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Abstract. Code and model generators that are employed in model-
driven engineering usually face challenges caused by complexity and tight
coupling of generator implementations, particularly when multiple meta-
models are involved. As a consequence maintenance, evolution and reuse
of generators is expensive and error-prone.
We address these challenges with a two fold approach for generator
composition, called GECO, which subdivides generators in fragments
and modules. (1) fragments are combined utilizing megamodel patterns.
These patterns are based on the relationship between base and aspect
metamodel, and define that each fragment relates only to one source and
target metamodel. (2) fragments are modularized along transformation
aspects, such as model navigation, and metamodel semantics.
We evaluate our approach with two case studies from different domains.
The obtained generators are assessed with modularity and complexity
metrics, covering architecture and method level. Our results show that
the generator modularity is preserved during evolution utilizing GECO.

1 Introduction

Models play a central role in Model-driven engineering (MDE). They are used
to specify the different views and aspects of a software system separately in a
more abstract way than programming code [35]. Models conform to metamodels,
which define, supplemented by constraints, the abstract syntax and semantics
of models. Domain-specific languages (DSLs) are used to create models. They
provide a corresponding concrete syntax and semantics for metamodels [7].

The notion of different views and aspects is addressed in both multi-view
modeling (MVM) [3,23] and aspect-oriented modeling (AOM) [25]. Both model-
ing approaches use separate models and metamodels to specify different parts of
a software system, like data structures, architecture, behavior, and monitoring.
These models are considered source models. They are transformed into target
models including program code by generators [28]. In our context, a generator is
an exogenous and vertical transformation [28] supplemented by model serializa-
tion and deserialization. Therefore, they are essential for MDE [27]. Especially
in AOM and MVM, generators may have to process multiple source models, rep-
resenting different aspects and views, integrate their information and store the
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result in target models. This makes generators complex artifacts, particularly if
a generator depends on multiple source and target metamodels.

Software systems evolve over time to accommodate changes in requirements,
platform and environment. Each change can affect the syntax and semantics of
source and target metamodels, requiring generators to be adapted and modified.
While DSLs can be altered quickly and reused in other software projects [7],
the complexity of generators makes changes to them cumbersome and can re-
sult in architecture degradation. This also applies to solutions where metamodel
changes are handled by supplemental transformations and model adapters. The
iterative addition and modification of such adapters would also lead to a complex
architecture. This hinders the evolution and reuse of generators.

Present approaches address architecture degradation either with transforma-
tions chains composed of small transformations [36], or with partitioning trans-
formations along arbitrary boundaries [8]. However, chains do not address the
diversity of different source metamodels and the partitioning focuses only on
single model inputs. Furthermore, these approaches do not discuss evolution.

We circumvent these limitations with our technology-independent generator
composition approach (GECO) [18] by

(a) partitioning generators into generator fragments along the types of views
and aspects of the application domain,

(b) modularizing the fragments along language features, e.g., typing, and
(c) providing a method to combine the output of fragments.

GECO uses our approach for metamodel evolution [22] which divides and
organizes metamodels along views, aspects, and metamodel semantics. Further-
more, we supplemented GECO with tooling and libraries (see also [20]) to support
its design principles and methods, which were also used in the evaluation.

We assessed GECO with two case studies. The first is based on the information
system of the Common Component Modeling Example (CoCoME) [31] specified
with multiple DSLs and incorporates an existing generator. The second is based
on an industry project for electronic railway control centers, named MENGES
[13]. In both, we evolved the DSLs and adapted the generators accordingly.

The remainder of this paper is organized as follows: Section 2 introduces
AOM as foundation of GECO. Section 3 provides the running example. Section 4
explains our approach. Section 5 reports on the evaluation. Section 6 discusses
the related work. Finally, Section 7 provides our conclusion and outlook.

2 Aspect-Oriented and Multi-View Modeling

The GECO approach is founded on aspect-oriented (AOM) and multi-view mod-
eling (MVM) together with a categorization and decomposition of metamodels
based on semantic properties. Therefore, we briefly introduce these four topics.

