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Abstract. Execution traces capture information on a software system’s
runtime behavior, including data on system-internal software control
flows, performance, as well as request parameters and values. In research
and industrial practice, execution traces serve as an important basis for
model-based and measurement-based performance evaluation, e.g., for
application performance monitoring (APM), extraction of descriptive and
prescriptive models, as well as problem detection and diagnosis. A number
of commercial and open-source APM tools that allow the capturing of
execution traces within distributed software systems is available. However,
each of the tools uses its own (proprietary) format, which means that
each approach building on execution trace data is tool-specific.

In this paper, we propose the Open Execution Trace Exchange
(OPEN.xtrace) format to enable data interoperability and exchange
between APM tools and software performance engineering (SPE) ap-
proaches. Particularly, this enables SPE researchers to develop their
approaches in a tool-agnostic and comparable manner. OPEN.xtrace is
a community effort as part of the overall goal to increase interoperability
of SPE/APM techniques and tools.

In addition to describing the OPEN.xtrace format and its tooling sup-
port, we evaluate OPEN.xtrace by comparing its modeling capabilities
with the information that is available in leading APM tools.

1 Introduction

Dynamic program analysis aims to get insights from a software system based on
runtime data collected during its execution [12]. An important data structure
used for dynamic program analysis is the execution trace. In its simplest form,
an execution trace captures the control flow of method executions for a request
served by the system. It can be represented by a dynamic call tree as depicted in
Figure 1a [8]. In the example, the method doGet(..) is the entry point to the
processing of a request. The method doGet(..) calls the doFilter(..) method,
which then calls doSearch(..), etc. The order and nesting of method executions
can be obtained by performing a depth-first traversal of the dynamic call tree.
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doFilter(..)

doGet(..)

doSearch(..)

getData(..)

executeQuery(..)

processData(..) renderData(..)

(a) classic tree representation

doGet(..) - foo.bar.EntryServlet [JVM1@srv1]  0.2 sec
  doFilter(..) - foo.bar.SomeFilter 0.2 sec
    doSearch(..) - foo.bar.FullSearchAction 0.15 sec
      getData(..) - foo.bar.LoadAction [HotSpot1@srv2] 0.13 sec
        executeQuery(..) - org.h2.jdbc.PreparedStatement 0.13 sec
    processData(..) - foo.bar.ProcessAction [HotSpot1@srv2] 0.03 sec
    renderData(..) - foo.bar.RenderAction [HotSpot1@srv2] 0.01 sec

(b) profiler view

Fig. 1: Example trace

The collection of execution traces is one of the basic features expected from
application performance monitoring (APM) tools. For instance, it is required to
fulfill at least the following three dimensions of APM functionality as defined by
Kowall and Cappelli [23]: i.) application topology discovery and visualization,
ii.) user-defined transaction profiling, and iii.) application component deep dive.
And indeed, the common commercial [1, 2, 3, 6, 7, 23] and open-source [18, 25]
APM tools do support this feature — based on application instrumentation, stack
trace sampling, or a mixture of both. It needs to be emphasized that a lot more
information than needed for reconstructing dynamic call trees is collected. For
instance, the data may include information on timing (e.g., response times, CPU
times), variables (HTTP request parameters, SQL queries), or error information
(HTTP status code, Java exceptions). Figure 1b shows a simplified profiler-like
view on the execution trace from Figure 1a, including location information and
method response times, as provided by most APM tools. However, the type of
data and the representation format differ greatly among the different APM tools.

In addition to the aforementioned three APM dimensions, execution traces
provide the data set for various further software performance engineering (SPE)
activities. For instance, researchers have proposed approaches for extracting and
visualizing performance models [11, 16, 19], as well as detecting and diagnosing
performance problems [17, 21, 26, 27]. Unfortunately, the existing approaches
are tailored to the execution trace representations of specific APM tools or
custom-made monitoring and tracing implementations.

