus, these data chunks, associated
to tasks, are effective-local. They base upon the data decomposition pattern.

28

5.2. Pairs of Candidate and Parallelisation Patterns

5.2 Pairs of Candidate and Parallelisation Patterns

For detecting patterns which can be parallelised, they have to be identified. In this work,
sequential patterns which can become parallelised are entitled candidate patterns. Their
parallelised version is called parallelisation pattern.

The more patterns are identified and their transformation formalised, the more potential
concurrency can be found and established in an application. However, we concentrate
on three different prototypes for demonstrating the functionality of our approach. We
choose patterns which are commonly used in sequential programs so that we could expect
a measurable performance improvement. The evaluation which determines the occurrences
of the chosen candidate patterns in existing Java applications is documented in Chapter 8.

According to Mattson et al. [2004]’s advice, we find parallelisable tasks in three locations
(see Section 5.1). We choose one pattern for each location which are presented in the
following subsections.

5.2.1 Independent Successive Method Calls

Mattson et al. [2004, p.30f] mention that parallelisable tasks might correspond to a method
call. Clean source code is organised into various methods, whereby some methods may
have a long execution time. Therefore, our first prototype aims at parallelising successive,
time consuming method calls. This pattern is also referred to as asynchronous method calls
[Molitorisz et al. 2012]. As an example, Listing 5.1 shows in lines 4 and 5 two successive
methods. The methods establish a connection to different servers. These methods are
meant to have a long runtime and to be independent of each other so that the order
of the execution does not matter. Instead of waiting for the database connection before
establishing the event server connection, both can be executed concurrently.

For this candidate pattern, we desire to handle all sorts of method calls: static and
non-static, with access level modifiers from private to public, as well as return-values and
various parameters. The feasibility of the parallelisation of the different method types will
be exploited in this thesis.

1 IDataServerConnection dataSC = new DataServerConnectionImpl () ;
2 IEventServerConnection eventSC = new EventServerConnectionImpl () ;
3

4 S t r i n g hostname = dataSC . connect (1 0 0 0 0 0) ;
5 eventSC . connect () ;
6

7 System . out . p r i n t l n (" Hello " + hostname) ;

Listing 5.1. Example source code representing a match for the candidate pattern 'Independent
Successive Method Calls'

29

5. Candidate Pattern Mining

5.2.2 Independent For-Each Loop

As a second prototype, we choose a simple loop pattern without read-write dependencies.
It is a for loop which does neither manipulates previous objects nor stores values for later
utilisation. Listing 5.2 shows a possible implementation. We assume that the write access
to the database does not concern the objects in the Java API. Also we assume, that the
connected database enables multi-tasking. For simplifying the pattern, we do not allow
interruptions of the loop, thus continue, break or return.

1 for (ImportantObject o : l i s t) {
2 double r e s u l t = calculateSomethingForQuiteAWhile (o) ;
3 writeResul t InDatabase (r e s u l t) ;
4 }

Listing 5.2. Example source code for the candidate pattern 'Independent For-Each Loop'

5.2.3 Reduction of an Array

Our last prototype also contains a loop, however this one represents the reduction of an
array [McCool et al. 2012, Sec.5.1]. This loop is not as independent as the example in
Listing 5.2 since a value is accumulated in each iteration. As an example, the summation
of an array is shown in Listing 5.3. The 'reduction variable' sum is initialised in line 2. Line
3 to 5 form the loop which iterates over the array. In the loop body in line 4, the current
position of the array is added to sum.

1 i n t [] array = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } ;
2 i n t sum = 0 ;
3 for (i n t i = 0 ; i < array . length ; i ++) {
4 sum = sum + array [i] ;
5 }
6 System . out . p r i n t l n ("Sum = " + sum) ;

Listing 5.3. Example source code for candidate pattern 'Accumulation of an Array'

30

Chapter 6

Candidate Pattern Matching

In the phase of pattern matching, candidate patterns are identified in the SDG. For detecting
matching patterns in a Neo4J database, the patterns have to be formulated as CMQ (see
Section 4.2.1). As an intermediate step, it is recommended to visualise the pattern as an
SDG like it is stored in the Neo4J database. It is important that the results of this candidate
pattern matching step are correct, otherwise the following automatic transformation will
produce an SDG representing a wrong version of the original program. The following
section deals with the term correctness in context of pattern matching. In Section 6.2,
the representation of dependencies in the SDG is presented. Also, preparative queries
are explained which are executed prior to the candidate pattern matching. The concrete
formalisation for the three chosen prototype patterns is done in Section 6.3.

6.1 Correct Matching

In computer science, a program is correct if and only if the specifications are com-
plied [Ghezzi et al. 2003]. For our approach, correctness means that the parallel version has
the same semantics as the originally sequential program. The candidate pattern matching
is the key to our transformation approach. In case, patterns are refused even if they fit the
candidate pattern, possible performance improvements are missed. The other way round
is even worse: If a pattern is matched even if it is not a suitable candidate pattern, then
the transformation will introduce erroneous code. In binary classifications, the terms 'false
positives' and 'false negatives' describe these kinds of errors. False positives are errors which
wrongly report the presence of a condition – in medical testing for example a disease. On
the contrary, false negatives are errors which indicate the absence of a condition although it
is present.

To avoid false positives and negatives, the candidate pattern matching is separated
into two parts. The first part matches the structure which has to be present. It has to
contain the mandatory combination of statements and control flows. The second part adds
restrictions especially concerning data flows for filtering the correct candidate patterns. The
more restrictive the first part is formulated, the second part requires less attention. This is
shown on the basis of the prototype pattern 'Accumulation of an Array' in Section 6.3.3. In
contrast, the prototype pattern 'Independent For-Each Loop' includes a variety of possible
source code, so more restrictions or categorisations are necessary (see Section 6.3.2). It

31

6. Candidate Pattern Matching

is important to identify and implement all possible restrictions, otherwise false positives
continue in the transformation process.

6.2 Representation of Dependencies in the SDG

In a graph database, typically dependencies are represented as edges between related nodes.
We have already described the structure of the SDG in Section 4.3. The statements inside
a method are connected by control flow edges which show the order of the individual
statements. For branches, like if-constructs or loops, the control flow edges can contain
the property 'case' with possible values 'true' and 'false' i.a.. Additionally, static calls edges
connect statements representing method calls to the called method. The relationships of
type call indicate that the control flow of the program leads to the related method. In
case, the method is called from the instance of an object, a 'caller of' relation leads from
the instance variable to the method call statement. The caller of relations occur always
with a data flow because data flow edges represent data dependencies. Data flows can
appear between statements and fields or between two statements. When a data flow edge
leads from a statement to a field, it is a writing access to the field. When a data flow edge
leads in the other direction, from a field to a statement, it is a reading access to the field
(see Figure 6.1). When a data flow edge connects two statements, it follows the order
of the control flow. It is a writing access, if the statement is of type assignment for the
concerning variable. If the statement is of the type method call, it depends on the called
method, whether the concerned variable is accessed only for reading or also for writing.

For simplifying the traversal trough the graph to identify data dependencies, additional
relationships are included on method definition level. This means, that all static calls and
data flow edges that concern fields or the input parameters of the method are represented
by aggregated calls and aggregated field write and read relationships.

6.2.1 Representation of Overridden Methods

It has to be considered that methods which are overridden by other methods do not
show any or all dependencies. For instance, the methods of interfaces do not contain
any statements, thus the missing of outgoing dependencies could be misunderstood as a
read-only method. This would introduce mistakes into the parallelisation process. Also
methods of classes which are extended by other classes can be overridden.

Therefore, we introduce a new property for method declarations which we call 'overridden'.
All Cypher functions and expressions are documented in Neo4J’s manual.1 For this thesis,
we use the Neo4J version 2.3.1. Listing 6.1 shows the Cypher query which matches all
method declarations in the SDG which are overridden by another method.

In line 1 and 2, the pattern is described which we search: a method whose class is
extended by a subclass and which also contains a method, or a method which belongs to

1The Neo4J Manual: http://neo4j.com/docs/stable/

32

6.2. Representation of Dependencies in the SDG

Clazz

Class / Method

Statement

Control flow

Data dependency

Hierarchy

Legend

main

Class

Method

attribute1 = ...

Assignment

...

…

String:
attribute1

Field

…

Clazz

main

Class

Method

calc(attribute1)

MethodCall

...

…

String:
attribute1

Field

…

calc

Method

…

(a) reading field access (b) writing field access

Figure 6.1. Data flows representing write or read access

1 MATCH (m: Method) <´[:CONTAINS_METHOD]´ (c l a s s O r I n t e r f a c e)
2 <´[:EXTENDS|IMPLEMENTS* 1 . .] ´ (s u b c l a s s) ´[:CONTAINS_METHOD]´> (method : Method)
3 WHERE m. displayname = method . displayname
4 SET m. overridden=true

Listing 6.1. Cypher Query which marks overridden method declarations

an interface which is implemented by a class. As we do not name labels for the classes or
interfaces, we match both possibilites. With the relationship <-[:EXTENDS|IMPLEMENTS*1..]-,
we cover the whole hierarchy because the pipe between the both relationships types indi-
cates that both are matched. The asterisk means that the length of this relationship path is
indeterminate whereas the 1.. requires at least one edge. Otherwise, we would include
that m = method. In line 3, we regard the methods and ensure that they have the same name
and signature. In our representation of the SDG this can be done by comparing the property
'displayname'. Finally, the property 'overridden=true' is set for all matched methods that
are overridden. In the following queries, we have to ensure that the called method is either
not overridden or that all methods that override the method pass the criteria.

33

6. Candidate Pattern Matching

6.2.2 Representation of Read-Only Methods

For optimising and simplifying the CMQ, we also add the property 'isReadOnly=true' to
methods without external writing dependencies. So neither fields, nor the input parameters
are modified inside the method. Methods that only need reading access to variables are
perfect candidates for parallelisation.
For complete SDGs where also the jdk and libraries are analysed, the Cypher query would
be as simple as shown in Listing 6.2:

1 MATCH (m: Method)
2 WHERE
3 NOT (e x i s t s (m. overridden) OR m. overridden <> true)
4 AND NOT (m) ´[:AGGREGATED_FIELD_WRITE|AGGREGATED_CALLS*]´> (: F i e l d)
5 WITH m
6 SET m. isReadOnly=true

Listing 6.2. Cypher Query which marks read-only method declarations for completely analysed SDGs

In line 1, we exclusively regard nodes of the type Method. Then, we restrict that we only
match methods that are not overridden. As we only set 'overridden=true', but not the
contrary, we have to check the existence of the property 'overridden' first because non-
existing properties are NULL in Cypher and are not equal to anything. Line 4 contains the
essential part: NOT (m) -[:AGGREGATED_FIELD_WRITE|AGGREGATED_CALLS*]-> (:Field). With
the pipe, several possible relationship types are regarded. The asterisk indicates that the
number of following relationships is arbitrary. Hence, this expression excludes all method
declarations which are connected with a field by a sequence of aggregated field writes
and aggregated calls. This query shows how simple recursive patterns can be described in
Cypher.

Nevertheless, as presented in Section 4.3.2, we work on an SDG where the classes
and methods of external libraries are not analysed. As a consequence, only the method
declarations are represented but without statements or aggregated calls and field accesses.
So, we have to exclude the methods from external libraries because they misleadingly
appear to be read-only. This is done by regarding the property 'origin'. If 'origin=’APP’'
is set, the class or method belongs to the application and is therefore analysed by Soot.

Listing 6.3 and Listing 6.4 show the Cypher queries for identifying read-only methods.

1 MATCH (m: Method)
2 WHERE
3 m. o r i g i n = ’APP’
4 AND (NOT e x i s t s (m. overridden) OR m. overridden <> true)
5 AND NOT (m) ´[:AGGREGATED_FIELD_WRITE]´> (: Field)
6 AND (NOT (m) ´[:AGGREGATED_CALLS]´> (: Method))
7 WITH m
8 SET m. isReadOnly=true

Listing 6.3. Cypher Query which marks direct read-only method declarations

34

6.2. Representation of Dependencies in the SDG

The first query is similar to the previous query, but we only regard the method itself and
not recursively all called methods as well. As a consequence, we can only certainly declare
methods as read-only if they do not have field write dependencies (line 4) and no outgoing
method call (line 5).

In the second query, we populate the property to methods that do not write to fields
and that call only methods which are marked as read-only. It has to be executed several
times until no new properties are set.

1 MATCH (mRO: Method) <´[:AGGREGATED_CALLS]´ (m: Method)
2 WHERE
3 mRO. isReadOnly=true
4 AND NOT EXISTS (m. isReadOnly)
5 AND (NOT EXISTS (m. overridden) OR m. overridden <> true)
6 AND NOT (m) ´[:AGGREGATED_FIELD_WRITE]´> (: F i e l d)
7 AND (a l l (path IN ((m) ´[:AGGREGATED_CALLS]´> (: Method))
8 WHERE a l l (method IN nodes (path)
9 WHERE m = method

10 OR method . isReadOnly=true)))
11 WITH m
12 SET m. isReadOnly=true

Listing 6.4. Cypher Query which marks indirect read-only method declarations

In line 1, we match a method mRO which is called by another method m. In line 3, we
specify that mRO contains the property 'isReadOnly=true'.

In line 4, we check that the regarded method is not yet marked as 'isReadOnly=true'.
As we only inserted the positive case and not 'isReadOnly=false', we have to use the
function 'EXISTS' because a missing property returns null which is not comparable. In
line 5, we ensure that m is not overridden. Line 6 excludes methods which write to a field.
Within the lines 7 to 10, it is ensured that all outgoing method calls from method m lead to
a method which is marked as read-only. The collection function 'all' returns true if all
elements in the collection satisfy the defined constraints. It is formalised as follows: all(n
IN collection WHERE ...). In line 7, we define the collection of paths which lead from
method m to the called methods. Thus, each path contains method m, the called method
and the 'CALLS'-relationship between both methods. As constraint, another 'all' function
is defined. With the function 'nodes', the nodes of a path are extracted as a collection. In
this case, it is always method m and the called method. We accept m as it is, but the called
method has to be read-only.

6.2.3 Representation of Parallelisable Methods

For this thesis, we introduced the property ’isParallelisable’ for indicating that a not anal-
ysed method of the jdk or other external library is parallelisable. We also can manually
mark, for example, the method Logger.info(..) as parallelisable because mostly the order
does not matter to the result.

35

6. Candidate Pattern Matching

For spreading the property 'isParallelisable=true', we slightly adjust the previous
query, so that we match all method declarations which do not write a field and exclusively
call read-only or parallelisable methods. In this case, they are marked as parallelisable as
well.

1 MATCH (mRO: Method) <´[:AGGREGATED_CALLS]´ (m: Method)
2 WHERE
3 (mRO. isReadOnly=true OR mRO. i s P a r a l l e l i s a b l e =true)
4 AND NOT EXISTS (m. isReadOnly)
5 AND NOT EXISTS (m. i s P a r a l l e l i s a b l e)
6 AND (NOT EXISTS (m. overridden) OR m. overridden <> true)
7 AND NOT (m) ´[:AGGREGATED_FIELD_WRITE]´> (: F i e l d)
8 AND (a l l (path IN ((m) ´[:AGGREGATED_CALLS]´> (: Method))
9 WHERE a l l (method IN nodes (path)

10 WHERE m = method
11 OR method . isReadOnly=true
12 OR method . i s P a r a l l e l i s a b l e =true)))
13 WITH m
14 SET m. i s P a r a l l e l i s a b l e =true

When the parallelisable methods are declared for all non-overridden methods, we can
also analyse overridden ones. It has to be ensured that each implementation of the method
is read-only or parallelisable, so also the overridden method is certainly parallelisable.
Listing 6.5 shows the according Cypher query. As the previous queries, it has to be
executed several times because in each iteration, new methods are declared parallelisable.
It is also possible to describe the query differently, so that it recursively checks the methods.
However, on large graphs our queries perform better.

1 MATCH (m: Method) <´[:CONTAINS_METHOD]´
2 () <´[:IMPLEMENTS|EXTENDS*]´

3 (: Class) ´[:CONTAINS_METHOD]´>
4 (impl : Method)
5 WHERE
6 m. overridden = true
7 AND m. displayname = impl . displayname
8 AND NOT EXISTS (m. isReadOnly)
9 AND NOT EXISTS (m. i s P a r a l l e l i s a b l e)

10 AND NOT (m) ´[:AGGREGATED_FIELD_WRITE]´> (: F i e l d)
11 AND (a l l (path IN ((m) ´[:AGGREGATED_CALLS]´> (: Method))
12 WHERE a l l (method IN nodes (path)
13 WHERE m = method
14 OR method . isReadOnly=true
15 OR method . i s P a r a l l e l i s a b l e =true)))
16 WITH m, c o l l e c t (impl) AS impls
17 WHERE
18 a l l (i IN impls WHERE i . i s P a r a l l e l i s a b l e =true OR
19 i . isReadOnly=true)
20 SET m. i s P a r a l l e l i s a b l e =true

Listing 6.5. Cypher Query which marks overridden parallelisable method declarations

36

6.3. Formalisation of Candidate Patterns

In the scope of this thesis, we do not need the differentiation between 'isReadOnly'

and 'isParallelisable'. Therefore, we set the attribute 'isParallelisable=true' for all
methods which are read-only:

1 MATCH (m: Method) WHERE m. isReadOnly= true WITH m SET m. i s P a r a l l e l i s a b l e =true

So, in the following we do not need to look at both attributes.

6.3 Formalisation of Candidate Patterns

The formalisation of candidate patterns happens in two stages which is shown in Figure 6.2:
Firstly, a matching example of source code is represented as an SDG. Secondly, the graph
needs to be translated into a CMQ so that this candidate patterns can be searched and found
in the Neo4J database with the SDG of a Java program.

