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ABSTRACT

Latent heat fluxes (LHF) play an essential role in the global energy budget and are thus important for

understanding the climate system. Satellite-based remote sensing permits a large-scale determination of LHF,

which, among others, are based on near-surface specific humidity qa. However, the qa random retrieval error

(Etot) remains unknown. Here, a novel approach is presented to quantify the error contributions to pixel-level

qa of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data, version 3.2 (HOAPS,

version 3.2), dataset. Themethodology makes use of multiple triple collocation (MTC) analysis between 1995

and 2008 over the global ice-free oceans. Apart from satellite records, these datasets include selected ship

records extracted from the Seewetteramt Hamburg (SWA) archive and the International Comprehensive

Ocean–AtmosphereData Set (ICOADS), serving as the in situ ground reference. TheMTCapproach permits

the derivation of Etot as the sum of model uncertainty EM and sensor noise EN , while random uncertainties

due to in situ measurement errors (Eins) and collocation (EC) are isolated concurrently. Results show an Etot

average of 1.1 6 0.3 g kg21, whereas the mean EC (Eins) is in the order of 0.5 6 0.1 g kg21 (0.5 6 0.3 g kg21).

Regional analyses indicate a maximum of Etot exceeding 1.5 g kg
21 within humidity regimes of 12–17 g kg21,

associated with the single-parameter, multilinear qa retrieval applied in HOAPS. Multidimensional bias

analysis reveals that global maxima are located off the Arabian Peninsula.

1. Introduction

Besides shortwave and longwave radiative fluxes, the

heat transfer between ocean and atmosphere is com-

posed of turbulent sensible and latent heat fluxes (SHF

and LHF, respectively). On a global average, LHF

represents the primary contributor for compensation of

the ocean’s energy gain by radiation fluxes over the

ocean (Schulz et al. 1997) and hence for the closure of

the surface energy budget. LHF considerably influences

the oceanic heat balance and represents a vital source in

terms of altering the atmospheric circulation and the

overall hydrological cycle on seasonal to multidecadal

time scales (Chou et al. 2004). The understanding of the

underlying physical processes crucially depends on the

ability to accurately measure the ocean surface heat

fluxes. The latest assessment report of the Intergovern-

mental Panel on Climate Change (IPCC), for example,

underpins the role of heat transfer between ocean and

atmosphere in driving the oceanic circulation. It stresses

that flux anomalies can impact water mass formation

rates and alter oceanic and atmospheric circulation

(IPCC 2013).

Thus, reliable long-term global LHF climate data re-

cords are needed to overcome this issue, serving as a

verification source for coupled atmosphere–ocean gen-

eral circulation models and climate analysis (Schulz et al.

1997). Similarly, LHF datasets represent a substantial

input component to assimilation experiments, such as the

oceanic synthesis performed by the German contribution
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to Estimating the Circulation and Climate of the Ocean

(GECCO; e.g., Köhl and Stammer 2008).

Owing to a large spatial and interannual variability, as

well as spatial and temporal undersampling, Andersson

et al. (2011) elucidate that in situ LHF measurements

remain troublesome over the global ocean. Conclusions

within the Fifth Assessment Report (AR5; IPCC 2013)

also mention the insufficient quality of in situ observa-

tions when it comes to an assessment of turbulent heat

flux changes. Although voluntary observing ships (VOS)

provide the longest available in situ record, Gulev et al.

(2007) stress that VOS-based surface fluxes suffer from

uncertainties associated with the ship observations, ap-

plied bulk aerodynamic algorithms, and the approach

used to produce surface flux fields. Owing to this, ran-

dom sampling uncertainties in LHF amount to several

tens of watts per square meter (Wm22) in poorly sam-

pled high latitudes (Gulev et al. 2007).

Despite global coverage and high temporal resolu-

tions, global atmospheric reanalyses have weaknesses,

such as those associated with a lack of spatial detail

(Winterfeldt et al. 2010). Reanalysis products are known

to exhibit shortcomings in remote regions due to little

in situ ground reference data. In consequence, they are

dominated by the atmospheric model (Gulev et al. 2007).

In well-sampled regions, by contrast, the reanalysis fields

are strongly constrained by observations.

To overcome the addressed issues, high-quality

remote sensing datasets are of supplementary need.

Several of these are currently available, incorporating

LHF-related parameters. They comprise, for example,

data of the climate Goddard Satellite-based Surface

Turbulent Fluxes, version 3 (GSSTF3; Shie et al. 2012);

the French Research Institute for Exploitation of the

Sea [L’Institut Français de Recherche pour l’Exploita-

tion de la Mer (IFREMER; Bentamy et al. 2003)]; the

Japanese Ocean Flux Data Sets with Use of Remote

Sensing Observations, version 2 (J-OFURO2; Kubota

et al. 2002); the SeaFlux. version 1, dataset (Clayson

et al. 2015); and the Hamburg Ocean Atmosphere Pa-

rameters and Fluxes from Satellite Data (HOAPS)

dataset (Andersson et al. 2010; Fennig et al. 2012). Their

retrievals include a bulk aerodynamic algorithm to pa-

rameterize LHF in terms of observed mean quantities,

that is, bulk variables (e.g., Fairall et al. 2003).

HOAPS is a completely satellite-based climatology of

precipitation, evaporation, related turbulent heat fluxes,

and atmospheric state variables over the global ice-free

oceans. The usefulness of the HOAPS climatology has

been tested among numerous intercomparison studies

and promising results have been published within

Kubota et al. (2003), Bourras (2006), Klepp et al. (2008),

Winterfeldt et al. (2010), and Andersson et al. (2011).

Bulk aerodynamic algorithms have a primary depen-

dency on specific humidity qa. Its accuracy directly im-

pacts the uncertainty of the derived LHF. The Global

Climate Observing System (GCOS 2010) has declared

the near-surface specific humidity as an essential climate

variable (ECV), indicating its prominent role in the

context of climate analysis (Prytherch et al. 2014). How-

ever, the remote sensing of qa remains challenging. The

retrieval process is complicated, as the measured signal

originates from relatively thick atmospheric layers (e.g.,

Schulz et al. 1997). Several studies have highlighted the

importance of the uncertainties in qa when investigating

satellite-based LHF discrepancies (e.g., Andersson et al.

2011; Bentamy et al. 2013; Bourras 2006; Smith et al. 2011),

implying a high potential for improvement. Further-

more, satellite validation analysis is per se difficult due

to the lack of knowledge of the ‘‘truth’’ (e.g., Zwieback

et al. 2012) and the introduction of representativeness

and collocation errors, owing to poor spatial coverage

of in situ measurements (Scipal et al. 2010).

To improve our understanding of uncertainties in

satellite products, the triple collocation (TC) technique

(e.g., O’Carroll et al. 2008) has been developed and

applied. TC is based on three individual datasets and

allows for isolating uncertainties of the underlying

datasets. The set of equations resulting from such a single

TC analysis permits solving for a maximum of three

unknown errors. However, the amount of random un-

certainties inherent in the SSM/I instruments (model

error EM and noise error EN) and the collocation pro-

cedure (random in situ error Eins and collocation error

EC) equals four.

Within the framework of a random error character-

ization of HOAPS qa, it will be demonstrated how to

overcome this issue by extending the traditional TC

analysis of O’Carroll et al. (2008) to a multiple TC

(MTC), based on two triplets of SSM/I and in situ re-

cords. This allows for the decomposition of the overall

random uncertainty in qa into estimates of EM and EN .

Their sum represents the random retrieval error Etot.

Terms Eins and EC are quantified analogously. The re-

sults constitute a fundamental basis for a full error

characterization of HOAPS LHF-related parameters,

which will enhance the analysis potential of HOAPS in

future scientific studies.