To summarize, the efficient capturing of detailed execution trace data from
software systems during development and operations is widely supported by
different APM tools. However, due to diverse and proprietary data formats,
approaches building on execution trace data are usually tool-specific.

To overcome this limitation, we propose the Open Execution Trace Exchange
(OPEN.xtrace) format, serving as an open interchange format for representing
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execution traces provided by different APM tools. The format is accompanied
by extensible tooling support to instantiate and serialize the OPEN.xtrace
data, and to import and export OPEN.xtrace data from/to the data format of
leading APM tools. Under the umbrella of the Standard Performance Evaluation
Corporation’s Research Group (SPEC RG), OPEN.xtrace is developed as an
ongoing community effort among APM/SPE researchers and industry practi-
tioners as a part of the overall goal to increase the interoperability among tools
and approaches in this field [28]. The idea of a common format for execution
traces goes in line with related community efforts to increase interoperability
and usability [30], e.g., for performance [13, 24, 31] and workload [29] models.

The contribution of this paper is the presentation of the OPEN.xtrace
format, its tooling support, and the evaluation that analyzes the format’s complete-
ness by comparing the provided data with the data available in leading commercial
and open-source APM tools. It needs to be emphasized that OPEN.xtrace is
a work in progress and that this paper presents the current state.

The remainder of this paper is organized as follows. Section 2 provides an
overview of related work. Section 3 describes the OPEN.xtrace format and its
tooling support. Section 4 includes the comparison with APM tools. In Section 5,
we draw the conclusions and outline future work. Supplementary material for this
paper, including the OPEN.xtrace software and the detailed data supporting
the evaluation, is available online [28].

2 Related work

Related works can be grouped into i.) interoperability and exchange formats in
software, service, and systems engineering in general, ii.) concrete efforts in this
direction in performance engineering in particular, as well as into iii.) formats
for representing trace data.

The idea of having standardized common data formats is not new and not
limited to the representation of execution traces. Various efforts in software,
service, and systems engineering to provide abstract data models and modeling
languages (meta-models) for concrete problems have been proposed and are used
in research and practice. Selected examples include TOSCA for representing cloud
deployments [9], CIM as an information model for corporate IT landscapes [14],
and the NCSA Common Log Format supported by common web and application
servers [5]. A well-defined data model (modeling language) comprises an abstract
syntax, semantics, and one or more (textual, visual, or a combination of both)
concrete syntax [10]. The syntax is commonly based on meta-models, grammars,
or schemas (object-relational, XML, etc). Data models have proven to be most
successful if they are developed and maintained by consortia of academic and
industrial partners, such as DMTF,3 OASIS,4 OMG,5 or W3C.6 For this reason,

3 https://www.dmtf.org/standards
4 http://www.oasis-open.org/standards
5 http://www.omg.org/spec/
6 http://www.w3.org/TR/
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OPEN.xtrace is being developed as an open community effort driven by SPEC
RG from the very beginning.

For workload and performance models, researchers have proposed a couple
of intermediate or interchange formats to reduce the number of required trans-
formations between architectural and analytical performance models and tools.
KLAPER [13] and CSM (Core Scenario Model) [31] focus on a scenario-based
abstraction for performance models, and transformations from/to software de-
sign models (e.g., UML SP/MARTE) and analytical models such as (layered)
queuing networks are available. Similarly, PMIF (and extended versions of it)
[24] focuses on queueing models. WESSBAS [29] is a modeling language for
session-based workloads, supporting transformations to different load generators
and performance prediction tools.

