
A Pattern-based Transformation Approach
to Parallelise Software Systems

using a System Dependency Graph

Johanna E. Krause

27 January 2016

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 1 / 37

Outline

1. Motivation

2. Goals

3. Approach
Mining of Candidate and Parallelisation Patterns
Formalising Candidate Patterns
Transformation

4. Live Demonstration

5. Evaluation

6. Conclusion and Future Work

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 2 / 37

Motivation for (Semi-)Automatic Parallelisation
Motivation

I Parallel programs are mostly more performant

I Many legacy systems would benefit from parallelisation
I Manual adjustments are time and cost consuming

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 3 / 37

Motivation for (Semi-)Automatic Parallelisation
Motivation

I Parallel programs are mostly more performant
I Many legacy systems would benefit from parallelisation

I Manual adjustments are time and cost consuming

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 3 / 37

Motivation for (Semi-)Automatic Parallelisation
Motivation

I Parallel programs are mostly more performant
I Many legacy systems would benefit from parallelisation
I Manual adjustments are time and cost consuming

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 3 / 37

Goals
Overall Approach
Goals Our Approach [Wu14]

Christian Wulf ― 18.02.2015

Legend:
S1: SDG Construction
S2: Gathering
S3: SDG Enrichment
S4: Ranking
S5: Pattern Detection
S6: Transformation
S7: Code Generation

System dependency
graph (SDG)

Parallelism
plan

S4

S6

S5

Semi-automatic transformation

Runtime
information

Static
information

Parallelization
pattern

Candidate
pattern

Sequential program

Parallel program

S7

S3

13Pattern-based Detection and Utilization of Potential Parallelism in Software Systems

Figure 1 : Pattern-based detection and utilization of potential parallelism in software systems [Wulf14]

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 4 / 37

Goals
Goals

I Goal 1: Mining of Candidate and Parallelisation Patterns

I Goal 2: Formalising Candidate Patterns

I G2.1: Formalising as System Dependency Graph (SDG)
I G2.2: Formalising as Cypher Match Query (CMQ)

I Goal 3: Transforming Candidate Patterns to Parallelisation
Patterns

I G3.1: Formalising as SDG
I G3.2: Formalising as Cypher Update Query (CUQ)

I Goal 4: Evaluating the Speed-Up of the Transformed
Application

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 5 / 37

Goals
Goals

I Goal 1: Mining of Candidate and Parallelisation Patterns
I Goal 2: Formalising Candidate Patterns

I G2.1: Formalising as System Dependency Graph (SDG)
I G2.2: Formalising as Cypher Match Query (CMQ)

I Goal 3: Transforming Candidate Patterns to Parallelisation
Patterns

I G3.1: Formalising as SDG
I G3.2: Formalising as Cypher Update Query (CUQ)

I Goal 4: Evaluating the Speed-Up of the Transformed
Application

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 5 / 37

Goals
Goals

I Goal 1: Mining of Candidate and Parallelisation Patterns
I Goal 2: Formalising Candidate Patterns

I G2.1: Formalising as System Dependency Graph (SDG)

I G2.2: Formalising as Cypher Match Query (CMQ)
I Goal 3: Transforming Candidate Patterns to Parallelisation

Patterns

I G3.1: Formalising as SDG
I G3.2: Formalising as Cypher Update Query (CUQ)

I Goal 4: Evaluating the Speed-Up of the Transformed
Application

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 5 / 37

Goals
Goals

I Goal 1: Mining of Candidate and Parallelisation Patterns
I Goal 2: Formalising Candidate Patterns

I G2.1: Formalising as System Dependency Graph (SDG)
I G2.2: Formalising as Cypher Match Query (CMQ)

I Goal 3: Transforming Candidate Patterns to Parallelisation
Patterns

I G3.1: Formalising as SDG
I G3.2: Formalising as Cypher Update Query (CUQ)

I Goal 4: Evaluating the Speed-Up of the Transformed
Application

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 5 / 37

Goals
Goals

I Goal 1: Mining of Candidate and Parallelisation Patterns
I Goal 2: Formalising Candidate Patterns

I G2.1: Formalising as System Dependency Graph (SDG)
I G2.2: Formalising as Cypher Match Query (CMQ)

