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Abstract—A challenging problem with today’s increasingly
large and distributed software systems is their performance
behavior. To help developers avoid or detect mistakes that
lead to performance problems, many researchers in software
performance engineering have come up with classifications of
such problems, called antipatterns. To test the approaches for
antipattern detection, data from running systems is required.
However, the usefulness of this data is doubtful as it may
or may not include manifestations of performance problems.
In this paper, we classify existing performance antipatterns
w.r.t. their suitability for being injected and, based on this,
introduce an extensible tool that allows to inject instances of
these antipatterns into existing applications. The approach can
be useful for researchers to test and validate their automated
runtime problem evaluation and prevention techniques. Using
two exemplary performance antipatterns, it is demonstrated that
the injection is easily possible and produces feasible, though
currently rather clinical results.

I. INTRODUCTION

The performance of a software application directly influ-
ences user satisfaction and operational costs, and therefore the
overall profit. However, some performance problems can be
hard to detect or even cannot be detected in the testing phase.
They can be triggered later, only when software is deployed, or
require time and/or special conditions to manifest themselves,
e.g., as part of effects known as software aging [6) [15].
Research shows that there are some common software design
and implementation mistakes, called performance antipatterns
that cause performance problems [7, |9, 10, [36, 40, 42].
Some examples of antipatterns are “Ramp” —an increase in
task duration or resource consumption over time, “One Lane
Bridge” —an execution stage that can be passed only by a
single thread (or small number of threads) concurrently, and
“Traffic Jam” — when a slow execution of a single task causes
further tasks to pile up.

While many performance problem detection [22], diagnosis
[L7, 133, 47], prediction [21) 134)], and prevention [19, [15]
techniques have been developed, it is very hard to evaluate
them. It is common to use either specific benchmarks [33} 47],
generated applications [20]], or case studies that involve some
real applications [12} |13} 22], where the results are compared
to what experienced developers/testers would have expected.
Each of these evaluation approaches has its own advantages
and drawbacks: benchmarks and toy applications are created
only for the purpose of testing and might therefore be unreal-
istic. Creating random sample applications tackles the problem

of the approach’s validity, but it is limited to very simple
applications. Real applications are by definition realistic, but
due to, e.g., confidentiality restrictions, unless they are open-
source, their usability is limited. Unlike sample applications
created for testing, real applications might feature (often a
limited number of) performance problems (if any), and there
is uncertainty that the problem will be activated and manifests
itself.

Therefore, the injection of faults into real application has
become an interesting field of research. Different tools and
approaches have been developed to inject faults in soft-
ware systems, both functional [27, [38] and non-functional
[3, 14} 21]], and investigating their behavior. Not only can
faults be turned on and off, they can also be injected without
access to the source code. The recent survey by Natella et
al. [29]] evaluates different techniques and approaches for
software fault injections in dependability assessment. Three
types of problem injections are covered. Data error injection
performs corruption of memory and/or registers. Interface
error injection corrupts input and output values at component
interfaces. Injection of code changes introduces the code that
mimics typical bugs. The latter type is of interest in this paper.

The contribution of this paper is twofold. First, we propose
an alternative classification of performance antipatterns that
focuses on the suitability for injection. Second, we propose
the PPInject framework for the injection of performance and
reliability problems into (object-oriented) applications, without
the need to modify its source code. The framework is extensi-
ble and allows the implementation of additional performance
antipatterns and injecting them into real applications. We
evaluate our tool by implementing two typical antipatterns
related to software aging, namely the Ramp and the One Lane
Bridge antipatterns. As stated before, the Ramp represents an
increase in resource consumption or task duration over time,
while the One Lane Bridge can cause congestion over time
and slowdown in task execution.

The remainder of this paper is structured as follows. Sec-
tion [[I] presents the classification of antipatterns. Sections
and [[V] describe PPInject and its evaluation. In Section [V] we
discuss related work. Section draws the conclusions and
outlines future works. PPInject and the evaluation scenarios
are publicly available under an open-source licenseﬂ
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II. INJECTION-SPECIFIC ANTIPATTERN CLASSIFICATION

Smith and Williams present a number of typical classes
of performance antipatterns (e.g., [40, 41]). While they are
similar to normal design patterns as they “document recurring
solutions to common design problems” [40], their impact is
negative. In addition to their work, there are also works on
identifying and classifying typical problems in the area of
specific technologies like Java (EE) [9, (33} 42| 143].

