
Improving Kieker’s Scalability by Employing Linked

Read-Optimized and Write-Optimized NoSQL Storage

Armin Moebius
a.moebius@ibak.de

IBAK GmbH & Co. KG, Kiel, Germany

Sven Ulrich
s.ulrich@ibak.de

IBAK GmbH & Co. KG, Kiel, Germany

Abstract

Kieker’s monitoring output can be persistently saved
into logs by utilizing relational databases or file sys-
tems. Currently, there is no support for noSQL stor-
age. As part of our Regression Benchmarking Ex-
ecution Environment (RBEE) we introduce a self-
contained system offering noSQL storage capabilities
and acting as gateway between Kieker and RBEE.

We show, how polyglot persistence can increase
Kieker’s scalability by employing separate read-
optimized and write-optimized noSQL storage. For
this purpose we extend Kieker to store its monitor-
ing output in Apache Cassandra, which is a write-
optimized wide-column noSQL database. For the
analysis of the generated monitoring output we are
using ElasticSearch, a read-optimized document store
noSQL storage. We are interlinking read-optimized
and write-optimized noSQL storage within RBEE. To
ensure scalability, we are employing a container in-
frastructure. The mentioned noSQL storages and the
linker are operating within one single Docker con-
tainer which scales horizontally.

For generating reference values, we instrument a
Java SE application with Kieker’s file system writer
and measure throughput and method’s execution
times. Consecutively, we instrument the same Java
SE application with our Apache Cassandra writer and
measure throughput and method’s execution time. Fi-
nally, we will compare measurement results of Kieker’s
file system writer with the measurement results of our
Apache Cassandra writer.

1 Introduction

Kieker [9, 7] allows saving its monitoring logs by
utilizing relational databases as well as file systems.
There is no support for utilizing noSQL [12] stor-
age. Our Regression Benchmarking Execution Envi-
ronment (RBEE) [15] uses Kieker’s monitoring out-
put as input for its regression benchmarking process.
Therefor, we extend Kieker to handover its monitor-
ing output to RBEE’s monitoring log. RBEE consists
of several self-contained Systems (SCS) [16]. In the
remainder of this paper, we will describe the RBEE
monitoring log SCS in more detail.

2 Kieker Extension

For enabling Kieker to directly store its monitor-
ing output in Apache Cassandra, we extend Kieker’s
SyncDbWriter and AsyncDbWriter classes [8]. These
classes provide access to different databases. We
built four additional classes and extend the available
abstract classes and interfaces from Kieker. These
classes are Apache Cassandra specific, but work
with any monitoring record. At first, there is the
CassandraDb class, which is a basic implementation
to access Apache Cassandra with the help of the
DataStax Java driver [2]. It provides methods for
creating tables and inserting data. Further, there
is the CassandraSyncDbWriter class, which extends
Kieker’s AbstractMonitoringWriter. We override
the method newMonitoringRecord(), which is called
from the Kieker framework, when a new record is
available. CassandraAsyncDbWriter is the asyn-
chronous implementation of our writer which extends
Kieker’s AbstractAsyncWriter. The worker threads,
which are persisting the monitoring data, were built
with the help of the class AbstractAsyncThread in
our class CassandraWriterThread. In order to get
the Kieker framework to work with our implemen-
tation we had to add some configuration into the
kieker.monitoring.properties file. Support for
Apache Cassandra will be integrated in one of the
next Kieker releases.

3 Data Storage

RBEE requires a Docker [3] container infrastructure
and implements polyglot persistence [6]. Its monitor-
ing log is a containerized system, which scales hor-
izontally. The data storage is based on two linked
noSQL storages. Kieker writes its monitoring out-
put directly to Apache Cassandra [1], which is a
write-optimized wide-column noSQL database. When
Kieker has finished generating monitoring output, this
data is pushed asynchronous to ElasticSearch [5], a
read-optimized document store noSQL storage which
resides in the same container. For this purpose, we
provide our rbee cte Java-based command-line tool
[13], which provides import and export algorithms
within our RBEE monitoring log container image
[14]. As database driver we use the one provided