I Goal 3: Transforming Candidate Patterns to Parallelisation
Patterns

I G3.1: Formalising as SDG
I G3.2: Formalising as Cypher Update Query (CUQ)

I Goal 4: Evaluating the Speed-Up of the Transformed
Application

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 5 / 37

Goals
Goals

I Goal 1: Mining of Candidate and Parallelisation Patterns
I Goal 2: Formalising Candidate Patterns

I G2.1: Formalising as System Dependency Graph (SDG)
I G2.2: Formalising as Cypher Match Query (CMQ)

I Goal 3: Transforming Candidate Patterns to Parallelisation
Patterns

I G3.1: Formalising as SDG

I G3.2: Formalising as Cypher Update Query (CUQ)
I Goal 4: Evaluating the Speed-Up of the Transformed

Application

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 5 / 37

Goals
Goals

I Goal 1: Mining of Candidate and Parallelisation Patterns
I Goal 2: Formalising Candidate Patterns

I G2.1: Formalising as System Dependency Graph (SDG)
I G2.2: Formalising as Cypher Match Query (CMQ)

I Goal 3: Transforming Candidate Patterns to Parallelisation
Patterns

I G3.1: Formalising as SDG
I G3.2: Formalising as Cypher Update Query (CUQ)

I Goal 4: Evaluating the Speed-Up of the Transformed
Application

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 5 / 37

Goals
Goals

I Goal 1: Mining of Candidate and Parallelisation Patterns
I Goal 2: Formalising Candidate Patterns

I G2.1: Formalising as System Dependency Graph (SDG)
I G2.2: Formalising as Cypher Match Query (CMQ)

I Goal 3: Transforming Candidate Patterns to Parallelisation
Patterns

I G3.1: Formalising as SDG
I G3.2: Formalising as Cypher Update Query (CUQ)

I Goal 4: Evaluating the Speed-Up of the Transformed
Application

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 5 / 37

Approach for the Thesis
Approach

Neo4J
Database

JAVA

JAVA
 MATCH (node1)
 -[:related_to]->
 (node2)
 WHERE ...
 RETURN node1, node2

Cypher Match Query

 MATCH node...
 WHERE ...
 CREATE/DELETE ...
 RETURN node...

Cypher Update Query

Candidate
Pattern

Parallelisation
Pattern

Pattern Mining

choose
prototype

formalise
pattern

formalise
transformation

create SDG

generateexecute

Sequential
Program

Parallelised
Program

Resulting candidates:
1)

2)

...

p
a

ra
llelise

execute

1.
2.

3.

0.
Evaluation 4.

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 6 / 37

Solving Goal 1: Pattern Mining
Approach . Mining of Candidate and Parallelisation Patterns

Independent Successive Method Calls

dataserver.connect ();

eventserver.connect ();

Independent For-Each Loop

for (ImportantObject o : list) {

result = calculateSomethingForQuiteAWhile(o);

writeResultInDatabase(result);

}

Array Reduction

int sum = 0;

for (int i = 0; i < array.length; i++) {

sum = sum + array[i];

}

[Molitorisz12, Mattson04]

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 7 / 37

Solving Goal 1: Pattern Mining
Approach . Mining of Candidate and Parallelisation Patterns

Independent Successive Method Calls

dataserver.connect ();

eventserver.connect ();

Independent For-Each Loop

for (ImportantObject o : list) {

result = calculateSomethingForQuiteAWhile(o);

writeResultInDatabase(result);

}

Array Reduction

int sum = 0;

for (int i = 0; i < array.length; i++) {

sum = sum + array[i];

}

[Molitorisz12, Mattson04]

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 7 / 37

Solving Goal 1: Pattern Mining
Approach . Mining of Candidate and Parallelisation Patterns

Independent Successive Method Calls

dataserver.connect ();

eventserver.connect ();

Independent For-Each Loop

for (ImportantObject o : list) {

result = calculateSomethingForQuiteAWhile(o);

writeResultInDatabase(result);

}

Array Reduction

int sum = 0;

for (int i = 0; i < array.length; i++) {

sum = sum + array[i];

}

[Molitorisz12, Mattson04]

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 7 / 37

Solving Goal 1: Pattern Mining
Approach . Mining of Candidate and Parallelisation Patterns

Independent Successive Method Calls

dataserver.connect ();

eventserver.connect ();

Independent For-Each Loop

for (ImportantObject o : list) {

result = calculateSomethingForQuiteAWhile(o);

writeResultInDatabase(result);

}

Array Reduction

int sum = 0;

for (int i = 0; i < array.length; i++) {

sum = sum + array[i];

}

[Molitorisz12, Mattson04]

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 7 / 37

Solving Goal 2: Pattern Matching
SDG of Candidate Pattern
Approach . Formalising Candidate Patterns

??

