Expert-Guided Automatic Diagnosis of Performance
Problems in Enterprise Applications

Christoph Heger*, André van Hoornf, Dusan Okanovi¢', Stefan Siegl*, Alexander Wert*
*NovaTec Consulting GmbH, Competence Area APM, D-70771 Leinfelden-Echterdingen, Germany
{christoph.heger, stefan.siegl, alexander.wert} @novatec-gmbh.de
TUniversity of Stuttgart, Institute of Software Technology, D-70569 Stuttgart, Germany
{van.hoorn, dusan.okanovic}@informatik.uni-stuttgart.de

Abstract—Application performance management (APM) is a
necessity to detect and solve performance problems during
operation of enterprise applications. While existing tools provide
alerting and visualization capabilities when performance require-
ments are violated during operation, the isolation and diagnosis
of the problem’s real root cause is the responsibility of the rare
performance expert, often resulting in a boring and recurring
task. Main challenges for APM adoption in practice include
that initial setup and maintenance of APM, and particularly
the diagnosis of performance problems are error-prone, costly,
and require a high manual effort and expertise. In this paper,
we present preliminary work on diagnoselT, an approach that
utilizes formalized APM expert knowledge to automate the
aforementioned recurring APM activities.

I. INTRODUCTION

Various model-based and measurement-based techniques
exist to evaluate the performance of software systems in
all lifecycle phases [3], [5]. Despite of their major busi-
ness impact, performance problems during operation are still
omnipresent in business-critical enterprise applications (EAs)
[9]. Examples of such problems range from response time
violations up to complete service unavailability [12]. Common
reasons for these problems are architectural or aging-related
issues [4], [17], [18].

There is a rapidly growing market of powerful commer-
cial and open-source application performance management
(APM) tools that support the collection and visualization
of performance-relevant measures covering the entire EA
stack [11], [13], [20]. However, APM practice still requires
enormous manual effort and expertise, particularly for setting
up and maintaining APM configurations (e.g., deciding which
software methods to instrument) as well as diagnosing the
root causes of performance problems (e.g., an N+1 problem
in the database access [18]). These manual tasks are error-
prone, costly, and frustrating for the involved performance
experts because various tasks and patterns are recurring.
Particularly regarding the root cause analysis of performance
problems, today’s tools give little or no support. On the
other hand, researchers have proposed approaches to detect
performance problems using model-based and measurement-
based techniques [8], [15], [19], [2]1]—many of them being
based on well-known performance anti-patterns [17], [18].
Most of them focus on design and test time rather than analysis
of performance information from production. Also, their main

E"m'dVdSt"re'ser"'Et'Appse”"Et' Response time: 175,377.7 ms

doFilter(...)

|_ response time T of the whole trace
e response time > p% of T

com.dvdstore.actions.SearchAction.
searchTitle(String)

org.h2.jdbc.PreparedStatement. | Response time: 1,290.8ms
executeQuery()) Query: select * from Person where ...

Response time: 149,154.9 ms

org.h2.jdbc.PreparedStatementj Response time: 0.244 ms
executeQuery()) Query: select * from Order where ...

org.h2.jdbc.PreparedStatement. | Response time: 0.329 ms
executeQuery()) Query: select * from Order where ...

LErg.h2.jdbc.PreparedStatementj Response time: 0.108 ms
executeQuery()) Query: select * from Order where ...

Fig. 1. Example trace including an N+1 problem (in red rectangle)

focus is on the architectural level rather than concrete code
level.

In this paper, we present the preliminary work on our
diagnoselT approach, which aims to address the aforemen-
tioned challenges. The core idea is to formalize APM expert
knowledge and to use it to automatically execute recurring
APM tasks such as the configuration of a meaningful EA
instrumentation using APM tools and to diagnose performance
problems to isolate their root cause. diagnoselT is designed
to be independent of specific APM solutions.

The remainder of this paper is organized as follows: Sec-
tion II emphasizes the addressed problem and states our vision.
Section III outlines our diagnoselT approach—focusing on the
trace-based diagnosis of performance problems. Section IV
discusses related work. Finally, Section V draws the conclu-
sions and outlines future work.