Metamodels defined with EMOF [30] use classes and references between classes
to express concepts. References can express containment, association and aggre-
gation [22]. Depending on the purpose of a metamodel, specific patterns occur to
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express type structures (e.g., component types, states of workflow graphs), ex-
pressions, mappings, queries, and many more [22]. GECO uses these patterns to
decompose metamodels and suggest module boundaries for generator fragments.

MVM focuses on the different views an engineer has on a software system, like
architecture, component types, interaction, behavior, and data models [3,23].
Each view can have its own metamodel covering only the concepts of the spe-
cific view. Views may relate to other views [3]. For example, a behavior model
expresses the interpretation and manipulation of data. Therefore, it must be
able to access the data model. In this example, the behavior model depends
on the data model while the data model is independent (cf. Figure 1). These
properties of dependence and independence can either be seen from a project
point of view for all metamodels used in a software project or be limited on two
individual metamodels. From the general perspective most metamodels depend
on others, e.g., architecture depends on component types, which depend on data
types. For GECO, we focus on the relationship of metamodel pairs and interpret
dependence and independence as two roles a metamodel can have [22]. In each
relationship, we require that one metamodel is the independent and the other is
the dependent one. Furthermore, we discourage the use of cyclic dependencies
of metamodels representing different views, as it results in more complex gener-
ators. However, such dependencies can be addresses with additional fragments
realizing partial transformations and intermediate models (cf. [8]).

AOM addresses the modeling of main and cross-cutting concerns. The main
concern of a software system is its primary function, e.g., performing a purchase
operation. A cross-cutting concern is a concern which must be introduced at
different places in the main concern. For example, in performance monitoring
logging functionality must be added to record entry and exit times of operations.
In AOM, cross-cuttings concern are expressed in a separated aspect model and
the main concern is defined in a base model [4,23]. The aspect can further be
distinguished in a pointcut and advice. which define the points fo extension and
the extension, respectively. In general, the pointcut model comprises of references
to the advices and queries over the base model to identify elements which are to
be extended [24]. The collected references to elements are called join points.

Similar to MVM, the distinction in advice and base metamodel describe
two roles in a relationship [22]. For example, there are three metamodels for
application behavior, access control, and monitoring, where access control is an
aspect applied to the behavior and monitoring is applied to access control. In
this case, access control has different roles depending on the context.

Weaving In aspect-oriented programming, the language of the advice represents
a subset of the base language which allows to directly introduce the advice into
the main function before execution. This introduction is called weaving. In AOM,
a similar process can be used when the advice metamodel is a subset of the base
metamodel. Weaving approaches, like the Kermeta weaver [29] and AMW [9], go
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even further and do not only define additions, but also specify which elements
must be replaced or removed and how references must be fixed.

3 Illustrative Example

We use as an illustrative example, an excerpt of the generator design used in
our first case study. The case study implements the enterprise part of a software
system for a supermarket chain, called Common Component Modeling Example
(CoCoME) [14]. CoCoME comprises cash desks in stores, multiple stores with a
store server, and a central enterprise server. It covers typical use cases of software
systems and incorporates embedded and enterprise software.

We modeled CoCoME with the Palladio Component Model (PCM) [5]. PCM
is a metamodel for architecture description and performance prediction. It covers
views for component type specification and assembly, which we used in the case
study. The PCM is supplemented with a DSL for Behavior, allowing to model
operations declared in a PCM model. For persistence and data modeling, we
created a data type language (DTL). We monitored CoCoME for a performance
evaluation with the instrumentation aspect language (IAL) [21].

We describe these metamodels, their relationship and the associated trans-
formations in Figure 1, which is also called a megamodel [11]. In Figure 1, meta-
models are depicted as boxes. The edges between the boxes represent references
(arrow with open tip ) and transformations (arrow with filled tip ).

References between metamodels are labeled to indicate their purpose. Essen-
tially, they are the aggregate of references between classes of two metamodels
with the same direction, e.g., the reference from IAL to PCM represent references
to PCM-operations. Transformations are labeled with the letter T and a subscript
name corresponding to the implementing generator fragment. For example, the
fragment named TDTL generates Java entity classes from DTL specifications.

Fig. 1. Generator megamodel excerpt with the main fragments, metamodels, and their
relationships. The labels P2 and P4 refer to patterns introduced in Section 4.1.

