
Extraction of Operational Workflow-based User Behavior Profiles

for Software Modernization

Gunnar Dittrich
b+m Informatik AG

24109 Melsdorf, Germany
gunnar.dittrich@bmiag.de

Christian Wulf
Software Engineering Group
Kiel University, Germany
chw@informatik.uni-kiel.de

Abstract

Static and dynamic analysis are the core parts in the
software modernization process. They are required for
the architecture reconstruction and the assessment of
legacy software systems. One important use case is
the extraction of user behavior profiles which can help
in improving the system’s frontend layer.

In this paper, we present our approach to extract
and to visualize operational workflow-based user be-
havior profiles. Its implementation is based on two
Java command line tools. The first tool extracts and
anonymizes sessions from the records emitted by the
monitoring framework Kieker. Based on these ses-
sions, the second tool extracts a behavior model which
is stored in several different graph formats on the file
system. We evaluate our tools by instrumenting an
industrial workflow-based Java web application for in-
surers. We show that our approach is able to automat-
ically build and visualize a corresponding hierarchical
behavior model. Such a model represents business
processes as parents of workflows which in turn con-
tain the visited views. Moreover, we show that this
model can help in planning and prioritizing the soft-
ware modernization process by identifying the most
used and the least used views as well as the common
screen- and workflow.

1 Introduction

Kieker [3] is a framework for application performance
monitoring and dynamic software analysis. One of its
main use cases is recording the runtime behavior of a
software system in order to monitor the execution of
operations in form of monitoring records. However,
Kieker does not only allow to collect such monitoring
records, but also to analyze and to visualize them.

In this paper, we use Kieker to monitor and to
visualize the operational user behavior of an indus-
trial real-world application called b+m bAV-manager
developed by the b+m Informatik AG. This applica-
tion serves as an administration software for customer
and calculation data in the field of company pension
schemes. In cooperation with a third-party calcula-
tion engine, it creates expert opinions for several val-
uation and accounting regulations. The usage of the

Figure 1: Overview of our approach to extract and to
visualize operational user behavior profiles

b+m bAV-manager is thereby workflow-oriented.
Currently, we only know in an insufficient way how

the users of the b+m bAV-manager work with the
graphical user interface (GUI). By building a corre-
sponding user behavior model, we can extract the ac-
tual behavior in terms of user behavior profiles in or-
der to derive suggestions for the modernization pro-
cess. For example, this approach allows us to iden-
tify screenflows which do not correspond to their in-
tended workflow definitions. Moreover, it shows the
most used screens and most complex processes. In
this way, we are able to focus our (human) resources
on improving the most crucial screens and screenflows.

2 Overview of our Approach

Figure 1 illustrates our approach to extract and to vi-
sualize operational user behavior profiles. The instru-
mented b+m bAV-Manager uses Kieker within a cus-
tom Spring interceptor to send monitored records nec-
essary for the model extraction to the analysis node
via TCP. The session extractor processes these records
and outputs session logs. These logs are then used by
the behavior model extractor to produce a behavior
model in several file formats. We detail our approach
in Section 3 and 4.

Our approach is inspired in parts by the DynaMod



project [2]. We also apply dynamic analysis to a
legacy software to create models of the system. In
our case, we build up user behavior models to support
the modernization of the application’s frontend layer.
Moreover, we adapted the monitoring record and the
session log extractor of the WESSBAS approach [5].

3 Monitoring

For monitoring the user activities, we use Kieker’s
monitoring component. We define custom probes
which collect information about sessions, workflows,
and think times as monitoring records. These records
are then written to a monitoring log or stream by a
monitoring writer. We choose the TCPWriter to re-
duce the load on the monitored application.

For recording the user behavior, we defined a cus-
tom monitoring record called ScreenEntryRecord.
Listing 1 shows its structure in the syntax of the
Kieker Instrumentation Record Language (IRL) [4].
The IRL is Kieker’s DSL for defining monitoring
records and is used to generate corresponding imple-
mentations in many different programming languages.

1 package de . bmiag . gear . u t i l . monitor ing . r ecord
2 entity ScreenEntryRecord {
3 string userName
4 long loginTime
5 string screenName
6 string subprocessName
7 string processName
8 string proces sExecut ionId
9 long entryTime

10 string eventName }

Listing 1: Our monitoring record defined with the IRL

Whenever a user enters a screen in the application,
we collect the user’s unique name (Line 3), the user’s
login time (Line 4), the name of the screen (Line 5),
the name of the screen’s subprocess (Line 6), the name
of the process executing the subprocess1 (Line 7), the
process execution id (Line 8), the time when the user
entered the screen (Line 9), and the name of the raised
event to reach the screen (Line 10). Our approach can
be applied to any application that is able to emit the
ScreenEntryRecord with Kieker.

4 Model Extraction

Our approach includes two Java programs as shown in
Figure 1. The session extractor receives the Screen-

EntryRecords from the Kieker monitoring component
via TCP. Its Pipe-and-Filter (P&F) architecture is
illustrated by Figure 2a and uses TeeTime [6, 8], a
P&F framework for Java. We reuse two TeeTime-
based stages (grey stages) from the Kieker analysis
component for reading and selecting incoming records.
The SessionExtractorStage then reads the session
data from the incoming ScreenEntryRecords and con-
verts them into comma-separated values. Finally, the

1Unlike a process, a subprocess cannot be executed directly.
In return, it may be reused by other processes.

(a) Our P&F architecture of the session extractor.

(b) Our P&F architecture of the behavior model extractor.

Figure 2: The P&F architectures of our session extractor
and behavior model extractor. The grey and white stages
represent reused stages of the TeeTime distribution and,
respectively, new stages.