Few works exist on data formats for execution traces. Knüpfer et al. [22]
propose the Open Trace Format (OTF). It is suited for high performance com-
puting, where the most important issues are overhead in both storage space
and processing time, and scalability. Although similar in name to our format,
OTF is not focused on execution traces, but on collections of arbitrary system
events. Similar to OTF, the OpenTracing project provides an API for logging
events on different platforms. Unlike OPEN.xtrace, OpenTracing7 focuses on
so-called spans, i.e., logical units of work—not actual method executions. The
Common Base Event format (CBE) was created as a part of IBM’s Common
Event Infrastructure, a unified set of APIs and infrastructure for standardized
event management and data exchange between content manager systems [20].
CBE stores data in XML files. Application Response Measurement (ARM) [15]
is an API to measure end-to-end transaction-level performance metrics, such
as response times. Transaction-internal control flow is not captured and a data
model is not provided. To summarize, there is no open and common format for
representing execution traces. The existing formats either represent high-level
events or are tailored to specific tools. Section 4 will provide details on execution
trace data and representation formats of selected APM tools.

3 OPEN.XTRACE

In Section 3.1, we provide an example to introduce additional concepts and
terminology. In Section 3.2, the main components of OPEN.xtrace’s data model
are described in form of a meta-model [10]. In Section 3.3, the OPEN.xtrace
instance of the example trace is presented. Section 3.4 presents the tooling
support.

3.1 Example and terminology

The example execution trace shown in Figure 2, which extends the trace from
Figure 1, results from a HTTP request to a distributed Java enterprise application,
whose execution spans over multiple network nodes.

7 http://opentracing.io/
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1 doGet (..) - foo.bar.EntryServlet ... JVM1@srv1

2 doFilter (..) - foo.bar.SomeFilter

3 doSearch (..) - foo.bar.FullSearchAction

4 getData (..) - foo.bar.LoadAction ... HotSpot1@srv2

5 log (..) - foo.bar.Logger

6 loadData (..) - foo.bar.LoadAction

7 list (..) - foo.bar.ListAction

8 executeQuery (..) - org.h2.jdbc.PreparedStatement

9 executeQuery (..) - org.h2.jdbc.PreparedStatement

10 executeQuery (..) - org.h2.jdbc.PreparedStatement

11 processData (..) - foo.bar.ProcessAction ... JVM1@srv1

12 processSingle (..) - foo.bar.ProcessAction

13 processSingle (..) - foo.bar.ProcessAction

14 processSingle (..) - foo.bar.ProcessAction

15 renderData (..) - foo.bar.RenderAction

Fig. 2: Sample trace (textual representation)

The trace starts with the execution of the EntryServlet.doGet() method in
the virtual machine JVM1 on the node srv1 (line 1). After the initial processing
on this node, the execution moves to the node srv2 (line 4). On this node, after
logging an event (line 5), data is fetched from a database by performing several
database calls (lines 8–10). Since the database is not instrumented, there are no
executions recorded on the node hosting it. After these calls, the execution returns
to srv1 (line 11), where the final processing is performed and the execution ends.

The complete list and structure of method executions to process the client
request is denoted as a trace. A part of the trace that is executed on a certain
location is called a subtrace. Locations can be identified with server addresses or
names, virtual machine names, etc.

Each execution within a trace is called callable. This example shows several
kinds of executions: method-to-method call (e.g., line 2), move of the execution
to a different node (e.g., line 4), logging call (line 5), call to a database (e.g., line
9), and HTTP call (line 1).

A trace contains subtraces and has one subtrace—the one where the execution
starts—that acts as a root. Each subtrace can have child subtraces, and it acts as
a parent to them. Also, subtraces contain callables, with one callable—the entry
point of that subtrace—acting as a root. Callables that can call other callables,
e.g., method-to-method calls and remote calls, are called nesting callables.

Additionally, each of these entities contains performance-relevant information
such as timestamps, response times, and CPU times, which will be detailed in
the next section.