Section 2 presents the applied data sources in more

detail and introduces the MTC method. Section 3 shows

the results of the analyses, which include investigations

of latitudinal and seasonal error dependencies, as well as

their hot spots. Findings are related to recent publica-

tions within section 4, which also includes a qualitative

comparison of the advantages and drawbacks of the

applied data and the MTC approach.
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2. Data and methodology

a. Data

1) HOAPS-S DATA RECORDS

Apart from the sea surface temperature (SST), all

HOAPS parameters are derived from intercalibrated

Special Sensor Microwave Imager (SSM/I) passive mi-

crowave radiometers, which are installed aboard the

satellites of the U.S. Air Force Defense Meteorological

Satellite Program (DMSP). Therefore, HOAPS pro-

vides consistently derived global fields of freshwater

flux–related parameters, avoiding cross-calibration un-

certainties between different types of instruments. The

current HOAPS version includes SSM/I records be-

tween 1987 and 2008, during which a total number of six

instruments were in operational mode.

The SSM/I measurements are characterized by a

conical scan pattern, where the antenna beam intersects

the earth’s surface at an incidence angle of 53.18 and the

swath width spans roughly 1400km. The radiometers

measure emitted and reflected thermal radiation from

the earth’s surface and the atmosphere in form of up-

welling microwave brightness temperatures (TB) at four

different frequencies, namely, 19.35, 22.2, 37.0, and

85.8GHz. Whereas the 22.2-GHz channel considers

only the vertically polarized signal, the remaining three

channels measure both horizontal and vertical polarized

signals (Hollinger et al. 1990). The channel footprints

vary with frequency, ranging from elliptic 43 3 69 km2

(cross track/along track) at 19.35GHz to rather circular

13 3 15km2 at 85.5GHz. Each instrument completes

one orbit within 102min, implying that approximately

14 orbits per day are performed, allowing for 82% of

global coverage between 87.58S and 87.58N within 24 h.

Because of the inclined orbit of the satellites, a spatial

coverage of 100% is reached after 3 days.

Here, the focus lies on the scan-based HOAPS

(HOAPS-S), version 3.2, data record (Andersson et al.

2010; Fennig et al. 2012), which contains the HOAPS

geophysical parameters in the SSM/I sensor resolution.

HOAPS-S is based on a prerelease of the Satellite Ap-

plication Facility on Climate Monitoring (CM SAF)

SSM/I Fundamental Climate Data Record (FCDR). Its

extensive documentation, including product user man-

ual, validation report, and algorithm theoretical basis

document, is available online (Fennig et al. 2013).

Compared to HOAPS-3, HOAPS-3.2 has been tempo-

rally extended until 2008 and is based on a reprocessed

SSM/I FCDR. This reprocessing included a homogeni-

zation of the radiance time series by means of an im-

proved intersensor calibrationwith respect to theDMSP

F11 instrument. Earth incidence angle normalization

corrections were applied, following a method described

by Fuhrhop and Simmer (1996). Starting with the most

recent release (HOAPS-3.2), the HOAPS freshwater flux

climatology is now hosted by the EUMETSAT CM

SAF, whereupon its further development is shared with

theUniversity of Hamburg and theMax Planck Institute

for Meteorology (MPI-M), Hamburg, Germany.

The HOAPS near-surface qa relies on a direct four-

channel retrieval algorithm by Bentamy et al. (2003),

which is based on a modified version of the two-step

multichannel regression model by Schulz et al. (1993)

and its refinement by Schlüssel (1996). The underlying

inverse model is based on linear regression between

ship-based qa and TB, the former being linearly related

to the integrated water vapor content. In comparison to

earlier qa model versions, considerable regional and

seasonal biases were removed due to revised regression

coefficients. Compared to Schulz et al. (1993, 1997),

Bentamy et al. (2003) achieved a bias reduction of 15%

and registered an overall root-mean-square error (RMSE)

of 1.4gkg21 (originally 1.70gkg21).

From 1995 onward, records of up to three simulta-

neously operating SSM/I instruments are available (see

Fig. 2 in Andersson et al. 2010). As the MTC method

relies on multiple SSM/I being in operational mode

concurrently, the analysis is restricted to the time period

from 1995 to 2008, excluding data prior to 1995 due to a

comparatively poor in situ data coverage.

2) SWA-ICOADS SHIP DATA RECORDS

Hourly in situ data originate from the marine mete-

orological data archive of the German Meteorological

Service [Deutscher Wetterdienst (DWD)], supervised

by the Seewetteramt Hamburg (SWA, part of DWD). It

comprises global high-quality shipborne measurements,

as well as data provided by drifted andmoored buoys. In

the case of data gaps within the SWA archive, the in situ

data basis was extended at SWA by available In-

ternational Comprehensive Ocean–Atmosphere Data

Set (ICOADS) measurements (version 2.5; Woodruff

et al. 2011). These records contain hourly global mea-

surements obtained from ships, moored and drifting

buoys, and near-surface measurements of oceanographic

profiles.

ICOADS estimates of qa are based on wet-bulb

temperature measurements, typically using mercury

thermometers, which are often exposed in either (ven-

tilated) screens or sling psychrometers (Kent et al.

2007). Depending on the period, the thermometers are

also placed in aspirated and whirling psychrometers.

Term qa is eventually derived by applying the psychro-

metric formula. More information on VOS metadata

and sensor types is given in Kent et al. (2007).
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Several quality checks were performed at SWA prior

to the merged SWA-ICOADS data usage, which

permitted a quality index assignment to each observa-

tion. The procedure is briefly described in the following.

To ensure the maximum degree of reliance, the SWA-

ICOADS dataset underwent a flagging procedure based

on a verification scheme. Investigated and possibly

corrected features included a verification of the geo-

graphical position and, if given, the direction of travel. A

subsequent calculation of the ship speed allowed for a

consistency check of the spatial distances between sub-

sequent measurements. Distances exceeding individu-

ally defined tolerance levels were discarded from further

analysis. Next, climatological threshold checks were

performed for the parameters air temperature, dew-

point temperature, sea surface pressure, SST, and wind

speed. These thresholds were defined on the basis of the

ERA-Interim dataset (Dee et al. 2011). Temporal out-

liers and repetitive values were identified and removed.

Subsequently, inner consistency checks were carried

out, which also involved the identification of unphysical

relations between different parameters. In the final step,

spatial checks were applied to the aforementioned pa-

rameters to reject values that exceeded a maximum

distance (individually defined for each parameter) to

neighboring ship reports. The final outcome of all con-

sistency checks was converted to internationally recog-

nized quality flags [see standards defined by the World

Meteorological Organization (WMO)].

Only ship records from the merged SWA-ICOADS

database are selected for the subsequent analysis, in

order to have a consistent, globally distributed dataset as

the ground reference. This decision is legitimate due to

the vast amount of available in situ measurements and

prevents blending data originating from different kinds

of platforms. The approach of ship measurements (in

situ, as of now) as a ground comparison has been widely

accepted and forms the basis of numerous other colloca-

tion analyses performed to date (e.g., Iwasaki and Kubota

2012; Jackson et al. 2006). To minimize their underlying

error, only so-called special (e.g., research vessels) and

merchant vessels are extracted. CompareWMO(2013) for

more information on the ship categorizations. In addition,

only elements that appear to be correct (WMOquality flag

1) are considered during further analysis.

For comparison, MTC analysis using only buoy re-

cords was performed, which did not significantly change

the magnitudes of the decomposed random errors (not

shown). This conclusion may not apply to systematic

uncertainties, suggesting the inclusion of buoy records

when it comes to HOAPS bias analysis.

A height correction of the in situ humidities to the

HOAPS reference (10mMSL, assuming neutral stability)

is not performed, although this could be done by means of

VOS metadata (WMO 2013). The correction is not per-

formed, as the introduced uncertainty, owing to the in-

termittent violation of the equivalent neutral stability

assumption, may mask or even exceed the expected im-

provement associated with the bias correction. To quali-

tatively assess the impact of height adjustments of different

complexity on Eins, an investigation of collocated ship-

based qa values originating from matchups of a subset of

SWA-ICOADS andERA-Interim data between 1995 and

2004 was carried out. An average ship-based qa measure-

ment height of 18m was chosen (Kent et al. 2014). Over

the Baltic Sea, which is representative of an extratropical

ocean basin, the absoluteqa correction to 10m results in an

increase of only 0.1 6 0.2 gkg21 [full stability correction;

0.1 6 0.1gkg21 (neutral stability correction)], performed

on the basis of a turbulence algorithm without SST cor-

rection (Bumke et al. 2014). This correction-induced qa

increase lies within the uncertainty range suggested by

Kent et al. (2014).