To allow easier implementation of detection approaches,
some authors propose the classification of antipatterns. For
example, both Parsons et al. [33] and Wert et al. [47] intro-
duced hierarchal organizations of performance problems by
their symptoms.

While the mentioned classifications distinguish antipatterns
by their symptoms, our does this by the system scope in
which they were introduced and whether or not they can be
injected. Also, note that this classification is not disjunctive.
Some antipatterns can appear in different classes as they can
have different causes. For example, One Lane Bridge can
be a local (unnecessary locks), micro-architecture (improper
database structure) or deployment problem (undersized pools).

1) Local implementation problems: A performance prob-
lem is local if it affects only a single method. Many methods
and even the entire application may contain the problem, but
only a single method needs to be incorrect for a single instance
of the problem. The problem has probably been caused by a
bad decision of the programmer during the implementation
of the method. Some antipatterns that fit into this group are
Ramp, Empty Semi Trucks, One Lane Bridge, and Spin Wait
Local problems are injected by modifying a single method.

2) Micro-architecture problems: These problems are intro-
duced by the detailed design of the software system. They
usually affect one or few classes. Because they affect mul-
tiple parts of the application code, these problems cannot
be injected directly. However, the characteristic behavior of
these problems can be analyzed and replicated in addition to
the normal functionality of the modified methods. Example
antipatterns in this group are Treasure Hunt, Ramp, One Lane
Bridge, and Session as a Data Store.

3) Macro-architecture problems: These problems are intro-
duced during the design phase and affect the overall structure
of the system. For example, all the work is performed in a
single (“God”) class, although, e.g., a pipe-and-filter architec-
ture would have been more suitable. These problems cannot
be injected or simulated because the responsible classes or
modules would not even exist in a correctly designed system.
They have to be detected long before the implementation, and
therefore are not detected (and injected) in the source code or
the running application. Beside “God” Class, other antipatterns
from this group are Traffic Jam and Unbalanced Processing.

4) Deployment problems: Even if an application has been
developed correctly, its performance can be impaired by
incorrect deployment. For example, the parts of a multi-
component application could be improperly distributed over

2Antipattem names are taken from [40] and [41]

multiple nodes, or pools can be undersized by configuration.
Note that the way an application is deployed can also increase
the negative effects of one of the above problems. For example,
the Round Tripping problem only causes a perceivable slow-
down if the unnecessary calls need to be sent over a remote
connection. Simulation of deployment performance problems
using code injection obviously makes no sense, which is why
they are not further considered in this paper. Other examples
in this group are Falling Dominoes, One Lane Bridge, and
More is Less.

This classification may be useful for application devel-
opers, as they need the antipatterns to be organized along
their development process in order to consider them in the
right situation. For example, local implementation problems
should be considered when implementing a new, non-trivial
method, micro-architecture problems when developing a group
of methods or a class, macro-architecture problems should
be considered in the design phase, and deployment problems
when configuring an application.

In this paper, we implemented one problem from each
of the first two groups prototypically. Local implementation
problems have a root cause that can be injected directly. Micro-
architecture problems can be more difficult to inject, but it is
at least possible to inject code that emulates the characteristic
effects of these problems. As stated above, macro-architecture
and deployment problems are not considered in this paper, as
they are introduced during architecture design or application
deployment, respectively.

III. PERFORMANCE PROBLEM INJECTION

In Section [III-A] we consider the requirements for an
injection framework. Then, we propose a framework design
in Section [[II-B

A. Requirements

For the validation of new detection techniques, a perfor-
mance problem injection library should satisfy a number of
properties (cf. [29]):

o Using this library, it should be possible to implement
individual performance problems with only a few lines of
code. The library itself should already provide universal
injection and management code. In other words, the
library’s architecture should support extensibility.

