An Elastic Layers Pattern Approach

with Dynamically Added Layers

Christian Zirkelbach and Marc Adolf
Software Engineering Group
Kiel University, Germany
{czi,mad}@informatik.uni-kiel.de

Abstract

Cloud environments often provide dynamic resource
allocation techniques. These can be used to scale sin-
gle components or even whole software systems ac-
cording to their current workload. Fluctuating work-
loads can occur in different layers of the software ar-
chitecture and need appropriate handling to meet per-
formance requirements. Scaling workload-intensive
components in combination with load-balancing can
be used to deal with these issues. Therefore, we
present a parallel layers approach, which extends an
existing pattern regarding improved elasticity. Based
on dynamically adding layers on top of bottleneck lay-
ers, we increase the flexibility and performance of re-
lated architectures. Furthermore, we describe a first
design approach, implementation and an evaluation of
the feasibility.

1 Introduction

In many applications the received workload varies de-
pendent on different external influences. Often, this
creates peaks or periods of time with fluctuating work-
loads. In order to fulfill performance requirements
like Service Level Agreements (SLA), an application
has to handle these occurrences. Therefore, software
has to be scalable to utilize elastic resource alloca-
tion to avoid over-provisioning. Additionally, scal-
ing only bottleneck related components can reduce
needed resources and costs. Related approaches are
architectures like Mapreduce [1] or Microservices [5],
or self-adapting techniques like [4]. In this paper, we
present a parallel layers pattern approach, which ex-
tends an existing pattern [2]. We reduce the amount
of scaled components, and increase the flexibility and
performance of related architectures by dynamically
adding layers to reduce the workload in bottleneck
layers. Furthermore, we describe a first design ap-
proach and implementation, which we successfully in-
tegrated in ExplorViz [6], our web-based tool for live
trace visualization of large software landscapes.

In the following, we describe our approach. Then,
we present a first implementation in order to show
the feasibility of our approach. Finally, we draw the
conclusions and illustrate future work.

2 Parallel Layers Pattern

In the parallel layers pattern [2], single components
of a layer can be duplicated to enable parallelism and
avoid bottlenecks. These duplicated components com-
municate with the same component in a higher layer
than the original. Likewise, they can not use existing
underlying components. Hence, the overall architec-
ture forms a tree. If a single node is duplicated, it is
necessary to replicate the whole subtree. Therefore,
the related layers can be scaled in terms of width. The
structure and layering is designed beforehand and the
number of layers is fixed [2]. This behavior can lead to
a higher resource allocation than necessary for a sys-
tem to react to certain workloads. If one of the inter-
mediate layers or even the root needs more (computa-
tional) effort than lower layers for processing results,
the whole (sub-)tree needs to be duplicated. These ef-
fects can increase, if the parallel layers pattern is used
to duplicate underlying layers.

For example, we register new sensors in a layered
monitoring system. Here, the collection of data from
sensors requires less effort than the processing. Even
duplicating these sensors is not a solution.

3 Elastic Parallel Layers Pattern

For this reason, we propose an approach, which is
based on the parallel layers pattern [2] and enables a
system to scale dynamically. The approach increases
the performance of a single layer by horizontally
duplicating the related components and vertically
by adding accumulation layers. In the following, we
present the principle of our approach based on an
example.

Figure 1: Layered Architecture - Node 1.1 has high
workload, Node 2.4 was created



Figure 2: Extended Layered Architecture: Node 1.2
and an accumulator were created

In Figure 1, we start with a layered architecture
with two layers. Node 2.4 is added to the system
and generates additional load for the processing
Node 1.1. Since the system does not meet the
SLAs anymore, the load has to be rebalanced within
the system. Thus, Node 1.1 is duplicated. An
accumulator component (Acc) is needed to combine
the results of the parallel execution. This can be
handled through a new component with the single
purpose of accumulating received data. Alternatively,
if the input and output of the accumulator require
the same type of data, a duplicate of the node can be
used. The resulting architecture is shown in Figure 2.
The nodes of the second layer, which receive the data,
are redistributed between the existing Node 1.1 and
the new Node 1.2. At the top, a new layer with a
single Accumulator node is created, which collects the
results of these two. If the workload further increases,
more layers can be added. The architecture is still
conform to the parallel layers pattern and all scaling
operations behave as before. The changes can also be
reverted to reestablish the original architecture.

Two prerequisites have to be considered to follow
our approach. First, for every layer that should be
able to scale using our approach, an accumulation
component has to be defined. Second, a distribution
strategy is needed to define how the workload should
be rebalanced.

4 Implementation

As a first implementation, we developed an elas-
tic, scalable monitoring approach to avoid the over-
utilization of a single analysis node in the context
of distributed application-level monitoring [3]. We
successfully integrated the approach in our tool Ex-
plorViz, which consists of three major components,
monitoring, analysis, and visualization. The monitor-
ing component gathers data of instrumented appli-
cations and passes the recorded data to the analysis
component, where execution traces are reconstructed
and aggregated. Finally, the visualization can be ac-
cessed through a web browser.

Master

Application

Application

a) Application

i

Application

Application
b)

Application

o
k
Z
5.
@
]
=
o
i
i
Z
L.
@

Figure 3: Upscaling process based on [3]

4.1 Design

Our approach focuses on the analysis component,
as this element can be affected by over-utilization
within our monitoring approach. If a deployed anal-
ysis node becomes over-utilized, we dynamically add
a new worker level ahead of it. Furthermore, to cir-
cumvent this situation with newly created worker lev-
els, we scale the associated worker applications within
their worker level. In order to allow multiple worker
levels, the analysis component offers two different
modes. Deployed as a worker node, incoming mon-
itoring data is preprocessed and passed to the next
analysis node. If the analysis node is running as a
master node, it adds up the preprocessed monitoring
information. Hence, in this configuration the master
node acts as the accumulator.