3.2 Meta-model

The core meta-classes of the OPEN.xtrace model are presented in Figure 3.
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-traceId : long
Trace

-id : long
SubTrace

-responseTime : long
-exclusiveTime : long

TimedElement
-host : String
-runtimeEnvironment :
-application : String
-businessTransaction :
-nodeType : String

Location

-labels : List<String>
-timestamp : long

Callable
-name : String
AdditionalInformation

-key : String
-value : String

GenericKeyValuePair

location1

parentsubTraces
0..*

containingSubTrace

root

1

1

containingTrace

root
1

1

0..*0..*

1 root

0..*
subTraces

1

1
root

containingTrace

1 location

additionalInformation

String

String

0..1

Fig. 3: Trace, SubTrace, Callable and Location

Trace is the container entity that encapsulates an entire execution trace.
A Trace subsumes a logical invocation sequence through the target system
potentially passing multiple system nodes, containers, or applications.

Location specifies an execution context within the trace. It consists of the
host identifier, the identifier of the runtime container (e.g., JVM) where the
subtrace is executed, the identifier of the application, the business transaction
identifier, and the node type. The business transaction specifies the business
purpose of the trace. Node type describes the role of the node that the subtrace
belongs to, e.g., ”Application server” or ”Messaging node”.

A SubTrace represents an extract of the logical Trace that is executed within
one Location.

A Callable is a node in a SubTrace that represents any callable behavior
(e.g., operation execution). For each subtrace there is a root Callable, and each
Callable has its containing subtrace. AdditionalInformation can be used to
add information on a Callable that is tool-specific and not explicitly modeled by
OPEN.xtrace. For simple types of additional information, the labels attribute
can be used.

Trace and SubTrace are extending the TimedElement which provides re-
sponse time and exclusive time. Response time represents the time it takes for
an instance to execute. Exclusive time is the execution duration of the instance
excluding the execution duration of all nested instances, e.g., a subtrace without
its subtraces. If an instance has no nested elements, its exclusive time is equal to
its response time.

The detailed inheritance hierarchy of the Callable is shown in Figure 4.

LoggingInvocation and ExceptionThrow are used for logging and exception
events, respectively. LoggingInvocation contains information on the logging
level and the message, while ExceptionThrow contains the message, the cause,
and the stack trace of the exception, as well as the class of the exception thrown.
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-labels : List<String>
-timestamp : long

Callable

-errorMessage : String
-cause : String
-stackTrace : String
-throwableType : String

ExceptionThrow

-loggingLevel : String
-message : String

LoggingInvocation

-exitTime : long
TimedCallable

NestingCallable

-prepared : Boolean
-unboundSQLStatement : String
-boundSQLStatement : String
-parameterBindings : List<String>
-dbProductName : String
-dbProductVersion : String
-dbUrl : String
-sqlStatement : String

DatabaseInvocation

parent
0..*

0..1 callees

-responseTime : long
-exclusiveTime : long

TimedElement

-id : long
SubTrace

RemoteInvocation

targetSubTrace
0..1

targetSubTrace

Fig. 4: Callable with its inheritance hierarchy

TimedCallable is used for modeling exit time for synchronous events that
have it, such as method executions and database calls. It also extends the
TimedElement.

RemoteInvocation is used if the execution of the trace moves from one
location to another. It points to another SubTrace.

Calls to a database are represented with the DatabaseInvocation. As we
do not expect the monitoring of internals of the database management systems,
calls to databases cannot have child callables.

For callables that are able to call other callables, such as methods invoking
other methods, NestingCallable is used. Each Callable can have one parent
instance of NestingCallable type. Root callables in subtraces do not have parent
callables. On the other hand, NestingCallable can have multiple children, each
of which is of instance Callable.

The inheritance hierarchy for NestingCallable is shown in Figure 5.