II. PROBLEM STATEMENT AND VISION

In order to emphasize the problem that we address with our
diagnoselT approach, we consider a typical process performed
by an APM expert in this section.

State-of-the-art APM tools provide a detailed white-box
view into EA system stacks—ranging from system-level mon-
itoring (e.g., CPU, memory and network utilization) up to
detailed execution traces also spanning multiple nodes includ-

In Proceedings of the 12th European Dependable Computing Conference (EDCC '16)

voorn
Schreibmaschinentext

voorn
Schreibmaschinentext

voorn
Schreibmaschinentext
In Proceedings of the 12th European Dependable Computing Conference (EDCC '16)

voorn
Schreibmaschinentext

voorn
Schreibmaschinentext

voorn
Schreibmaschinentext

voorn
Schreibmaschinentext

voorn
Schreibmaschinentext

voorn
Schreibmaschinentext

voorn
Schreibmaschinentext

ing the client devices in distributed EAs. Figure 1 depicts an
excerpt of a real trace from an example system. Analysis of
the given trace reveals an N+1 problem in the application:
one database query with a larger result set is followed by
a sequence of short database queries to items obtained in the
result set of the initial query [18]. The induced communication
overhead could be avoided using a query with join operator, to
fetch all the data at once. Common APM tools represent the
execution traces with software method caller/callee relation-
ships as call trees. Each method execution is augmented by
additional runtime information such as the measured response
time, exclusive time,' and CPU time.

As previously mentioned, performance problems in EAs
are common. Usually, these problems manifest themselves by
symptoms such as increased service response times. It is the
task of the APM expert to diagnose such a problem, i.e., to
identify its respective root cause(s). It can be assumed that a
trace as depicted in Figure 1 is or can be collected for each
request to a system-provided service. The common procedure
is to manually inspect execution traces in a representation as
depicted in Figure 1. It needs to be emphasized that this may
include hundreds or thousands of traces. It can be easily seen
that this task is extremely time-consuming and error-prone.
Moreover, APM experts tend to see the same problems (anti-
patterns), such as the one in Figure 1, over and over again,
because they represent the common pitfalls that happen often
in practice.

Before receiving initial execution traces, the APM expert
has already made major decisions regarding the level of
detail visible in execution traces. The main goal of the
initial configuration is to find the right balance between the
monitoring overhead and the quality of the obtained data. If
the quality of the obtained data is high, it becomes easier to
perform analysis and locate performance problems. However,
this comes with a price—the system perturbation, e.g., in terms
of monitoring overhead, rises. This overhead is inevitably
introduced by the APM tool, but is consciously accepted as
far as it provides meaningful information for later analysis.
The problem is that the initial configuration usually requires a
large number of parameters that are used to define the behavior
of the monitoring tool. Even if the analysis is performed by
an expert who has the required experience in performance
problem detection and root cause analysis, it can take several
tries to figure out the right configuration that will provide
adequate results, while inducing the minimal possible amount
of overhead. In case the problem cannot be diagnosed based on
the current information, the APM tool needs to be instructed
to refine the instrumentation, e.g., to get a higher resolution
of caller/callee relationships. In case of very large systems,
the diagnosis procedure becomes an even more daunting task.
Furthermore, analysis results for one trace cannot be re-used
for the next one, and every problem must be treated as unique,
although it might be similar to some previous ones.

' A method’s exclusive time is the difference between its response time and
the total response times of the methods invoked by it.

EA System

Node n
Node 1
JVM
App 1 El App 2 EI
b 7y)
Moﬁitoﬁng Tool
> P
C (&> Dynamic .
= [Instrumentation API Labeling
A
APM Instrumentation
Data Refinement Request