The ProtoCom generator (TProtoCom) [12] is used to generate stubs for Enter-
prise Java Beans and Java Servlets from PCM component declarations. These
stubs are complemented by code snippets provided by TBehavior. As Figure 1
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illustrates, the operations references are mapped to methods references. Subse-
quently, the weaver TJW weaves snippets and stubs. The monitoring is realized
with two fragments for sensors (TSensor) and pointcuts (TPointcut), respectively.
The sensors are Java classes and the pointcuts are stored in a file for the AspectJ
weaver (Tajc). As the weaver operates on byte code, classes are first compiled
and then woven. For reasons of brevity we express these two steps with Tjavac,ajc.

4 The GECO Approach

The GECO approach addresses generator development and mitigates issues, such
as architecture and code degradation, which harm the evolution and reuse of gen-
erators. GECO is technology agnostic, as it can be applied to any modeling and
generation technology and paradigm. It covers both code and model generators.
However, for our evaluation, we primarily used the Xtend templating language
and EMF to realize metamodels and models.

We designed GECO with AOM [23] and MWM [3] approaches in mind. In
both references point from one metamodel to another (see Section 2). For reasons
of brevity, we mostly refer to the term AOM in the remainder of this paper.

In GECO, generators are modularized on two levels. They are split up into
smaller generators, called fragments, which are further subdivided into mod-
ules. Each fragment is defined with only one source and target metamodel, and
can often be realized with one transformation. As metamodels may not be self-
contained and may cover multiple views and aspects, fragments can be designed
for only a partition of a source metamodel, especially for partitions that fulfill
the criteria of an aspect or base metamodel [22]. This implies that it is not
necessary to have de facto multiple metamodels to developed with GECO. It is
sufficient to be able to partition the metamodel along the relationships of base
and aspect models, and independent and dependent views, respectively.

The key challenges for GECO are the decomposition of generators along con-
cerns reflected in metamodels and partitions of metamodels, the mapping of
source to target model join points, the construction of model traces used to
construct this mapping, and the modularization of fragments.

4.1 Basic Generator Megamodel Patterns

In GECO, code generation is realized by a set of fragments which are combined
to provide code generation for the different models and metamodels used in
a software project. The actual integration of fragments depends on the used
technology and the way models are passed on from fragment to fragment. In
our example, fragment execution is controlled by the Eclipse build system and
models are passed via the file system as serialized models.

The modularization of a generator in GECO depends on the partitioning of
metamodels into views and aspects, like Behavior and the IAL in our example (see
Figure 1). Both reference the PCM as their independent view and base model,
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respectively. In projects with multiple metamodels, like our example, code gen-
eration involves multiple fragments processing and combining information from
different models. All these fragments can be interrelated, resulting in a web of
metamodels, their relationships, and fragments which can be represented with
a megamodel [11], like the one in Figure 1. In this paper, we disentangle these
relationships of metamodels and fragments based on four megamodel patterns,
depicted in Figure 2. We deduced these megamodel patterns from a set of min-
imal patterns involving at most two source and two target metamodels. The
fragments are represented by transformations to abstract from technical details.

Fig. 2. Four megamodel patterns for base and aspect metamodel with their respective
transformations and target metamodels (trace models omitted).

Pattern P1 is a simple transformation with one source and one target model.
It is used to express independent transformations. Pattern P2 describes that
source model references are mapped to target model references preserving that
information. In our example, this pattern is used four times (cf. Figure 1). Pat-
tern P3 reflects the situation where the direction of references is inverted from
source to target level. This may happen to express aspect invocations on the
target model level when the target metamodel does not support aspect weaving.
Pattern P4 covers weaving of aspect and base model. As GECO is technology
agnostic, different weavers can be used, e.g., the weaver of Kermeta [29].

4.2 Combining Aspect and Base Model Fragments

In patterns P2 and P3 model traces must be exchanged between fragments to
compute references on the target model level (see Figure 3). Trace models (TRM )
are used for this exchange. Depending on the transformation language, the TRM
generation must be explicitly implemented, or can be added automatically [17].