NestingCallable
-cpuTime : Long
-exclusiveCPUTime : Long
-className : String
-methodName : String
-packageName : String
-parameterTypes : String
-parameterValues : String
-returnType : String
-constructor : boolean

MethodInvocation

-URI : String
-method : HTTPMethod
-httpParameters : Map<String, String[]>
-httpAttributes : Map<String, String>
-httpSessionAttributes : Map<String, String>
-httpHeaders : Map<String, String>

HttpRequestProcessing

GET
POST
HEAD
DELETE
TRACE
CONNECT
OPTIONS
PATCH

<<enumeration>>
HttpMethod

Fig. 5: NestingCallable with its inheritance hierarchy
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MethodInvocation is used for the representation of method executions. It
contains information on the method’s signature, e.g., method name, containing
class and package, return type, and a list of parameter types, as well as their
values. The time a method spent executing on a CPU, with or without the time
on the CPU of called methods, is represented using the properties cpuTime and
exclusiveCPUTime, respectively.

For modeling incoming HTTP calls, HttpRequestProcessing is used. It
contains the information on URI, HTTP method, parameters, attributes (request
and session), and headers. HTTP calls are always the root callables of the
subtrace.

In practice, different APM tools provide different sets of data. To avoid
situations where we are not sure if some data is missing, or is not supported by
a tool, some attributes are marked as optional. For a full list of optional values,
please refer to the detailed documentation.

The current version of the OPEN.xtrace meta-model is implemented in
Java [28]. To provide native support for model-driven scenarios, we plan to
develop a version using respective technologies such as Ecore [10].

3.3 Model of the sample trace

For the trace shown in Figure 2, the resulting object model would be similar
to the model depicted in Figure 6. The model has been simplified to fit space
constraints. Some methods from the listing as well as timing and additional
information have been omitted.

The trace model can be read as follows. The execution starts with the doGet
method (1) on location srv1. Other methods are successively called, until the
doSearch method is called (2). From there, the execution moves to subtrace
subTr2 on location srv2 (3). After the last method in this subtrace finishes
execution (4), the execution returns to srv1 (2) and continues with the execution
of doSearch until the end (5).

3.4 Tooling support

OPEN.xtrace provides not only the trace meta-model, but also a default
implementation, tool adapters, and serialization support, which are publicly
available [28].

Default implementation The default implementation of OPEN.xtrace is
meant to be used by, e.g., tool developers. Any implementation of the format can
be converted into the default implementation and be used as such by the tools.

Adapters As stated above, in order to translate proprietary trace representations
by APM tools into the OPEN.xtrace, adapters are required. Similar to some
other well-known approaches (e.g., JDBC), we provide interfaces which are
supposed to be implemented by tool vendors or third parties. Currently, we
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host = srv1
runtimeEnvironment = JVM1

srv1 : Location

trace : Trace

subTr1 : SubTrace

subTr2 : SubTrace

host = srv2
runtimeEnvironment = HotSpot1

srv2 : Location

root

doFilter :
MethodInvocation

doSearch :
MethodInvocation

parent

callee
parent

callee

parent

root

remote :
RemoteInvocation

targetSubtrace

getData :
MethodInvocation

log :
LoggingInvocation

list :
MethodInvocation

executeQuery1 :
MethodInvocation

callee

callee
processData :

MethodInvocation

processSingle :
MethodInvocation

sqlStatement = SELECT ...

dbCall1 :
DatabaseInvocation

executeQuery3 :
MethodInvocation

sqlStatement = SELECT ...

dbCall3 :
DatabaseInvocation

2

3

4

URI = /service/url/method

doGet :
HttpRequestProcessing

processSingle :
MethodInvocation

processSingle :
MethodInvocation

1

executeQuery3 :
MethodInvocation

sqlStatement = SELECT ...

dbCall3 :
DatabaseInvocation

5

Fig. 6: Object model of the trace in Figure 2.

provide publicly available [28] adapters for the following tools: Dynatrace [3],
inspectIT [25], Kieker [18], CA APM (previously Wiley Introscope) [2]. Some
details on the implementation of each tool adapter include the following:

• Data from Dynatrace [3] has to be first exported into the XML format via
Dynatrace’s session storage mechanism and retrieved via the REST API.
After that, the adapter parses the XML file and creates an OPEN.xtrace
representation of the traces included in the session storage.