SOURCE
CODE

 MATCH (node1)
 -[:related_to]->
 (node2)
 WHERE ...
 RETURN node1, node2

Cypher Match Query

formalise
patternillustrate

SDG

Figure 6.2. Formalisation of candidate patterns

For creating the SDG of the pattern analogously to the representation in Neo4J, the
source code has to be in three-address-form. Then, the single statements are represented
as single nodes, connected by control flows. Finally, the data flows and method calls are
added.

With the help of the SDG of the pattern, the CMQ can be build. The first part of the CMQ

typically formalises the pattern on the basis of the control flow. It needs to be abstract
enough to match more than the example SDG, but only relevant ones. The second part
of the CMQ typically formalises the restrictions, for example absent data flows or that the
value of the property 'isParallelisable' may not be 'false'.

In the following, the formalisation of the three prototype candidate patterns is demon-
strated.

37

6. Candidate Pattern Matching

6.3.1 Independent Successive Method Calls

According to the example source code in Listing 5.1, an abstract SDG representing the
candidate pattern is created. It is presented in Figure 6.3.

??

MethodCall

??

MethodCall/
Assignment

avDur > 200ms

avDur > 200ms

...

...

...

??

Method

??

Method

calls

calls

Figure 6.3. SDG of the source code from Listing 5.1

The essential part of this candidate pattern is that two or more method calls succeed
each other. In Cypher, this is formulated by the following:

1 MATCH (n1 : MethodCall) ´[:CONTROL_FLOW*1. .5] ´ > (n2 : MethodCall)
2 RETURN c o l l e c t (DISTINCT id (n1))

An asterisk (˚) inside a relationship represents a path of that type of relationship. For
performance reasons, it is recommended to define a maximum bound for the path length.
For various reasons we choose 5 as maximum bound. Since the SDG represents source
code in three-address-form, some intermediate statements might be inserted. Also, often
methods are called from the instance of an object, so the object has to be instantiated.
Therefore, only allowing directly succeeding method calls is very restrictive and would
miss parallelisation potentials. However, all statements between the method calls have
to be checked such that they do not require the results from the preceding method call.
Otherwise, the parallelisation has no effect. The more statements are between the methods,
the more analysing effort is necessary and the less chances are that the statements are

38

6.3. Formalisation of Candidate Patterns

independent of the method calls. As a consequence, we chose 5 as maximum bound and
1 as a minimum bound because 0 would mean that the nodes n1 and n2 are the same. In
Cypher, the variable length of a path is described directly after the asterisk.

In line 2, the return statement is shown which we use for each CMQ. The function id
returns the technical id of the node in the Neo4J database. The function collect is used to
concat all results in a list. So, the term 'RETURN collect(id(n1))' returns a list of node
ids which are always the first node of the candidate patterns. For this pattern, we expect
duplicates because n1 can be followed by another method call after 1, 2, 3, 4 or 5 control
flow edges. Therefore, we add the keyword 'DISTINCT' which filters duplicates.

For this prototype, if more than two method calls succeed each other, the pattern
matching would match for each combination of two succeeding method calls. However, in
this case it might be possible to parallelise them in a way that they all run concurrently,
instead of forming pairs of two. We decided to keep the matching of this candidate pattern
and check in the transformation step how many succeeding methods can be parallelised
(see Section 7.4).

Restriction: Minimum Average Duration

Since source code consists of a lot of method calls, but most of them execute very fast, not
all of them are suitable for parallelisation. Creating a thread is time-consuming, so the
method call must take a remarkable duration. For this purpose, the SDG must be enriched
by runtime information containing the average duration of the method calls. In future
work, the enrichment should be achieved automatically with the help of dynamic analysis.
At this stage, the runtime information needs to be added manually for the demonstration
of our prototypes. These additional information are added with the help of a new property
which we call quotavgDurationInMs.

So, we extend the CMQ for restricting the minimum average duration of the method call
in milliseconds:

1 MATCH (m1: MethodCall) ´[:CONTROL_FLOW*1. .5] ´ > (m2: MethodCall)
2 AND m1. avgDurationInMs > 200 AND m2. avgDurationInMs > 200
3 RETURN c o l l e c t (DISTINCT id (m1))

The value 200 as a fifth of a second is only a place holder. In our implementation, we
construct the query with the help of a constant which can be configured individually.
Nevertheless, 200 ms might be a reasonable choice, as the performance can be remarkably
improved in many applications. We add the runtime information constraint at first, because
it is very restrictive and hence optimises the query. Therefore, we order the restrictions
according from high and inexpensive filter potential to more complex patterns.

Restriction: No Branches

For this prototype, we exclude branches like if-then-else or switch case. Therefore, we
forbid the property 'case' of the control flows between the two successive method calls:

39

6. Candidate Pattern Matching

1 MATCH (m1: MethodCall) ´[c f s :CONTROL_FLOW*1. .5] ´ > (m2: MethodCall)
2 WHERE m1. avgDurationInMs > 200 AND m2. avgDurationInMs > 200
3 AND none (cf IN c f s WHERE has (cf . case))
4 RETURN c o l l e c t (DISTINCT id (m1))

We name the control flow relationships so that we can reference them. They are represented
as a collection which we can further examine. In line 3, we ensure that none of the control
flows of the collection contains the property 'case'.

Restriction: No Direct Dependency between the Method Calls

Another essential restriction is the independence of the succeeding method calls. The order
of their execution must not matter. So, the succeeding method must not use the preceding
method call's result. Furthermore, none of the method calls may modify a field which
is also used by the other one. For restricting that the succeeding method call is directly
dependent on the preceding one, we exclude a data flow between them. The expression in
line 4 of Listing 6.6 also excludes transitive dependencies because of the asterisk.

1 MATCH (m1: MethodCall) ´[c f s :CONTROL_FLOW*1. .5] ´ > (m2: MethodCall)
2 WHERE m1. avgDurationInMs > 200 AND m2. avgDurationInMs > 200
3 AND none (c f IN c f s WHERE e x i s t s (c f . case))
4 AND NOT (m1) ´[:DATA_FLOW*1..5] ´ > (m2)
5 RETURN c o l l e c t (DISTINCT id (m1))

Listing 6.6. Cypher query excluding direct dependencies between method calls

Restriction: Called Methods are Parallelisable

As a next step, we only allow method calls to methods which are marked as
'isParallelisable=true' and we exclude that the method calls assign to the same field if
they are assignments. It is presented in Listing 6.7.

1 MATCH (d1 : Method) <´[:CALLS]´
2 (m1: MethodCall) ´[c f s :CONTROL_FLOW*1. .5] ´ > (m2: MethodCall)
3 ´[:CALLS]´> (d2 : Method)
4 WHERE m1. avgDurationInMs > 200 AND m2. avgDurationInMs > 200
5 AND none (c f IN c f s WHERE e x i s t s (c f . case))
6 AND NOT (m1) ´[:DATA_FLOW*1. .5] ´ > (m2)
7 AND NOT (m1) ´[:DATA_FLOW]´> (: Field) <´[:DATA_FLOW]´ (m2)
8 AND d1 . i s P a r a l l e l i s a b l e =true
9 AND d2 . i s P a r a l l e l i s a b l e =true

10 RETURN c o l l e c t (DISTINCT id (m1))

Listing 6.7. CMQ for candidate pattern 'Independent Successive Method Calls' without writing access

40

6.3. Formalisation of Candidate Patterns

The MATCH part of the query is extended for retrieving information about the called
method declarations which we name d1 and d2. In the restricting WHERE part, it is checked
that the method call statements are no assignments by regarding the labels. In line 8 and 9
is ensured, that both method declarations are marked as 'isParallelisable=true'.

Restriction: No Dependency Between First Statement and Intermediate Ones

It is not only important that the two method calls are independent of each other. Addi-
tionally, the statements between the two method calls may not be dependent on the first
method call. Therefore, we check that no data flow leads from the first method call to one
of the intermediate statements. This can only occur if the first method call is an assignment.
Furthermore, we have to ensure that the first method call and the intermediate methods do
not modify concurrently accessed fields. We simplify this constraint by restricting method
calls. For the intermediate statements, we only allow method calls to constructors and
parallelisable methods.

The following CMQ represents the adjustments:

1 MATCH (d1 : Method) <´[:CALLS]´
2 (m1: MethodCall) ´[c f s :CONTROL_FLOW*1. .5] ´ > (m2: MethodCall)
3 ´[:CALLS]´> (d2 : Method)
4 WHERE m1. avgDurationInMs > 200 AND m2. avgDurationInMs > 200
5 WITH m1, m2, d1 , d2 , c f s
6 MATCH path = (m1) ´[:CONTROL_FLOW*1..5] ´ > (m2)
7 WITH m1, m2, d1 , d2 , cfs , f i l t e r (intermediateNode IN nodes (path)
8 WHERE intermediateNode <> m1
9 AND intermediateNode <> m2)

10 AS intermediateNodes
11 WHERE
12 NOT (m1) ´[:DATA_FLOW*1. .5] ´ > (m2)
13 AND none (c f IN c f s WHERE e x i s t s (c f . case))
14 AND NOT (m1) ´[:DATA_FLOW]´> (: F i e l d) <´[:DATA_FLOW]´ (m2)
15 AND d1 . i s P a r a l l e l i s a b l e =true
16 AND d2 . i s P a r a l l e l i s a b l e =true
17 AND a l l (node IN intermediateNodes
18 WHERE
19 NOT(m1) ´[:DATA_FLOW]´> (node)
20 AND (NOT node : MethodCall
21 OR a l l (p a t h c a l l IN ((node) ´[:CALLS]´> ())
22 WHERE a l l (c a l l IN r e l s (p a t h c a l l)
23 WHERE endNode (c a l l) . i s P a r a l l e l i s a b l e =true
24 OR endNode (c a l l) : Constructor))))
25 RETURN c o l l e c t (DISTINCT id (m1))

In line 6, we name the path from one method call to the other path for later referencing.
In lines 7 to 10, we extract the nodes from the path by means of the function nodes(path).
Then, we filter the intermediate nodes between the two method calls by excluding the
method calls and name this collection of nodes intermediateNodes. In lines 17 to 24, we
traverse the intermediateNodes and check the mentioned constraints with the help of the

41

6. Candidate Pattern Matching

collection function all: We ensure that the intermediate nodes do not have an incoming
data flow from the first method call (line 19). Then, we exclude method calls except they
comply to the following nested all functions. We define a collection of paths containing
the current node, a call relation and the end node of that relation in line 21. As each
node can only call one method due to the three-address-form presented in Section 4.3, the
collection will have 0 or 1 elements depending on the current intermediate node. In line 22,
we extract the relationships from the path which is the single call relation. In line 23 and
24, we check that the called method – hence the end node of the calls relation – is either a
constructor or parallelisable.

As the new query is more resource intensive, we decide to put the runtime restriction
at the beginning for optimisation.

This CMQ is correct as it only returns parallelisable method calls. However, it is very
restrictive because it only allows methods which are marked as parallelisable.

Extension: No Modification of Concurrently Accessed Fields

We can formulate the CMQ less restrictive when we allow more than the method calls
to methods which are marked as parallelisable. It is sufficient when the fields which
are accessed by both method calls are not modified. All other fields can be changed.
For information about the dependencies of a method, the relations AGGREGATED_CALLS,
AGGREGATED_FIELD_WRITE and AGGREGATED_FIELD_READ from the method declaration nodes
are regarded. However, when we have methods which are not necessarily marked as
parallelisable, we have again the problem with the not analysed methods from the jdk and
external libraries and with overridden methods. As presented in Section 6.2, not analysed
methods might appear as read-only because they do not have outgoing relationships,
whereas for overridden methods all overwriting methods have to satisfy the constrains.

In Listing 6.8 we present the changes of the CMQ. Instead of 'AND d1.isParallelisable=true

AND d2.isParallelisable=true', we check that d1 and d2 are either not parallelisable or
that the indefinite chain of relationships AGGREGATED_CALLS and AGGREGATED_FIELD_WRITE do
not modify a field which has a direct connection to the other method call. The direct
connection would be a data flow which does not matter if it is reading or writing because
the chain already represents a writing relationship. We exclude called methods which
are overridden because they need special attendance: for the overriding methods the
concurrent access must be detected.

In the following, the handling of overridden methods is explained. The complete CMQ

is attached in the appendix. We handle each combination of overridden and not overridden
methods separately. Hence, we formulate one query for the case that none of the method
calls target overridden methods, one query which represents that the first called method
is overridden and the second one is not, one query which represents that the first called
method is not overridden but the second one, and one for the case that both method calls
are overridden.

For overridden methods, the MATCH part of the query has to be extended because we need

42

6.3. Formalisation of Candidate Patterns

25 . . .
26 AND NOT d1 . overridden=true AND NOT d2 . overridden=true
27 AND (d1 . i s P a r a l l e l i s a b l e =true
28 OR NOT (d1) ´[:AGGREGATED_FIELD_WRITE|AGGREGATED_CALLS*]´> (: F i e l d) ´́ (d2))
29 AND (d2 . i s P a r a l l e l i s a b l e =true
30 OR NOT (d2) ´[:AGGREGATED_FIELD_WRITE|AGGREGATED_CALLS*]´> (: F i e l d) ´́ (d1))
31 RETURN c o l l e c t (DISTINCT m1)

Listing 6.8. CMQ for candidate pattern 'Independent Successive Method Calls' without overridden
methods

to refer to the overwriting methods. The following listing extends the pattern matching.
As methods which are not overridden do not match the pattern, we need to seperate the
query:

1 (m: MethodCall) ´[:CALLS]´> (d : Method) <´[:CONTAINS_METHOD]´ ()
2 <´[:IMPLEMENTS|EXTENDS*]´ (: Class) ´[:CONTAINS_METHOD]´> (impl : Method)
3 . . .
4 WHERE d . displayname = impl . displayname

The next listing demonstrates how all implementations of the overridden methods are
checked:

1 . . . WITH m1, d1 , c o l l e c t (impl) AS impls
2 a l l (i IN impls WHERE
3 i . i s P a r a l l e l i s a b l e =true OR
4 NOT (i) ´[:AGGREGATED_FIELD_WRITE|AGGREGATED_CALLS*]´> (: F i e l d) ´́ (d1))

Lastly, we present the check when both called methods are overridden:

1 a l l (i 1 IN impls1
2 WHERE i 1 . i s P a r a l l e l i s a b l e =true
3 OR (a l l (i 2 IN impls2
4 WHERE i 2 . i s P a r a l l e l i s a b l e =true
5 OR NOT (i 2) ´[:AGGREGATED_FIELD_WRITE|AGGREGATED_CALLS*]
6 >́ (: F i e l d) ´́ (i 1))))

So, we were able to solve the challenge with overridden methods. However, the
uncertainty because of the not analysed methods from the jdk and other external libraries
remain. It is unlikely, that inside the called methods objects are changed in the jdk which
are used by the other method as well. We suppose a higher risks due to external libraries.
As a consequence, we could further investigate in the transformation step and exhaust the
semi-automatism by asking a human developer.

43

6. Candidate Pattern Matching

6.3.2 Independent For-Each Loop

Statement

Control flow

Data dependency

Legend

i = iterator()

Assignment/
MethodCall

b = hasNext()

Assignment/
MethodCall

b != 0

n = next()

avDur = 50sec

avIterations = 200

Condition

Assignment/
MethodCall

o = (…) n

Assignment

Operation = ´cast´

...

...

...

case
 =

 false

Figure 6.4. SDG of the candidate pattern 'Independent For-Each Loop'

The candidate pattern 'Independent For-Each Loop' aims at for-each loops. As a first
filtering, the candidate pattern’s control flow is regarded which can be read from Figure 6.4.
Listing 6.9 shows the CMQ which matches foreach loops.

In the MATCH part of the query in line 1 to 7, we specify a chain of 6 nodes. We spec-
ify the nodes as good as possible. The method calls to java.util.Iterator.hasNext()

and java.util.Iterator.next() are identified by the fully qualified name (fqn). For opti-
mising the performance, we create an index in the Neo4J graph database by executing
CREATE INDEX ON :MethodCall(fqn). As the fqn identifies the called method declarations,
we do not need to include these in the matching query. The method call to the method
java.util.Iterator.iterator() is described by the return type because the fqn depends

44

6.3. Formalisation of Candidate Patterns

1 MATCH
2 (i t e r a t o r : Assignment : MethodCall { re turntype : ’ j ava . u t i l . I t e r a t o r ’ , displayname : ’ i t e r a t o r () ’ })
3 ´[:CONTROL_FLOW]´> (hasNext : Assignment : MethodCall { fqn : ’ j ava . u t i l . I t e r a t o r . hasNext () ’ })
4 ´[:CONTROL_FLOW]´> (i f : Condition)
5 ´[:CONTROL_FLOW]´> (next : Assignment : MethodCall { fqn : ’ j ava . u t i l . I t e r a t o r . next () ’ })
6 ´[:CONTROL_FLOW]´> (f i r s tS ta tement InLoop : Assignment { operat ion : ’ cas t ’ })
7 ´[:CONTROL_FLOW*]´> (hasNext) ,
8 (next) ´[df :DATA_FLOW]´> (f i r s tS ta tement InLoop)
9 WHERE

10 i t e r a t o r . var = hasNext . c a l l e r
11 AND i t e r a t o r . var = next . c a l l e r
12 AND i f . name= hasNext . var + ’ == 0 ’ OR i f . name= hasNext . var + ’ != 0 ’
13 RETURN c o l l e c t (id (next))

Listing 6.9. CMQ for for-each-loop

on the implementation of Collection, e.g. List or Map. The loop body is represented by
the control flow relationship with variable length in line 7. Line 8 ensures, that there is
a dataflow from the next node to the firstStatementNode. The firstStatementNode always
represents the cast of the Object returned by the next method call. Hence, we do not match
loops on pure objects. This has to be done separately in another candidate pattern. In line
10 to 12, further constraints are formalised to ensure that it is a for-each loop. Therefore,
we compare the variables of the assignments and the caller of the method calls whether
they are the same. For the condition following the hasNext node, we allow var != 0 as well
as var == 0 because the representation in the SDG is dependend on the compiler. We do
not have to match the data flows as well because we already compared the variables and
callers of dependend nodes. As a result, we return the list of ids of the matching next

nodes for the following transformation process.