MethodCall

??

MethodCall/
Assignment

avDur > 200ms

avDur > 200ms

...

...

...

??

Method

??

Method

calls

calls

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 8 / 37

Solving Goal 2: Pattern Matching
Initial CMQ
Approach . Formalising Candidate Patterns

MATCH (m1: MethodCall)
− [:CONTROL_FLOW*1..5]− >
(m2: MethodCall)

RETURN c o l l e c t (DISTINCT i d (m1))

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 9 / 37

Solving Goal 2: Pattern Matching
Restriction: Minimum Average Duration
Approach . Formalising Candidate Patterns

MATCH (m1: MethodCall)
− [:CONTROL_FLOW*1..5]− >
(m2: MethodCall)

WHERE m1. avgDurInMs > 200 AND m2. avgDurInMs > 200
RETURN c o l l e c t (DISTINCT i d (m1))

runtime information configurable

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 10 / 37

Solving Goal 2: Pattern Matching
Restriction: Minimum Average Duration
Approach . Formalising Candidate Patterns

MATCH (m1: MethodCall)
− [:CONTROL_FLOW*1..5]− >
(m2: MethodCall)

WHERE m1. avgDurInMs > 200 AND m2. avgDurInMs > 200
RETURN c o l l e c t (DISTINCT i d (m1))

runtime information configurable

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 10 / 37

Solving Goal 2: Pattern Matching
Restriction: No Branches
Approach . Formalising Candidate Patterns

MATCH (m1: MethodCall)
−[cfs :CONTROL_FLOW*1..5]− >
(m2: MethodCall)

WHERE m1. avgDurInMs > 200 AND m2. avgDurInMs > 200
AND none(cf IN cfs WHERE has (cf . case))
RETURN c o l l e c t (DISTINCT i d (m1))

boolean isAvailable = isProductAvailable ();

if(isAvailable){

processOrder ();

}

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 11 / 37

Solving Goal 2: Pattern Matching
Restriction: No Branches
Approach . Formalising Candidate Patterns

MATCH (m1: MethodCall)
−[cfs :CONTROL_FLOW*1..5]− >
(m2: MethodCall)

WHERE m1. avgDurInMs > 200 AND m2. avgDurInMs > 200
AND none(cf IN cfs WHERE has (cf . case))
RETURN c o l l e c t (DISTINCT i d (m1))

boolean isAvailable = isProductAvailable ();

if(isAvailable){

processOrder ();

}

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 11 / 37

Solving Goal 2: Pattern Matching
Restriction: No Direct Dependency between the Method Calls
Approach . Formalising Candidate Patterns

MATCH (m1: MethodCall)
−[c f s :CONTROL_FLOW*1..5]− >
(m2: MethodCall)

WHERE m1. avgDurInMs > 200 AND m2. avgDurInMs > 200
AND none (c f IN c fs WHERE has (c f . case))
AND NOT (m1) −[:DATA_FLOW*1..5]− > (m2)
RETURN c o l l e c t (DISTINCT i d (m1))

int stock = materialInStock ();

boolean enough = isEnoughInStock(stock);

makeOrders(enough);

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 12 / 37

Solving Goal 2: Pattern Matching
Restriction: No Direct Dependency between the Method Calls
Approach . Formalising Candidate Patterns

MATCH (m1: MethodCall)
−[c f s :CONTROL_FLOW*1..5]− >
(m2: MethodCall)

WHERE m1. avgDurInMs > 200 AND m2. avgDurInMs > 200
AND none (c f IN c fs WHERE has (c f . case))
AND NOT (m1) −[:DATA_FLOW*1..5]− > (m2)
RETURN c o l l e c t (DISTINCT i d (m1))

int stock = materialInStock ();

boolean enough = isEnoughInStock(stock);

makeOrders(enough);