Pattern P2 The fragments TBM and TAM produce main output models conform-
ing to a target base metamodel (TBM ) and a target aspect metamodel (TAM ),
respectively. As the references between SAM and SBM must be mapped to the
target level, TAM requires a trace model relating TBM to SBM nodes. The
TRM can be generated by TBM as a second output, or can be computed by
a surrogate transformation TRBM . Such surrogate is necessary when adding a
second output to TBM is not feasible, e.g., the source code is not available.

In our example, TProtoCom provides a trace model and TDTL uses the package
structure of the source model also for the target model which makes a trace
model obsolete, as TBL can use the package information for the source model.
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Fig. 3. Illustration of generator fragment compositions

Pattern P3 In contrast to P2, the reference direction is inverted and then mapped
to the target model level. Therefore, model traces from the aspect and join point
information must be generated and passed to TBM . The trace model is produced
by TAM or a surrogate TRAM . Similarly, join points are computed by TAM or
a surrogate TJPM . The join points are required to infer the inverse reference
origins which are placed in the target base model. The trace model is used to
compute the reference destinations in the target aspect model nodes.

Achieving Model Traceability Model traces can be represented as relations be-
tween source and target model nodes, e.g., TRM ⊆ SBM ×TBM . They can be
produced with constructive and recovery approaches [37]. The latter use either
deterministic algorithms or heuristics [33] to find matches. Heuristics do not have
predictable output and deterministic approaches use attribute value similarities
to find matches, which may result in wrong and missing traces. Therefore, only
constructive approaches can be used to create trace models for GECO. They are
generated either by the fragment itself or by a supplement trace model transfor-
mation. The first approach can lead to a more complex fragment source code,
except for transformation languages which allow to add this feature automati-
cally [17]. The second approach circumvents this complexity issue with a separate
transformation and allows to integrate legacy generators where code alterations
are not feasible. However, then two transformations must be maintained.

4.3 Computing Target Join Points

In aspect-oriented metamodels, join points can be expressed as direct references
[22] or they can be specified with pointcuts [21,29] which are used to compute
joint points. In P2 and P3 these join points must be translated from source to
target level. Due to space constraints we only describe their computation for
pattern P2. However, the computation for P3 can be achieved in a similar way.

This translation is achieved in two steps where source level join points (JPS ⊆
SAM × SBM ) are translated into their target counterparts (JPT ⊆ TAM ×
TBM ). First, for each reference destination dsi in (ss, ds) ∈ JPS a set of inter-
mediate join points is computed JPIi = {(ssi , nt)|(ns, nt) ∈ TRM ∧ dsi = nt}.
Second, during the transformation of SAM to TAM , TAM infers trace informa-
tion which is used to compute target level join points from all JPIi .

As trace models may contain traces to nodes with different semantics which
might not be well suited for weaving, the remaining set JPT must be checked
accordingly. For example, a component type is transformed into a class with
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attributes and access methods. A join point representing an injection of a mon-
itoring sensor should reference the methods and not the attributes. Therefore,
JPT must be filtered for target nodes conforming to method declarations.

4.4 Internal Structure of Fragments

The megamodel patterns address the combination of fragments. In contrast, the
inner structure of fragments also affects reuse and evolution [32], which can be
improved with modularization. We propose a twofold approach to achieve mod-
ularization along the two dimensions functionality and metamodel semantics.

a) Functionality Fragments can be modularized along common functionality
(see Figure 4), like source model query, aggregation and evaluation, state, target
model creation, name resolving and trace handling, and control (cf. [8,28]).

Fig. 4. General functional decomposition of a transformation (cf. [8,28])

The advantage of this decomposition is that it can be applied to any fragment
regardless of the actual transformation. It also follows the decomposition of
software along concerns. Furthermore, it allows to improve and test functionality
separately. Its disadvantage is caused by metamodel evolution. For example, we
add database queries to the Behavior DSL (cf. Section 3). This affects almost
every module from model query to target model creation (see Figure 4). However,
the central idea of modularization is to keep modifications local, which is not
the case in the example metamodel change and similar alterations.

b) Semantics Alternatively, fragments can be decomposed along the categoriza-
tion of metamodel semantics [8,22], like expressions, typing and initialization.
Adding database queries to the Behavior language, like above, would affect only
those modules related to expression and statement handling. The query genera-
tion itself could even be implemented in a separate module keeping the modifi-
cations in the other modules minimal (cf. [19]).