Restriction: Regard Runtime Information

By concentrating on the control flow relationships, the pattern matching includes all
possible candidate subgraphs, but also those with unwanted data flow or those which
are not worthwile as their execution completes very fast. For excluding the sub graphs
which do not need parallelisation, we add restrictions: we expect in average at least 2 loop
passes and each loop pass has to last longer than a specified duration – in our case 100
milliseconds, but the runtime information thresholds is configurable. These information
are stored in the next node of loops. As the CMQ is resource intensive because of the
undefined length of the loopbody, we change the order of the matching which is shown in
Listing 6.10. First, we filter next nodes which indicate the high parallelisation potential.
Only the belonging loops are further analysed.

45

6. Candidate Pattern Matching

1 MATCH
2 (next : Assignment : MethodCall { fqn : ’ java . u t i l . I t e r a t o r . next () ’ })
3 WHERE
4 next . a v g I t e r a t i o n s > 2 AND next . avgDurationOfIterationInMs > 400
5 WITH next
6 MATCH
7 (i t e r a t o r : Assignment : MethodCall { re turntype : ’ j ava . u t i l . I t e r a t o r ’ , displayname : ’ i t e r a t o r () ’ })
8 ´[:CONTROL_FLOW]´> (hasNext : Assignment : MethodCall { fqn : ’ j ava . u t i l . I t e r a t o r . hasNext () ’ })
9 ´[:CONTROL_FLOW]´> (i f : Condition)

10 ´[:CONTROL_FLOW]´> (next : Assignment : MethodCall { fqn : ’ j ava . u t i l . I t e r a t o r . next () ’ })
11 ´[:CONTROL_FLOW]´> (f i r s tS ta tement InLoop : Assignment { operat ion : ’ cas t ’ })
12 ´[:CONTROL_FLOW*]´> (hasNext) ,
13 (next) ´[df :DATA_FLOW]´> (f i r s tS ta tement InLoop)
14 WHERE
15 i t e r a t o r . var = hasNext . c a l l e r
16 AND i t e r a t o r . var = next . c a l l e r
17 AND i f . name= hasNext . var + ’ == 0 ’ OR i f . name= hasNext . var + ’ != 0 ’
18 RETURN c o l l e c t (id (next))

Listing 6.10. CMQ for foreach-loop with runtime constraints

Restriction: No Interruption of Loops

In the scope of this thesis, we do not allow interruptions of a loop, hence we exclude
continue, break or return statements. We will handle throw exception in the transformation
step (see Section 7.5). The interruption of loops is mostly an optimisation for avoiding
executing unneeded program parts. In a parallelised version, this optimisation would be
less useful because the termination of all threads has to be awaited. Also, the transformation
is more complex with interrupted loops.

For excluding the continue statement, we further examine the data flows which lead to
the hasNext node. It should have exactly two incoming control flows: one starting the loop
and one iterating through the loop. More than two control flows indicate the presence of
the continue statement and has to be excluded. For excluding the break statement, only
one control flow should leave the loop body which is the outgoing control flow from the if
condition leaving the loop body. As the if condition might be 'b == 0' oder 'b != 0', we
cannot follow the true or false case of the control flow. Instead, we follow both control flows
and examine the node which does not belong to the loop body. For excluding the return

statement, we check all nodes of the loop body that do not have the label ReturnStmt.
Listing 6.11 shows the adjusted CMQ.

1 MATCH
2 (next : Assignment : MethodCall { fqn : ’ j ava . u t i l . I t e r a t o r . next () ’ })
3 WHERE
4 next . a v g I t e r a t i o n s > 2 AND next . avgDurationOfIterat ionInMs > 400
5 WITH next
6 MATCH
7 (i t e r a t o r : Assignment : MethodCall { re turntype : ’ j ava . u t i l . I t e r a t o r ’ , displayname : ’ i t e r a t o r () ’ })
8 ´[:CONTROL_FLOW]´> (hasNext : Assignment : MethodCall { fqn : ’ j ava . u t i l . I t e r a t o r . hasNext () ’ })
9 ´[:CONTROL_FLOW]´> (i f : Condition)

10 ´[cf1 :CONTROL_FLOW]´> (next : Assignment : MethodCall { fqn : ’ j ava . u t i l . I t e r a t o r . next () ’ })
11 ´[:CONTROL_FLOW]´> (f i r s tS ta tement InLoop : Assignment { operat ion : ’ cas t ’ }) ,
12 (next) ´[df :DATA_FLOW]´> (f i r s tS ta tement InLoop) ,

46

6.3. Formalisation of Candidate Patterns

13 (i f) ´[c f2 :CONTROL_FLOW]´> (firstStatementAfterLoop) ,
14 loopbody = (firstStatementInLoop) ´[:CONTROL_FLOW*]´> (hasNext)
15 WHERE
16 cf1 . case <> cf2 . case
17 AND i t e r a t o r . var = hasNext . c a l l e r
18 AND i t e r a t o r . var = next . c a l l e r
19 AND i f . name= hasNext . var + ’ == 0 ’ OR i f . name= hasNext . var + ’ != 0 ’
20 AND size ((hasNext) <´[:CONTROL_FLOW]´ ()) = 2
21 AND size ((firstStatementAfterLoop) <´[:CONTROL_FLOW]´ ()) = 1
22 WITH next , nodes (loopbody) AS loopbodynodes
23 WHERE
24 a l l (statement IN loopbodynodes WHERE NOT statement : ReturnStmt)
25 RETURN c o l l e c t (id (next))

Listing 6.11. CMQ for foreach-loop without interruptions

In line 13, we add a MATCH statement which grabs the first statement after the loop. In
line 16, we ensure that it is the first statement after the loop and not again the next node.
This is achieved by determining that the case of the control flows from the if statement
are different – in this case true and false. In line 20 and 21, we use the function size

which returns the size of a collection. In line 20, we estimate the number of incoming
control flows to the hasNext node. When it is 2, it is accepted, otherwise the loop contains a
continue statement. Accordingly, we estimate the number of incoming control flows to the
first statement after the loop in line 21. We only allow one, as we suspect a break statement
inside of the loop.

For excluding the return statement, we have to examine each node of the loop body.
Therefore, we match the loop body separately with the undefinite length of control flows in
line 14. We name the path loopbody so that we can refer to it in the following. In line 22, we
extract the nodes from the path loopbody and call that collection of nodes loopbodynodes.
In the following WHERE clause, we traverse each node of the loopbodynodes and check that
it does not have the label ReturnStmt.

Restriction: No External Write Dependencies

For matching only parallelisable loops, the statements in the loop body may not effect
the following iterations and no changed variables may be read after the loop. Therefore,
assignments may not be made to fields and the data flow of assigned variables may not
leave the loop. Otherwise, we would have to ensure, that in each iteration the same value
is assigned. Also, we do not allow assignments to variables which come from outside the
loop as we would have to ensure that they are not read in advance in the loop.

For method calls, we only allow calls to read-only or parallelisable methods.
Listing 6.12 shows the complete CMQ without dependencies.
In lines 26 to 39, the statements of the loop body are further examined. At first, we

allow the hasNext node and the firstStatement node. They would not pass the constraints
because they have data flow connections to nodes outside of the loop body. However,
that is totally right because the firstStatementNode is dependent on the next node, and
hasNext interacts with the collection for continuing or terminating the loop. For all other

47

6. Candidate Pattern Matching

1 MATCH
2 (next : Assignment : MethodCall { fqn : ’ j ava . u t i l . I t e r a t o r . next () ’ })
3 WHERE
4 next . a v g I t e r a t i o n s > 2 AND next . avgDurationOfIterat ionInMs > 400
5 WITH next
6 MATCH
7 (i t e r a t o r : Assignment : MethodCall { re turntype : ’ j ava . u t i l . I t e r a t o r ’ , displayname : ’ i t e r a t o r () ’ })
8 ´[:CONTROL_FLOW]´> (hasNext : Assignment : MethodCall { fqn : ’ j ava . u t i l . I t e r a t o r . hasNext () ’ })
9 ´[:CONTROL_FLOW]´> (i f : Condition)

10 ´[c f 1 :CONTROL_FLOW]´> (next : Assignment : MethodCall { fqn : ’ j ava . u t i l . I t e r a t o r . next () ’ })
11 ´[:CONTROL_FLOW]´> (f i r s tS ta tement InLoop : Assignment { operat ion : ’ cas t ’ }) ,
12 (next) ´[df :DATA_FLOW]´> (f i r s tS ta tement InLoop) ,
13 (i f) ´[c f 2 :CONTROL_FLOW]´> (f i r s tS ta tementAf terLoop) ,
14 loopbody = (f i r s tS ta tement InLoop) ´[:CONTROL_FLOW*]´> (hasNext)
15 WHERE
16 c f 1 . case <> c f 2 . case
17 AND i t e r a t o r . var = hasNext . c a l l e r
18 AND i t e r a t o r . var = next . c a l l e r
19 AND i f . name= hasNext . var + ’ == 0 ’ OR i f . name= hasNext . var + ’ != 0 ’
20 AND s i z e ((hasNext) <´[:CONTROL_FLOW]´ ()) = 2
21 AND s i z e ((f i r s tS ta tementAf terLoop) <´[:CONTROL_FLOW]´ ()) = 1
22 WITH next , nodes (loopbody) AS loopbodynodes
23 WHERE
24 a l l (s tatement IN loopbodynodes
25 WHERE NOT statement : ReturnStmt
26 AND (statement = hasNext
27 OR statement = firstStatementInLoop
28 OR (NOT statement : Assignment
29 OR a l l (pathdf IN ((statement) ´[:DATA_FLOW]´ ())
30 WHERE a l l (df IN r e l s (pathdf)
31 WHERE (df . var <> statement . var)
32 OR (startnode (df) IN loopbodynodes
33 AND endnode (df) in loopbodynodes)))
34 AND
35 ((NOT statement : MethodCall
36 OR a l l (p a t h c a l l IN ((statement) ´[:CALLS]´> ())
37 WHERE a l l (c a l l IN r e l s (p a t h c a l l)
38 WHERE endNode (c a l l) . i s P a r a l l e l i s a b l e =true
39 OR endNode (c a l l) : Constructor))))))
40 RETURN c o l l e c t (id (next))

Listing 6.12. CMQ for foreach-loop without dependencies

nodes of the loop body, we ensure that they are either no assignment or no method call
or that they do not have any external impact. In line 29 to 33, assignments are handled.
We use a nested all function. In line 29, we collect all data flow paths from the currently
regarded statement node to the neighbouring node. In line 30, we extract the relationships
of the path with the function rels(path). We ensure that the data flows do not concern
the assignment by comparing the data flow’s property 'var' with the statement’s 'var' in
line 31. In case it concerns the assignment, we check in line 32 and 33 that the start node
and the end node of the data flow is inside the loop body. So, we only allow assignments
without external impact.

For analysing the method calls, we need to regard the called method’s declaration node.
Therefore, we also use a nested all function which is in line 35 to 39. In this case, the
collection of paths only contains one path because each method call only calls one method.

48

6.3. Formalisation of Candidate Patterns

1 i n t sum = 0 ;
2 for (i n t i = 0 ; i < array . length ; i ++) {
3 sum = sum + array [i] ;
4 }

Inside the path is exactly one relationship and we regard its end node for ensuring that it
is parallelisable or a constructor.

Extension: Supporting Write Access to Iterating Object

The CMQ in Listing 6.12 matches loops without external writing access. However, it is also
possible to parallelise loops where only the currently iterated object of the collection is
changed. This is mostly the case when the method is called from that object. A possible
extension of the previous CMQ is shown in the following. It is added in the expression about
method calls, that the statement’s caller has to be the variable of the firstStatementInLoop

where the currently iterated object is assigned.

30 ((NOT statement : MethodCall
31 OR a l l (p a t h c a l l IN ((statement) ´[:CALLS]´> ())
32 WHERE a l l (c a l l IN r e l s (p a t h c a l l)
33 WHERE endNode (c a l l) . i s P a r a l l e l i s a b l e =true
34 OR statement . c a l l e r = firstStatementInLoop . var))))))

Nevertheless, even if it is not typical to manipulate other objects than only the caller, it
is possible. Therefore, the called method has to be analysed whether it really only changes
the called object. Also, it is more precise to distinguish between different instantiations of
an object. However, the SDG represents no instances. As a consequence, also the parameters
of the method have to be regarded as well as their fields, and the fields of the fields and so
on. At this stage, we recommend to either check the called method in the transformation
phase or to exploit the semi-automatic approach and ask the user.

6.3.3 Reduction of an Array

The following listing presents the example source code for the candidate pattern 'Reduction
of an Array':

This candidate pattern is the most precise and less flexible one. Therefore, all informa-
tion can be seen in the SDG in Figure 6.5.

Firstly, we present a CMQ of the candidate pattern on basis of the control flows between
the nodes which is shown in Listing 6.13.

The combination of the six nodes is fixed. In contrast to the other chosen candidate
patterns, no additional nodes are allowed. We match on the relevant and special properties
of the nodes so that we do not match wrong sub graphs. Also, we avoid matching on
fixed variable names because they are irrelevant for the pattern and we would exclude
fitting patterns. The nodes length and assign describe operations on an array which lead

49

6. Candidate Pattern Matching

Statement

Control flow

Data dependency

Legend

result = 0

Assignment

i = 0

Assignment

$l = length(array)

i = i + 1

operation = ´value´

var = `i`

Assignment

Assignment

result =
result ◦ $a

Assignment

operation = ´◦ ´

...

...

operation = ´length´

var = `$l`

var = `i`

i < $l

Condition

$a = array[i]

Assignment

operation = ´arrayaccess´

var = `result`

array

Field

Assignment

Figure 6.5. SDG of the candidate pattern 'Reduction of an Array'

50

6.3. Formalisation of Candidate Patterns

1 MATCH
2 (i t s t a r t : Assignment { operat ion : ’ value ’ }) ´[:CONTROL_FLOW]´>
3 (length : Assignment { operat ion : ’ length ’ }) ´[:CONTROL_FLOW]´>
4 (i f : Condition) ´[:CONTROL_FLOW]´>
5 (ass ign : Assignment { operat ion : ’ arrayaccess ’ }) ´[:CONTROL_FLOW]´>
6 (rd : Assignment) ´[:CONTROL_FLOW]´>
7 (i t p l u s : Assignment) ´[:CONTROL_FLOW]´>
8 (length)
9 WHERE

10 i t s t a r t . var = i t p l u s . var
11 AND i f . name = i t s t a r t . var + ’ < ’ + length . var
12 AND (rd . operat ion = ’ + ’ OR rd . operat ion = ’ ´ ’ OR rd . operat ion = ’ * ’)
13 RETURN length

Listing 6.13. CMQ of the candidate pattern 'Reduction of an Array'

the matching in the right direction. We ensure, that the variables are correct by either
comparing them or by regarding the data flows. As operations for the reduction, we allow
+, - and *. We could also allow division, but it is an unlikely scenario to create the quotient
from the entries of an array. This candidate pattern only matches on numeric patterns.
Other reductions like the concatenation of strings are not covered. The constraint for the
condition in line 11 is restrictive. It does not contain the actual variable names, but it
suggests that the termination expression is formulated as 'iterator < array.length'. Most
of iterations over arrays are restricted in this way. However, it is also possible to adjust the
constraint, so that the condition is formulated less restrictive. Another solution is e.g. the
use of regular expression like 'if.name= (’.*’ + itstart.var + ’.*’) AND if.name= (’.*’

+ length.var + ’.*’)'. Though, Soot often names new variables with $. As this is a special
character in regular expressions, it needs two preceding backslashes. Alternatively, the SDG

could be adjusted that the statement of conditions is split into several properties.
In Listing 6.14, the CMQ is complete. We added all data flows and further constraints so

that only for loops with the reduction of an array are matched. We also add a node which
represents the array. It can either be a field or it can be assigned in a previous assignment.
And we add the the node which represents the initial value for the reduction, e.g. 'sum=0'.
Theoretical, also the initial value could be a field or an assignment. However, we assume
that it is always directly before the for loop.

1 MATCH
2 (i n i t i a l : Assignment { operation : ’ value ’ }) ´[:CONTROL_FLOW]´>
3 (i t s t a r t : Assignment { operat ion : ’ value ’ }) ´[:CONTROL_FLOW]´>
4 (length : Assignment { operat ion : ’ length ’ }) ´[:CONTROL_FLOW]´>
5 (i f : Condition) ´[:CONTROL_FLOW]´>
6 (ass ign : Assignment { operat ion : ’ arrayaccess ’ }) ´[:CONTROL_FLOW]´>
7 (rd : Assignment) ´[:CONTROL_FLOW]´>
8 (i t p l u s : Assignment) ´[:CONTROL_FLOW]´>
9 (length) ,

10 (assign) <´[d1 :DATA_FLOW]´ (array) ´[d2 :DATA_FLOW]´> (length) ,
11 (i t s t a r t) ´[:DATA_FLOW]´> (i t p l u s) ´[:DATA_FLOW]´> (i f) ,
12 (i t s t a r t) ´[:DATA_FLOW]´> (assign) ,
13 (assign) ´[d5 :DATA_FLOW]´> (rd) ´[:DATA_FLOW]´> (rd) ,
14 (i t p l u s) ´[:DATA_FLOW]´> (i t p l u s)

51

6. Candidate Pattern Matching

15 WHERE
16 i t s t a r t . var = i t p l u s . var
17 AND i f . name = i t s t a r t . var + ’ < ’ + length . var
18 AND (rd . operat ion = ’ + ’ OR rd . operat ion = ’ ´ ’ OR rd . operat ion = ’ * ’)
19 AND assign . var = d5 . var
20 AND array . vartype = ’ i n t [] ’ OR array . vartype = ’ long [] ’ OR array . vartype = ’ double [] ’
21 AND (array . var = d1 . var = d2 . var OR array . name = d1 . var = d2 . var)
22 AND i n i t i a l . var = rd . var
23 RETURN length

Listing 6.14. CMQ of the candidate pattern 'Reduction of an array pattern'

Data flow relationships contain the name of the variable which is passed. For checking
that variables of different nodes are the same, we can either compare the variables or regard
the variable of the related data flow. In line 20, we determine that the array is of type int[],
double[] or long[]. In line 21, we compare the variable name of the array with the data
flows d1 and d2. The property is var if the array is assigned in an assignment node and the
property is called name, if it is stored in a field.