by DataStax [2]. For ElasticSearch, we employed the
standard Java API. Our rbee cte command-line tool
needs the IP of both, Cassandra and ElasticSearch
as parameter. Furthermore, the keyspaces and table
names, which have to be transferred to ElasticSearch
must be specified. If all necessary parameters are sub-
mitted, rbee cte tries to connect to both. After that,
the transfer starts with gathering the required data
out of Cassandra for each keyspace and each table.
For this, we use a result set with a size of 10,000 en-
tries. The next step is to convert each row into a
Map<String, Object>. The keys of the map are the
column names of the table. If the data is converted
it is send as bulk request to ElasticSearch. For this
we use the BulkProcessor of the Java API with a bulk
size of 10,000 and three concurrent request. So, a
maximum of 30,000 records at once were transferred.

4 Test Environment

Our system under test (SUT) is part of a Java-based
employee work time registration system. In more de-
tail, we focus on the process of logging employee’s
working times. The SUT provides a Swing-based GUI
which is presented to the employee on a touch-screen.

For generating Kieker monitoring output, we em-
ploy Marathon’s [10] open source edition for auto-
mated Java Swing GUI testing. We created an ex-
ploratory test script, which enables us to run the same
tests multiple times and exactly reproducible. All
tests were executed on identical Hardware. In more
detail, a HP Workstation Z420 with Intel Xeon E5-
2670 CPU, 32 GB RAM, a SATA hard drive and 1
GBit/s network connectivity.

For evaluating scalability, performance and moni-
toring overhead of our approach, we set up different
scenarios. So, there is a non instrumented setup (a)
for generating reference values. In the following, we
set up Kieker file based monitoring (b) as well as a non
containerized environment with read optimized and
write optimized data storage but no containerization
(c). In order to examine the impact of containeriza-
tion, we set up the following scenarios additionally:

(d) 1 container on 1 container host

(e) 6 containers on 1 container host

(f) 6 containers on 3 container hosts with 2 contain-
ers per container host

All setups were executed on identical hardware. In
more detail, HP Proliant DL380 G7 Servers with two
Intel Xeon X5650 CPUs, 144 GB RAM, 16 SAS 10K
HDDs and 1 GBit/s network connectivity.

5 Evaluation

Within the defined scenarios, we gathered measure-
ment data by executing the relevant SUT’s methods
with Marathon. Our exploratory test script is identi-
cal for each scenario. For each scenario the test script

is executed for 3,000 times. Scenario (a) is used for
determining reference values. There is no Kieker in-
strumentation. In scenario (b), we instrumented the
SUT and used Kieker’s AsyncFsWriter for storing the
monitoring output in the local file system.

We set up Cassandra and ElasticSearch on Ubuntu
Server [17] in scenario (c). There is no virtualization
and no containerization in this scenario. Kieker sends
its monitoring output directly to the Cassandra in-
stance using Cassandra’s native transport.

In scenario (d) we employed Docker as container
infrastructure on top of Ubuntu Server. Further, we
employed our RBEE monitoring log Docker image [14]
and executed one single container instance.

In addition to scenario (d) we increased the num-
ber of RBEE monitoring log container instances in
scenario (e) from 1 instance to 6 instances. All con-
tainer instances were still executed on one container
host. All Cassandra instances were part of one ring
topology with a replication factor of 2. All Elastic-
Search instances were part of one cluster.

Finally, we used three container hosts for operating
six container instances in scenario (f). Each container
host operates two container instances. For container
cluster management, we employed Docker Swarm [4]
and used the same Docker RBEE monitoring log im-
age as used in scenario (d).

Figure 1 shows the determined execution times for
the SUT running our Marathon test script for each
scenario. Hence, there is no monitoring enabled, sce-
nario (a) has the least execution time.

(a) (b) (c) (d) (e) (f)

50
0

55
0

60
0

65
0

70
0

75
0

E
xe

cu
tio

n 
T

im
e 

(m
s)

Figure 1: Execution Time of SUT’s Methods

In scenario (b) we used Kieker monitoring with
data storage on local hard disk. Compared to the
scenarios (c-f), scenario (b) has the longest execu-
tion times. Scenario (c) shows, that utilizing write-
optimized noSQL storage alone decreases execution
time. Using containerization on one single container
host in scenarios (d-e) decreased the execution times
further. Finally, employing multiple container hosts in



scenario (f) has the highest impact on the execution
times.