Indeed, Jackson et al. (2009) found an increase of qa

by more than 0.2 g kg21 when comparing inversion-

corrected AMSU-A and SSM/I (AMMIc) retrievals to

original and subsequently to height-corrected ICOADS

ship-based qa. However, it led to an even larger bias

of 20.29 g kg21 (0.47 g kg21) and slightly larger RMSE

in comparison to uncorrected in situmeasurements. This

supports the argument that random variability is in-

troduced by the height correction itself due to its de-

pendency on the correction algorithm and associated

(estimated) input bulk variables. Similar findings are

published in Berry and Kent (2011), who argue that the

height adjustment may be masked by the natural vari-

ability of qa (their Fig. 6). A respective noise increase is

also presented in Prytherch et al. (2014). Kent and Berry

(2005) show that the random error estimates are on

average reduced by 8% (or 7%), if the full stability-

dependent height correction is carried out (or assuming

neutral stability). However, in comparison to the cal-

culated total random error of 1.16 0.1 g kg21 published

in Kent et al. (1999), this corresponds to an error re-

duction of just 0.1 g kg21. This finding, combined with

those presented in Jackson et al. (2009) and Berry and

Kent (2011), justifies the conservation of the original

in situ qa within this work.

b. Previous publications involving TC

The need for TC-based error estimates related to

different geophysical datasets was first realized by

Stoffelen (1998), who suggested its application for the

calibration of the European Remote-Sensing Satellite-1

(ERS-1) scatterometer winds using wind speeds origi-

nating from the National Oceanic and Atmospheric
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Administration (NOAA) buoys and forecast model

winds from the National Centers for Environmental

Prediction (NCEP). Similarly, Caires and Sterl (2003)

carried out TC analysis to validate significant wave

height and wind speed fields from ERA-40 against al-

timeter measurements of buoys, ERS-1, and the Ocean

Topography Experiment (TOPEX/Poseidon, NASA).

Janssen et al. (2007) applied the TC method for wave

height analyses. The introduction of the TCmethod into

the field of satellite-based soil moisture research (Scipal

et al. 2010) demonstrates the approach’s potential for a

wide range of applications.

The strategy of this study to apply MTC analysis to

HOAPS qa follows that of O’Carroll et al. (2008), who

collocated data from the Advanced Along-Track Scan-

ning Radiometer (AATSR), Advanced Microwave

Scanning Radiometer for Earth Observing System

(AMSR-E), and buoy SST to successively derive the

standard deviation of error on each observation type.

c. MTC methodology

The satellite error decomposition based on MTC

analysis relies on matchups of triplets involving both

SSM/I and in situ records. These triplets are created on

the basis of conventional double collocation in a first

step, resulting in paired matchups of HOAPS and ship

qa records between 608S and 608N. The collocated pairs

are based on the so-called nearest neighbor approach;

that is, HOAPS qa pixels are assigned to respective ship

observations closest in time and space.

Ship records and up to three simultaneously available

SSM/I instruments eventually allow for performing

MTC analysis. A setup sketch of the triplets contributing

to the MTC is shown in Fig. 1 (left panel). Triplets in-

corporating two independent ship measurements and

oneHOAPS pixel represent the first TC setup (left-hand

side,V1 as of now), whereas a single ship record and two

HOAPS pixels of independent SSM/I instruments form

the second triplet structure (right-hand side, V2 as of

now). In the case of V1, matchups incorporating two

separate measurements obtained from the same vessel

are excluded from further analysis. Although repre-

senting a major constraint in terms of amounts of

available data, this approach ensures a complete inde-

pendence of both in situ records. Figure 1 (right panel)

shows the distribution of the overall V1 triplet amounts.

Clearly, the in situ data density is highest in mid-

latitudinal, coastal regions.

Temporal and spatial collocation thresholds are set to

180min and 50 km, respectively, following a statistical

investigation by Kinzel (2013). For this, the author an-

alyzed temporal decorrelation lengths of hourly ship qa

between 1995 and 1997, exemplarily for R/V Polarstern.

The analysis was confined to the midlatitudes, as these

regions cover the tracks of extratropical storms, which

are associated with the largest fluctuations of LHF-

related parameters in time (e.g., Romanou et al. 2006).

Specifically for qa, Kinzel (2013) obtained a temporal

decorrelation scale of approximately 6h. Assuming an

average ship speed of 15–20kmh21, this resulted in a

spatial decorrelation scale of 90–120km. These numbers

are well above the chosen collocation thresholds.

As the representation of various atmospheric states

should be the same for both V1 and V2, TC V2 triplets

are considered only, if their ship record and either one of

the participatingHOAPS pixels contribute toV1 as well.

Triplets including outliers are rejected from further

analysis on the basis of 3s standard deviation tests. Ship

measurements within V1 and V2 represent the in situ

ground reference during this filtering process.

Subsequently, a bias correction with respect to the

in situ source is performed. Its importance for TC

FIG. 1. (left) Sketch of the applied MTC V1 and V2 in preparation for the qa error decomposition. The red diamonds represent a single

ship record. Depending on the MTC version, a ship record is being collocated to a second, independent ship measurement and a HOAPS

pixel (V1, left) or to pixels of two different satellite instruments (V2, right). Temporal and spatial collocation thresholds between the

center of a HOAPS pixel and both in situ sources (V1) as well as between in situ measurement and both centers of the SSM/I records (V2)

were set to 180min and 50 km (d1, d2), respectively. (right)Distribution of TCV1 triplets (#) between 1995 and 2008 throughout the global

oceans. Note that the color bar is nonlinear.
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analysis is highlighted in, for example, O’Carroll et al.

(2008). It implies that the results of the qa error de-

composition exclusively contain random uncertainties,

as the systematic error is removed.

In preparation for the satellite error decomposition,

the variances of differences between two data sources x

and y, Vxy, are quantified, following O’Carroll et al. (2008):

V
xy
5 var(x)1 var(y)2 2 cov(x, y). (1)

That is, Vxy is given by the sum of the individual var-

iances, corrected by the error covariance. In case the

errors of x and y are not totally independent, the re-

spective covariance terms differ from zero and hence

impact the satellite error decomposition.

At this stage, the MTC approach requires the as-

sumption of an error model underlying every data

source, which allows for expressing each term shown in

Eq. (1) as a sum of supposedly contributing random

errors. The following error model setup for ships (s) and

satellites (sat) is formulated as

E
s
5E

ins
, (2a)

E
sat

5E
M
1E

N
. (2b)

The collocation error (EC) is neglected at this stage, as

only those random error sources are listed in Eqs. (2a)

and (2b), which are always inherent to ship and

satellite data.

Recall thatEins,EM, andEN denote the random errors

associated with the in situ measurement, the satellite

retrieval model, and the sensor noise, respectively.

Given three independent data sources per TC version,

Eq. (1) can be applied six times, requiring contributions

of EC. For this, the relative contribution of each data

source to EC does not need to be specified for the MTC

application and is thus arbitrarily assigned to either

Eq. (2a) or Eq. (2b) before utilizing Eq. (1).

On the basis of Eqs. (2a) and (2b), the application of

Eq. (1) yields the following variances of differences for

TC V1 [Eqs. (3a)–(3c)] and TC V2 [Eqs. (4a)–(4c)]:

V
s1,s2

5 2(E
ins
)2 1 (E

C
)2 , (3a)

V
s1,sat

5 (E
ins
)2 1 (E

M
)2 1 (E

N
)2 1 (E

C
)2 , (3b)

V
s2,sat

5 (E
ins
)2 1 (E

M
)2 1 (E

N
)2 1 (E

C
)2 , (3c)

V
s,sat1

5 (E
ins
)2 1 (E

M
)2 1 (E

N
)2 1 (E

C
)2 , (4a)

V
s,sat2

5 (E
ins
)2 1 (E

M
)2 1 (E

N
)2 1 (E

C
)2, and (4b)

V
sat1,sat2

5 2(E
N
)2 1 (E

C
)2 . (4c)

Terms EM, EN , and EC are assumed to be satellite

independent. Regarding EM, this is straightforward, as

the exact same algorithm is applied to all SSM/I mea-

surements to retrieve qa. Concerning EN , the SSM/I

sensor sensitivities are shown in the aforementioned

validation report (Fig. 2 in Fennig et al. 2013). The ref-

erenced figure does not indicate aEN dependency on the

instruments. As toEC, the double and triple collocations

rely on constant collocation criteria and the channel-

dependent footprint sizes do not differ among the

instruments.