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 12 / 37

Solving Goal 2: Pattern Matching
Restriction: No Modification of Concurrently Accessed Fields
Approach . Formalising Candidate Patterns

MATCH (d1 : Method) <−[:CALLS]−
(m1: MethodCall) −[c f s :CONTROL_FLOW*1..5]− > (m2: MethodCall)
−[:CALLS]−> (d2 : Method)
WHERE m1. avgDurInMs > 200 AND m2. avgDurInMs > 200
AND none (c f IN c fs WHERE e x i s t s (c f . case))
AND NOT (m1) − [:DATA_FLOW*1..5]− > (m2)
AND NOT (m1) −[:DATA_FLOW]−> (: Field) <−[:DATA_FLOW]− (m2)
AND d1 . i sP a ra l l e l i sa b l e =true
AND d2 . i sP a ra l l e l i sa b l e =true
RETURN c o l l e c t (DISTINCT i d (m1))

readField();

writeField();

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 13 / 37

Solving Goal 2: Pattern Matching
Restriction: No Modification of Concurrently Accessed Fields
Approach . Formalising Candidate Patterns

MATCH (d1 : Method) <−[:CALLS]−
(m1: MethodCall) −[c f s :CONTROL_FLOW*1..5]− > (m2: MethodCall)
−[:CALLS]−> (d2 : Method)
WHERE m1. avgDurInMs > 200 AND m2. avgDurInMs > 200
AND none (c f IN c fs WHERE e x i s t s (c f . case))
AND NOT (m1) − [:DATA_FLOW*1..5]− > (m2)
AND NOT (m1) −[:DATA_FLOW]−> (: Field) <−[:DATA_FLOW]− (m2)
AND d1 . i sP a ra l l e l i sa b l e =true
AND d2 . i sP a ra l l e l i sa b l e =true
RETURN c o l l e c t (DISTINCT i d (m1))

readField();

writeField();

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 13 / 37

Solving Goal 2: Pattern Matching
Restriction: No Dependency From 1. Statement to Intermediate Ones
Approach . Formalising Candidate Patterns

MATCH (d1 : Method) <−[:CALLS]−
(m1: MethodCall) −[c f s :CONTROL_FLOW*1..5]−> (m2: MethodCall)
−[:CALLS]−> (d2 : Method)
WHERE m1. avgDurationInMs > 200 AND m2. avgDurationInMs > 200
WITH m1, m2, d1 , d2 , cfs
MATCH path = (m1) −[:CONTROL_FLOW*1..5]−> (m2)
WITH m1, m2, d1 , d2 , cfs , f i l t e r (intermediateNode IN nodes (path)

WHERE intermediateNode <> m1
AND intermediateNode <> m2)

AS intermediateNodes
WHERE

NOT (m1) −[:DATA_FLOW*1..5]−> (m2)
AND none (c f IN c fs WHERE e x i s t s (c f . case))
AND NOT (m1) −[:DATA_FLOW]−> (: F i e l d) <−[:DATA_FLOW]− (m2)
AND d1 . i s P a r a l l e l i s a b l e = t rue
AND d2 . i s P a r a l l e l i s a b l e = t rue

AND a l l (node IN intermediateNodes
WHERE

NOT (m1) −[:DATA_FLOW]−> (node)
AND (NOT node: MethodCall

OR a l l (pathcal l IN ((node) −[:CALLS]−> ())
WHERE a l l (c a l l IN re ls (pathcal l)

WHERE endNode(c a l l) . i sP ar a l l e l i sa b l e =true
OR endNode(c a l l) : Constructor))))

RETURN c o l l e c t (DISTINCT i d (m1))
Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 14 / 37

Solving Goal 2: Pattern Matching
Extension: No Modification of Concurrently Accessed Fields
Approach . Formalising Candidate Patterns

. . .
AND NOT d1 . over r idden= t rue AND NOT d2 . over r idden= t rue
AND (d1 . i s P a r a l l e l i s a b l e = t rue

OR NOT (d1) − [:AGGREGATED_FIELD_WRITE
|AGGREGATED_CALLS*]−> (: F i e l d) −− (d2))

AND (d2 . i s P a r a l l e l i s a b l e = t rue
OR NOT (d2) − [:AGGREGATED_FIELD_WRITE

|AGGREGATED_CALLS*]−> (: F i e l d) −− (d1))
. . .