5 Evaluation

In this evaluation we focus on the generator evolution for two reasons: (a) Ac-
cording to a qualitative industry survey we conducted, evolvability is more im-
portant than reuse [19]. (b) Evaluation of reuse requires multiple case studies
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sharing common metamodel parts, like product lines. Furthermore, reuse and
evolution both depend on modularization which is addressed in our evaluation.

5.1 Evaluation Approach

We concentrate on two main goals addressing the overall feasibility and effi-
ciency of the approach focusing on development and evolution based on two
case studies. First, we evaluate the feasibility of our approach by using GECO
to implement the given case studies. Second, we evaluate the efficiency of our
approach from the perspective of a developer, focusing on the support GECO
provides for construction and evolvability of generators.

For generator construction, as for any software architecture, modularization
[16] is the key concept used to divide a larger problem into simpler modules that
address only one concern of the complete generator. Therefore, modularity is
important to support construction. Evolution requires modularity, extensibility,
and changeability of modules [16], as new features are introduced, altered, and
removed over time. Modularity supports extensibility and changeability due to
the lower complexity of the modules and low coupling [16]. To show that GECO
helps to keep the modularity of generators intact, we must evaluate how multiple
iterations of extending and changing effect the modularity of a generator.

The modularity of a software system is determined by the cohesion, coupling
and complexity [1,2]. Good modularity of a system is indicated by high inner
cohesion and low inter-module coupling [16]. The greater the distance between
complexity and coupling of the system, the better the modularity, as complexity
refers to the complete system and coupling only to the inter-module dependen-
cies. Extensibility and changeability are affected by modularity and the inner
complexity of modules [16]. Lower complexity improves code readability, im-
proving code comprehension, which reduces the potential for code degradation.

To determine the three properties, modularity, extensibility and changeabil-
ity, we measure complexity, module cohesion and coupling. These measurements
depend on many factors including size and complexity of the requirements real-
ized in each evolution step. Therefore, it is impossible to define fixed levels to
indicate a good quality. However, we can compare different generator revision
and implementations, which allow us to evaluate whether the alterations affected
complexity, cohesion, and coupling.

We utilize (hyper)graph based entropy metrics [1,2] and cyclomatic complex-
ity [26] on code level. The entropy metrics allow us to focus on the information
density of software which is considered to be a close approximation of the cog-
nitive effort necessary to understand the software (cf. [2]). The entropy metrics
measure only classes, which are represented as modules, methods (nodes), and
method calls (hyperedges). This allows to hide complexity inside method bod-
ies which are not represented in the hypergraph. Therefore, we monitor the
method complexity with the cyclomatic complexity metric to detect changes,
which indicate an complexity transfer. We are aware of the limitation of cyclo-
matic complexity applied to complete software systems [34]. However, we only
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test whether the complexity of a method has changed (number of branches and
loops). Therefore, the rationale of [34] does not apply in our case.

5.2 Setup of Case Studies

The first case study involves an information system. It evaluates the integra-
tion of existing generators with newly written fragments, and the evolution of
fragments. The second case study focuses on evolution by reproducing the im-
plementation of a generator from an industry project.

Information System Case Study This case study is based on CoCoME (see Sec-
tion 3). We defined the generator’s architecture for CoCoME based on the meg-
amodel patterns, indicated by the labels P2 and P4 in Figure 1. For the eval-
uation, the megamodel from Figure 1 is extended by a DSL and fragment for
monitoring event types [21] and different sensor technologies. The fragments used
in this case study are implemented with Xtend [7].

For the evaluation, we created an initial version of the Behavior DSL and
generator. Iteratively, the first version was extended to support different com-
ponent types, and database access. For all revisions, we measured complexity,
cohesion and coupling as explained above. In addition, we counted the number
of class files, modules, nodes, and edges of the hypergraph.