• inspectIT [25] stores traces in the form of invocation sequences, in the
internal storage called CMR. The adapter connects to the CMR, reads the
traces directly from it, and creates the OPEN.xtrace representation.

• The Kieker [18] adapter is implemented as a Kieker plugin. Integrated into
the Kieker.Analysis component, it reads traces from a Monitoring Log/Stream,
and exports them as OPEN.xtrace traces. Additionally, the adapter sup-
ports the reverse direction, i.e., the transformation of OPEN.xtrace in-
stances into the Kieker format.
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• CA APM [2] supports exporting of the trace data to XML. As with the
Dynatrace, this XML is then parsed, and an OPEN.xtrace model is created.

Serialization OPEN.xtrace provides serialization and deserialization helpers,
that are based on the Kryo library.8 The current implementation provides serial-
ization of binary data, but we also plan to implement a textual serialization. So
far, we have not explicitly considered the storage layout and its efficiency.

4 Evaluation

The goal of the evaluation is to assess whether OPEN.xtrace is expressive
enough, i.e., whether it is able to represent the execution trace data provided by
common APM tools.

The research questions that we want to answer are as follows:

• RQ1: Can the APM tools provide the data required for OPEN.xtrace?
• RQ2: Which data available in APM tools are not available in OPEN.xtrace?

By investigating RQ1, we want to see what is the level of support for OPEN.xtrace
in available APM tools. The answer to RQ2 will give us the information on
the current coverage w.r.t. the modeling coverage and how to further develop
OPEN.xtrace.

We analyzed the data that is provided by APM tools and compared the data
they provide with the data that is available in OPEN.xtrace. Since there are
many tools, most of them proprietary, the complete survey of all APM tools is
an impossible task. Instead, we focus on the most popular tools, with the largest
market share, according to the Gartner report [23]. In our future work, we plan
to add information on additional APM tools as a part of the community effort.

The tools and sources of information that we analyzed are as follows.

• Dynatrace APM [3]—The trial version, the publicly available documenta-
tion, as well as data exported from our industry partners were used.

• New Relic APM [6]—The online demo with the sample application was
used. However, in the trial version, we were not able to export the data, so
the data was gathered from the UI and the available documentation.

• AppDynamics APM [1]—AppDynamics was tested using the trial version.
• CA APM Solution [2]—The licensed version of the tool was used to export

the traces.
• Riverbed APM [7]—The test version with the demo application was used.

In this version, we were not able to export the data, so we used the available
UI and the documentation.

• IBM APM [4]—We used the online demo with the sample application and
the provided UI.

8 https://github.com/EsotericSoftware/kryo



APM Interoperability: An Open Format for Representing Execution Traces 11

Additionally, we analyzed the data from two open source tools: Kieker [18] and
inspectIT [25].

For those tools that did not provide a demo application, the DVD Store9 was
instrumented and used as a sample application. It has to be noted that in this
survey we used only the basic distributions of the APM tools. Some of the tools,
such as Kieker, have extension mechanisms allowing to measure additional data.
For the cases that trial versions were used, to the best of our knowledge, this
does not have an influence on the evaluation.

This section presents a condensed overview of the extensive raw data set
developed in our study, which is available as a part of the supplementary material
[28]. To give an idea of the amount of the investigated APM tool features: the
raw table of results includes around 340 features analyzed in each of the eight
tools.

Coverage of OPEN.XTRACE After we collected the data from the tools, we
compared the features of OPEN.xtrace to the data provided by the tools. The
comparison is shown in Table 1. The features presented in the rows are extracted
from the trace model (Section 3.2).

From the table we can see that, while no tool provides all of the data, the
method description and timing information is provided by all analyzed tools.
The level of detail depends on the tool. IBM is one exception, since their tool
provides only aggregated information about method execution over the span of
time period. Examples of this kind of data are average, minimal, and maximal
response and CPU times, number of exceptions, number of SQL calls, etc.