Given the magnitude of Vxy on the left-hand side of

Eqs. (3a)–(4c), the individual random errors can be

quantified successively. To solve Eq. (4c) for EC, it is a

prerequisite to calculateEN synthetically bymeans of an

arbitrary daily HOAPS-S record of TB. For this, a ran-

dom Gaussian noise with zero mean and a variance

equal to the channel noise is simulated and subsequently

added to the daily TB record. The assumption of

Gaussian-distributed sensor sensitivities is widely ac-

cepted in literature and, for example, applied in Carsey

(1992). Term EN represents the standard deviation of

the difference between the original and the synthetically

derived qa with a value of 0.3 g kg21. As EN is a feature

of the radiometer itself, it is independent of both plat-

form and regime. Given EC, Eins is derived via Eq. (3a).

Subsequently, both EC and EN suffice as input to solve

Eqs. (3b)–(4b) for EM. The resulting arithmetic mean of

all four solutions is assumed to be the best estimate of

EM. This is reasonable, as a separate analysis revealed

that the standard deviations among the four EM solu-

tions are in the order of 0.02–0.18 g kg21, corresponding

to only 1%–16% of Etot (not shown).

Because of the independence of the individual un-

certainty components, the retrieval error Etot results

from

E
tot

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(E

M
)2 1 (E

N
)2

q
, (5)

which is dominated byEM due to the relatively smallEN .

As expressed by Eqs. (3a)–(4c), Etot cannot be iso-

lated using a singleTC approach, that is, a system of only

three equations. This demonstrates the advantage of the

applied MTC analysis regarding a successful decomposi-

tion of all random errors inherent to HOAPS qa.

In preparation for applying Eqs. (1)–(5), all triplets

contributing to theMTC analysis are sorted in ascending

order (with respect to ‘‘sat’’ in V1 and ‘‘sat1’’ in V2) and

divided into 20 bins, respectively. All bins contain an

equal amount of matchups, whereas the amount con-

tributing to V1 differs from that of V2. Consequently,

the bin widths are not constant, ranging from 0.37

to 1.86 gkg21. The uncertainty decomposition using

Eqs. (1)–(5), including the bias correction, is carried out
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separately for each bin. The resulting bin-dependent

error magnitudes shown in sections 3a and 3b are

arithmetic means of 10 individual error decomposition

analyses, whereby 30% of bin data are randomly drawn

to derive Vxy. More precisely, the decomposition is

based on 18 005 triplets per TC version per bin.

3. Results of random error decomposition

First, the focus lies on the qa-dependent random un-

certainty decomposition. To assess the regional de-

pendency of the decomposed errors, a differentiation

between tropics (08–308N/S) and extratropics (308–
608N/S) is presented next. To investigate the temporal

impact on the error statistics, winter (DJF), spring

(MAM), summer (JJA), and autumn (SON) are con-

sidered separately. Furthermore, a multidimensional

bias analysis approach helps to localize qa uncertainty

hot spots in space.

a. qa-dependent random error decomposition

Figure 2 shows the result of the HOAPS qa error de-

composition as a function of qa itself. The retrieval error

Etot (in red) converges to a minimum of approximately

0.7 g kg21 for the smallest qa (relative uncertainty of

23%) and a global maximum partly exceeding 1.5 g kg21

(relative uncertainty up to 13%) for qa between 12 and

17 gkg21. Its global average value is given by 1.1 6
0.3 g kg21 (14% of relative uncertainty).

Because of the minor impact of EN on Etot [Eq. (5)],

the satellite’s retrieval model uncertainty EM (shown in

blue) closely resembles Etot throughout the range of qa

and its mean is given by of 1.0 6 0.3 g kg21.

The qa error decomposition further reveals that EC,

shown in black, fluctuates around 0.5 g kg21 for qa below

10 gkg21, above which a positive trend causes EC to

maximize locally (0.7 gkg21) within a qa regime of 14–

17gkg21. Its average value is given by 0.5 6 0.1 gkg21,

representing a relative uncertainty of 7%. In comparison

FIG. 2. Decomposition of satellite- and MTC-related qa error terms, based on MTCmatchups between 1995 and

2008, equatorward of 608N/S. The decomposition is based on 18 005 triplets per TC version per bin, which results in

a total number of 720 200 triplets. The x-axis values of the decomposed randomuncertainties are the bin-dependent

arithmetic means of the satellite records, which constitute a part of the TC1 triplets. The strings at the top indicate

overall arithmetic means of the individual random error contributions. Term Esum represents the sum of Etot, EC ,

and Eins (legitimate due to the independence of the individual uncertainty components) and allows for a direct

comparison to the error bars shown in Fig. 3. Recall that EN was synthetically derived (see text for further details)

and thus remains constant throughout the qa range. The in situ component is based on selected, quality-controlled

ship measurements only. Standard deviations (std) of all decomposed random uncertainties are not shown, as the

bin-dependent decomposition is very stable and std maxima are in the order of 0.02 g kg21 only.
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toEtot, the overall stability of EC is noticeable and was to

be expected, as the collocation criteria were kept constant.

However, its maximum for qa values of 14–17gkg21 in-

dicates the largest uncertainty due to the collocation pro-

cess and, consequently, the MTC approach. This humidity

regime is confined to rather narrow latitudinal bands over

the subtropical oceanbasins and extratropical fronts. These

strong gradients point out the limits of the chosen collo-

cation criteria. They become smaller in the vicinity of the

equator, as is reflected in declining EC for the largest qa.

Whereas 0.4 6 0.1 g kg21 represents the mean of Eins

(shown in yellow) for qa below 10 gkg21, its average

within (sub)tropical surface humidity regimes is 0.9 6
0.1 g kg21. In the inner tropics, it even exceeds Etot.

Overall, relative uncertainties range between 4% and

8%, emphasizing a linear relationship between in situ

measurement uncertainties and the magnitude of qa. Its

absolute average is given by 0.6 6 0.3 g kg21.

The increase of Etot from 0.7 g kg21 in low-humidity

regimes up to 1.8 close to 14 g kg21 and its subsequent

gradual decay is also mirrored in Fig. 3, showing the bias

of qa (HOAPS minus in situ) and its standard deviation

as a function of HOAPS qa. Accordingly, it is evident

that these standard deviations, which are shown as black

bars, maximize for qa ranging between 12 and 14 g kg21

(’2.3 gkg21), similar to Jackson et al. (2009, their

Fig. 6b). The smallest spread of 1 gkg21 occurs for qa of

3 g kg21. As in Fig. 2, the spread of the qa bias clearly

reduces to ’1.7 g kg21 (Fig. 3) in tropical qa regimes,

implying a reduction in Etot. The slope of the best fit

shown in Fig. 3 is virtually zero, supporting the validity

of the underlying retrieval model on a global scale. Yet,

regime-dependent retrieval weaknesses exist. In con-

trast to Etot in Fig. 2, the bars shown in Fig. 3 reflect the

overall bin-dependent random uncertainty. Apart from

the retrieval error Etot, it also incorporates the effects of

EC and Eins. This can be considered a disadvantage in

the representation of Fig. 3 and again strengthens the

information content resulting from the MTC analysis

(Fig. 2), which allows for a successive error decompo-

sition. An accumulation of Etot, EC, and Eins for the

critical qa range in Fig. 2 results in an overall random

uncertainty of 2.2 g kg21 (i.e., Esum), which closely re-

sembles the observed equivalent of 2.3 g kg21 in Fig. 3.