I less restrictive: allow modification of fields except concurrently
accessed ones

I Attention: handle overridden methods separately!
⇒ see details in thesis

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 15 / 37

Solving Goal 3: Transformation
Target Source Code
Approach . Transformation

Master Worker Pattern:
I Usage of nested Callables and Futures

I Enables return value
I Enables exception handling

I Organisation with Java’s ExecutorsService (thread pool)

no Java 8 support (because of Soot)
Source: https://github.com/Sable/soot/issues/394

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 16 / 37

Solving Goal 3: Transformation
Example of SDGs – Before and After
Approach . Transformation

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 17 / 37

Solving Goal 3: Transformation
Mission
Approach . Transformation

I Add new nodes according to Soot representation
I Add new control flows and hierarchy
I Remove unused control flows
I New variable/class names (variable scope)
I Exception handling

Simplification/Optimisation:
no attention to data flows, instead new Soot run

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 18 / 37

Solving Goal 3: Transformation
Mission
Approach . Transformation

I Add new nodes according to Soot representation
I Add new control flows and hierarchy
I Remove unused control flows
I New variable/class names (variable scope)
I Exception handling

Simplification/Optimisation:
no attention to data flows, instead new Soot run

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 18 / 37

Solving Goal 3: Transformation
Transformation Implementation
Approach . Transformation

I Implementation in Java
I Cypher queries (from String)
I Neo4J Java API

Advantages:
I Reusability of the queries
I Dynamic build of queries
I Temporary storing of nodes
⇒ Comfortable handling of relationships

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 19 / 37

Solving Goal 3: Transformation
Transformation Implementation
Approach . Transformation

I Implementation in Java
I Cypher queries (from String)
I Neo4J Java API

Advantages:
I Reusability of the queries
I Dynamic build of queries
I Temporary storing of nodes
⇒ Comfortable handling of relationships

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 19 / 37

Live Demonstration

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 20 / 37

Solving Goal 4: Evaluating the Speed Up
Evaluation

Evaluation of the speed up not yet possible:

I Generation of Java source code from the Neo4J SDG is very
complex

I Try-catch blocks
I Throw exceptions
I Loop

⇒ Approach differently evaluated

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 21 / 37

Solving Goal 4: Evaluating the Speed Up
Evaluation

Evaluation of the speed up not yet possible:
I Generation of Java source code from the Neo4J SDG is very

complex

I Try-catch blocks
I Throw exceptions
I Loop

⇒ Approach differently evaluated

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 21 / 37

Solving Goal 4: Evaluating the Speed Up
Evaluation

Evaluation of the speed up not yet possible:
I Generation of Java source code from the Neo4J SDG is very

complex
I Try-catch blocks
I Throw exceptions
I Loop

⇒ Approach differently evaluated

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 21 / 37

Solving Goal 4: Evaluating the Speed Up
Evaluation

Evaluation of the speed up not yet possible:
I Generation of Java source code from the Neo4J SDG is very

complex
I Try-catch blocks
I Throw exceptions
I Loop

⇒ Approach differently evaluated

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 21 / 37

Evaluation
Evaluation

I Feasibility of the approach
I Quantitative occurrence of the candidate patterns
I Extendibility of the approach

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 22 / 37

Evaluation
Feasibility of the Approach
Evaluation

Yes, we can!
We successfully transformed three prototypes :)

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 23 / 37

Evaluation
Quantitative Occurrence of the Candidate Patterns
Evaluation

Checkstyle and Findbugs

] Checkstyle Findbugs
Overall nodes in SDG 83619 140875
All classes in SDG 942 1357
All Methods in SDG (without constructors) 8759 11983
Classes in app 762 1160
Methods in app (without constructors) 6772 9392
Overridden methods in app 754 505