Control System Case Study The control system case study is based on MENGES
which comprises DSLs and a generator for the domain of railway control cen-
ters based on programmable logic controllers (PLC) [13]. The goal of MENGES
was to provide developers with DSLs which fit their abstractions used in pre-
vious railway control center implementations. This includes architecture, com-
munication protocols, conversion of external signal into discrete internal values,
behavior (automata and workflows), data types, and configuration. The origi-
nal DSLs were developed with Xtext and its generator with the transformation
and templating language Xtend. The original generator produces code for the
PLC language Structured Text (ST) [15] and serializes it in an XML file. For the
evaluation, we reimplemented this old generator using GECO. To avoid imple-
menting more efficient algorithms than the original developers, we reused their
code adapted to the module and fragment structure of the new generator.

During the development of the old generator (Gold), language features were
added, removed, and changed based on user feedback and tests of the DSLs
and the generator. In the evaluation, we used the original documentation and
code to extract features for 14 revisions of the generator. As we simulated the
development of the new generator (Gnew ), it was necessary to extract only those
features and changes of Gold which happened in the next revision. Therefore,
we extracted the features of Revision 1 of the Gold and implemented these in
Gnew . Then we went to the next revision and repeated the process. Through this
process, the developers of Gnew gained only knowledge of features and changes
the original developers had implemented in the corresponding revision.
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Initially, the generator supported type structures (Revision 1-4). Later it
was extended to support expressions, statements, and automata. The output is
a combination of an XML-DOM and function implementations in ST. Therefore,
the generator combines model-to-text and model-to-model transformations. Gold

and Gnew mainly differ in the modularization. Details can be found in [19].

5.3 Information System Case Study Results

This case study assesses the feasibility of GECO to model the combination of
different fragments and the construction and evolution of a fragment. The first
part is shown by modeling the composed generator for CoCoME with GECO (cf.
Figure 1). The second part is described in this section by evolving the TBehavior

fragment in four revisions. The columns of Table 1 show the code revision, the git
revision tag, the number of classes, excluding data types, frameworks, and anony-
mous classes. The number of modules refer to the number of classes mapped to
the hypergraph. This includes anonymous and framework classes used by the
fragments. The nodes represent the fragment and the used framework meth-
ods, and the edges express method calls and access to shared data objects. The
remaining columns depict values for the entropy metrics.

Table 1. Measurements of the behavior generator fragment of the CoCoME case study

TBehavior Revision # of Mo- Nodes Edges Size Compl- Cohe- Coup-
git Class dules exity sion ling

r1 be2dafbc53a 6 16 56 125 314.25 802.70 0.043709 594.93
r2 83acc26830d 6 17 57 127 321.54 813.99 0.043965 605.90
r3 0961df26eb7 6 17 58 134 328.86 873.37 0.043965 654.83
r4 0c87a9e84c4 6 17 64 156 373.23 1041.43 0.042075 781.88

For this case study, we implemented an initial version of TBehavior and per-
formed three evolution steps on the language and fragment. Revision r1 supports
the specification of operation bodies operating on input data and internal state.
In revision r2, we added support to mark a component as stateful or stateless,
which has significant effects on the scalability of components. To support this
new feature one template method had to be extended. Revision r3 added sup-
port for special methods called on initialization and destruction of components.
Finally, we added constructs for database access to the DSL, supporting JPA.

The measurements [19] (see Table 1) show, adding features increase size and
complexity of the overall system. We can see that the intra module cohesion
changes are minimal for the first three revisions, which indicates that the inner
structure of the modules was not changed significantly. Only the support for
database access has a significant effect. This is due to the fact that the new
statements were added to the expressions module instead to a separate module.
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5.4 Control System Case Study Results

In this case study we performed 14 evolution steps and measured the number of
classes, modules, nodes, and edges (counting metrics), as well as, size, complexity,
coupling, and cohesion (entropy metrics) for both the old and the new genera-
tor (cf. replication package [19]). Due to size constraints, we selected the most
significant counting and entropy metrics. We choose module and edge count, as
the module count includes classes and the edge count represents the intercon-
nectedness of the hypergraph. Furthermore, we omitted the cohesion metric, as
it shows a steady difference between both generators (Gold has only 60.29% of
Gnew ’s cohesion in Revisions 7 to 14).