Bentamy et al. (2013) and Roberts et al. (2010) dem-

onstrate that their SSM/I qa retrievals exhibit an explicit

SST dependency. The authors show that an inclusion of

SST into their neural network (Roberts et al. 2010) and

multiparameter (Bentamy et al. 2013) approach con-

siderably reduces the noise of qa differences. To de-

termine the overall impact of SST on the qa retrieval

error within the underlying work, an SST bias correc-

tion with respect to the in situ data was performed and

the analyses presented in section 2c were repeated. The

results indicate thatEtot is reduced by just 2%within the

critical humidity regime between 12 and 17 g kg21 (not

FIG. 3. Nonnormalized scatter density plot of qa bias (HOAPS minus in situ measurements;

g kg21), based on global double collocations between 1995 and 2008. Again, the in situ com-

ponent is composed of selected quality-controlled ships only. The temporal matchup threshold

was set to61 h, in contrast to Fig. 2. Black (transparent) squares indicate significant (insignificant)

bin biases (at the 95% level). Their standard deviations are given by the black bars.
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shown), suggesting a multiparamater approach to be of

secondary importance in this qa range. However, for

small (3–5 gkg21) and large (18–20 gkg21) qa margins,

the retrieval uncertainty is on average reduced by 9%

and 5%, respectively. SST-related qa uncertainty hot

spots (in an absolute sense) are found along the coasts of

Western Australia and northern Chile (SST ’ 208C),
where the total random qa uncertainty associated with

SST is up to 0.2 gkg21, that is, ’10% of the underlying

total uncertainty (not shown).

b. Seasonal and regional random error
decomposition

The distribution of Etot (Fig. 2) suggests that the un-

derlying model for retrieving qa exhibits both strengths

(small qa) and weaknesses (qa between 12 and 17 gkg21),

supporting the necessity of differentiating between dif-

ferent surface moisture and hence geographical re-

gimes when it comes to qa error decomposition. To

highlight regional error dependencies, Fig. 4 exem-

plarily confronts time series of decomposed errors

during boreal winter (DJF) within the extratropics

(308–608N/S, left panel) and the tropics (08–308N/S,

right panel). Table 1 summarizes all decomposed error

magnitudes, along with their standard deviation and

relative contributions (to the basin-mean qa) as a

function of region and season.

Focusing on the extratropics first (left panel), the av-

erage value of Etot is 0.8 6 0.1 gkg21 (16% relative

error). This order of magnitude is expected for an av-

erage qa of 5.2 6 0.4 g kg21 (Fig. 2). The overall un-

certainty introduced by Eins (by EC) is given by 0.3 6
0.1 g kg21 (5% relative error) [0.6 6 0.1 g kg21 (11%

relative error)]. A closer look at the different seasons for

extratropical latitudes (Table 1) indicates that retrieval

errors maximize during boreal autumn (SON, 1.1 6
0.1 g kg21, yet only 13% relative uncertainty). Term

Etot associated with the largest average qa during boreal

summer months (JJA, 10.0 g kg21) remains 0.1 g kg21

below the SON average. According to the constant in-

crease in retrieval errors with increasing qa, as illustrated

in Fig. 2, this was not to be expected. Strong positive

outliers in boreal autumnEtot, specifically in 1997 during

the evolving El Niño event, may explain this feature (see

below for explanation). As also suggested by Fig. 2, Eins

maximizes during boreal summer (0.7 g kg21), along

with the temporal qa maximum in the course of a year.

The local reduction inEC for qa values of 9–10 g kg
21, as

seen in Fig. 2, is well represented in the seasonal anal-

ysis. Hence, EC has a maximum of 0.7 gkg21 in SON,

whereas 0.6gkg21 is representative of extratropical boreal

summer months.

Comparing extratropical error characteristics to the

tropical counterpart (right panel) clearly demonstrates

the retrieval error dependency on boundary layer

moisture content. During boreal winter (Fig. 4, right

panel), the average tropical retrieval uncertainty is given

by 1.6 6 0.2 gkg21 (11% relative error), where the

FIG. 4. Time series of decomposed qa-related errors (g kg21) for winter (DJF) 1995–2008 within the (left) extratropics (308–608N/S) and

(right) tropics (08–308N/S), based on MTC analysis. Statistical values shown on the upper left-hand side of each panel are based on the

overall time period. Recall that the in situ uncertainty is based on only selected shipmeasurements. For the sake of simplicity,EN andEsum

are not shown.
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average of qa is 13.9 6 0.8 g kg21. This humidity range

corresponds to the moisture regime of the largest re-

trieval discrepancies (Fig. 2) and explains why Etot is

0.2–0.4 g kg21 larger in comparison to the remaining

seasons. During boreal winter, in situ (collocation) un-

certainties are on average 0.8 gkg21 (0.1 g kg21) larger

in comparison to the extratropical counterpart, yet

having relative contributions of only 7% (5%).

The regional confrontation of decomposed errors

shown in Fig. 4 and Table 1 clearly mirrors the error

dependency on the qa regime. In case of tropical lati-

tudes, this goes along with interannual variability in er-

ror magnitudes, due to their pronounced sensitivity to

qa, as is illustrated in Fig. 2.

In general, outliers within seasonal and regional time

series could possibly be linked to strong El Niño and

La Niña events, which are identified by means of

the oceanic Niño index (Climate Prediction Center,

NOAA), representing SST anomalies within the

Niño-3.4 region (58S–58N, 1708W–1208W). Such a link

may exist for the tropical boreal autumn in 2007 (Etot

0.4 g kg21 larger than seasonal average, not shown),

associated with a moderate La Niña event. Anoma-

lously low SSTs within the Niño-3.4 region, which are

associated with these events, were already persistent

during the preceding 8 months. This supports the hy-

pothesis that anomaly patterns may have propagated

toward the Atlantic Ocean (where the in situ data

density is highest) via atmospheric planetary Rossby

waves and may have caused a qa shift into humidity

regimes associated with larger qa retrieval uncer-

tainties. This mechanism may also be attributed to the

tropical boreal winter (1998) and the extratropical

boreal autumn (1997) (Etot being 0.2 g kg21 larger

than the seasonal averages), in line with the strong El

Niño event established several months earlier. The

effects of El Niño–Southern Oscillation (ENSO) tel-

econnections on air–sea interaction on a global scale

have been investigated by Alexander et al. (2002), for

example.

c. Regional random uncertainty hot spots

Figures 2–4 demonstrate the behavior of the decom-

posed errors as a function of qa only. To localize true hot

spots of Etot in space, however, the qa-dependent error

magnitudes shown in Fig. 2 cannot simply be transferred

to a global map, knowing only the average near-surface

humidity distribution. The Etot uncertainty pattern

rather depends on the dominating sources of un-

certainty, which are introduced by further atmospheric

state variables. A specific region may, for example, be

exposed to prevailing wind speeds, which enhance or

dampen the Etot illustrated in Fig. 2.

To overcome this issue and hence capture the overall

random qa uncertainty as a function of the simultaneous

atmospheric state, the analysis shown in Fig. 3 is ex-

panded by deriving qa biases as a function of wind speed,

SST, and water vapor path by means of double collo-

cation (not shown). These three parameters are avail-

able from HOAPS and allow a distinction of different

atmospheric regimes. As in Fig. 3, this supplemental

analysis results in bin-specific qa biases. Given all four

one-dimensional bias analyses, a four-dimensional bias

lookup table is constructed, where the dimensions cor-

respond to qa, wind speed, SST, and water vapor path.

Figure 5 (left panel) shows a sketch of this table in three-

dimensional space. Subsequently, all instantaneous

biases resulting from the double collocation procedure

are assigned to one of the 204 5 160 000 bins. If fewer

than 100 bias values are assigned to a bin, then its con-

tent is considered nonrepresentative and an interpola-

tion is carried out along all dimensions. The overall

random qa uncertainty for every bin (equivalent to Esum

in Fig. 2) is defined as the spread of all instantaneous

biases underlying every bin. In the last step, these ran-

dom uncertainties in qa are corrected for the relative

TABLE 1. Results of the seasonally dependent qa error decomposition (top: extratropics, bottom: tropics). Also shown are HOAPS

averages and their standard deviations (std) of qa, random errors associated with the retrieval (Etot), collocation (EC), and in situ source

(Eins; g kg
21). Relative (rel.) contributions to the regional-mean qa are given in brackets (%).