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 24 / 37

Evaluation
Quantitative Occurence of the Candidate Patterns
Evaluation

Independent Successive Method Calls Pattern
] Checkstyle Findbugs
Classes in app 762 1160
Methods in app (without constructors) 6772 9392
Read-only methods 963 1953
Method calls 20664 39699
Read-only-method calls 1208 4078
Successive method calls 12870 29595
Successive read-only method calls 26 352
Independent successive method calls 551 –

I without runtime information constraints
I branches excluded
I no allowance of ’isParallelisable=true’ for more flexibility

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 25 / 37

Evaluation
Quantitative Occurence of the Candidate Patterns
Evaluation

Independent Successive Method Calls Pattern
] Checkstyle Findbugs
Classes in app 762 1160
Methods in app (without constructors) 6772 9392
Read-only methods 963 1953
Method calls 20664 39699
Read-only-method calls 1208 4078
Successive method calls 12870 29595
Successive read-only method calls 26 352
Independent successive method calls 551 –

I without runtime information constraints
I branches excluded
I no allowance of ’isParallelisable=true’ for more flexibility

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 25 / 37

Evaluation
Quantitative Occurrence of the Candidate Patterns
Evaluation

Independent For-Each Loop

] Checkstyle Findbugs
Classes in app 762 1160
Methods in app (without constructors) 6772 9392
For-Each Loops 97 234*
Read-only For-Each Loops 16 75*
Independent For-Each Loops 39 103*

* loop body size restricted to a maximum of 30 statements

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 26 / 37

Evaluation
Quantitative Occurrence of the Candidate Patterns
Evaluation

Array Reduction Pattern

] Checkstyle Findbugs
Classes in app 762 1160
Methods in app (without constructors) 6772 9392
Array length operation 717 636
Array access operation 614 982
Array assignments 2424 536
Array reduction 0 0

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 27 / 37

Evaluation
Extendibility of the Approach
Evaluation

Pros
I Modular because of Java
I Reusability of queries
I Semi-automatism easily extendible
I Configurable, e.g. runtime constraints
I New candidate and parallelisation patterns can be designed with

the help of existing utility classes

Cons
I When SDG changes, CMQs and transformation have to be

adjusted
⇒ Maintenance effort, e.g. for Java 8 support

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 28 / 37

Conclusion and Future Work
Conclusion and Future Work

Conclusion:
I Successful implementation of 3 patterns
I Powerful, but complex approach

Future Work:
I Generate Java code from SDG for performance evaluation
I Add runtime information
I Implement additional candidate and parallelisation patterns

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 29 / 37

Conclusion and Future Work
Conclusion and Future Work

Conclusion:
I Successful implementation of 3 patterns
I Powerful, but complex approach

Future Work:
I Generate Java code from SDG for performance evaluation
I Add runtime information
I Implement additional candidate and parallelisation patterns

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 29 / 37

References
Conclusion and Future Work

[Mattson04] T. G. Mattson, B. A. Sanders, and B. L. Massingill. Patterns for Parallel
Programming. Second. Addison Wesley, 2004.

[Molitorisz12] K. Molitorisz, J. Schimmel, and F. Otto. Automatic Parallelization Using
AutoFutures. English. In: Multicore Software Engineering,
Performance, and Tools. 2012, pages 78–81.

[Wulf14] C. Wulf. Pattern-based detection and utilization of potential parallelism
in software systems. In: Software Engineering 2014, Fachtagung des
GI-Fachbereichs Soft- waretechnik, 25. Februar - 28. Februar 2014,
Kiel, Deutschland. 2014, pages 229–232.

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 30 / 37

Approach for the Thesis
Conclusion and Future Work

Neo4J
Database

JAVA

JAVA
 MATCH (node1)
 -[:related_to]->
 (node2)
 WHERE ...
 RETURN node1, node2

Cypher Match Query

 MATCH node...
 WHERE ...
 CREATE/DELETE ...
 RETURN node...

Cypher Update Query

Candidate
Pattern

Parallelisation
Pattern

Pattern Mining

choose
prototype

formalise
pattern

formalise
transformation

create SDG

generateexecute

Sequential
Program

Parallelised
Program

Resulting candidates:
1)

2)

...

p
a

ra
llelise

execute

1.
2.

3.