« Injection should be possible at both method and class
level, depending on the respective performance problem.

« Integration of the library should be unobtrusive and easy
to handle. In particular, the source code of the target
application may not be available, so the library must be
attached to either the compiled or the running application.

o It should be possible to inject and remove performance
problems dynamically, or at least to activate and de-
activate an injected performance problem. Because the
application itself cannot be changed, this implies that
some kind of external configuration interface is required
to control the injection.
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Fig. 1: Class diagram of the implemented framework interface

« Injected performance problems should be configurable
dynamically regarding their intensity and behavior.

o The performance overhead of the library itself should
be negligible, especially when the injected performance
problems are deactivated.

o The library only needs to support Java-based applica-
tions.

B. Design of the Library

1) Framework: The part of the framework depicted
in Figure [I] features base classes for specific antipat-
tern implementations and their configurations and states.
Through the InjectionService, injected antipatterns
can be configured. Antipatterns implement the (abstract)
class BasePerformanceProblem, which ensures that the
execute () method is always called with the correct con-
figuration and state objects, so that the actual problem imple-
mentation is free from boilerplate code.

To meet the requirements regarding unobtrusiveness, dy-
namic activation and performance overhead, we chose to make
use of the Aspect-Oriented Programming (AOP) paradigm
[24]. AOP is also commonly used, for instance, for program
instrumentation in dynamic software analysis and performance
monitoring [46]. Antipatterns are implemented using aspects,
while the library provides infrastructure for their injection.
Since the AOP join point, at which an injection can be
performed, is usually a method call or a field access, method
and class level injection is technically possible. While it may
be possible to derive heuristics from production experience,
this is not the focus of the current work and we assume that
the user of the library will define the correct pointcuts.

An aspect that implements an antipattern (in this case
ExampleProblemAspect) can derive its own versions of
ProblemConfiguration and/or ExecutionState to
retrieve/store additional information. The configuration stores
static information for a particular performance problem in-
stance like the number of available “lanes” (One Lane Bridge)
or the slope of the “ramp” (Ramp). The configuration also de-
termines the execution scope of an injected problem instance,
as detailed in Section The ExecutionState is then

used to store runtime data, such as “How many lanes are
still available?” or “How far up the ramp the application has
already gone?”.

By providing multiple ProblemConfiguration in-
stances for different pointcuts and/or by specifying fine-
grained scopes, multiple simultaneous instances of a perceived
performance problem can be injected. For example, the “One
Lane Bridge” antipattern, might affect all methods of a class,
e.g., if they were all synchronized, or only those with
database accesses (because the connection pool is limited).

2) Execution Scopes: A configuration item that is always
required is the execution scope of the injected performance
problem. While local problems (see Section [[I-1)) are mostly
stateless, the micro-architecture performance problems (see
Section have to behave differently in subsequent exe-
cutions. To define which parts of the application are affected
by a single instance of the performance problem (as multiple
problems can be injected independently), we use the following
scopes:

o Local: The problem is local to a single method of an
object.

« Per-Instance: The problem affects all instrumented meth-
ods of an object instance.

o Per-Method: The problem affects a single method of all
instances of its class.

o Per-Class: The problem affects all instances of a class.

o Per-Thread: The problem affects all instrumented meth-
ods in all classes, but only when executed within a single
thread.

« Global: The problem affects all instrumented methods in
all classes.

« Stateless: The problem affects all instrumented methods
in all classes, but there is no connection between subse-
quent executions of the problem.

« Per-Configuration: The problem affects all instrumented
methods which are activated by the configuration for the
problem instance.

« Other scopes are also imaginable, but not considered in
the current design.

Consider the “Ramp” antipattern, which is one of the major



causes of software aging, as an example. It can occur, for
example, because a single method uses an inefficient cache.
The class in which the method is implemented might be
instantiated multiple times. Therefore, the execution scope is
per-class if the cache is static, or per-instance if not. On the
other hand, the “One Lane Bridge” antipattern can be caused
by an undersized database connection pool or connection
leaks. This affects all the data access methods and all the
connection instances, so multiple methods have to be targeted.
However, as there is only a single global connection pool, this
is considered a global problem.