Decomposed errors/seasons DJF MAM JJA SON

Extratropics (308–608N/S)

HOAPS qa (average 1 std) 5.2 6 0.4 6.1 6 0.6 10.0 6 0.7 8.2 6 0.4

Etot [average 1 std (rel. contribution)] 0.8 6 0.1 (16%) 0.8 6 0.1 (14%) 1.0 6 0.1 (10%) 1.1 6 0.1 (13%)

Ec [average 1 std (rel. contribution)] 0.6 6 0.1 (11%) 0.5 6 0.1 (7%) 0.6 6 0.1 (5%) 0.7 6 0.1 (7%)

Eins [average 1 std (rel. contribution)] 0.3 6 0.1 (5%) 0.4 6 0.1 (7%) 0.7 6 0.1 (6%) 0.6 6 0.1 (6%)

Tropics (08–308N/S)

HOAPS qa (average 1 std) 13.9 6 0.8 15.0 6 1.0 17.4 6 0.8 16.1 6 0.7

Etot [average 1 std (rel. contribution)] 1.6 6 0.2 (11%) 1.4 6 0.3 (9%) 1.2 6 0.1 (6%) 1.4 6 0.3 (8%)

Ec [average 1 std (rel. contribution)] 0.7 6 0.1 (5%) 0.7 6 0.1 (4%) 0.8 6 0.4 (4%) 0.7 6 0.1 (4%)

Eins [average 1 std (rel. contribution)] 1.1 6 0.1 (7%) 1.2 6 0.2 (7%) 1.3 6 0.1 (7%) 1.2 6 0.1 (7%)
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contributions of Eins and EC (bin dependent, according

to Fig. 2) to exclusively focus on the random retrieval

error Etot. Applying all instantaneous HOAPS data to

this four-dimensional random retrieval uncertainty ta-

ble leads to a global qa random retrieval uncertainty

distribution, which is shown in Fig. 5 (right panel) for

1995–2008. Its area-weighted global average is 0.82gkg21.

As can be seen, the largest retrieval uncertainties

(with the exception of the global maximum off the

Arabian Peninsula and India) are found along sub-

tropical bands of both hemispheres, where they reach

values up to 1.5 g kg21. More specifically, the maxima

are located in regimes characterized by a mixture of

trade and shallow cumulus with thin cirrus (Rossow

et al. 2005; Oreopoulos and Rossow 2011), which seem

to introduce an additional uncertainty within the qa re-

trieval. At the same time, the average random retrieval

error of qa reduces toward the tropics, as is reflected in

Figs. 2 and 3.Overall, themagnitudes are consistent with

the total random uncertainties resulting from the error

decomposition (Fig. 2). This suggests that qa itself has

the largest influence on qa-related Etot, whereas the

impacts of wind speed, SST, and water vapor path are of

secondary order on a climatological scale.

The global qa random uncertainty maximum within

the Arabian Sea (up to 1.7 g kg21) is special, in as much

as concurrent mean wind speeds remain below 5ms21

throughout most of the year (apart from boreal summer

months, where monsoon-related wind speeds often ex-

ceed 12ms21). Further analyses revealed that the

spread of the qa bias as a function of wind speed is largest

for the smallest wind speeds. This may be due to an

enhanced decoupling of the vertical atmospheric col-

umn, introducing additional difficulties in the qa re-

trieval, which could explain the amplification of the

qa-related Etot in this region.

Summing up, the error characteristics show a clear

regional (Figs. 2 and 5, right panel) and seasonal (Fig. 4;

Table 1) dependency. Total uncertainties are especially

large in subtropical latitudes (Fig. 5, right panel), par-

ticularly during boreal winter (DJF), when qa remains

in a near-surface humidity range associated with the

largest qa retrieval uncertainties (12–17 g kg
21).

4. Discussion

a. qa retrieval uncertainties

Figures 2–4 suggest that the retrieval exhibits the

largest uncertainties for particular atmospheric and

oceanic conditions. Possible explanations for this re-

trieval performance will be discussed in the following.

Note that all cited publications, including RMSE es-

timates of qa retrievals, neither explicitly perform a

bias correction with respect to the in situ reference, nor

have Ec and Eins been removed. In consequence, the

resulting random uncertainty estimates (5̂Esum) exceed

the true random retrieval error (5̂Etot), which remains

unknown. This highlights the benefit of the chosenMTC

approach.

Numerous qa retrievals have been presented to date

and intercomparisons have been carried out in the past.

The single-parameter, multilinear approach of Bentamy

FIG. 5. (left) Simple 3D sketch illustrating the procedure of assigning multidimensional mean biases (red circle) and respective spreads

(green error bar) to instantaneous HOAPS pixels of qa. The black circles along the three axes exemplarily represent the concurrent

atmospheric qa (x axis), water vapor path ( y axis), and wind speed (z axis). (right) Average instantaneous random retrieval uncertainty of

HOAPS qa (g kg21) for the time period 1995–2008. The illustrated estimates were derived from a 4D lookup table incorporating the

spread of instantaneous qa biases (HOAPSminus in situ), which was corrected for qa-dependent contributions ofEC andEins (according to

Fig. 2). This table (its simpler 3D version is shown on the left-hand side) was created to quantify the random retrieval uncertainty of each

HOAPS qa pixel, based on unique combinations of prevailing qa, wind speed, SST, and water vapor path values. The averages are

presented on a regular 18 3 18 grid.
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et al. (2003), which is used in HOAPS, considerably

improved the accuracy of qa in comparison to former

attempts presented in, for example, Liu (1986). The

latter took precipitable water as a proxy for the qa re-

trieval. Revised regression coefficients within Bentamy

et al. (2003), based on a more representative in situ

dataset, led to an average reduction in both qa bias

(15%) and its RMSE (’20%), favoring its successful

implementation and/or tuning in further studies (e.g.,

Andersson et al. 2010; Jackson et al. 2009; Kubota and

Hihara 2008).

A correlation coefficient of 0.96 between the inte-

grated water vapor content (w) and the boundary layer

humidity contribution (up to 500m MSL) shown in

Schulz et al. (1993) generally justifies the assumption of

an underlying linear relationship between w and qa.

However, this linear relationship is challenged by

Bourras (2006) (which in part also applies to the algo-

rithm of HOAPS), who elucidates two cases of vertical

qa profiles, where this linear dependency breaks down

and in consequence introduces large errors in qa. On the

one hand, his considerations target the decoupling of the

boundary layer moisture from higher atmospheric water

vapor contents, which may be identified by means of

local minima of vertical correlation profiles between

both parameters. On the other hand, Bourras (2006)

specifically addresses regions of deep convection and

associated retrieval deficiencies (see also Bentamy et al.

2013), where the assumption of most water vapor being

confined to the boundary layer is violated.

To overcome such retrieval errors, an inclusion of

nonlinear terms within the retrieval algorithms—as

presented in, for example, Jackson et al. (2009)—can

reduce the RMSE between remotely sensed and in situ

records. Specifically, their AMMI retrieval incorporates

a quadratic term for the 52.8-GHz channel (not avail-

able in HOAPS). This channel not only provides

somewhat more direct information on the lower tropo-

sphere but its quadratic weighting also allows for better

describing the nonlinear relationship between lower-

tropospheric temperatures and water vapor.

Furthermore, Bentamy et al. (2013) argue that single-

parameter, multilinear regressions may be too simple to

capture the underlying physical mechanisms. The au-

thors show that qa seems to exhibit an explicit SST de-

pendency when investigating qa biases between the

NOC Southhampton, version 2.0 (NOCv2.0; Berry and

Kent 2011), and SSM/I (their Fig. 1). Including an SST,

as well as a stability dependency (Tair minus SST), in

their retrieval considerably reduces the noise (by up to

50%) of daily qa differences (in situ minus SSM/I) at

0.258 resolution on a global scale. The main discrep-

ancies are confined to extratropical southern latitudes.

Large-scale biases (dry tropics, wet subtropics), which

were evident in former qa retrievals, remain marginal

within their multiparameter approach.