SessionLogWriterStage writes these values as a ses-
sion log file to the file system. An optional stage can
be added to the execution, which anonymizes any user
or time related information. In the future, this func-
tionality could be moved to the monitoring node.

The behavior model extractor processes the log
files produced by the session extractor. Figure 2b
illustrates its P&F architecture. Similar to the ses-
sion extractor, we also use TeeTime for the imple-
mentation. The first two stages are predefined Tee-
Time stages which in combination collect all log files
from a directory. The entries of these log files are
grouped and filtered in record lists. Afterwards, the
BehaviorModelExtractorStage uses them to build
up a corresponding behavior model consisting of states
(screens) and transitions (user activities). We en-
riched this model by the following hierarchy concept
to represent flows and business processes (in short:
processes). Each screen belongs to a flow which in
turn can be executed within a process or standalone.

Figure 3 shows the screen ”Kontrolle festlegen” and
its predecessors/successors—a very small part of an
example behavior model. The screen belongs to the
calculation process ”Gutachten” (outer dark grey box)
of the b+m bAV-Manager which we evaluate in Sec-
tion 5. Usually, the screen is reached from the main

2



Figure 3: Excerpt of an example behavior model of the
b+m bAV-Manager calculation process (dark grey) includ-
ing its subprocesses (light grey) and screens (white).

administration flow ”AuftragBearbeiten” and is left
to the selection of a controller or to the print dialog.
However, there is also an incoming transition from an
external screen ”DruckvorlageFinden” which does not
belong to the process definition. This could be a point
of interest in terms of software modernization.

The behavior model is described by GraphML, one
of the export formats of the ExportCompositeStage.
This stage also generates Graphviz files, serializes
the behavior model, and aggregates a summary of
all relevant statistics. Before exporting the results,
the BehaviorModelAnalysisStage calculates statis-
tics for the states and transitions, e.g., the number
of visits per screen as well as the probability and the
think time (mean, median, etc.) per user activity.

5 Evaluation

To evaluate our approach, we instrumented the b+m
bAV-Manager introduced in Section 1 by a Spring
method interceptor to collect ScreenEntryRecords
introduced in Section 3. We deployed it on a test
server at the b+m Informatik AG and asked five b+m
employees (developers, architects, and project man-
agers) to execute 11 common business processes of
the bAV-Manager via its GUI. Following the GQM
approach [1], we define the goal of our experiment
as ”Identifying abnormal screenflows and workflows
by users of the monitored application”. Our research
questions are as follows: (1) Which screenflows do
significantly differ from the expectations of the profes-
sionals? (2) In which workflows does the usage signif-
icantly differ from the process definition? To answer
these questions, we use the metrics ”visits per screen”,
”think times”, and ”transition probabilities”.

We collected 53 session log files with 2381 recorded
user activities. We identified 23 of 109 screens which
were not visited at all. Retrospectively, 8 of them
were classified as obsolete by the professionals. We
also recognized unusual workflows by a high number
of visits on the error screen. This screen is displayed
to the user when a system task fails, e.g., due to a
wrong user configuration or a currently locked data

entry. Two of these workflows were the calculation
process and the administration process which also had
the greatest number of unusual incoming and outgoing
transitions. Such transitions are not part of the pro-
cess definition and should therefore be reconsidered in
the imminent modernization of the application. For
more information on the evaluation, we refer to [7].

6 Conclusions

In this paper, we present our approach for monitor-
ing and analyzing the operational user behavior in
workflow-based applications including the design and
the implementation of the corresponding components.
Our evaluation with the industrial real-world applica-
tion b+m bAV-Manager shows that our approach suc-
cessfully builds up a corresponding behavior model.
Moreover, it reveals unusual behavior in business pro-
cesses and in the screen flow which will help us greatly
during the imminent modernization of the application.

As future work, we plan to repeat the experiment
on productive systems of the b+m bAV-Manager’s
customers. A high priority has the visualization of
process information to improve the screen flow for the
users since they often lack orientation.

References

[1] V. R. Basili and D. M. Weiss. “A Methodology for
Collecting Valid Software Engineering Data”. In:
Transactions on Software Engineering 10 (1984).

[2] A. Van Hoorn et al. “DynaMod Project: Dynamic
Analysis for Model-Driven Software Moderniza-
tion”. In: Joint Proc. of the Int. Workshops on
Model-Driven Software Migration and on Soft-
ware Quality and Maintainability. Mar. 2011.

[3] A. Van Hoorn, J. Waller, and W. Hasselbring.
“Kieker: A Framework for Application Perfor-
mance Monitoring and Dynamic Software Anal-
ysis”. In: Proceedings of the ICPE. Apr. 2012.

[4] R. Jung. An Instrumentation Record Language
for Kieker. Tech. rep. Kiel University, Aug. 2013.

[5] A. Van Hoorn et al. “Automatic Extraction of
Probabilistic Workload Specifications for Load
Testing Session-based Application Systems”. In:
Proceedings of the VALUETOOLS. 2014.

[6] C. Wulf, N. C. Ehmke, and W. Hasselbring. “To-
ward a Generic and Concurrency-Aware Pipes &
Filters Framework”. In: Proceedings of the Sym-
posium on Software Performance. Nov. 2014.

[7] G. Dittrich. “Extraction of User Behavior Profiles
for Software Modernization”. MA thesis. Kiel
University: Dept. of CS, May 2016.

[8] C. Wulf, C. C. Wiechmann, and W. Hasselbring.
“Increasing the Throughput of Pipe-and-Filter
Architectures by Integrating the Task Farm Par-
allelization Pattern”. In: Proc. of CBSE. 2016.

3


	Introduction
	Overview of our Approach
	Monitoring
	Model Extraction
	Evaluation
	Conclusions