A 4

‘ digsnoseit

> Result
Formalized APM 'G - Domain and
Expert Knowledge | Riew Technology

Fig. 2. Position of diagnoselT in monitoring

The core idea of our diagnoselT approach is to auto-
mate various of the current manual but recurring APM tasks
based on an extensible repository of APM expert knowledge.
This APM expert knowledge includes best practices for a
meaningful instrumentation of EAs and, particularly, strategies
to efficiently diagnose common and recurring performance
problems. Being connected to an APM tool, diagnoselT auto-
matically analyzes incoming execution traces and instructs the
APM tool to refine the instrumentation to ask for additional
information if needed. At the same time, diagnoselT makes
sure that at every point in time a meaningful tradeoff between
data quality and system perturbation is satisfied. Depending
on the current data quality, diagnoselT may give high-level
results of root causes such as the slowest method in the trace
or very detailed natural language results such as an object-
relational (O/R) mapping configuration error in a specific tech-
nology (e.g., Hibernate). Results that are reported comprise
two aspects: a.) qualitative information and b.) quantitative
information. Qualitative information contains information like
a problem’s location, type, anti-pattern, and details on its man-
ifestation, while quantitative information contains the impact
of the problem, e.g., response and execution times, counts of
calls, etc.

The core elements of our approach are that diagnoselT
i.) automates the steps of diagnosing common and recurring
performance problems based on an extensible set of APM
expert knowledge, ii.) provides a human-understandable report
of the root cause, iii.) manages a meaningful instrumentation
of the EA, and iv.) is independent of any specific APM tool.

III. DIAGNOSEIT APPROACH

A high-level view on the diagnoselT approach is depicted
in Figure 2. diagnoselT receives performance measurements
from APM tools, including detailed execution traces. In case
a performance problem is detected, based on the given infor-
mation, diagnoselT employs strategies from formalized APM
expert knowledge to diagnose the problem and reports results.
If additional information is needed, a request is sent to the
respective APM tool. A dedicated component (Instrumentation
Quality Manager—IQM) takes care of a reasonable trade-
off between the requested/provided information detail and the
system perturbation (including overhead).

It is expected that the underlying APM tools support i.)
dynamic instrumentation and ii.) API labeling. Dynamic in-
strumentation allows changes to the monitoring configurations
(including instrumentation) at runtime without the need to
restart the system. API labeling is used for identifying the
nature of performance problems, for example, which API is
used—e.g., Hibernate, JDBC. If any of these features is not
available, diagnoselT will work with the data that is available.
It needs to be emphasized that diagnoselT works on any
quality of the provided data. However, the higher the quality,
the more detailed the diagnosis results will be.

The diagnosis of a problematic trace is performed using an
extensible set of rules contained in the formalized APM expert
knowledge (Figure 2). Rules are organized hierarchically and
can be grouped into i.) generic and ii.) domain/technology-
specific rules. Generic rules are used to narrow down the prob-
lem location up to a level which is independent from a specific
domain or technology. Domain- and technology-specific rules
provide more details, depending on the underlying system’s
specifics. Figure 3 illustrates the rule-based diagnosis process
based on the example from Section II (Figure 1).

: Instrumentation
! Trace A Refinement
+ ' Request
y ' i Domain- and
ioev;:; | technology-specific
i analysis
remote 4‘
calls ,i~
P
I
: RS
i HA(
1 L]
! i----1p|Result
i Hibemate
Generic analysis |

Fig. 3. Exemplary rule-based trace diagnosis

The execution of each rule contributes additional insights
into the diagnosis result. For example, a very basic rule
identifies the slowest method (i.e., the one with the highest
response or exclusive time) in a trace. Next we need to
obtain more details on the problem, e.g., “Is it just one
method invocation or an invocation of multiple methods?”,
“How often is it invoked/are they invoked?”, “Are remote

calls involved?”. In our example, this includes the analysis of
response times and exclusive response times of the methods
invoked from searchTitle(String), i.e., a set of executeQuery()
methods. Among others, the rule for the “N+1” problem
will be executed subsequently. It will obtain and analyze
the statements executed by these methods. If they show
the typical N+1 symptoms, diagnoselT will report this and
suggest how it can be solved. In case respective information is
available, domain- and technology-specific rules are executed
to semantify the root cause. For example, there can be a
one-to-many object relationship in the monitored application
between this one object and a collection of objects, that is
lazy-loaded by an O/R mapper such as Hibernate. In case
additional information about technologies (e.g., O/R libraries)
is made available by the underlying APM tool, diagnoselT can
provide recommendations on how to optimize their respective
configurations. Note that no state information is kept after the
analysis of a trace, but diagnoselT can group traces that have
similar results to reduce analysis report size.