Roberts et al. (2010) also pick up the influence of SST

on the representativeness of the SSM/I retrieval output

for qa and present a nonlinear approach on the basis of a

neural network. Applying SST as a first-guess input pa-

rameter to the retrieval and accounting for the regime-

dependent effect of high cloud liquid water (CLW) on

TB, the authors demonstrate that biases (RMSE) of qa

are reduced by 45% (27%) in comparison to, for exam-

ple, Bentamy et al. (2003, their Fig. 5). The remaining bias

(RMSE) is given by 0.16gkg21 (1.32gkg21). Regarding

the RMSE, its magnitude agrees with the average Esum

derived in this work (1.29gkg21). Especially for very high

CLW, the latter tends to effectively remove low-level

humidity information from the satellite signal, which

applies to most, yet not all compared satellite qa datasets.

The largest discrepancies between both approaches are

evident for negative lapse rates (i.e., inversions) along

with elevated moisture above 900hPa. Similar conclu-

sions involving the impact of inversions on TB are drawn

in Jackson et al. (2006, their Fig. 3). Given traditional

linear regression models, moist air masses aloft feign

large boundary moistures and thus introduce large errors

in TB and consequently qa. Roberts et al. (2010) present

two case studies, for which the SST boundary condition is

able to successfully distinguish inversion profiles from

near-neutral or unstable stratifications. Regimes with

damped SST associated with cold surface currents or

upwelling regimes along with retrieval issues due to

stratocumulus clouds (see Jackson et al. 2009; Smith et al.

2011) may be more effectively interpreted by their so-

phisticated retrieval. Furthermore, the authors demon-

strate that warm SST in conjunction with high-level

subsidence and hence little moisture (as frequently ob-

served over the North Pacific during boreal summer

within the descending branch of the Hadley cell) do not

necessarily lead to large biases in qa, given their

approach.

To further quantify qa retrieval weaknesses, Iwasaki

and Kubota (2012) developed two retrievals for esti-

mating qa using Tropical Rainfall Measuring Mission

Microwave Imager (TMI) TB data in comparison to

ICOADS moored buoy data between 2003 and 2006.

The essential difference between both linear retrievals

was the amount of contributing TMI channels and thus

their complexity. The authors show that their products

yield a smaller RMSE specifically in the tropics, com-

pared to those published in Schlüssel et al. (1995) (SSM/I),

Kubota and Hihara (2008) (AMSR-E), and Schlüssel
and Albert (2001) (TMI). The authors hold the inclusion

of the 85-GHz polarized radiation responsible, which is
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not included within the model of Bentamy et al. (2003)

and hence HOAPS. This finding may be responsible for

the negative bias and the largest RMSE within the

subtropical high pressure systems, which falls into the

critical qa range of 12–17 g kg
21 (see Fig. 3). Specifically

for the subtropical highs, where CLW and rain rates

remain small, the 85-GHz channels may include valu-

able boundary layer humidity information. However,

one needs to keep in mind that their results are repre-

sentative of only tropical regimes (due to the TMI orbit),

in contrast to the approach of Bentamy et al. (2003).

Because of inherent deficiencies in single-sensor qa

retrievals (such as Bentamy et al. 2003), Jackson et al.

(2006, 2009) elucidate the advantage of a multisensor

approach, which, apart from SSM/I, utilizes temperature

and humidity sounders (AMSU-A and SSM/T-2, re-

spectively). Aiming at better evaluating the lower-

tropospheric temperature and moisture characteristics,

the authors reduce the RMSE differences (in compari-

son to ICOADSVOS and buoy measurements) by up to

0.4 g kg21, compared to single-sensor retrievals. This

approach introduces additional information provided by

the microwave sounders for qa ranges of 16–20 g kg21

and regimes of very low moisture content.

Prytherch et al. (2014) recently published results of an

intercomparison involving different SSM/I-based qa

datasets and identified considerable discrepancies

among the data records, where regional variations ex-

ceed 1 gkg21 on an annual basis, despite relying on the

same retrieval algorithm. Hence, differences among

HOAPS, GSSTF3, and IFREMER, all of which rely on

the algorithm of Bentamy et al. (2003), are bound to

originate from varying data processing routines, in-

tercalibration techniques, and quality controls. The

different handling of hydrometeor contamination of the

signal and humidity inversions are two procedures

within these filtering routines, which introduce depar-

tures among the resulting qa. In contrast to IFREMER,

for example, HOAPS includes a humidity inversion

correction, which is possibly the reason for the former

being low biased within regimes of the smallest absolute

qa (Fig. 9b in Prytherch et al. 2014). On the other hand,

the effects of intersatellite calibrations on the TB may

explain the discrepancies among qa based on HOAPS

(intercalibration performed) and IFREMER (not sub-

ject to intercalibration).

b. In situ uncertainties

Kent and Berry (2005) recall that VOS observations

contain significant uncertainties and are of variable

quality. They estimated random measurement errors in

VOS between 1970 and 2002 using a semivariogram

approach, based on the ICOADS dataset (Woodruff

et al. 1998). Figure 1d in Kent and Berry (2005) shows

global maps of the uncorrelated uncertainty component

of qa averaged over the whole time frame. The spatial

distribution of random variability components ranges

between 0.7 6 0.1 g kg21 (extratropical North Atlantic)

and 1.7 6 0.4 g kg21 (near the Arabian Peninsula). A

further investigation of latitudinal error dependencies in

Kent and Berry (2005) indicates that the random error

component constitutes the largest part of the total ob-

servational error within tropical regions. In contrast, the

sampling error becomes considerably more important

within the extratropics. These results imply that the

random error component increases from larger (small

qa) to lower (large qa) latitudes, as is also seen within

Fig. 2, with the exception of the inner tropics (section 3).

The estimates published in Kent and Berry (2005) for

the lower qa boundary closely resemble the in situ errors

shown in Fig. 2, given that most of the matchups below

10 gkg21 are constrained to extratropical northern lati-

tudes along major shipping lanes (Bentamy et al. 2003).

As discussed in section 3a, moister regimes are subject to

larger random in situ errors, which agrees with results

published in Kent and Berry (2005). Yet, their aver-

age random error in qa is 1.1 6 0.1 g kg21, which is

’0.5 g kg21 larger than the average estimate in this

study (0.66 0.3 g kg21). This discrepancy may be due to

the strict filtering of nonappropriate ship records prior

to the MTC analysis. Furthermore, the amount of con-

tributingmatchups displayed inKent andBerry (2005) is

considerably lower than the collocated triplets forming

the basis of this work. Additionally, Fig. 1 in Kent and

Berry (2005) includes 32 years of in situ data. The in situ

quality in early years is likely to have been below today’s

measurement accuracies and particularly below the

quality standard chosen for this study.

Kent and Taylor (1996) and Berry et al. (2004), among

others, investigated the impact of solar radiation on the

uncertainty of ship-based qa. In this context, Berry et al.

(2004) present a correction for radiative heating errors

on the basis of an analytical solution of the heat budget

for an idealized ship. They found an RMSE reduction of

the air–sea temperature difference of 30% to ’0.58C,
eventually reducing the RMSE of qa.

The uncertainties introduced by different hygrometer

types are explored by Kent et al. (1993) in the frame-

work of the VOS Special Observing Project North At-

lantic (VSOP-NA), who suggest applying an empirical

correction to humidity measurements using marine

screens. The authors argue that the latter tend to be high

biased in comparison to psychrometers, presumably due

to their poor ventilation. Such a correction is presented

by Kent and Taylor (1995) for screen-based dewpoint

temperatures. Screen humidity corrections are also
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applied within Kent et al. (2014) among an intercom-

parison study of in situ and reanalysis qa.

Jackson et al. (2009) also focus on hygrometer- and

radiation-induced uncertainties, based on ICOADS

observations and AMMIc qa retrievals. However, the

authors conclude that both error sources contribute less

than 0.05 g kg21 to the overall uncertainty, suggesting

their input with respect to the total error budget to be

negligible.

c. Applied methodology

Equations (3a)–(4c) incorporate an error contribution

associated with the collocation procedure (EC). As this

work’s definition of EC is related only to spatial and

temporal mismatches, it is not specifically differentiated

between EC used in Eqs. (3a) and (4c). However, it is

likely that an additional random point-to-area un-

certainty (error of representativeness ER) is inherent in

the MTC matchups. This is accounted for, inasmuch as

Eins derived in Eq. (3a) is supplemented by a ER con-

tribution. However, ER is not explicitly resolved, as this

inhibits a complete error decomposition due to too

many unknowns. Instead, the calculated Eins [Eq. (3a)

and hence Eqs. (3b)–(4b)] remains slightly larger than in

theory, whereas EM becomes negligibly smaller.

