Suspended sediment dynamics above submerged compound sand waves observed during a tidal cycle

Ingo Hennings Dagmar Herbers

MARID V 4th – 6th April 2016

GEOMAR

Helmholtz-Zentrum für Ozeanforschung Kiel

Forschungsbereich 1 Ozeanzirkulation und Klimadynamik Wischhofstrasse 1-3

D - 24148 Kiel, Germany

Tel.: ++49 (0)431-600-2312

Fax: ++49 (0)431-600-132312

e-mail: ihennings@geomar.de

http://www.geomar.de

Contents

1. Introduction

2. Measurements

3. Conclusions

Terra-MODIS satellite image of the Strait of Dover acquired on 9 December 2002; spatial resolution: 250 m (NASA)

Handheld camera image of Hohwacht Bight at the German coast of the Baltic Sea acquired on 8 February 2015

Overview of the North Sea

Positions of runs along transect AB in the study area of the Lister Tief in the German Bight of the North Sea

Analyzed ADCP and oceanographic data of run 48 along transect AB during ebb tidal phase at 06:33-06:41 UTC on 10 August 2002

Three dimensional presentation of w and E₃ (color coded) as a function of water depth of run 48 along transect AB as shown on the left side

Analyzed ADCP and oceanographic data of run 51 along transect AB during ebb tidal phase at 07:21-07:40 UTC on 10 August 2002

Three dimensional presentation of w and E_3 (color coded) as a function of water depth of run 51 along transect AB as shown on the left side

Analyzed ADCP and oceanographic data of run 64 along transect AB during flood tidal phase at 11:16-11:28 UTC on 12 August 2002

Three dimensional presentation of w and E_3 (color coded) as a function of water depth of run 64 along transect AB as shown on the left side

Analyzed ADCP and oceanographic data of run 65 along transect AB during flood tidal phase at 11:33-12:10 UTC on 12 August 2002

Three dimensional presentation of w and E₃ (color coded) as a function of water depth of run 65 along transect AB as shown on the left side

Time series of five selected runs of ADCP data during ebb tidal current phase on 10 August 2002; research vessel is sailing against the current (left figure) and with the current (right figure)

Conclusions

- 1.) Magnitudes of echo intensity E_3 and calculated SSC modulation $log((\delta c/c_0)_3)$ depend on wind and current velocities.
- 2.) Bursts of w and E₃ may be triggered at disturbances like megaripples superimposed on sand waves by current wave interaction at high current and wind speeds observed of opposite directions.

- 3.) ADCP data of *u*, *w*, and *E*₃ show a definite phase relationship with the crest and upper gentle slope regions of sand waves during ebb tidal current phase.
- 4.) Enhanced $log((\delta c/c_0)_3)$ shows a phase relationship with trough regions of sand waves during ebb tidal current phase.
- 5.) During well developing flood and ebb tidal currents the intensities of u, w, and $log((\delta c/c_0)_3)$ are weakly time dependent.