52

Chapter 7

Transformation to Parallelisation Pattern

The target of the graph transformation is a parallelised version of the originally sequential
source code representation. Therefore, we start with the development of the target source
code. By comparing the sequential and the parallelised implementations of a pattern,
we determine the required graph transformations for eliminating the differences. As a
supporting step, we plot the SDG of the parallelised pattern. Finally, the transformation is
implemented in Java using Cypher queries and the Neo4J API.

In this chapter, we firstly present the Master/Worker Pattern which is a design pattern
for parallel programming which we choose for our parallelisation approach. Then, we
explain in detail the design decisions for the target source code in Section 7.2. It follows the
description the actual graph transformation which is for all three patterns similar. Finally,
the specifics of the individual patterns are emphasised.

7.1 Master/Worker Pattern

The Master/Worker Pattern is a concurrent design pattern which balances the work on a
set of tasks. The structure of the Master/Worker Pattern is visualised in Figure 7.1. The
master process creates several worker processes which handle one or more tasks. These
worker processes are collected in a ’bag’. The workers individually execute their tasks
while the master awaits their termination. Then, the master process collects the results from
the workers in the ’bag’ and continues [Mattson et al. 2004, p.143f] [Magee and Kramer
2006, Section 11.2][Ortega-Arjona 2010, p.67ff].

The development of the Master/Worker Pattern from a sequential program is easy,
as often blocks from the sequential code for the tasks can be directly reused [Magee and
Kramer 2006, Section 11.2].

53

7. Transformation to Parallelisation Pattern

Master (1) Workers (1 - n)

initialise computation

set up problem

create bag of tasks

launch workers

collect results

terminate computations

sleep until work is done

initialise workers

compute results

exit / return result

Figure 7.1. Master/Worker Pattern [Mattson et al. 2004, p.145]

Magee and Kramer assert that 'usually, it is best to have one worker process per
physical processor' [Magee and Kramer 2006, Section 11.2]. However, they also remind that
a significant speed-up is only achieved 'if the tasks require significantly more computation
time than the time required for communication with the workers' [Magee and Kramer 2006,
Section 11.2]. In case, the computation time of the sequential program is very small, the
parallelisation might decrease the performance because creating the workers and retrieving
the results takes longer than the sequential execution.

In total, the parallel efficiency of the implementation is dependent on evenly splitted
tasks or load balancing and the just mentioned improvement potential. Load balancing
means the allocation of threads to the processors in a way, that the work is distributed
reasonably equal [Mattson et al. 2004, p.17]. It is especially important when the complexity
of the tasks differ extensively. Hence, it is dependent on the candidate patterns but we do
not deal in detail with load balancing in this thesis.

54

7.2. Target Source Code – Design Decisions

7.2 Target Source Code – Design Decisions

For the implementation of the parallelised source code of all candidate patterns, we choose
the Master/Worker Pattern. As explained in the previous section, the Master/Worker Pattern
is a parallel design pattern. The main thread, referred to as master, creates and manages
several worker threads. In Java, the Master/Worker Pattern is realised by the interface
ExecutorService which handles the parallel execution of threads (see Section 7.2.1 for more
details) [Mattson et al. 2004, p.148].

Listing 7.1 shows an example source code for the candidate pattern 'Independent
For-Each Loop', whereas Listing 7.2 presents the corresponding target source code.

1 public s t a t i c void doImportantCalculat ions (L i s t <ImportantObject > l i s t) {
2 for (ImportantObject o : l i s t) {
3 double r e s u l t = calculateSomethingForQuiteAWhile (o) ;
4 o . s e t R e s u l t (r e s u l t) ;
5 writeResul t InDatabase (r e s u l t) ;
6 }
7 }

Listing 7.1. Example source code for candidate pattern 'Independent For-Each Loop'

The structure of the parallelised source code is always the same for the chosen patterns:
Firstly, a thread pool – in this case an ExecutorService – has to be created. Then, classes
which implement the interface Callable and undertake the sequential subtasks are added
to the pool. The ExecutorService starts for each Callable a thread. The results of Callables
are represented as Futures. For retrieving the results of the Callables, the method get()

is executed on the Futures which returns the result when available. As the Callables are
executed in threads, InterruptedExceptions may occur, also all thrown exceptions inside
the thread are converted into ExecutionExceptions which have to be handled. Finally, the
thread pool is shutdown.

In the following subsections, the design decisions for the implementation are explained
in detail. As an example, we use the 'Independent For-Each Loop' because it is compact.
However, the design is for all three parallelisation patterns the same.

7.2.1 Java’s ExecutorService

The principal part of the parallelised implementation is the ExecutorService which man-
ages the creation and scheduling of threads. It belongs to Java’s java.util.concurrent-
package which contains several utility classes for concurrent programming. We use
the class Executors which provides factory methods for creating the ExecutorService.
For our purpose, it can be chosen between the static methods newCachedThreadPool()

and newFixedThreadPool(int nThreads). The method newCachedThreadPool() creates an
ExecutorService that starts for each submitted Runnable or Callable a new thread. There-
fore, finished threads are reused if they are available and removed if they have not been used
for 60 seconds. In contrast, the newFixedThreadPool-method creates an ExecutorService that

55

7. Transformation to Parallelisation Pattern

1 import j ava . u t i l . *
2

3 public c l a s s Paral le l i sedClassWithLoop {
4

5 public s t a t i c void doImportantCalculat ions (L i s t <ImportantObject > l i s t) {
6

7 i n t noProcessors = P a r a l l e l i s a t i o n U t i l .NUMBER_OF_PROCESSORS;
8 ExecutorServ ice pool = Executors . newFixedThreadPool (noProcessors) ;
9

10 Lis t <Future <Void>> l i s t O f F u t u r e s = new ArrayList <Future <Void > >() ;
11 for (ImportantObject o : l i s t) {
12 LoopCallable c a l l = new LoopCallable (o) ;
13 j ava . u t i l . concurrent . Future <Void> future = pool . submit (c a l l) ;
14 l i s t O f F u t u r e s . add (future) ;
15 }
16 t r y {
17 for (Future <Void> f : l i s t O f F u t u r e s) {
18 f . get () ;
19 }
20 } catch (InterruptedExcept ion e) {
21 throw new I l l e g a l S t a t e E x c e p t i o n (" Unexpected I n t e r r u p t i o n ") ;
22 } catch (j ava . u t i l . concurrent . ExecutionException e) {
23 Throwable cause = e . getCause () ;
24 i f (cause instanceof Error) {
25 throw (Error) cause ;
26 }
27 i f (cause instanceof RuntimeException) {
28 throw (RuntimeException) cause ;
29 }
30 }
31 pool . shutdown () ;
32 }
33

34 s t a t i c c l a s s LoopCallable implements Cal lab le <Void> {
35

36 ImportantObject o ;
37

38 public LoopCallable (ImportantObject o) {
39 t h i s . o = o ;
40 }
41

42 @Override
43 public Void c a l l () throws Exception {
44 double r e s u l t = calculateSomethingForQuiteAWhile (o) ;
45 writeResul t InDatabase (r e s u l t) ;
46 return null ;
47 }
48 }
49 }

Listing 7.2. Parallelised source code example for the candidate pattern 'Independent For-Each Loop'

56

7.2. Target Source Code – Design Decisions

creates exactly as many threads as given by the parameter nThreads. So, the ExecutorService

will not execute more than nThreads threads at the time. Additional tasks are waiting in an
unbounded queue until a thread is available.

In our parallelisation approach, we firstly submit all the tasks to the ExecutorService

and then wait for the completion. Therefore, the cached thread pool would create a thread
for each Callable and could not reuse them. So we decide to use the fixed thread pool with
the parameter nThreads as configurable variable which represents the number of processors
of the application server [Mattson et al. 2004, p.294f].1 Hence, as shown in Listing 7.2 in
line 7 and 8 , the instantiation of the thread pool is as follows:

1 i n t nThreads = p a r a l l e l i s a t i o n . conf ig . P a r a l l e l i s a t i o n C o n f i g u r a t i o n
2 .NUMBER_OF_THREADS;
3 j ava . u t i l . concurrent . ExecutorServ ice pool = java . u t i l . concurrent . Executors
4 . newFixedThreadPool (nThreads) ;

In the SDG, all objects are defined with fully qualified names. Nevertheless, we would
have implemented all new objects fully qualified as it is possible that for instance different
Executors or ExecutorServices are already imported which would cause compilation con-
flicts. The class ParallelisationConfiguration will be added to the source code, it holds
inter alia the number of processors and configuration settings for the candidate matching of
several patterns. It has to be ensured, that there is no other variable called pool, otherwise
the ExecutorService has to be called differently. This issue is part of Section 7.3.1. For
each task which shall be managed by the ExecutorService, a newly implemented Callable

object is added using the method submit(Callable callable) which returns a Future object
containing the result of the Callable:

1 Future <?> f u t u r e R e s u l t = pool . submit (new C a l l a b l e (. . .))

The Callable implementation is handled in the next section.

7.2.2 Callable Implementation

This section presents our decisions regarding the implementation of the threads. The goal
is clean code which covers as many parallelisation patterns as possible.

For executing the parallelisable tasks, we add new classes to the ExecutorService which
implement the interface Callable. The benefits from using Callables instead of Runnables
are that Callables can return results and that they can throw exceptions. Even when we
do not need a return value for each task, nevertheless we always use the Callables for
exception handling which is described in Section 7.2.3.

The new classes, implementing the interface Callable and representing tasks, override
the method call(). This method is the equivalent of Runnables' run() method and therefore
is executed, when the belonging thread is started. Thus, all sequential statements which
belong to the parallelisable tasks are moved in this method – depending on the pattern

1Oracle Java Documentation: https://docs.oracle.com/javase/tutorial/essential/concurrency/pools.html

57

7. Transformation to Parallelisation Pattern

slightly adjusted. It has to be ensured that no statement in the call() method throws
Throwables, as the signature only allows Exceptions. However, we hope this is only a
theoretical restriction, because throwing Throwables instead of the precise Exception is bad
practice [Ullenboom 2014, p.567]. Nevertheless, the pattern matching should be adjusted in
future work.

As the method call() does not have any parameters, the new class needs fields for
each parameter which has to be passed to the method. These fields have to be set in an
individually created constructor.

With the fields and the constructor, additionally to the call() method, in our opinion
the class is too large for an anonymous class, since it would decrease the clearness and
understandability of the source code. Furthermore, we dismiss creating a new public
class for each Callable, as they will only be used once in the method which is parallelised.
As a result, we examine the use of nested classes. We determine that we will have less
complications with import statements when we do not move the statements for executing
the tasks in a different file. However, currently the SDG is presented with fully qualified
names so it does not matter. Nevertheless, the representation of the SDG could be further
developed so we realise this as advantage of nested classes. Additionally, we discover that
we can access private methods of nested classes. So, we choose nested classes which are
distinguished in static nested classes and non-static inner classes. 2 In static contexts – thus,
if the method we parallelise is static – we implement a private, static nested class which is
instantiated as follows:

1 NewStat icCal lableClass c a l l a b l e = new Outerc lass . NewStat icCal lab leClass (. . .) ;

Whereas, if the context is non-static, we implement a private static inner class which needs
an instance of the outer class for instantiation. However, in non-static contexts, the keyword
this references to the current object, so the new inner class can be instantiated as follows:

1 NewCallableClass c a l l a b l e = t h i s . new NewCallableClass (. . .) ;

7.2.3 Exception Handling

The transformed program shall return the same results as the original one. Therefore,
before and after the transformation the same exceptions have to be thrown. The method
call() of the Callable class allows to throw Exceptions. However, as long as the result of
the Callable is not retrieved, a possibly thrown exception remains hidden from the master
thread. Therefore, the method get() from the Future object holding the Callables result
has to be invoked which also happens in Listing 7.2 in line 18. If successfully executed,
the get() method returns the result of the Callable. Otherwise, if the thread is interrupted
during the execution, an InterruptedException is thrown. Further, an ExecutionException

is thrown if the call() method terminates with an exception. As the method declaration

2The Java Tutorials: https://docs.oracle.com/javase/tutorial/java/javaOO/nested.html

58

7.2. Target Source Code – Design Decisions

of Future.get() contains throws InterruptedException, ExecutionException we have to
throw these exceptions in the modified method as well or we have to catch them. We
cannot change the signature of the method which we parallelise because it would cause
compilation errors if the method is called by another one. Also, we have to ensure that the
overall behaviour of the program does not change. Hence, if before the transformation an
exception is thrown, the same should be thrown afterwards. For instance, some type of
exceptions might be catched and handled.

In the sequential code, there was no InterruptedException and we only expect them in
extraordinary situations like a hard shutdown of the process or application. Hence, we
catch the InterruptedException and throw an IllegalStateException instead. That way,
an exception would terminate the application, however, as it is a RuntimeException, the
signature of the concerning method is not changed.

For the ExecutionException, we have to recover the original exception from the
ExecutionException. This can be achieved by catching the exception and calling the
Exception.getCause() method as done in lines 22 and 23 of Listing 7.2. The method
getCause() returns a Throwable object. We want to throw the cause because this was the
original behaviour, but throwing the cause would normally lead to compilation errors,
except Throwables are already catched in the method or thrown in the method declara-
tion. So we collect all checked exceptions which might be thrown in the method call().
Additionally, we handle Errors and RuntimeExceptions which are regarded as unchecked
exceptions for Java’s compile-time checking [Ullenboom 2014, p.551ff].3 For each of this
Throwables we add an if-branch as in lines 24 to 29 of Listing 7.2:

1 i f (cause i n s t a n c e o f Exception) {
2 throw (Exception) cause ;
3 }

The order of the if-branches does not matter, nevertheless, this construction might become
quite long.

3Oracle Java Documentation: https://docs.oracle.com/javase/tutorial/essential/exceptions/runtime.html

59

7. Transformation to Parallelisation Pattern

7.3 Graph Transformation

We aim at transforming the identified candidate pattern into the corresponding parallelisa-
tion pattern. Therefore, additional nodes have to be added and some relationships moved.
For modifying the SDG in the Neo4J database, we have two possibilities: directly via Cypher
or via Neo4J’s Java API.

As we formulated the candidate patterns flexible, the transformation needs to cover all
variations. For instance, the number and names for the fields of the Callable differ. Also,
the 'Independent Successive Method Calls' pattern allows method calls with and without
returntype. Creating a flexible Cypher query would mean to build a long string with
several loops and conditions. The maintenance of such a construction would be extensive
and possibly confusing. Also, when the query contains a syntax or semantic error, it cannot
be debugged. The error has to be located by looking on the long query and trying to split
it into smaller ones.

Another disadvantage of pure Cypher usage is that the queries cannot easily be reused
e.g. for other candidate patterns. On the other hand, already short expressions in Cypher
can execute powerful request. So, we use Neo4J’s Java API to create new nodes and
relationships and Cypher for request against the database, e.g. to find a special node. The
initial conception to formulate a single CUQ for each pair of candidate and parallelisation
pattern as presented in Chapter 3 emerged as not practicable.

For the parallelised SDG, we concentrate on the nodes and on the relationships which are
needed to generate source code from the SDG. We do not add the data flows, the aggregated
data flows or the 'caller of' relation. Also, the relationship calls which leads from a method
call statement to the called method is not necessary, because the method calls contain the
property 'fqn' which definitely identifies the called method. This decision simplifies the
transformation process and prevents mistakes due to the wrong representation of data
dependencies. As a consequence, we cannot transform more than one pattern per method
at a time. However, as soon as the generation of source code from the SDG is developed,
several iterations of parallelisation can be processed. We set the property dirty=true to
the method node of the transformed method and check on this prior to transforming a
matched pattern.

In the following, we describe typical source code snippets which are needed for the
transformation of the SDG from the candidate pattern to the parallelised version. Then, the
specifics in the transformation phase are presented for each of the three pattern.

7.3.1 Inserting New Neo4J Nodes

The parallelisation pattern contains more nodes than the candidate pattern. Therefore,
new nodes have to be created and inserted at the right location into the SDG. The creation
of a Neo4J node can only be done within a transaction. It is done with the method
GraphDatabaseService.createNode(). Then, the necessary labels are added to the node

60

7.3. Graph Transformation

which is formulated in line 2 and 3 of the following listing. Line 4 shows how a property is
added.

1 Node node = graphDB . createNode () ;
2 node . addLabel (SDGLabel .METHODCALL) ;
3 node . addLabel (SDGLabel .ASSIGNMENT) ;
4 node . se tProper ty (SDGPropertyKey .FQN, " . . . ") ;
5 . . .

The method Node.addLabel(Label) is not applicable for strings. Instead, we use con-
stants which create a Label as follows:

1 public s t a t i c f i n a l Label METHODCALL = DynamicLabel . label (" MethodCall ") ;

We also use constants for the property keys. So, the labels and keys can be easily adjusted
without a lot of maintenance effort.