3) Activation: Antipatterns are activated by specifying sig-
natures of classes to which an antipattern should be injected,
with the possibility of using wild-cards. Activation based
on instances or threads would be imaginable, too, but this
would be almost impossible to configure from outside because
instances and threads are not available or cannot be referenced
there.

Instead of mapping to a boolean value indicating the acti-
vation, the signature is mapped to a configuration object. A
missing configuration indicates that the aspect is deactivated.

IV. EVALUATION

As an example, we implemented a prototype of the pro-
posed PPlInject injection framework, as well as two injectable
performance antipatterns. First we show the implementation of
the Ramp (Section [V-A), which is implemented by injection
of symptoms. Next, we present the implementation of the
One Lane Bridge, which is implemented using injection of
problematic code (Section [[V-B).

A. Ramp

The Ramp antipattern implementation emulates a method’s
increasing response time.

During each execution, the time ¢ that the execution took is
measured and a delay of ¢-« -t is added to the i-th execution,
where « is the ramp factor/slope (usually << 1). By letting the
freshly measured runtime ¢ affect the delay time, the natural
behavior of the underlying method is carried through. For
clarity, the implementation is only presented as pseudo code:

int 1 = increaseAtomicCounter () ;

executeRealMethod (); —-> measuredDuration,
result

sleep (measuredDuration » alpha * 1i);

reproduceResult (result);

B. One Lane Bridge

The implementation of the One Lane Bridge antipattern uses
a semaphore to let only the configured number of threads pass
at a time. The number of threads is provided by configuration.

The following listing provides an excerpt of the aspect that
implements this antipattern:

static class Config
extends ProblemConfiguration ({
int numberOfLanes;

}

static class State
extends ExecutionState {
Semaphore semaphore = new
Semaphore (config.numberOfLanes, true);
}
public Object execute(.. joinPoint, Config
config, State state) {
state.semaphore.acquire();
try {
return joinPoint.proceed();
} finally {
state.semaphore.release();
}
}

C. Evaluation Results

For the evaluation, the MyBati JPetStore on a Jetty
server was used, with JMeteIE] as a load generator. As an
example, we instrumented one method (CatalogAction—
BeanfviewProduct ()) and increased its runtime by
adding Thread.sleep(1000) to simulate a long-running
method.

To evaluate the implementation of One-/n-Lane Bridge, we
measured the response time of the method while varying the
number of active threads. The tests lasted for 2 minutes, with
a ramp-up from 1 to 12 threads. We discarded the very first
measurement (with one thread) as well as the measurements
during ramp-down.

Without any additional performance problems, the method
behaves like a normal long-running method (see Figure [2a)).
When only one thread can enter the method at a time (a
classic One Lane Bridge), the response times increase linearly
as more threads are added (Figure [2b). When five lanes are
available (5-Lane Bridge), the response times stay at 1000 ms
until more than five threads are active, and then it increases
linearly (Figure [2c).

For the Ramp antipattern, the number of threads was con-
stant (10) and the experiment was again run for 2 minutes.
The results show the increase in the method’s response time,
which is typical for the Ramp antipattern (Figure [3).

D. Known Issues and Future Work

As discussed by Natella et al. in their survey [29], there are
three important aspects of each fault injection tools: usability—
the ability to use it in a new system, representativeness—the
ability to represent real faults, efficiency—the ability to achieve
results with reasonable effort.

Regarding the usability, using our library, we have shown
that antipatterns can be implemented using fairly simple as-
pects. However, with the current implementation, all aspects

3http://mybatis.org/
“http://jmeter.apache.org/
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are woven into the bytecode and are thus permanently injected
into the running application. They need to be deactivated
when they are not needed. Each time an advice is executed, it
needs to check if it is activated and retrieve the corresponding
configuration, which leads to an overhead, and it can only be
avoided by dynamically injecting the problems. Wert et al. [47]]
use dynamic instrumentation with Javassist and HotSwap for
measuring and monitoring performance. A similar approach
could be used for dynamic injection.