Although a quantification of ER is not possible, the de-

rived decorrelation length scale in Kinzel (2013) con-

siderably exceeds the diameter of a SSM/I footprint,

which is the scale of interest regarding the point-to-area

issue. It is therefore concluded that ER lies within the

uncertainty of Eins and is therefore negligible in com-

parison to the overall variances of differences (see note

on this in O’Carroll et al. 2008). Equipping in situ data

sources with random uncertainty estimates (prior to

using them in context of retrieval validation analysis) is

strongly recommended, as this would allow for explicitly

deriving ER.

One could also argue that the applied MTC method

does not yield robust results for the critical qa regime,

which is subject to limited amounts of triplets due to

narrow shipping lanes in the subtropical ocean basins.

To quantify the robustness of the variances, Scipal et al.

(2010) estimated the impact of constraining the TC

analysis to small subsets of simulated time series subject

to random noise. Results indicate that fewer than 100

matchups (5N) lead to systematic uncertainties of up to

5%, which does not influence the present analysis.

Zwieback et al. (2012), however, argued that the relative

error—that is, the standard error relative to the quantity

of interest—exceeds 22% for N 5 100, assuming all er-

ror variances to be of similar size and the underlying

noise to be normally distributed. If their Eq. (29) holds,

at least 2000 matchups are necessary to restrict the

relative error contribution to 5%. For a single year on a

seasonal basis, this may imply a reduced reliability of the

MTC approach, as the tropical data coverage may

temporarily fall below this target.

The chosen collocation criteria are identical to those

applied by, for example, Jackson et al. (2006), who also

investigated qa using microwave satellite observations.

However, modifications of the collocation criteria un-

derlying this work were also carried out to treat the

temporal deviation more strictly, removing collocated

pairs where Dt exceeded 60min. Specifically for the crit-

icalqa regime of 12–17gkg21, the results do not indicate a

reduction of the satellite retrieval error. Instead, the

temporal restriction leaves even fewer matchups in the

already poorly sampled regions, which further increases

the random uncertainty of the variance estimates (Scipal

et al. 2010). It is therefore concluded that the originally

chosen collocation thresholds of 180min and 50km are

adequate. Yet, large humidity gradients may occur along

midlatitudinal shipping routes, associated with frontal

systems. However, these do not distort the error de-

composition itself, as such outliers have been removed

from the analyses (see section 2c). A comparison of the

error bar magnitudes shown in Fig. 3 with Esum in Fig. 2

yields absolute differences in the order of only 5%–10%

throughout the whole qa range. Keeping in mind that the

temporal threshold for matchups shown in Fig. 3 is only

61h, this further supports the assumption that 63h is a

reasonable temporal decorrelation scale. In general, the

decorrelation time scale cannot be chosen arbitrarily

small in preparation for the MTC analysis, because the

temporal difference of SSM/I overpasses of two different

instruments is in the order of 2–3h. This depends on the

combination of SSM/I instruments (e.g., Andersson et al.

2010). Consequently, TCV2 and hence theMTC analysis

would often not be realizable if the temporal thresholds

were set to, for example, 61h.

5. Conclusions and outlook

Latent heat fluxes (LHF) play a key role in the context

of energy exchange between ocean and atmosphere and

thus impact the global energy cycle. Because of in-

sufficient spatial sampling of in situ measurements, re-

mote sensing represents an indispensable technique to

monitor parameterized LHF in high resolution. How-

ever, their uncertainty estimates, which find expression

in the satellite’s retrieval error Etot, are not sufficiently

quantified to date, which complicates their use in the

context of model validation, trend, and variability ana-

lyses, as well as process studies.

For the near-surface specific humidity qa, which repre-

sents a key geophysical input parameter to parameterized
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LHF, the aim was to decompose overall satellite-based

random qa uncertainties into individual components to

isolate the desired Etot.

In this context, it was shown that the ordinary TC

approach can be (and needs to be) extended by means

of a novel multiple TC (MTC) procedure, serving as a

powerful tool to distinguish satellite-based random un-

certainties associated with the underlying model (EM)

and sensor noise (EN) from contributions of in situ re-

cords (Eins) and collocation (EC). TheMTC analysis was

specifically performed for the HOAPS-3.2 qa on a pixel-

level basis, based on an extensive matchup database of

SWA-ICOADS ship records for the time period of

1995–2008.

The robust results of the MTC analysis indicate that

the random retrieval error Etot is on average 1.1 6
0.3 g kg21, which is supplemented by averages of EC

(0.5 6 0.1 g kg21) and Eins (0.5 6 0.3 gkg21). Term EN

was derived synthetically (0.3 g kg21). A qa-dependent

analysis shows that the retrieval has the largest diffi-

culties in the regime of 12–17 g kg21, where Etot exceeds

1.5 g kg21. The largest EC (0.7 g kg21) also falls into this

range, which is representative of the subtropical domain

encompassing the global oceans. On the contrary, Eins

increases rather linearly with qa, taking on values be-

tween 0.2 and 1.2 g kg21. Local analysis on a global scale

reveals absolute uncertainty maxima of approximately

1.7 g kg21 off the Arabian Peninsula, where both qa and

wind speed remain in ranges susceptible for large ran-

dom qa errors (small wind speeds coupled to rather

large, yet not tropical qa).

Despite random in situ measurement errors and pos-

sible deficits underlying the collocation approach, the

results suggest that the largest random qa uncertainties

originate from the retrieval itself, which in the case of

HOAPS-3.2 is based on the linear, single-parameter

regression retrieval by Bentamy et al. (2003). TheMTC-

based findings demonstrate how both regime-dependent

retrieval uncertainties and in situ measurement issues

can be effectively isolated. This will prove very helpful

in further advancing the satellite-based qa retrieval to

meet the desired qa quality requirements. As discussed

in section 4, HOAPS qa uncertainties could possibly be

reduced by introducing new retrieval algorithms, which

could rely on a multiparameter approach and/or in-

corporate nonlinear regression terms.

Similar to HOAPS-3.2, previous qa retrievals have

mostly been derived from regression analysis using

training datasets of TB and in situ point measurements.

This implies that respective RMSE estimates typically in-

clude both Eins and EC and thus inhibit an explicit deter-

mination of the random retrieval uncertainty. This again

emphasizes the benefit of the uncertainty decomposition

approach. Assigning random uncertainty estimates to all

contributing data sources, as done within this work, allows

for evaluating the satellite retrieval precision. If only Esum

was given, then a quantitative comparison between re-

trieval and in situ random uncertainties to assess retrieval

constraints cannot be carried out.

A step toward higher-quality qa certainly also

involves a more comprehensive in situ validation data-

set, in which all humidities are equally well represented.

This task will be challenging, as the number of VOS is

continuously declining (see Kent et al. 2014). Addi-

tionally, the ICOADS dataset does not contain call signs

after December 2007 (Kent et al. 2013), which further

hinders the validation of remotely sensed parameters, as

platforms producing systematic measurement errors

may no longer be excluded from error analyses.

Future work aims at quantifyingEtot of satellite-based

wind speed and SST. Respective findings will help to

derive Etot of the remaining LHF-related bulk parame-

ters and hence the retrieval uncertainty of HOAPS

evaporation.

To better assess the quality of the satellite-based

datasets, Prytherch et al. (2014) furthermore argue

that gridbox-based qa uncertainty estimates would be

extremely beneficial, which are not available to date.

This approach is currently undertaken at DWD and the

first results will be published in the near future. As a

total error assessment involves the investigation of

random error contributions, the presented work can

therefore be understood as a first step toward this effort.

A full error characterization of all HOAPS freshwater

flux–related parameters will be implemented in the next

official HOAPS climatology, which will be released in

late 2016.
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