Rules, presented here using Drools? engine syntax, follow
the schematic pattern shown in the listing (exemplified for the
N+1 problem):

rule “N+1_problem”
when
traceTaggedWithManySQLCalls ()
then
if (analyzeForNPlusOne ()) addTagNPlusOne ();

Rules are executed on the provided trace as long as the
trace satisfies the when clause in one of the rules. Every time
some rule finds a symptom in the trace, it will apply a tag
to it. This ensures that the analysis will progress without
executing the same rules again, avoiding detecting already
detected symptoms. In this sample, if the trace contains many
database calls, they will be analyzed. If they conform to the
common N+1 anti-pattern structure, the tag for N+1 will be
applied.

IV. RELATED WORK

Related work comes from the field of automatic perfor-
mance problem diagnosis, including both model-based and
measurement-based approaches, as well as diagnosis features
implemented in commercial APM tools.

A couple of works try to detect performance anti-patterns
[17], [18]. Trubiani et al. [19] formalize performance anti-
patterns as a set of rules, referring to elements in architectural
performance modeling languages and try to detect these anti-
patterns by analyzing models and prediction results. Similarly,
Parsons and Murphy [15] try to detect anti-patterns based on
models extracted from runtime measurements. Their work is
limited to JavaEE systems. Peiris and Hill [16] present an
approach which uses system performance metrics to detect
the one-lane bridge anti-pattern [17], but it does not provide
the root-cause. Wert et al. [21] propose to systematically
perform experiments to search for performance anti-patterns

2Drools, http://www.drools.org/

in software. The approach uses a decision tree to search for
anti-patterns based on symptoms detected in executed load
tests. The mentioned approaches focus either on architectural
performance problems or have not been designed for produc-
tion scenarios.

A couple of other approaches have been proposed to de-
tect performance problems during the testing phase. Problem
detection in measurement-based tools is often performed by
comparing the obtained data to manually defined thresholds
or thresholds created by the tool as a baseline. Jiang et al.
[10] compare results from load tests to a predefined baseline to
detect anomalies. Grechanik et al. [8] reduce the number of test
cases using machine learning techniques to select only those
tests that are meaningful for performance problem detection.
Based on results of these selected tests, they detect perfor-
mance bottlenecks. There are measurement-based approaches
that use regression testing to detect anomalies [6], [7], but they
do not focus on root cause analysis.

Various commercial (e.g., CA APM, Dynatrace, AppDy-
namics [11]) and open-source (e.g., [13], [20]) APM tools
exist. They usually support the detection of performance prob-
lems, e.g., using baselines based on historical data or manually
defined thresholds, as well as alerting features with only
limited support for automatic diagnosis. Some newer tools
going into a direction to diagnoselT have been announced [1],
[2]. However, to the best of our knowledge they do not provide
any semantification of problems and their analysis strategies
are not extensible.

V. CONCLUSIONS AND OUTLINE

Current APM practice is still determined by various manual
and recurring tasks, particularly when it comes to the con-
figuration and maintenance of APM infrastructures as well
as the diagnosis of performance problems. In this paper, we
have presented the preliminary work on our diagnoselT ap-
proach for expert-guided automatic diagnosis of performance
problems in enterprise applications. We are currently pursuing
this research in a collaborative project [14], with academic
and industrial partners. The current focus is on the trace-
based automatic diagnosis of performance problems based on
existing works on anti-pattern detection. In the near future,
we will focus on the inclusion of diagnosis strategies based
on adaptive instrumentation and, along with that, on the devel-
opment of efficient techniques that manage a trade-off between
measurement detail and system perturbation (IQM). In a later
stage, we plan to include system performance measures, e.g.,
CPU utilization. In addition to the outlined functional goals,
we plan to foster the interoperability between APM vendors.
One such initiative is an execution trace interchange format.
In addition to lab experiments with distributed EAs, we will
evaluate our approach on large-scale EAs provided by the
two associated industrial consortium partners. The developed
methods, techniques, and tool will be published under an
open-source license [14]. Currently, the working prototype,
integrated into the inspectIT APM tool, is available.