Figure 5 shows slow growth in all measures over the first 4 revisions. The
growth of Gnew is minimal, as it starts with dedicated classes for each kind of type
the DSLs provide. In Revision 5, MENGES added support for expressions which
is a complex endeavor, especially as the DSLs provide object-oriented constructs,
but the target language is only imperative. In Gold , this effort resulted in many
more modules (Revisions 4 to 6) and triggered a large refactoring step (Revision 6
to 8), which resulted in a minor fluctuation in the number of modules (Revisions
6, 7, 8). For Gnew , this was not necessary at this point.
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Fig. 5. Counting (left) and information (right) measurements of the control center case
study; filled and empty symbols represent Gold and Gnew , respectively

The remaining Revisions (8 to 14) show for both generators continuous
growth. However, the increase in size, complexity, and coupling are smaller for
Gnew than for Gold . The only difference is the number of modules, which increase
in Gnew after Revision 10, which is caused by factoring out the generation of
actions and predicates in separate fragments. Gold decreases due to refactoring.

Overall, Gnew has better (lower) values for all metrics over the complete
evaluation than Gold . As we reused method implementations from the original
code in Gnew to avoid a result bias based on a different coding style, these
better values are not based on coding style. In the end Gold was 2.08 times
more complex, 2.17 times more intensely coupled, used 1.40 times more nodes,
and 1.75 times more edges. This allows the conclusion that GECO has a positive
effect on generator development and evolution.
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6 Related Work

AOM is an actively researched topic in MDE. Many generation approaches focus
on the definition of aspects and the weaving of models, which are collected in a
mapping study [27]. Most prominent are approaches based on the Formal Design
Analysis Framework [6], UML, and reusable aspect models [29]. They use the
UML as source language, and Java and AspectJ as target languages. They aim
for the reusability of aspect models and generators. While some approaches use
stereotypes or profiles to identify aspects, they neither support profiles for their
base and aspect models nor address domain-specific languages. The weaving of
aspects is controlled by direct references or model-subgraphs formulating point-
cuts. Unlike our approach, theirs do not address the construction of generators.

In a recent survey on aspect-oriented domain specific languages (AODSL), 22
different AODSLs with generators were analyzed [10]. A key challenge of these
DSLs is the integration of their aspect generator in the base language generator.
Some approaches extend a base language generator in an ad-hoc manner, hinder-
ing reuse of the AODSL generator and maintainability of both generators [10].
Two AODSL frameworks use an extensible base language generator for additions
by AODSL generators. However, they have multiple shortcomings compared to
GECO: (a) they do not address the integration of multiple AODSLs and cascad-
ing scenarios with multiple weaving stages, which appear in our example (see
Section 3) and case study. (b) they support only their own base language. (c)
they do not provide a modularization approach for fragments. (d) they introduce
their own frameworks making them not framework and technology agnostic.

Finally, various approaches exist which address the modularization of trans-
formations. They primarily focus on small transformations in a chain. One excep-
tion is the approach of Etien at al. [8] which modularizes transformations along
specific tasks and purposes. This approach is largely complementary to GECO
for two reasons: (a) they argue that larger transformations can be composed
of small localized transformations. This correlates with fragment modulariza-
tion (see Section 4.4). (b) they focus on modularization, but do not discuss the
impact of metamodels. And (c) they do not define concrete methods for modu-
larizing large transformations. With GECO we provide such methods.

7 Conclusion

We present an approach to support the construction and evolution of generators
used in the context of MDE. Key contributions of GECO are megamodel patterns
to guide the combination of fragments to complex generators, and a concept for
the modularization of fragments to reduce the inner complexity of generators.
We evaluated GECO with two case studies representing information systems and
embedded control systems. The first integrated existing and new generators, and
focused on feasibility of GECO. The second re-executed the development and
evolution of a generator with GECO and compared it to the original generator
project. In addition, we support fragment development and composition with a
library of reusable modules supplemented by a DSL and generator [20].
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Our future work will explore two primary avenues of investigation. First, we
will extend our evaluation based on additional evolution steps for both case stud-
ies. Second, we will compare costs (time to realize alterations) for the second case
study based on logged duration information. Third, we intend to evaluate code
quality and performance of GECO generators, however, this requires larger mod-
els to be transformed. And finally, it would be interesting to compare generators
for profile base approaches with aspect DSL generators.
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