In other tools, this aggregated data is also available, but this kind of data is
of no interest for OPEN.xtrace, since it is intended to represent single traces.

Data not covered by OPEN.XTRACE The data collected in the survey
showed that there is some data that is not covered by OPEN.xtrace, but is
provided by some of the tools. Although this data can be modeled using additional
information (see Section 3.2), we plan to include it explicitly in our future work.

Synchronization Time, Waiting Time, and Suspended Time All three
mentioned metrics are available in Dynatrace. While OPEN.xtrace provides
means to show that the method was waiting, there are situations where it is
important to know why the method was on hold. Synchronization time repre-
sents periods of waiting for access to a synchronization block or a method.
Waiting time is the time spent waiting for an external component. Suspended
time is the time the whole system was suspended due to some external event
during which it could not execute any code.

Nested Exceptions The nested exception can point to the real cause of the
problem and therefore provide valuable information for the analysis. This
metric is available in Dynatrace.

9 http://www.dell.com/downloads/global/power/ps3q05-20050217-Jaffe-OE.pdf
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Method description

Method name • • • • • • • • •
Package name • • • • • • • •
Class name • • • • • • • •
Parameter types • • • •
Parameter values • • •
Return type • • •
Is constructor • • • • • • • •

Timing information

Response time • • • • • • • • •
Exclusive time • • • • • •
Timestamp • • • • • • • • •
CPU time • • • • • •
Exclusive CPU time • •
Exit time • • • • •

Location data

Host • • • • • • • •
Runtime environment • • • • •
Application • • • • •
Business transaction •
Node type • • •

Database call
information

SQL statement • • • • • • •
Is prepared • • •
Bound SQL Statement • • •
DB name • • • •
DB version • • •
URL • • • • • • •

HTTP call
information

HTTP method • • • • •
Parameters • • • •
Attributes • • •
Session attributes • • •
Headers • • • • • •

Logging
Logging level • • •
Message • • •

Error information

Error message • • • • • • •
Cause • • •
StackTrace • • • •
Throwable type • • • •

Table 1: Comparison of data available in OPEN.xtrace to APM tools
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Garbage Collector There is a set of performance issues related to garbage
collection, so this information can help to identify them. This metric is
available in New Relic, App Dynamics and IBM APM.

Thread Name There are situations where a certain thread or thread group
causes a problem. Adding this information to the location description would
make the diagnosis of these problems easier. The thread name metric is
available in Dynatrace, New Relic, and CA. The thread group name is
available in CA.

HTTP Response Code and Response Headers Knowing the state of the
HTTP response can be important for detecting problems in traces that
include HTTP calls. The response code is available in Dynatrace, New Relic,
Riverbed, and IBM, while New Relic additionally provides response header
contents.

5 Conclusion

Execution trace data is an important basis for different SPE approaches. While
a number of commercial and open-source APM tools provides the support for
capturing of execution traces within distributed software systems, each of the
tools uses its own (proprietary) format.

In this paper we proposed OPEN.xtrace and its tooling support, which
provides a basis for execution trace data interoperability and allows for developing
tool-agnostic approaches. Additionally, we compared OPEN.xtrace with the
information that is available in leading APM tools, and evaluated its modeling
capabilities. Our evaluation showed the level of support for the format in most
popular APM tools, and provided us with the guidelines on how to further extend
the format.

Since this is a community effort, we plan to engage the public, including
APM tool vendors to influence the further development of OPEN.xtrace, all
under the umbrella of the SPEC RG [28]. Future work includes extensions of
the modeling capabilities, e.g., to support asynchronous calls, and to support
additional APM tools via respective adapters. In the long term, we want to
extend the effort by including also non-trace data, e.g., system-level monitoring
data in form of time series data.
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