Representativeness and efficiency highly depend on the
antipattern implementation. We only implemented two simple
antipatterns so far. Providing realistic implementations for
the other antipatterns is more difficult, especially for the
micro-architecture problems. A general drawback of problem
injection is its artificiality: while the problems are injected
into a realistic application and may also produce realistic
side-effects and interferences, the injected problem itself is
still artificial, and poses a threat to validity of an experiment.
With functional faults, this is less of a problem because a
failure is a failure, regardless of its origin. Micro-architecture
performance problems can only be injected by emulating
the symptoms, which are usually increased response time or
increased memory consumption. Both of these symptoms are

not binary, rather a function of time and other variables. When
these are injected, the results (see Figure[3)) look rather clinical.
This could be compared to real instances of these performance
problems to make the injected instances more realistic.

V. RELATED WORK

Fault injection has been subject of research for a long time
[29]. The main motivation is to test the dependability of a
system in the presence of faults [18]. Both on the hardware
level (using radioactive substances such as Californium [16]])
and the software level [4} 25], faults were injected to simulate
faulty behavior of processors and other hardware components
[S)]. Techniques for fault injection at software level include
source code modifications [37], changing the compiled code,
manipulations at the operating system layer [44], using special
processor debugging features [8], altering the execution state
from a second process [23], as well as computational reflection
[26] or bytecode manipulation [27, 38]].

Most of the previously mentioned approaches intend to
simulate hardware faults and then test the system’s robustness.
Although the technical means to achieve the injection are
similar, this needs to be distinguished from the (realistic)
simulation of mistakes in the code that a programmer could



have made. The latter is the goal of this work and has also
been covered in the literature [11, 28 |31} 45].

The idea to build an extensible framework for fault injection
is not new. For example, the tools GOOFI [2]], Jaca [27] and J-
SWFIT [38] are clearly designed to be reusable and extensible.
However, these tools provide functional, not performance-
problem-based code injection.

Modern enterprise applications and cloud systems usually
use container deployment. Fault injection systems for these
platforms are either limited in functionality, e.g., ChaosMon-
key is only for shutting down VMs in AWS, or have high
resource overhead, e.g., Cocoma [35]. Sheridan et al. [39]
propose a tool that solves the resource overhead issue and
provides different failure scenarios, but still only on the VM
level. It can be observed that there is a trend in designing the
tools that allow fault injection at runtime, however they focus
on system level problems.

Irrera and Vieira [21]] and Pitakrat et al. [34] used fault
injection to generate failure data in the context of online
failure prediction. Alonso et al. [3] and Gross et al. [14]]
injected memory leaks to validate crash prediction algorithms
or software-aging detection, respectively. To test the capa-
bilities of APM tools in detecting performance regressions,
Ahmed et al. [1]] inject ineffective resource usage, high CPU
utilization and inefficient database access. These approaches
used proprietary fault injection, developed for their specific
evaluation use cases, while the goal of PPlnject is to be a
reusable and extensible injection framework.

As to our knowledge, no research has been conducted on
realistically injecting typical performance antipatterns.

VI. CONCLUSIONS

In this paper, we presented the design of the extensible
PPInject framework for performance problem injection based
on known antipatterns, and tested its capabilities on a proof-
of-concept implementation. The framework is designed to
help researchers validate their newly developed approaches
for performance problem detection, diagnosis, prediction, and
prevention. Problems can be injected by either injecting a
root cause, or by emulating the runtime behavior that a real
problem would have with respect to, e.g., response times and
memory consumption. We have implemented and shown how
two typical performance antipatterns can be injected into the
sample application. Additionally, we proposed a classification
of performance problems by the scope in which they are
introduced. In the future, our goal is to implement injectors for
other antipatterns, and to extend PPInject to serve as a part
of a community benchmark suite for assessing performance
and reliability evaluation techniques. Another part of our
future research is to investigate fault injection to microservice
architectures [30], e.g., based on the respective (anti)patterns
for these types of systems [32].

It is important to note that presented concepts do not limit
the implementation of the library to Java. There are AOP
implementations for other platforms, that would allow porting
the library to them.
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