1 public s t a t i c f i n a l S t r i n g FQN = " fqn " ;

Ensuring Fresh Variables

When a new assignment node is created and the variable is new, it has to be ensured that
the variable is not used within the scope, yet. Therefore, we execute two Cypher queries
like in Listing 7.3 which return all variable names which are already in use for that method.
For retrieving all used variable names, we have to collect the field names and the variables
of assignments. As the parameters of a method are assigned to their variables at the start
of each method, we do not have to handle them separately. In this example, we search
for the variable names in the scope of the method which node id is 42 (see line 1). 42 is
a placeholder. In our implementation, we build a string with the given node id. Line 2
formulates the relationship between the method node and the field nodes. Line 4 returns
the list of field names. The second query traverses the method’s statements and collects all
assigned variables. As the variables can be assigned multiple times, we use the keyword
DISTINCT to filter duplicates. The combined result of both queries contains all variable
names which should not be used for new variables. In case, the chosen variable name
already exists, we attach a number so that the used variable is fresh.

1 START m=node (4 2)
2 MATCH (m) <´[:CONTAINS_METHOD]´ () ´[:CONTAINS_FIELD]´> (f i e l d : F i e l d) ,
3 RETURN c o l l e c t (f i e l d . name) AS variablenames
4

5 START m=node (4 2)
6 MATCH (m) ´[:CONTROL_FLOW*]´> (ass ign : Assignment)
7 RETURN c o l l e c t (DISTINCT ass ign . var)

Listing 7.3. Cypher queries for retrieving variable names in the scope of the current method

61

7. Transformation to Parallelisation Pattern

Dealing with Relationships

The new nodes have to be inserted at a specific point of the SDG. When we create a totally
new class or method which we do for the new callable classes, we can create new nodes,
connect them with each other and finally connect the concerning Package node with the
Class node. So, the new class is inserted in the SDG. The creation of relationships with
Neo4J’s Java API is implemented as follows:

1 node1 . c r ea t eR e l a t i on sh i pT o (node2 , RelTypes .CONTAINS_TYPE) ;

In this example, a relationship of type 'CONTAINS_TYPE' is created from node1 to node2.
Again, this operation is only possible within a graph database transaction.

In case, we want to insert new statements between existing statements, we need to move
the relationships. As we do not have to bother about data flow, caller of and calls edges,
we only have to concentrate on the control flow. We decide at which position the new
statements shall be inserted and determine the replaced control flow and neighbouring
nodes. As visualised in Figure 7.2, the outgoing control flow of the preceding statement
node has to lead to the first new statement node. The incoming relationship of the
subsequent statement node has to start at the last new statement node. If only one
statement is inserted, it is handled as the first and last statement. In Neo4J, it is not possible
to move or duplicate relationships. Instead, the old one has to be deleted and a new one
created. Listing 7.4 presents the implementation using Neo4J’s Java API. In line 2, a new
control flow is created from the original start node of the replaced control flow to the first
statement node of the newly inserted sub graph. In line 3, the properties of the original
control flow are copied to the new one. This is important after conditions. In line 4, the
relationship is created from the last statement node of the newly inserted sub graph to the
end node of the original control flow. Finally, in line 5, the original relationship is deleted.

1 public s t a t i c void insertSubGraphAtEdge (Node f i r s t n o d e ,
2 Node lastnode ,
3 Rela t ionsh ip replacedCF) {
4 Rela t ionsh ip incoming = replacedCF .
5 getStartNode () .
6 c re a t e Re la t i o ns h i p To (f i r s t n o d e , RelTypes .CONTROL_FLOW) ;
7 copyPropert ies (replacedCF , incoming) ;
8 las tnode . c re a t e Re la t i o ns h i p To (replacedCF . getEndNode () , RelTypes .CONTROL_FLOW) ;
9 replacedCF . d e l e t e () ;

10 }

Listing 7.4. Source code for inserting new statements

7.3.2 The ExecutorService’s Instantiation

Analogue to lines 7 and 8 of the Listing 7.2, we create nodes that represent the instantiation
of the ExecutorService as in Figure 7.3. We proceed as described in the previous section
for creating the nodes and ensuring that the variables nThreads and pool are not used, yet.

62

7.3. Graph Transformation

doSomething()

Statement

...

doSomething()

Statement

...

first new Node

Statement

last new Node

Statement

delete
control flow...

Figure 7.2. Insertion of new statement nodes in the SDG

ExecutorService pool =
Executors.newFixedThread

Pool(noProcessors)

Assignment/
MethodCall

int noProcessors =
ParallelisationUtil
.NO_PROCESSORS

Assignment

Parallel
isation

Util

Class

NO_PROCESSORS

Field

...

Figure 7.3. Nodes for the instantiation of the ExecutorService

Depending on the candidate pattern, we can either insert the instantiation directly
before the pattern, e.g. the loop or we can put it at the beginning of the method directly
after the assignments of the parameter. The advantage of the insertion before the pattern is
clean code. The insertion at the beginning of a method is no good practice, however we
prevent that the variables are out of scope for later referencing, e.g. if instantiated inside

63

7. Transformation to Parallelisation Pattern

an if clause.

For our candidate patterns, we can insert the instantiation of the ExecutorService

directly before our pattern.

7.3.3 The New Callable Class

Corresponding to lines 34 to 48 in Listing 7.2, one or more Callable classes have to be
developed which execute the separate tasks. Therefore, a sub graph is created which is
visualised in Figure 7.4.

For preventing naming conflicts, we have to ensure that the new classname is not used
yet in the package. In the SDG, nested classes are represented with an ''fqn composed of the
outer classname, the dollar sign '$' and the nested class name: 'Outerclassname$InnerClassname'.
We can retrieve the classnames of the concerning package with the following Cypher query:

1 START m=node (4 2)
2 MATCH (m) <´[:CONTAINS_CLASS]´ () <´[:CONTAINS_TYPE]´ (package) ´[:CONTAINS_TYPE]´> (c)
3 RETURN c o l l e c t (c . name)

Again, 42 is the place holder for the id of the modified method. Line 2 describes the
relations between the concerning method and the classes in the package. In line 3, we
return the list of classnames. The property 'name' contains the classname. We could also
work with the 'fqn' but as all classes are in the same package, we do not. In the list of
classnames, the name 'Outerclassname$InnerClassname' should not exist yet, otherwise
we add a number. The created callable class node has to be connected to the package
by the CONTAINS_TYPE relation. Also, the IMPLEMENTS relation to the node representing the
Callable interface is necessary. Additionally, we create the containing method call() and
the constructor.

The method call does not contain any parameters. Therefore, all needed parameters
have to be set as fields. So, for each parameter, we add a Field to the Callable as well
as two Assignments to the Constructor. In each method, and hence also constructor, at
first each parameter variable is assigned to the parameter. Then, we can assign the field.
Additionally, we set the properties of the constructor node corresponding to the parameters,
hence 'fqn', 'displayname', 'parameterscount' and for each parameter p0, p1 etc.

The statement nodes which shall be executed in parallel are moved to the call() method
of the Callable. The return type of the method is either Void if no return value is needed
or the 'vartype' of the assignment node. In all cases, the method has to be completed with
a ReturnStmt which either returns null or the returning variable.

64

7.3. Graph Transformation

result = original
statements

OuterClass
$Newly
Created
Callable

Class / Method

Statement

Control flow

Data dependency

Hierarchy

Legend

call

Assignment/
MethodCall

Class

Method

return result

ReturnStmt

...

Callable

Interface

returntype: ?

Method calling
object if needed

Field

contains

Needed
parameters

Field

...

field = @p0

cons

Assignment

Constructor/
Method

...

example.
package

Package

OuterClass

Class

this.field = field

Assignment

...

Figure 7.4. SDG of the new Callable class

7.3.4 Joining the Futures and ExecutorService’s Termination

In lines 17 to 19 in Listing 7.2, the future results of the Callables are retrieved. As the used
method Future.get() throws exceptions, they have to be catched and handled which is
formulated in lines 16 to 30. Finally, the ExecutorService is terminated with the method
ExecutorService.shutdown() in line 31.

An example of the SDG is visualised in Figure 7.5. Within the try-block, the method call
Future.get() has to be executed for each Callable. This might be formulated as a loop. In
case the return value is needed, the variable has to be assigned prior to the try-block. The

65

7. Transformation to Parallelisation Pattern

node for the ExecutorService.shutdown() method call directly follows the method calls of
Future.get().

In Soot, the expression catch is represented as an assignment with a control flow from
the method declaration node to the catch node. Additionally, we relate the try to the catch

statements. We have to collect all exceptions which might be thrown inside the call method
and add nodes for the condition cause instanceof ..., the cast to that exception type and
the ThrowStmt. We collect the exceptions by regarding the property 'exceptions' of all
method calls inside the call() method.

try
Try

f1.get()

MethodCall

pool.shutdown()

MethodCall

e = @caught
exception

Assignment

e = @caught
exception

Assignment

Throwable cause
= e.getCause()

Assignment/
MethodCall

cause instanceof
Error

Condition

cause instanceof
RuntimeException

Condition

...

(RuntimeException)
cause

Assignment

 (Error) cause

Assignment

vartype =
InterruptedException

vartype =
ExecutionException

...

throw
(RuntimeException)

cause

Throw

throw (Error) cause

Throw

operation=cast

operation=cast

method
name

Method

...

Figure 7.5. SDG of joining the futures and ExecutorService’s termination

66

7.4. Transformation of 'Independent Successive Method Calls'

7.4 Transformation of 'Independent Successive Method Calls'

For transforming the matched candidate patterns for the 'Independent Successive Method
Calls', we proceed as described in the previous sections. We create a Callable class for each
method call which shall be parallelised inside the regarded method. As parameters, we
need the parameters for the method call as well as the caller of the method. Inside of the
call method, only the method call is executed. An example is visualised in the appendix
9.2.

For handling more than two independent successive method calls, we examine the
method which shall be transformed in advance and match all pairs of suitable method
calls. Then, we check all combinations of method calls by executing the slightly adjusted
CMQ presented in ??. We only add START m1=node(66), m2=node(77) previous to the CMQ

and replace the return statement by RETURN true. Also, we remove the restriction that the
method calls may not have more than 5 statements between each other. If the nodes 66 and
77 are method calls which comply the adjusted CMQ, then true is returned, otherwise the
result is empty. We start with the first two parallelisable method calls in the method and
then extend the check for the following method call so that we identify a list of method
calls which we can parallelise in one step.

7.5 Transformation of 'Independent For-Each Loop'

Since Java 8, Java contains so called 'streams' which can be executed in parallel.4 The
following listing presents a possible parallel implementation for the pattern 'Independent
For-Each Loop'. It is formulated with the help of a lambda expression (line 1) which is also
new in Java 8.

1 l i s t . p a r a l l e l S t r e a m () . forEach ((o) >́ {
2 double r e s u l t = calculateSomethingForQuiteAWhile (o) ;
3 o . s e t R e s u l t (r e s u l t) ;
4 }) ;

However, as mentioned in Section 4.3, we do not support Java 8 because the tool Soot
which we use for the generation of the SDG does not neither. Therefore, we implement the
parallelisation pattern according to the Master/Worker Pattern using the ExecuterService

and Callables as presented previously.

As shown in Listing 7.2, the Callables are instantiated and added to the thread pool
inside the original loop. The resulting Futures are stored in a newly created list for
retrieving the future results in the try-catch block. Each Callable executes one iteration of
the loop body. So, the nodes representing the loop body in the sequential program have to
be moved to the call() method of the Callable. As a consequence, all variables accessed in

4Oracle Java Documentation: https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html
#executing_streams_in_parallel

67

7. Transformation to Parallelisation Pattern

1 START next = node (4 2)
2 MATCH
3 (hasNext : Assignment : MethodCall { fqn : ’ j ava . u t i l . I t e r a t o r . hasNext () ’ })
4 ´[:CONTROL_FLOW*2]´> (next) ,
5 loopbody = (next) ´[:CONTROL_FLOW*]´> (hasNext)
6 WITH next , hasNext , nodes (loopbody) AS loopbodynodes
7 WITH (f i l t e r (statement In loopbodynodes WHERE
8 statement <> hasNext
9 AND statement <> next

10 AND any (path IN ((statement) <´[:DATA_FLOW]´ ())
11 WHERE a l l (df IN r e l s (path)
12 WHERE NOT star tnode (df) in loopbodynodes))))
13 AS nodesWithIncomingDataflow
14 UNWIND nodesWithIncomingDataflow AS nodeWithDF
15 MATCH
16 (nodeWithDF) <´[:DATA_FLOW]´ (assignment)
17 RETURN DISTINCT assignment . var AS var , assignment . vartype AS vartype

the loop which are assigned outside of the loop have to be added as fields to the Callable

class and assigned in its constructor. We collect the required parameters with the following
Cypher query:

In line 1, we start the pattern matching with the next node. In lines 3 to 5, the loop is
represented and the loopbody is named for later references. In line 7 to 12, we filter all
statements that have an incoming relationship from outside the loop. We exclude the nodes
next and hasNext because they do not belong to the loop body. In line 14, we transform the
collection of statement nodes to individual nodes. For each node we match the assignment
node which is the start node of the data flow. As the result, we return a distinct list of the
variable names and vartypes of the assignment.

For the exception handling sub graph, we need to collect all exceptions which might
be thrown in the loop body. Therefore we traverse the loop body nodes and retrieve the
exceptions from the called methods and from ThrowStmt nodes. The Cypher query for this
request is formulated as follows:

1 START next=node (4 2)
2 MATCH
3 (hasNext : Assignment : MethodCall { fqn : ’ j ava . u t i l . I t e r a t o r . hasNext () ’ })
4 ´[:CONTROL_FLOW*2]´> (next) ,
5 loopbody = (next) ´[:CONTROL_FLOW*]´> (hasNext)
6 WITH next , hasNext , nodes (loopbody) AS loopbodynodes
7 WITH (f i l t e r (statement In loopbodynodes
8 WHERE statement <> hasNext
9 AND statement <> next

10 AND statement : MethodCall))
11 AS methodCalls
12 UNWIND methodCalls AS m
13 MATCH
14 (m) ´[:CALLS]´> (calledMethod)
15 UNWIND calledMethod . throws AS except ion
16 RETURN DISTINCT except ion
17 UNION
18 MATCH
19 (hasNext : Assignment : MethodCall { fqn : ’ j ava . u t i l . I t e r a t o r . hasNext () ’ })
20 ´[:CONTROL_FLOW*2]´> (next) ,

68

7.6. Transformation of 'Reduction of an Array'

21 loopbody = (next) ´[:CONTROL_FLOW*]´> (hasNext)
22 WITH nodes (loopbody) AS loopbodynodes
23 WITH (f i l t e r (statement In loopbodynodes WHERE statement : ThrowStmt)) AS throwStatements
24 UNWIND throwStatements AS t
25 RETURN t . vartype AS except ion

We separate both requests and combine them with the keyword UNION. Technically, they
are similar to the previous one.

7.6 Transformation of 'Reduction of an Array'

With the help of the streams of Java 8, also the sum of a collection can be easily calculated
in parallel. The corresponding source code would be:

1 i n t sum = Arrays . stream (array) . p a r a l l e l () . sum () ;

The reduction method sum is already provided by Java 8. However, it is possible to describe
individual reductions with a lambda expression as presented in the following listing: 5

1 i n t sum = Arrays . stream (array) . p a r a l l e l () . reduce (0 , (a , b) >́ a * b) ;

Java 8 provides IntStreams, DoubleStreams and LongStreams6 which would make the differ-
ent variations of the candidate pattern possible.

However, as long as Soot does not support Java 8, we parallelise again with the help of
Java’s ExecutorService. The parallelised source code is attached in the appendix 9.2.

After the instantiation of the ExecutorService, the Callables are instantiated. Each
Callable shall execute the reduction for a specific range of the array. Therefore, each
Callable retrieves the fields array, startindex and endindex. The startindex and endindex

are calculated from the number of threads – hence instances of Callables and the size
of the array, so that the ranges for the Callables are evenly distributed. The resulting
Futures are added to a list for retrieving the individual reduction results try-catch block
and accumulate them.

We do not need any exception handling as the reduction does not throw excep-
tions. Therefore, we catch the InterruptedException and ExecutionException and throw an
IllegalStateException instead.

5Oracle Java Documentation: https://docs.oracle.com/javase/tutorial/collections/streams/reduction.html
6Java.util.stream: http://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html

69

Chapter 8

Evaluation

In this chapter, we evaluate our pattern-based parallelisation approach. In Section 8.1, we ex-
amine the feasibility of our approach by regarding the pattern matching and transformation
for specified examples. In Section 8.2, the number of occurrences of the candidate patterns
in existing Java applications is examined for demonstrating the utility of our approach.
This part of the evaluation is structured according to the GQM (Goal-Question-Metrics)
principles [Basili and Rombach 1988].

Finally, Section 8.3 evaluates the extendibility of the approach.

8.1 Goal: Demonstrating the Feasibility of the Approach

As presented in the introduction, the main goal of this thesis is the successful transformation
of an SDG in its parallelised version. Figure 8.1 shows the overall approach of this thesis, as
already presented in Chapter 3.

At first (1), suitable candidate patterns are mined. For each of the chosen candidate
patterns, a CMQ is formulated for matching the candidate patterns in an SDG (2). Then, the
matched sub graphs are transformed into the corresponding parallelisation pattern (3). The
following section evaluates the correctness of the pattern matching and the transformation
(4). Therefore, we regard appropriate examples for each candidate pattern and assert that
the patterns are matched when expected. For the correctly matched examples, we check
that the transformed sub graph correctly represents the parallelised source code.

In future work, the pattern matching could be evaluated in more detail when the
generation of Java source code is possible. The parallelised application has to compile and
to return the same results than the original one.