VI. ACKNOWLEDGEMENTS

This work is being supported by the German Federal
Ministry of Education and Research (grant no. 01IS15004,
diagnoselT) and by the Research Group of the Standard
Performance Evaluation Corporation (SPEC).

REFERENCES

[1] Instana. http://www.instana.com/.

[2] Ruxit. http://ruxit.com/.

[3] A. Brunnert et al. Performance-oriented DevOps: A research agenda.
Technical Report SPEC-RG-2015-01, SPEC Research Group — DevOps
Performance Working Group, Standard Performance Evaluation Corpo-
ration (SPEC), Aug. 2015.

[4] A. Avritzer, A. Bondi, and E. J. Weyuker. Ensuring stable performance
for systems that degrade. In Proc. 5th Int. Workshop on Software and
Performance (WOSP ’05), pages 43-51, 2005.

[5] A. B. Bondi. Foundations of Software and System Performance
Engineering: Process, Performance Modeling, Requirements, Testing,
Scalability, and Practice. Addison-Wesley Professional, 2014.

[6] L. Bulej, T. Kalibera, and P. Tama. Repeated results analysis for
middleware regression benchmarking. Performance Evaluation, 60(1-
4):345-358, May 2005.

[7]1 K. Foo, Z. M. Jiang, B. Adams, A. Hassan, Y. Zou, and P. Flora. Mining
performance regression testing repositories for automated performance
analysis. In Proc. 10th Int. Conference on Quality Software (QSIC 2010),
pages 32-41, 2010.

[8] M. Grechanik, C. Fu, and Q. Xie. Automatically finding performance
problems with feedback-directed learning software testing. In Proc. 34th
Int. Conference on Software Engineering (ICSE ’12), pages 156—166.
IEEE Press, 2012.

[9]1 L. Grinshpan. Solving Enterprise Applications Performance Puzzles:
Queuing Models to the Rescue. Wiley-IEEE Press, 2012.

[10] Z. M. Jiang, A. Hassan, G. Hamann, and P. Flora. Automated per-
formance analysis of load tests. In /IEEE Int. Conference on Software
Maintenance, (ICSM 2009), pages 125-134, 2009.

[11] J. Kowall and W. Cappelli. Magic quadrant for application performance
monitoring, 2014.

[12] D. A. Menascé and V. A. Almeida. Capacity Planning for Web Services:
Metrics, Models, and Methods. Prentice Hall, 2002.

[13] NovaTec Consulting GmbH. inspectIT. http://www.inspectit.eu/.

[14] NovaTec Consulting GmbH and University of Stuttgart. diagnoselT.
http://diagnoseit.github.io/.

[15] T. Parsons and J. Murphy. Detecting performance antipatterns in
component based enterprise systems. Journal of Object Technology,
7(3):55-91, 2008.

[16] M. Peiris and J. H. Hill. Towards detecting software performance anti-
patterns using classification techniques. SIGSOFT Softw. Eng. Notes,
39(1):1-4, Feb. 2014.

[17] C. U. Smith and L. G. Williams. Software performance antipatterns.
In Proc. 2nd Int. Workshop on Software and Performance (WOSP ’00),
pages 127-136, 2000.

[18] C. U. Smith and L. G. Williams. More new software antipatterns: Even
more ways to shoot yourself in the foot. In 29th International Computer
Measurement Group Conference, pages 717-725, 2003.

[19] C. Trubiani and A. Koziolek. Detection and solution of software
performance antipatterns in Palladio architectural models. In Proc. 2nd
ACM/SPEC Int. Conf. on Performance Engineering (ICPE '11), pages
19-30, 2011.

[20] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A framework
for application performance monitoring and dynamic software analysis.
In Proc. 3rd ACM/SPEC Int. Conf. on Performance Engineering (ICPE
’12), pages 247-248, 2012.

[21] A. Wert, J. Happe, and L. Happe. Supporting swift reaction: Automat-
ically uncovering performance problems by systematic experiments. In
Proc. of the 2013 Int. Conf. on Software Engineering (ICSE ’13), pages
552-561, 2013.