4.2 Scaling Process

The process of scaling analysis nodes during the
monitoring of an scalable example software system is
illustrated in Figure 3. A single scaling group (name
is displayed on top), i.e., a group of applications,
which are scaled independently, is illustrated as
boxes with dashed lines. In the beginning, we have
just two scaling groups — Application and Master.
Arrows illustrate directed accesses and the related
label is used to request an IP address for a specific
target scaling group from a LoadBalancer, which is
integrated in our implementation.

Initially, the scaled monitored software system
(multiple instances of Application) directly commu-
nicates with the Master. Figure 3 shows the pro-
cess of dynamically adding one worker level, i.e., a
new scaling group. This scaling process is triggered,
once the CPU utilization of the Master rises above a



— JPetStore instances ~
— CPU utilization of Master

160
1
100

100 120 140
1 1 1
T T
50 75

80

Number of JPetStore instances
60
1

Average CPU utilization of Master [%]

40
1
25

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00
Experiment time [hour:minute]

Figure 4: Instance count and average CPU utilization
of the Master scaling group [3]

defined threshold. First, a new worker level is cre-
ated (worker-1). Then, we start two new worker
nodes with the same configuration within this level.
The newly created worker nodes are connected to the
Master in order to prepare the delivery of their pre-
processed monitoring data. This state is shown in Fig-
ure 3a. Afterwards, the communication of the moni-
tored applications is switched from the Master to the
new worker level (worker-1). The resulting state is
presented in Figure 3b. As the analysis should not
be suspended during the scaling process, the order of
changing the communication between levels is vital.
Subsequently, if the workload decreases, worker levels
are removed step-by-step. This down-scaling process
works in reverse order of the upscaling process.

4.3 Evaluation

In order to evaluate our approach, we conduct
an experiment and monitor the web application
JPetStore! with ExplorViz. We employ a modeled
workload, which characterizes a day-night-circle of
a typical website, with rising workload until 6 p.m,
a peak at around 9 p.m., and a decreasing load
till midnight. The experiment utilizes our private
OpenStack? cloud with a maximum of 216 virtual
cores (VCPU). Our initial configuration contains only
the Master with one VCPU.

Figure 4 shows the resulting number of instances
and the average CPU utilization of the Master in our
experiment. The count of JPetStore instances follows
our workload curve and results in a maximum of 160
JPetstore instances at the peak with two intermedi-

Thttps://github.com/mybatis/jpetstore-6
2https://wuw.openstack.org

ate worker levels. Once the workload rises above the
defined threshold of CPU utilization (40%), another
worker level is started. This situation can be specif-
ically observed at 3 a.m. Thus, the CPU utilization
of the Master drops to nearly 3%. Another worker
level is added at 7 p.m. When the workload falls be-
tween 8 p.m. and midnight, the number of JPetStore
instances decreases. Hence, the second worker level is
removed at 10 p.m. and consequently the first worker
level at midnight. Thus, our initial configuration is
retrieved at the end of our experiment. The results
confirm, that our implementation is able to handle an
over-utilization of the Master with increasing work-
load. Further information of the experiment can be
found in [3].

5 Conclusion

In this paper, we present an extended, elastic parallel
layers approach. Based on dynamically adding new
layers, we are able to provide a high level of scalabil-
ity, especially for cloud environments. Additionally,
we developed a first design approach and implemen-
tation, which we successfully integrated in ExplorViz.
Furthermore, we conducted an experiment to evaluate
our implementation. The experiment results confirm,
that our approach is able to handle fluctuating work-
loads. As future work, we plan (i) to further evalu-
ate the pattern on scenarios with a higher number of
worker levels and multiple layers with different tasks
and (ii) to compare the presented approach with the
parallel layers pattern [2].

References

[1] J. Dean and S. Ghemawat. “Mapreduce: simpli-
fied data processing on large clusters.” In: Pro-
ceedings of OSDI. 2004.

[2] J. L. Ortega-Arjona. “The Parallel Layers Pat-
tern. A Functional Parallelism Architectural Pat-
tern for Parallel Programming.” In: Proceedings
of SugarLoafPLoP. 2007.

[3] F. Fittkau and W. Hasselbring. “Elastic
Application-Level Monitoring for Large Software
Landscapes in the Cloud.” In: Proceedings of
ESOCC. Springer, 2015.

[4] N. Huber et al. “Model-Based Autonomic and
Performance-Aware System Adaptation in Het-
erogeneous Resource Environments: A Case

Study.” In: Cloud and Autonomic Computing
(ICCAC). 2015.

[6] S.Newman. Building Microservices. O’Reilly Me-
dia, Inc., 2015.

[6] F. Fittkau, A. Krause, and W. Hasselbring.
“Software landscape and application visualiza-
tion for system comprehension with ExplorViz.”
In: Information and Software Technology (2016).
http://dx.doi.org/10.1016/j.infsof.2016.07.004.


https://github.com/mybatis/jpetstore-6
https://www.openstack.org

	Introduction
	Parallel Layers Pattern
	Elastic Parallel Layers Pattern
	Implementation
	Design
	Scaling Process
	Evaluation

	Conclusion