8.1.1 Question: Is the result of the approach correct?

For evaluating the correctness of the pattern matching and transformation, we regard for
each candidate pattern different examples presented as source code. We choose examples
which should match as well as those which should not. For evaluating the result of the
transformation, we compared the expected transformed graph with the actual one.

As the visualisation of Neo4J is not clearly arranged, we draw the graph of the second
example of the candidate pattern 'Independent Successive Method Call'. For the other

71

8. Evaluation

Neo4J
Database

JAVA

JAVA
 MATCH (node1)
 -[:related_to]->
 (node2)
 WHERE ...
 RETURN node1, node2

Cypher Match Query

 MATCH node...
 WHERE ...
 CREATE/DELETE ...
 RETURN node...

Cypher Update Query

Candidate
Pattern

Parallelisation
Pattern

Pattern Mining

choose
prototype

formalise
pattern

formalise
transformation

create SDG

generateexecute

Sequential
Program

Parallelised
Program

Resulting candidates:
1)

2)

...

p
a

ra
llelise

execute

1.
2.

3.

0.
Evaluation 4.

Figure 8.1. Approach of this thesis

examples, we confine ourselves to record our findings in a table. Additionally, the results
are stored as Neo4J database and attached to this thesis.

Metrics: Checking Examples for 'Independent Successive Method Calls'

For the following examples, the objects 'dataSC' and 'eventSC' are introduced which
represent the connection to a data server or event server:

1 IDataServerConnection dataSC = new DataServerConnectionImpl () ;
2 IEventServerConnection eventSC = new EventServerConnectionImpl () ;

We assume, that these servers are capable of multi-tasking.

Our first example are two independent method calls which directly succeed each other.
One needs a parameter, but the other does not. It is presented in Listing 8.1. As the called
methods are read-only, the CMQ should match.

1 dataSC . connect (1 0 0 0 0 0) ;
2 eventSC . connect () ;

Listing 8.1. 1. Example source code for 'Independent Successive Method Calls'

72

8.1. Goal: Demonstrating the Feasibility of the Approach

In Listing 8.2, we present the example slightly adjusted because the first called method
returns a value. This has to be regarded in the transformation step.

1 S t r i n g hostname = dataSC . connect (1 0 0 0 0 0) ;
2 eventSC . connect () ;

Listing 8.2. 2. Example Source Code for 'Independent Successive Method Calls'

Listing 8.3 shows a slightly different example because the called methods are static.
Nevertheless, they should be matched by the CMQ.

1 DataServerConnection . connect (1 0 0 0 0 0) ;
2 EventServerConnection . connect () ;

Listing 8.3. 3. Example source code for 'Independent Successive Method Calls'

In Listing 8.4, we test a sequence of method calls. The method 'Logger.info' is marked
as parallelisable. The other called methods are read-only and marked with long execution
times. The method call in line 7 returns a value. The CMQ only checks two successive
method calls with long duration at a time and returns the method id of the first one.
So, we expect that the pattern matching will match the nodes of line 1, 3, and 5. The
transformation should parallelise all four methods together. Hence, only one thread pool
is created managing all four callables.

1 dataSC . updateProducts (eventSC) ;
2 LOGGER. i n f o (" Products are s u c c e s s f u l l y updated . ") ;
3 dataSC . updateProductPrices (eventSC) ;
4 LOGGER. i n f o (" Product P r i c e s are s u c c e s s f u l l y updated . ") ;
5 dataSC . u p d a t e A v a i l a b i l i t y (eventSC) ;
6 LOGGER. i n f o (" Stock i s s u c c e s s f u l l y updated . ") ;
7 i n t numNewCustomers = dataSC . addNewCustomers (eventSC) ;
8 LOGGER. i n f o (numNewCustomers
9 + "New customers are s u c c e s s f u l l y i n s e r t e d in the database . ") ;

Listing 8.4. 4. Example source code for 'Independent Successive Method Calls'

In contrast, we expect that the sub graph representing the source code in Listing 8.5 is
not matched. The example contains three possible successive method call pairs: statements
1 and 2, statements 1 and 3 and statements 2 and 3. The statements 1 and 2 should not
be parallelised because the result of line 1 is needed for line 2. The statements 1 and 3
should not be parallelised because of the same reason. As the statement in line 2 has
to wait for the statement in line 1, the parallelisation does not make sense because the
statement in line 3 will be started after statement 2. Whereas the statements 2 and 3 should
not become parallelised because the method 'Customer.incrementNoPurchases' changes
the field 'noPurchases' of the object Customer which is read in the following method
'Reporting.addRelationsPostCodeNoPurchases'.

1 Customer customer = dataSC . retr ieveCustomer (customerid) ;
2 customer . incrementNoPurchases (dataSC) ;
3 Reporting . addRelationsPostCodeNoPurchases (dataSC , customer) ;

Listing 8.5. 5. Example source code for not matching 'Independent Successive Method Calls'

73

8. Evaluation

Table 8.1. Evaluation 'Independent Successive Method Calls'

Example for matching correct correct
'Independent Successive Method Calls' expected matching transformation

1. Example: 2 successive method calls yes
√ √

2. Example: As Example 1, but with assignment yes
√ √

3. Example: As Example 1, but static method calls yes
√ √

4. Example: 4 not directly succeeding method calls yes
√ √

5. Example: Dependent method calls no
√

–

Table 8.1 presents the results of the pattern matching and transformation. For evaluating
the result of the transformation, we compared the expected transformed graph with the
actual one. The original and the parallelised sub graph of the second example are shown
in the appendix. The other transformed examples can be accessed in the Neo4J database
attached to this thesis.

The table shows that the matching of the candidate pattern 'Independent Successive
Method Calls' and its transformation to the parallelisation pattern executed as expected
for each example. However, as Callables cannot handle Throwables, we cannot parallelise
methods which throw Throwable. In Section 8.2, we will therefore determine the number of
methods throwing Throwables.

Metrics: Checking Examples for 'Independent For-Each Loops'

In the following examples, the methods 'calculateSomethingForQuiteAWhile' and
'writeResultInDatabase' represent read-only methods whose execution takes long.

Hence, the example in Listing 8.6 has no external dependencies and should be matched
by the CMQ.

1 f o r (ImportantObject o : l i s t) {
2 double r e s u l t = calculateSomethingForQuiteAWhile (o) ;
3 writeResul t InDatabase (r e s u l t) ;
4 }

Listing 8.6. 1. Example source code for 'Independent For-Each Loop'

Listing 8.7 represents three examples. They are similar to the previous one, but contain
either a continue or break or return statement. As we exclude interruptions of the array
from our candidate pattern, we expect that it does not match.

The example in Listing 8.8 contains a set method. It only modifies the object of the
current iteration of the loop, hence the example can become parallelised. However, not
always can is known that the method only accesses fields of the current object. Therefore,
in the transformation step, the method has to be analysed in more detail or the user has to
decide. Nevertheless, we expect the extended CMQ to match, whereas the CMQ which only
allows read-only methods should not match.

74

8.1. Goal: Demonstrating the Feasibility of the Approach

1 f o r (ImportantObject o : map) {
2 double r e s u l t = calculateSomethingForQuiteAWhile (o) ;
3 i f (r e s u l t > 1 0 0 . 0) {
4 continue/break/return ;
5 }
6 writeResul t InDatabase (r e s u l t) ;
7 }

Listing 8.7. 2. Example source code for Not Matching 'Independent For-Each Loop'

Table 8.2. Evaluation 'Independent For-Each Loop'

Example for matching correct correct
'Independent For-Each Loop' expected matching transformation

1. Example: Read-only methods yes
√ √

2. Example: As Example 1, but with interruptions no
√

–
3. Example: Modification of current object yes

√ √

4. Example: Modifying an external variable no
√

–

1 f o r (ImportantObject o : l i s t) {
2 double r e s u l t = calculateSomethingForQuiteAWhile (o) ;
3 o . s e t R e s u l t (r e s u l t) ;
4 }

Listing 8.8. 3. Example source code for 'Independent For-Each Loop'

In Listing 8.9, a variable is modified in each iteration. It has to be a field or was assigned
before the loop, because variables assigned inside the loop are only in the scope of that
loop. As a variable is assigned which can be read from outside the loop, it cannot be
parallelised because the result is dependent on the order of the iterations.

1 f o r (ImportantObject o : l i s t) {
2 r e s u l t = r e s u l t + calculateSomethingForQuiteAWhile (o) ;
3 }

Listing 8.9. 4. Example source code for not matching 'Independent For-Each Loop'

In Table 8.2, the results of the pattern matching are summarised as well as the results of
the transformation to the parallelisation pattern. It shows that the pattern matching and
transformation successfully executed as expected.

Metrics: Checking Examples for 'Reduction of an Array'

For the evaluation of the CMQ of the candidate pattern 'Reduction of an Array', we start
with the summation of an array. The tested source code is shown in Listing 8.10. As

75

8. Evaluation

Table 8.3. Evaluation 'Reduction of an Array'

Example for matching correct correct
'Reduction of an Array' expected matching transformation

1. Example: Summation of an array yes
√ √

2. Example: Multiplication of an array yes
√ √

3. Example: Concatenation of Strings no
√

–

expected, the CMQ matched the pattern. We obtained the same result when the array was
stored in a field or when it was assigned in the method.

1 i n t sum = 0 ;
2 f o r (i n t i = 0 ; i < array . length ; i ++) {
3 sum = sum + array [i] ;
4 }

Listing 8.10. 1. Example source code for 'Reduction of an Array'

Listing 8.11 shows a variation of the previous source code example. The variable names
are different, the elements of the array are multiplied and the reduction variable is of type
long instead of int. Nevertheless, the pattern is matched as expected.

1 long product = 1 ;
2 f o r (i n t j = 0 ; j < arrayNumbers . length ; j ++) {
3 product = product * arrayNumbers [j] ;
4 }

Listing 8.11. 2. Example source code for 'Reduction of an Array'

In Listing 8.11, we present the concatenation of strings. As we do not allow it in the
CMQ, we expect no match. As expected, the corresponding sub graph was not matched.

1 S t r i n g r e s u l t = " " ; // b e t t e r S t r i n g B u i l d e r . .
2 f o r (i n t i = 0 ; i < array . length ; i ++) {
3 r e s u l t = r e s u l t + array [i] ;
4 }

Listing 8.12. 3. Example source code for not matching 'Reduction of an Array'

Table 8.3 presents the results of the pattern matching and transformation which are as
expected.

76

8.2. Goal: Demonstrating the Utility of the Approach

8.2 Goal: Demonstrating the Utility of the Approach

In this section, we examine whether our approach is useful. Therefore, we explore the
existence of the chosen candidate patterns in existing Java applications. Additionally, we
examine the extendibility of the approach in Section 8.3.

8.2.1 Question: Do the Candidate Patterns Exist in Real-World Applica-
tions?

For evaluating the existence of the chosen candidate patterns in real-world applications, we
create the SDGs of two Java applications and execute our evolved CMQs. The applications are
Checkstyle1 and Findbugs2. Both applications are static analysis tools for Java applications.
Checkstyle inspects the compliance with code standards whereas Findbugs focusses on
detecting errors in the source code. The analysing character of these applications makes
them good candidates for parallelisation.
In the following section, we determine the number of occurrences of the three prototype
candidate patterns in Checkstyle and Findbugs.

Metrics: Occurrences of the Candidate Pattern in two Java Applications

At first, we have to prepare the SDGs representing the tested applications. We add the
properties 'overridden', 'isReadOnly', and 'isParallelisable' as described in Section 6.2.
We do not manually mark any methods as parallelisable. Therefore, we call the read-
only methods in the following read-only which is more precise than parallelisable. For
performance improvements, we set indexes for the property 'fqn' on methods and classes
as follows:

1 CREATE INDEX ON : Class (fqn)
2 CREATE INDEX ON : Method (fqn)

We remove the constraints concerning the runtime information from the CMQs as we do
not have runtime information in the SDG yet.

For a first overview, we determined general information about the SDG which are
presented in Table 8.4. It shows, that the SDG representing Checkstyle consists of more
than 80 000 nodes, whereas Findbugs is almost twice as big with 140 000 nodes. Only
regarding nodes with the property 'origin=’APP’', we count 762 classes with over 6000
methods in Checkstyle and 1160 classes with more than 9000 methods in Findbugs. We
also determine the number of overridden methods which is roughly 10% of Checkstyle’s
methods in contrast to 20% of Findbug’s methods.

1Checkstyle in version 6.13: http://checkstyle.sourceforge.net/
2Findbugs in version 3.0.1: http://findbugs.sourceforge.net/

77

8. Evaluation

Table 8.4. Nodes in the SDG of Checkstyle and Findbugs

7 Checkstyle Findbugs
Overall nodes in SDG 83619 140875
All classes in SDG 942 1357
All Methods in SDG (without constructors) 8759 11983
Classes in app 762 1160
Methods in app (without constructors) 6772 9392
Overriden methods in app 754 505

Table 8.5. Occurrences of 'Independent Successive Method Calls' in Checkstyle and Findbugs

7 Checkstyle Findbugs
Classes in app 762 1160
Methods in app (without constructors) 6772 9392
Read-only methods 963 1953
Method calls 20664 39699
Read-only-method calls 1208 4078
Successive method calls 12870 29595
Successive read-only method calls 26 352
Independent successive method calls 551 –

Metrics: Occurrences of the Candidate Pattern 'Independent Successive Method Calls'

Table 8.5 presents information concerning the candidate pattern 'Independent Successive
Method Calls'. We determined the overall number of method calls, as well as the number
of read-only methods and method calls to read-only methods. This gives an comparison to
the number of occurrences of the candidate pattern. In Checkstyle, we match 26 successive
method calls which are read-only. This does not appear a lot in comparison to more than
1000 read-only method calls. With the extension of the pattern which allows method calls
from the current iteration’s object, we match 551 patterns. However, as the SDG is not
complete for the jdk or external libraries, these patterns have to be further examined or
semi-automatism has to be exhausted.

In Findbugs, we detect 352 method calls with the read-only constraint which is a
promissing result. It is likely, that some of the successive method have a long execution du-
ration which makes a parallelisation profitable. The candidate pattern which is constrained
to read-only methods executed within a few seconds. In contrast, we terminated the
execution of the extended pattern after about two hours. As we did not had any problems
executing the query against Checkstyle, we assume that this behaviour results from the
size difference of the graph databases. However, in our opinion, this performance issue
will be solved when the runtime information is available because much less successive
method calls will have to be analysed.

78

8.2. Goal: Demonstrating the Utility of the Approach

Table 8.6. Occurrences of 'Independent For-Each Loop' in Checkstyle and Findbugs

7 Checkstyle Findbugs
Classes in app 762 1160
Methods in app (without constructors) 6772 9392
For-Each Loops 97 234*
Read-only For-Each Loops 16 75*
Independent For-Each Loops 39 103*

We additionally determined the number of methods which throw Throwables as we can-
not handle them in the transformation phase. In Findbugs, no method throws Throwables.
In contrast, Checkstyle contains 15 methods which throw Throwables. So, it is recommended
to add this restriction to the CMQ.

Metrics: Occurrences of the Candidate Pattern 'Independent Loop Pattern'

In Table 8.6, we list the occurrences of for-each loops. In Checkstyle, we count overall 97
for-each loops. 16 of them are read-only. When we allow method calls from the currently
iterated object, we match 39 locations. Hence, more than one third of the loops might be
suitable candidates for parallelisation. However, we recommend only to parallelise parts
that have a long runtime as the creation and managing of the threads might take longer
than the original loop.

We experienced again performance issues when executing the Cypher queries on the
SDG of Findbugs. The CMQs as designed in Section 6.3.2 did not terminate in an appropriate
amount of time. As a consequence, we limit the size of the loop body to a maximum of 30.
With this restriction, the query executed within a few seconds. The results are presented
in the table, marked with ˚ because of the restriction of the loop body size. However,
restricting the loop size seems to be an appropriate optimisation. Especially, as the chances
slim, the bigger a loop body is, that it is independent.

We matched more than twice as many patterns in Findbugs compared to Checkstyle. We
are optimistic that the transformation of this candidate pattern will enable high performance
improvements.

Metrics: Occurrences of the Candidate Pattern 'Array Reduction Pattern'

As presented in Table 8.7, we do not have a single match for the 'Reduction of an Array'
pattern. We additionally determined the number of array assignments, array length
operations and array access operations. Each of those exists at least 500 times in the

79

8. Evaluation

Table 8.7. Occurrences of 'Reduction of an Array' in Checkstyle and Findbugs

7 Checkstyle Findbugs
Classes in app 762 1160
Methods in app (without constructors) 6772 9392
Array length operation 717 636
Array access operation 614 982
Array assignments 2424 536
Array reduction 0 0

applications. Nevertheless, the reduction of an array does not seem to be a typical task for
static code analysis tools.

8.3 Extendibility of the Approach

The structure of our transformation implementation is designed to easily add new candidate
patterns. Each candidate pattern is implemented in a separate class which extends a super
class. For a new candidate pattern, its CMQ has to be formulated. Also, the transformation
has to be implemented. For the transformation, lots of utility methods are available.
Especially, when the Master/Worker Pattern is chosen for the parallel version using the
ExecutorService, the creation of the needed nodes can be reused.

Our approach supports Java applications up to Java 7. As presented in Section 4.3,
the analysing tool Soot is used for creating the SDG from source code. As long as Soot
does not support Java 8, we cannot neither. The pattern matching and transformation is
dependent on the specifications of the SDG. When the representation of the SDG changes,
the CMQ and the transformation implementation might have to be adjusted. However, the
implementation is well structured with configurable constants for the properties, labels
and relationship types for simplifying the maintenance.