0.
Evaluation 4.

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 31 / 37

Solving Goal 2: Pattern Matching
Introducing the attributes isOverridden
Conclusion and Future Work

MATCH (m: Method) <−[:CONTAINS_METHOD]− (c l assOr In te r f ace)
<−[:EXTENDS| IMPLEMENTS*1 . .] − (subclass) − [:CONTAINS_METHOD]−> (method : Method)

WHERE m. displayname = method . displayname
SET m. over r idden= t rue

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 32 / 37

Solving Goal 2: Pattern Matching
Introducing the attributes isReadOnly
Conclusion and Future Work

In theory:

MATCH (m: Method)
WHERE

NOT (e x i s t s (m. over r idden) OR m. over r idden <> t rue)
AND NOT (m) − [:AGGREGATED_FIELD_WRITE|AGGREGATED_CALLS*]−> (: F i e l d)

WITH m
SET m. isReadOnly= t rue

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 33 / 37

Solving Goal 2: Pattern Matching
Introducing the attributes isReadOnly
Conclusion and Future Work

In our ’capped’ SDG:
1. Cypher-Query:

MATCH (m: Method)
WHERE

m. o r i g i n = ’APP’
AND (NOT e x i s t s (m. over r idden) OR m. over r idden <> t rue)
AND NOT (m) −[:AGGREGATED_FIELD_WRITE]−> (: Field)
AND (NOT (m) −[:AGGREGATED_CALLS]−> (: Method))

WITH m
SET m. isReadOnly= t rue

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 34 / 37

Solving Goal 2: Pattern Matching
Introducing the attributes isReadOnly
Conclusion and Future Work

2.-x. Cypher query

MATCH (mRO: Method) <−[:AGGREGATED_CALLS]− (m: Method)
WHERE

mRO. isReadOnly= t rue
AND NOT EXISTS(m. isReadOnly)
AND (NOT EXISTS(m. over r idden) OR m. over r idden <> t rue)
AND NOT (m) − [:AGGREGATED_FIELD_WRITE]−> (: F i e l d)
AND (a l l (path IN ((m) − [:AGGREGATED_CALLS]−> (: Method))

WHERE a l l (method IN nodes (path)
WHERE m = method

OR method . isReadOnly= t rue)))
WITH m

SET m. isReadOnly= t rue

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 35 / 37

Parallelised Example Code
Conclusion and Future Work

...

int nProcessors = ParallelisationUtil.NUMBER_OF_PROCESSORS;
java.util.concurrent.ExecutorService pool = java.util.concurrent.Executors

.newFixedThreadPool(nProcessors);

DataSCConnectCallable callable1 = new ConnectionSetup.DataSCConnectCallable(dataSC);
java.util.concurrent.Future <?> future1 = pool.submit(callable1);

EventSCConnectCallable callable2 = new ConnectionSetup.EventSCConnectCallable(eventSC);
java.util.concurrent.Future <?> future2 = pool.submit(callable2);

try {
future1.get();
future2.get();

} catch (InterruptedException e) {
} catch (java.util.concurrent.ExecutionException e) {

Throwable cause = e.getCause ();
if (cause instanceof Error) {

throw (Error) cause;
}
if (cause instanceof RuntimeException) {

throw (RuntimeException) cause;
}

}
pool.shutdown ();

...

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 36 / 37

Parallelised Example Code
Conclusion and Future Work

private static class DataSCConnectCallable implements Callable <Void > {

private IDataServerConnection dataSC;

public DataSCConnectCallable(IDataServerConnection dataSC) {
super ();
this.dataSC = dataSC;

}

@Override
public Void call() throws Exception {

dataSC.connect ();
return null;

}
}

private static class EventSCConnectCallable implements Callable <Void > {

private IEventServerConnection eventSC;

public EventSCConnectCallable(IEventServerConnection eventSC) {
super ();
this.eventSC = eventSC;

}

@Override
public Void call() {

eventSC.connect ();
return null;

}
}

Johanna E. Krause Parallelise Software Systems using an SDG 27 January 2016 37 / 37

	Motivation
	Goals
	Approach
	Mining of Candidate and Parallelisation Patterns
	Formalising Candidate Patterns
	Transformation

	Live Demonstration
	Evaluation
	Conclusion and Future Work