80

Chapter 9

Conclusions and Future Work

9.1 Summary

This thesis demonstrates the feasibility of pattern-based parallelisation by transforming
three prototypes of candidate patterns to the parallelisation pattern. On the basis of an
SDG which is enriched by runtime information, candidate patterns can be matched and
automatically or semi-automatically transformed to their parallelised version. In our
case, the SDG contains additional information about dependencies in form of aggregated
relationships. These information simplify the pattern matching and allow more optimised
queries. The framework for the pattern matching is also relevant for the success of the
approach. We operate on SDGs which are stored in a Neo4J graph database and provides
the query language Cypher.

At the beginning of our work, we expected that we will formulate one CMQ and one
CUQ for each candidate pattern. However, we learned that we can formulate the candidate
patterns more restrictive or more flexible. The more possibilities exist for a matching
pattern, the more attention has to be paid to necessary restrictions. It is important to
identify all constraints which have to limit the candidate pattern, otherwise potential faults
like race conditions are implemented in the transformation process. Hence, we present
CMQs with different degrees of limitations. Also, it is not feasible to formulate a single
CUQ as the transformation is very complex. Especially, the flexible candidate patterns also
require a flexible transformation. Therefore, we decided to combine Neo4J’s Java API and
Cypher. So, we can profit from the reusability of Java source code and from the powerful
query language Cypher.

We work on SDGs which represent the complete source code of an application, how-
ever, the methods of the jdk and referenced libraries are represented as nodes without
information about the data dependencies. As a consequence, we deal with a well-sized
graph which allows a fast generation of the graph and fast query executions. On the other
hand, the CMQs become more complex because methods from the application have to be
handled differently than methods from the jdk or other external libraries. Especially, the
use of indefinite relations for comparing field accesses is not possible. Hence, a CMQ which
does not restrict the candidate pattern matching to read-only methods is dependend on
the decision of a human. With a semi-automatic approach, we can exhaust more of the
parallelisation potential of an application.

81

9. Conclusions and Future Work

9.2 Future Work

In this thesis, we introduce the property 'isParallelisable=true' for marking not anal-
ysed methods from the jdk or external libraries as parallelisable. Also, the methods for
logging are marked as parallelisable although they write to their fields and are therefore
not read-only. It could be worth additionally supporting 'isParallelisable=false' and
'isParallelisable=unknown' for extending semi-automatism.

For this thesis, we manually add runtime information to the SDG. More research
is required to automatically insert runtime information retrieved from a dynamic code
analysis.

Another advancement which should be evolved is the generation of Java source code
from the SDG. This would also allow a different kind of evaluation. For instance, it is a
good start when the generated source code compiles. Also, the original and parallelised
applications can be compared with each other. The results of the execution should not
change, whereas a performance improvement is desirable and expected.

For simplifying the transformation step, we decided to insert only the relationships
which are necessary to generate source code form the transformed SDG. Hence, we add
all new nodes, but only control flow relationships as well as the hierarchy for the newly
created classes and methods. The call relationship is not necessary because each method call
contains the property 'fqn' which definitely identifies the called methods. Also, the data
flows and aggregated field accesses are not necessary for the source code generation. This
procedure prevents errors in the representation of the dependencies. As a consequence, we
cannot transform more than one pattern per method. However, as soon as the generation of
source code works, the transformation can be done in several iterations. As an optimisation,
the generation of the SDG could be executed only for the modified methods.

Currently, the approach can handle Java applications up to Java 7. The creation of
the SDG is based on Soot, a framework for analysing Java and Android applications.
As Soot does not support Java 8, yet, our approach does neither. However, it could
be adjusted for supporting Android applications. The graph-based approach in general
should be transferable to all object-oriented programming languages which could be further
researched. However, the pattern matching and transformation implementation might
have to be adjusted when the representation of the SDG changes. Therefore, maintainability
effort is expected, e.g. when the generation of Java source code from the SDG is developed.

Furthermore, additional pairs of candidate and parallelisation patterns should be
processed, so that as much parallelisation potential is exhausted as useful. For instance,
specialised candidate patterns which are fitted to the regarded application could be mined
by data decomposition. The parallel implementation could then be based upon the divide-
and-conquer concept using Java’s 'ForkJoinPool'1. Also, candidate patterns which change

1Oracle: http://www.oracle.com/technetwork/articles/java/fork-join-422606.html

82

9.2. Future Work

the order of statements for achieving a better parallelisation improvement should be
investigated.

The results of this thesis indicate, that the pattern-based parallelisation approach is
powerful, but complex.

83

Appendix

Complete CMQ for 'Independent Successive Method Calls'

1 MATCH (d1 : Method) <´[:CALLS]´
2 (m1: MethodCall) ´[c f s :CONTROL_FLOW*1. .5] ´ > (m2: MethodCall)
3 ´[:CALLS]´> (d2 : Method)
4 WHERE m1. avgDurationInMs > 200 AND m2. avgDurationInMs > 200
5 WITH m1, m2, d1 , d2 , c f s
6 MATCH path = (m1) ´[:CONTROL_FLOW*1. .5] ´ > (m2)
7 WITH m1, m2, d1 , d2 , c f s ,
8 f i l t e r (intermediateNode IN nodes (path)
9 WHERE intermediateNode <> m1

10 AND intermediateNode <> m2)
11 AS intermediateNodes
12 WHERE d1 . o r i g i n = ’APP’ AND d2 . o r i g i n = ’APP’
13 AND none (c f IN c f s WHERE has (c f . case))
14 AND NOT (m1) ´[:DATA_FLOW*1. .5] ´ > (m2)
15 AND (NOT has (d1 . overridden) OR d1 . overridden <> true)
16 AND (NOT has (d2 . overridden) OR d2 . overridden <> true)
17 AND a l l (node IN intermediateNodes
18 WHERE
19 NOT(m1) ´[:DATA_FLOW]´> (node)
20 AND (NOT node : MethodCall
21 OR a l l (p a t h c a l l IN ((node) ´[:CALLS]´> ())
22 WHERE a l l (c a l l IN r e l s (p a t h c a l l)
23 WHERE endNode (c a l l) . i s P a r a l l e l i s a b l e =true
24 OR endNode (c a l l) : Constructor))))
25 AND (d1 . i s P a r a l l e l i s a b l e =true
26 OR NOT (d1) ´[:AGGREGATED_FIELD_WRITE|AGGREGATED_CALLS*]´> (: F i e l d) ´́ (d2))
27 AND (d2 . i s P a r a l l e l i s a b l e =true
28 OR NOT (d2) ´[:AGGREGATED_FIELD_WRITE|AGGREGATED_CALLS*]´> (: F i e l d) ´́ (d1))
29 RETURN c o l l e c t (DISTINCT id (m1))
30

31 UNION
32

33 MATCH (d1 : Method) <´[:CALLS]´
34 (m1: MethodCall) ´[c f s :CONTROL_FLOW*1. .5] ´ > (m2: MethodCall)
35 ´[:CALLS]´> (d2 : Method)
36 <´[:CONTAINS_METHOD]´ () <´[:IMPLEMENTS|EXTENDS*]´

37 (: Class) ´[:CONTAINS_METHOD]´> (impl2 : Method)
38 WHERE m1. avgDurationInMs > 200 AND m2. avgDurationInMs > 200
39 WITH m1, m2, d1 , d2 , c f s , impl2
40 MATCH path = (m1) ´[:CONTROL_FLOW*1. .5] ´ > (m2)
41 WITH m1, m2, d1 , d2 , c f s , impl2 ,
42 f i l t e r (intermediateNode IN nodes (path)
43 WHERE intermediateNode <> m1
44 AND intermediateNode <> m2)
45 AS intermediateNodes
46 WHERE d1 . o r i g i n = ’APP’ AND d2 . o r i g i n = ’APP’
47 AND (NOT has (d1 . overridden) OR d1 . overridden <> true)
48 AND none (c f IN c f s WHERE has (c f . case))
49 AND NOT (m1) ´[:DATA_FLOW*1. .5] ´ > (m2)
50 AND d2 . displayname = impl2 . displayname

85

9. Conclusions and Future Work

51 AND a l l (node IN intermediateNodes
52 WHERE
53 NOT(m1) ´[:DATA_FLOW]´> (node)
54 AND (NOT node : MethodCall
55 OR a l l (p a t h c a l l IN ((node) ´[:CALLS]´> ())
56 WHERE a l l (c a l l IN r e l s (p a t h c a l l)
57 WHERE endNode (c a l l) . i s P a r a l l e l i s a b l e =true
58 OR endNode (c a l l) : Constructor))))
59 WITH m1, d1 , c o l l e c t (impl2) AS impl
60 WHERE d1 . i s P a r a l l e l i s a b l e =true
61 OR none (i IN impl
62 WHERE (d1) ´[:AGGREGATED_FIELD_WRITE|AGGREGATED_CALLS*]´> (: F i e l d) ´́ (i))
63 AND a l l (i IN impl WHERE
64 i . i s P a r a l l e l i s a b l e =true
65 OR NOT (i) ´[:AGGREGATED_FIELD_WRITE|AGGREGATED_CALLS*]´> (: F i e l d) ´́ (d1))
66 RETURN c o l l e c t (DISTINCT id (m1))
67

68 UNION
69

70 MATCH (impl1 : Method) <´[:CONTAINS_METHOD]´
71 (: Class) ´[:IMPLEMENTS|EXTENDS*]´> () ´[:CONTAINS_METHOD]´>
72 (d1 : Method) <´[:CALLS]´
73 (m1: MethodCall) ´[c f s :CONTROL_FLOW*1. .5] ´ > (m2: MethodCall)
74 ´[:CALLS]´> (d2 : Method)
75 WHERE m1. avgDurationInMs > 200 AND m2. avgDurationInMs > 200
76 WITH m1, m2, d1 , d2 , c f s , impl1
77 MATCH path = (m1) ´[:CONTROL_FLOW*1. .5] ´ > (m2)
78 WITH m1, m2, d1 , d2 , c f s , impl1 , f i l t e r (intermediateNode IN nodes (path)
79 WHERE intermediateNode <> m1
80 AND intermediateNode <> m2)
81 AS intermediateNodes
82 WHERE d1 . o r i g i n = ’APP’ AND d2 . o r i g i n = ’APP’
83 AND (NOT has (d2 . overridden) OR d2 . overridden <> true)
84 AND none (c f IN c f s WHERE has (c f . case))
85 AND NOT (m1) ´[:DATA_FLOW*1. .5] ´ > (m2)
86 AND d1 . displayname = impl1 . displayname
87 AND a l l (node IN intermediateNodes
88 WHERE
89 NOT(m1) ´[:DATA_FLOW]´> (node)
90 AND (NOT node : MethodCall
91 OR a l l (p a t h c a l l IN ((node) ´[:CALLS]´> ())
92 WHERE a l l (c a l l IN r e l s (p a t h c a l l)
93 WHERE endNode (c a l l) . i s P a r a l l e l i s a b l e =true
94 OR endNode (c a l l) : Constructor))))
95 WITH m1, d2 , c o l l e c t (impl1) AS impl
96 WHERE
97 a l l (i IN impl WHERE
98 i . i s P a r a l l e l i s a b l e =true
99 OR NOT (i) ´[:AGGREGATED_FIELD_WRITE|AGGREGATED_CALLS*]´> (: F i e l d) ´́ (d2))

100 AND d2 . i s P a r a l l e l i s a b l e =true
101 OR none (i IN impl
102 WHERE (d2) ´[:AGGREGATED_FIELD_WRITE|AGGREGATED_CALLS*]´> (: F i e l d) ´́ (i))
103 RETURN c o l l e c t (DISTINCT id (m1))
104

105 UNION
106

107 MATCH (impl1 : Method) <´[:CONTAINS_METHOD]´
108 (: Class) ´[:IMPLEMENTS|EXTENDS*]´> () ´[:CONTAINS_METHOD]´>
109 (d1 : Method) <´[:CALLS]´
110 (m1: MethodCall) ´[c f s :CONTROL_FLOW*1. .5] ´ > (m2: MethodCall)
111 ´[:CALLS]´> (d2 : Method) <´[:CONTAINS_METHOD]´
112 () <´[:IMPLEMENTS|EXTENDS*]´ (: Class)

86

9.2. Future Work

113 ´[:CONTAINS_METHOD]´> (impl2 : Method)
114 WHERE m1. avgDurationInMs > 200 AND m2. avgDurationInMs > 200
115 WITH m1, m2, d1 , d2 , c f s , impl1 , impl2
116 MATCH path = (m1) ´[:CONTROL_FLOW*1. .5] ´ > (m2)
117 WITH m1, m2, d1 , d2 , c f s , impl1 , impl2 , f i l t e r (intermediateNode IN nodes (path)
118 WHERE intermediateNode <> m1
119 AND intermediateNode <> m2)
120 AS intermediateNodes
121 WHERE d1 . o r i g i n = ’APP’ AND d2 . o r i g i n = ’APP’
122 AND none (c f IN c f s WHERE has (c f . case))
123 AND NOT (m1) ´[:DATA_FLOW*1. .5] ´ > (m2)
124 AND d1 . displayname = impl1 . displayname
125 AND d2 . displayname = impl2 . displayname
126 AND a l l (node IN intermediateNodes
127 WHERE
128 NOT(m1) ´[:DATA_FLOW]´> (node)
129 AND (NOT node : MethodCall
130 OR a l l (p a t h c a l l IN ((node) ´[:CALLS]´> ())
131 WHERE a l l (c a l l IN r e l s (p a t h c a l l)
132 WHERE endNode (c a l l) . i s P a r a l l e l i s a b l e =true
133 OR endNode (c a l l) : Constructor))))
134 WITH m1, c o l l e c t (impl2) AS impl2 , c o l l e c t (impl1) AS impl1
135 WHERE
136 a l l (i 1 IN impl1 WHERE i 1 . i s P a r a l l e l i s a b l e =true OR (
137 a l l (i 2 IN impl2 WHERE i 2 . i s P a r a l l e l i s a b l e =true
138 OR NOT (i 2) ´[:AGGREGATED_FIELD_WRITE|AGGREGATED_CALLS*]´> (: F i e l d) ´́ (i 1))))
139 RETURN c o l l e c t (DISTINCT id (m1))

Listing 9.1. Complete CMQ for 'Independent Successive Method Calls'

Example SDG of 'Independent Successive Method Calls' be-
fore and after the transformation

In the following, we present the transformation of the SDG for the source code example in
Listing 9.2. Figure 9.1 shows the SDG of the candidate pattern. The SDG of the corresponding
parallelisation pattern is split into three parts. Figure 9.2 shows the modified method which
instantiates the new Callables. The SDGs of the Callables are presented in Figure 9.3 and
Figure 9.4. They especially differ because the first method call needs a parameter and
returns a value whereas the second one does not. The nodes representing the method calls
are represented with a grey background so that their displacement is visualised.

1 S t r i n g hostname = dataSC . connect (1 0 0 0 0 0) ;
2 eventSC . connect () ;

Listing 9.2. 2. Example Source Code for 'Independent Successive Method Calls'

87

9. Conclusions and Future Work

dataSC = new
DataServer

ConnectionImpl()

Connection
Setup

Class / Method

Statement

Control flow

Data dependency

Hierarchy

Legend

main

Assignment/
MethodCall

Class

Method

IEvent
Server

Connection

Interface

IData
Server

Connection

Interface

eventSC = new
EventServer

ConnectionImpl()

Assignment

String hostname =
dataSC.connect(..)

MethodCall/
Assignment

eventSC.connect()

MethodCall

...
...

return

ReturnStmt

Event
Server

Connection
Impl

Class

Data
Server

Connection
Impl

Class

connect()

Method

connect(..)

Method

...

...

calls

calls

avDur = 50sec

avDur = 80sec

cons()

Constructor/
Method

calls

cons()

Constructor/
Method

calls

Figure 9.1. Example SDG of the candidate pattern 'Independent Successive Method Calls'

88

9.2. Future Work

ExecutorService pool =
Executors.newFixedThread

Pool(noProcessors)

Assignment/
MethodCall

DataSCConnectCallable call1
= new DataSCConnectCallable

(dataSC, timeout)

Future<?> f1 =
pool.submit(call1)

int noProcessors =
ParallelisationUtil
.NO_PROCESSORS

Assignment

Parallel
isation

Util

Class

NO_PROCESSORS

Field

Assignment/
ConstructorCall

Assignment/
MethodCall

EventSCConnectCallable call2
= new EventSCConnectCallable

(eventSC)

Future<?> f2 =
pool.submit(call2)

Assignment/
ConstructorCall

Assignment/
MethodCall

try
Try

f1.get()

MethodCall

T hostname =
f2.get()

Assignment/
MethodCall

pool.shutdown()

MethodCall

e = @caught
exception

Assignment

e = @caught
exception

Assignment

Control flow

Data dependency

Legend

Throwable cause
= e.getCause()

Assignment/
MethodCall

cause instanceof
Error

Condition

cause instanceof
RuntimeException

Condition

...

throw
(RuntimeException)

cause

Throw

throw (Error) cause

Throw

example
Method

Method...

vartype =
InterruptedException

vartype =
ExecutionException

...

T hostname = null

cause instanceof
ConnectionException

Condition
throw

(ConnectionException)
cause

Throw

Figure 9.2. Example SDG of the parallelisation pattern 'Independent Successive Method Calls'

89

9. Conclusions and Future Work

String hostname =
dataSC.connect(timeout);

ConnectionSetup
$EventSCConnect

Callable

Class / Method

Statement

Control flow

Data dependency

Hierarchy

Legend

call

MethodCall

Class

Method

return hostname

ReturnStmt

Callable

Interface

returntype:
String

IDataServerConnectio
n dataSC

Field

dataSC = @p0

cons

Assignment

Constructor/
Method

example.
package

Package

Connection
Setup

Class

timeout = @p1

Assignment

this.dataSC =
dataSC

Assignment

this.timeout =
timeout

Assignment

int timeout

Field

Figure 9.3. Continuation of the example parallelisation pattern: SDG of the Callable with Assignment

90

9.2. Future Work

eventSC.connect();

Connection
Setups$Eve
ntSCConnec

tCallable

Class / Method

Statement

Control flow

Data dependency

Hierarchy

Legend

call

MethodCall

Class

Method

return null

ReturnStmt

Callable

Interface

returntype:
Void

IEventServer
Connection eventSC

Field

contains

eventSC = @p0

cons

Assignment

Constructor/
Method

example.
package

Package

OuterClass

Class

this.eventSC =
eventSC

Assignment

Figure 9.4. Continuation of the example parallelisation pattern: SDG of the Callable without Assign-
ment

91

9. Conclusions and Future Work

Parallelised source code for 'Reduction of an Array'

1 import j ava . u t i l . * ;
2

3 public c l a s s Paral lel isedClassWithReductionOfAnArray {
4

5 public s t a t i c void main (S t r i n g [] args) {
6

7 i n t [] array = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 } ;
8

9 i n t nThreads = P a r a l l e l i s a t i o n C o n f i g u r a t i o n .NUMBER_OF_THREADS;
10 ExecutorServ ice pool = Executors . newFixedThreadPool (nThreads) ;
11

12 i n t entr iesPerThread = array . length / nThreads ;
13 i n t remainedEntries = array . length % nThreads ;
14 i n t s t a r t i n d e x = 0 ;
15 i n t endindex = 0 ;
16 Lis t <Future <Integer >> f u t u r e R e s u l t s = new ArrayList <Future <Integer > >() ;
17 for (i n t i = 0 ; i < nThreads ; i ++) {
18 endindex = s t a r t i n d e x + entr iesPerThread ´ 1 ;
19 i f (remainedEntries > 0) {
20 endindex ++;
21 remainedEntries ´´;
22 }
23 SumCallable c a l l a b l e = new SumCallable (array , s t a r t i n d e x , endindex) ;
24 Future <Integer > futureSum = pool . submit (c a l l a b l e) ;
25 f u t u r e R e s u l t s . add (futureSum) ;
26 s t a r t i n d e x = endindex + 1 ;
27 }
28

29 i n t sum = 0 ;
30

31 t r y {
32 for (Future <Integer > f : f u t u r e R e s u l t s) {
33 sum = sum + f . get () ;
34 }
35 } catch (InterruptedExcept ion e) {
36 throw new I l l e g a l S t a t e E x c e p t i o n (" Unexpected I n t e r r u p t i o n ")
37 } catch (ExecutionException e) {
38 throw new I l l e g a l S t a t e E x c e p t i o n (" Unexpected Exception ")
39 }
40 System . out . p r i n t l n ("Sum = " + sum) ;
41 }
42

43 private s t a t i c c l a s s SumCallable implements Cal lab le <Integer > {
44

45 i n t s t a r t i n d e x ;
46 i n t endindex ;
47 i n t [] array ;
48

49 public SumCallable (i n t [] array , i n t s t a r t i n d e x , i n t endindex) {
50 t h i s . array = array ;

92

9.2. Future Work

51 t h i s . s t a r t i n d e x = s t a r t i n d e x ;
52 t h i s . endindex = endindex ;
53 }
54

55 @Override
56 public I n t e g e r c a l l () throws Exception {
57 i n t sum = 0 ;
58 for (i n t i = s t a r t i n d e x ; i <= endindex ; i ++) {
59 sum = sum + array [i] ;
60 }
61 return sum ;
62 }
63

64 }
65 }

Listing 9.3. Parallelised source code example for the candidate pattern 'Independent For-Each Loop'

93

Bibliography

[Allen 1970] F. E. Allen. Control flow analysis. In: Sigplan Notices. ACM, 1970. (Cited on
page 12)

[Andrews 2000] G. Andrews. Foundations of Multithreaded, Parallel, and Distributed
Programming. Addison Wesley Longman, Inc, 2000. (Cited on page 25)

[Asenjo et al. 2008] R. Asenjo, R. Castillo, F. Corbera, A. Navarro, A. Tineo, and E. Zapata.
Parallelizing irregular c codes assisted by interprocedural shape analysis. In: Parallel
and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on. 2008,
pages 1–12. (Cited on page 7)

[Bae et al. 2013] H. Bae, D. Mustafa, J.-W. Lee, Aurangzeb, H. Lin, C. Dave, R. Eigenmann,
and S. P. Midkiff. The cetus source-to-source compiler infrastructure: overview and
evaluation. Int. J. Parallel Program. 41.6 (Dec. 2013), pages 753–767. url: http://dx.doi.org/
10.1007/s10766-012-0211-z. (Cited on pages 7, 8)

[Basili and Rombach 1988] V. Basili and H. Rombach. The tame project: towards
improvement-oriented software environments. IEEE Transactions on Software Engineering
14.6 (1988). (Cited on page 71)

[Edlich et al. 2011] S. Edlich, A. Friedland, J. Hampe, and B. Brauer. NoSQL: Einstieg in die
Welt nichtrelationaler Web 2.0 Datenbanken. Second. Carl Hanser Verlag, 2011. (Cited
on pages 11 and 16)

[Eichinger et al. 2008] F. Eichinger, K. Böhm, and M. Huber. Improved Software Fault
Detection with Graph Mining. In: International Workshop on Mining and Learning with
Graphs (MLG). Edited by S. Kaski, S. Vishwanathan, and S. Wrobel. Helsinki, Finnland,
2008. url: http://dbis.ipd.kit.edu/download/eichi/eichinger08improved.pdf. (Cited on page 6)

[Eichinger et al. 2010a] F. Eichinger, V. Pankratius, P. W. L. Große, and K. Böhm. Localizing
Defects in Multithreaded Programs by Mining Dynamic Call Graphs. In: Testing:
Academic and Industrial Conference – Practice and Research Techniques (TAIC PART). Edited
by L. Bottaci and G. Fraser. Volume 6303. Lecture Notes in Computer Science. Springer,
2010, pages 56–71. url: http://dbis.ipd.kit.edu/download/eichi/eichinger10localizing.pdf. (Cited
on page 6)

[Eichinger et al. 2010b] F. Eichinger, K. Krogmann, R. Klug, and K. Böhm. Software-Defect
Localisation by Mining Dataflow-Enabled Call Graphs. English. In: Machine Learning
and Knowledge Discovery in Databases. Edited by J. Balcázar, F. Bonchi, A. Gionis, and M.
Sebag. Volume 6321. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2010, pages 425–441. url: http://dx.doi.org/10.1007/978-3-642-15880-3_33. (Cited on page 6)

95

http://dx.doi.org/10.1007/s10766-012-0211-z
http://dx.doi.org/10.1007/s10766-012-0211-z
http://dbis.ipd.kit.edu/download/eichi/eichinger08improved.pdf
http://dbis.ipd.kit.edu/download/eichi/eichinger10localizing.pdf
http://dx.doi.org/10.1007/978-3-642-15880-3_33

Bibliography

[Eichinger et al. 2014] F. Eichinger, V. Pankratius, and K. Böhm. Data Mining for Defects
in Multicore Applications: An Entropy-Based Call-Graph Technique. Concurrency and
Computation: Practice and Experience 26.1 (2014), pages 1–20. url: http://dbis.ipd.kit.edu/
download/eichi/eichinger14concurrency.pdf. (Cited on page 6)

[Ghezzi et al. 2003] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software
Engineering. 2nd edition. Person Education, 2003. (Cited on page 31)

[Grove and Chambers 2001] D. Grove and C. Chambers. A framework for call graph
construction algorithms. ACM Trans. Program. Lang. Syst. 23.6 (Nov. 2001), pages 685–746.
url: http://doi.acm.org/10.1145/506315.506316. (Cited on page 11)

[Hall et al. 2005] M. W. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S. Lam.
Interprocedural parallelization analysis in suif. ACM Trans. Program. Lang. Syst. 27.4
(July 2005), pages 662–731. url: http://doi.acm.org/10.1145/1075382.1075385. (Cited on page 6)

[Heuzeroth et al. 2003] D Heuzeroth, T. Holl, G. Högström, and W. Löwe. Automatic
design pattern detection. In: 2003. (Cited on pages 5, 6)

[Magee and Kramer 2006] J. Magee and J. Kramer. Concurrency: State Models and Java
Programs. John Wiley & Sons, 2006. (Cited on pages 53, 54)

[Mattson et al. 2004] T. G. Mattson, B. A. Sanders, and B. L. Massingill. Patterns for Parallel
Programming. Second. Addison Wesley, 2004. (Cited on pages 24, 25, 27–29, 53–55,
and 57)

[McCool et al. 2012] M. McCool, J. Reinders, and A. Robison. Structured Parallel Program-
ming. Morgan Kaufmann, 2012. (Cited on pages 24 and 30)

[Merlin 1991] J. Merlin. Techniques for the Automatic Parallelisation of ’Distributed Fortran
90’. Technical report. Department of Electronics and Computer Science, Southampton,
1991. (Cited on page 6)

[Molitorisz et al. 2012] K. Molitorisz, J. Schimmel, and F. Otto. Automatic Parallelization
Using AutoFutures. English. In: Multicore Software Engineering, Performance, and Tools.
Edited by V. Pankratius and M. Philippsen. Volume 7303. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2012, pages 78–81. url: http://dx.doi.org/10.1007/978-
3-642-31202-1_8. (Cited on pages 7 and 29)

[Moseley et al. 2007] T. Moseley, D. A. Connors, D. Grunwald, and R. Peri. Identifying
potential parallelism via loop-centric profiling. In: Proceedings of the 4th International
Conference on Computing Frontiers. CF ’07. Ischia, Italy: ACM, 2007, pages 143–152. url:
http://doi.acm.org/10.1145/1242531.1242554. (Cited on page 7)

[Neo Technology 2015a] Neo Technology. Neo4J. Overcoming SQL Strain and SQL Pain.
2015. (Cited on page 15)

[Neo Technology 2015b] Neo Technology. The Neo4j Manual. http://neo4j.com/docs/pdf/neo4j-
manual-2.2.5.pdf. 2015. (Cited on pages 16–19)

96

http://dbis.ipd.kit.edu/download/eichi/eichinger14concurrency.pdf
http://dbis.ipd.kit.edu/download/eichi/eichinger14concurrency.pdf
http://doi.acm.org/10.1145/506315.506316
http://doi.acm.org/10.1145/1075382.1075385
http://dx.doi.org/10.1007/978-3-642-31202-1_8
http://dx.doi.org/10.1007/978-3-642-31202-1_8
http://doi.acm.org/10.1145/1242531.1242554

Bibliography

[Netzer and Miller 1992] R. Netzer and B. Miller. What are race conditions? some issues
and formalizations. ACM Letters on Programming Languages and Systems 1.1 (1992). (Cited
on page 25)

[Ortega-Arjona 2010] J. L. Ortega-Arjona. Patterns for Parallel Software Design. John Wiley
& Sons, Ltd., 2010. (Cited on pages 16, 24, and 53)

[Robinson et al. 2015] I. Robinson, J. Webber, and E. Eifrem. Graph Databases. New
Opportunities for Connected Data. Edited by M. Beaugureau. Second. O’Reilly Media,
2015. (Cited on pages 11 and 15)

[Ryder 1979] B. Ryder. Constructing the call graph of a program. Software Engineering,
IEEE Transactions on SE-5.3 (1979), pages 216–226. (Cited on page 11)

[Servetto and Potanin 2012] M. Servetto and A. Potanin. Automatic Parallelisation in OO
Languages with Balloons and Immutable Objects. Technical report. Victoria University
of Wellington, New Zealand, 2012. (Cited on page 6)

[Servetto et al. 2013] M. Servetto, D. Pearce, L. Groves, and A. Potanin. Balloon Types for
Safe Parallelisation over Arbitrary Object Graphs. Technical report. Victoria University
of Wellington, New Zealand, 2013. (Cited on page 7)

[Stencel and Wegrzynowicz 2008] K. Stencel and P. Wegrzynowicz. Detection of diverse
design pattern variants. In: 2008 15th Asia-Pacific Software Engineering Conference. 2008.
(Cited on pages 5, 6)

[Sun et al. 2010] B. Sun, G. Shu, A. Podgurski, S. Li, S. Zhang, and J. Yang. Propagating
bug fixes with fast subgraph matching. In: 2010. (Cited on page 6)

[Ullenboom 2014] C. Ullenboom. Java ist auch eine Insel. Einführung. Galileo Press Praxis,
2014. (Cited on pages 58, 59)

[Vallée-Rai et al. 1999] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V.
Sundaresan. Soot - a java bytecode optimization framework. In: Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative Research. CASCON ’99.
Mississauga, Ontario, Canada: IBM Press, 1999, pages 13–. url: http://dl.acm.org/citation.
cfm?id=781995.782008. (Cited on page 21)

[Van Bruggen 2014] R. van Bruggen. Learning Neo4J. Packt Publishing, 2014. (Cited on
page 15)

[Wulf 2014] C. Wulf. Pattern-based detection and utilization of potential parallelism in
software systems. In: Software Engineering 2014, Fachtagung des GI-Fachbereichs Soft-
waretechnik, 25. Februar - 28. Februar 2014, Kiel, Deutschland. 2014, pages 229–232. (Cited
on pages 1, 2, and 21)

[Yan and Han 2003] X. Yan and J. Han. Closegraph: mining closed frequent graph patterns.
In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’03. Washington, D.C.: ACM, 2003, pages 286–295. url:
http://doi.acm.org/10.1145/956750.956784. (Cited on page 6)

97

http://dl.acm.org/citation.cfm?id=781995.782008
http://dl.acm.org/citation.cfm?id=781995.782008
http://doi.acm.org/10.1145/956750.956784

Bibliography

[Zhang et al. 2009] S. Zhang, S. Li, and J. Yang. Gaddi: distance index based subgraph
matching in biological networks. In: Proceedings of the 12th International Conference
on Extending Database Technology: Advances in Database Technology. EDBT ’09. Saint
Petersburg, Russia: ACM, 2009, pages 192–203. url: http://doi.acm.org/10.1145/1516360.

1516384. (Cited on page 6)

98

http://doi.acm.org/10.1145/1516360.1516384
http://doi.acm.org/10.1145/1516360.1516384

	List of Figures
	List of Tables
	Listings
	List of Abbreviations
	1 Introduction
	1.1 Context
	1.2 Goals
	1.3 Document Structure

	2 Related Work
	2.1 Pattern Detection in Graphs
	2.2 Automatic Parallelisation
	2.3 Graph-based Parallelisation Approaches

	3 Approach
	4 Foundations and Technologies
	4.1 Graph-based Representation of Source Code
	4.1.1 Nodes of an SDG
	4.1.2 Relationships of an SDG

	4.2 The Graph Database Neo4J
	4.2.1 Cypher
	Cypher Match Query
	Cypher Update Query

	4.2.2 Neo4J's Java API

	4.3 From Java to Neo4J
	4.3.1 Soot – The Java Optimisation Framework
	4.3.2 From Soot to Neo4J

	4.4 Characteristics of Parallel Programs
	4.4.1 Data Sharing
	4.4.2 Race Conditions

	5 Candidate Pattern Mining
	5.1 Finding Concurrency
	5.2 Pairs of Candidate and Parallelisation Patterns
	5.2.1 Independent Successive Method Calls
	5.2.2 Independent For-Each Loop
	5.2.3 Reduction of an Array

	6 Candidate Pattern Matching
	6.1 Correct Matching
	6.2 Representation of Dependencies in the SDG
	6.2.1 Representation of Overridden Methods
	6.2.2 Representation of Read-Only Methods
	6.2.3 Representation of Parallelisable Methods

	6.3 Formalisation of Candidate Patterns
	6.3.1 Independent Successive Method Calls
	Restriction: Minimum Average Duration
	Restriction: No Branches
	Restriction: No Direct Dependency between the Method Calls
	Restriction: Called Methods are Parallelisable
	Restriction: No Dependency Between First Statement and Intermediate Ones
	Extension: No Modification of Concurrently Accessed Fields

	6.3.2 Independent For-Each Loop
	Restriction: Regard Runtime Information
	Restriction: No Interruption of Loops
	Restriction: No External Write Dependencies
	Extension: Supporting Write Access to Iterating Object

	6.3.3 Reduction of an Array

	7 Transformation to Parallelisation Pattern
	7.1 Master/Worker Pattern
	7.2 Target Source Code – Design Decisions
	7.2.1 Java's ExecutorService
	7.2.2 Callable Implementation
	7.2.3 Exception Handling

	7.3 Graph Transformation
	7.3.1 Inserting New Neo4J Nodes
	Ensuring Fresh Variables
	Dealing with Relationships

	7.3.2 The ExecutorService's Instantiation
	7.3.3 The New Callable Class
	7.3.4 Joining the Futures and ExecutorService's Termination

	7.4 Transformation of Independent Successive Method Calls
	7.5 Transformation of Independent For-Each Loop
	7.6 Transformation of Reduction of an Array

	8 Evaluation
	8.1 Goal: Demonstrating the Feasibility of the Approach
	8.1.1 Question: Is the result of the approach correct?
	Metrics: Checking Examples for Independent Successive Method Calls
	Metrics: Checking Examples for Independent For-Each Loops
	Metrics: Checking Examples for Reduction of an Array

	8.2 Goal: Demonstrating the Utility of the Approach
	8.2.1 Question: Do the Candidate Patterns Exist in Real-World Applications?
	Metrics: Occurrences of the Candidate Pattern in two Java Applications
	Metrics: Occurrences of the Candidate Pattern Independent Successive Method Calls
	Metrics: Occurrences of the Candidate Pattern Independent Loop Pattern
	Metrics: Occurrences of the Candidate Pattern Array Reduction Pattern

	8.3 Extendibility of the Approach

	9 Conclusions and Future Work
	9.1 Summary
	9.2 Future Work

	Bibliography