For linking read-optimized and write-optimized
noSQL storage, we provide our Java-based command-
line tool rbee cte within the RBEE monitoring log
container image. In scenarios (d-f), we traced trans-
fer times for transferring data from Apache Cassandra
to ElasticSearch for several amounts of data. Figure 2
shows the traced transfer times. In all of the scenar-
ios (d-f) the transfer time scales proportional to the
number of transferred records. Employing multiple
container hosts in scenario (f) has the most impact
on transfer time.

50000 100000 150000 200000

50
00

00
10

00
00

0
15

00
00

0

Transfer Time (ms)

N
um

be
r 

of
 R

ec
or

ds

(d)

(e)

(f)

Figure 2: Transfer Time Between Read-Optimized
and Write-Optimized NoSQL Storage

All evaluation data is published on Zenodo [11].
Our RBEE monitoring log Docker container image
is available on DockerHub [14]. The source code of
our Java-based command-line tool (rbee cte) can be
found on GitHub [13]. For further information visit
our RBEE website [15].

6 Conclusion

Employing polyglot persistence and utilizing a con-
tainer infrastructure enables us to improve Kieker’s
scalability. We have shown, how the usage of write-
optimized noSQL storage reduces execution times of a
SUT’s methods. Containerization and Clustering led
to further decreased execution times. We analyzed
the impact of a asynchronous connection between
our read-optimized and write-optimized storage. Fur-
thermore, we evaluated the throughput and perfor-
mance of our provided import and export algorithms,
too. When summing up the minor execution times
and the time required for asynchronous transport
between read-optimized and write-optimized storage,

the SUT’s total run time is still reduced. Finally, our
RBEE monitoring log, built upon Docker, Cassandra
and ElasticSearch improves Kieker’s data storage scal-
ability.

References

[1] Apache Cassandra. http : / / cassandra .

apache.org/.

[2] DataStax Cassandra Driver. https://github.
com/datastax/java-driver/.

[3] Docker. http://www.docker.com/.

[4] Docker Swarm. https://www.docker.com/

products/docker-swarm.

[5] ElasticSearch. https://www.elastic.co/.

[6] Wilhelm Hasselbring. “Microservices for Scala-
bility: Keynote Talk Abstract”. In: ICPE 2016,
pp. 133–134. url: http://eprints.uni-kiel.
de/31829/.

[7] André van Hoorn, Jan Waller, and Wilhelm
Hasselbring. “Kieker: A Framework for Appli-
cation Performance Monitoring and Dynamic
Software Analysis”. In: ICPE 2012, pp. 247–
248. url: http://eprints.uni- kiel.de/

14418/.

[8] Kieker Cassandra Extension. https://kieker-
monitoring.atlassian.net/browse/KIEKER-

1452.

[9] Kieker Monitoring Framework. http://www.

kieker-monitoring.net/.

[10] Marathon. http://marathontesting.com/.

[11] Armin Moebius and Sven Ulrich. Data for:
Improving Kieker’s Scalability by Employing
Linked Read-Optimized and Write-Optimized
NoSQL Storage. Aug. 2016. doi: 10 . 5281 /

zenodo.61227. url: http://dx.doi.org/

10.5281/zenodo.61227.

[12] Jaroslav Pokorny. “NoSQL Databases: A Step
to Database Scalability in Web Environment”.
In: Proceedings of the 13th International Con-
ference on iiWAS. 2011, pp. 278–283. url:
http://doi.acm.org/10.1145/2095536.

2095583.

[13] RBEE Monitoring Log Command Line Tool.
https://github.com/rbee-dev/mlog/.

[14] RBEE Monitoring Log Docker Image. https:

//hub.docker.com/r/rbee/mlog/.

[15] Regression Benchmarking Execution Environ-
ment. http://www.rbee.io/.

[16] Self-Contained Systems Architecture. http://
scs-architecture.org/.

[17] Ubuntu Server. http : / / www . ubuntu . com /

server.

http://cassandra.apache.org/
http://cassandra.apache.org/
https://github.com/datastax/java-driver/
https://github.com/datastax/java-driver/
http://www.docker.com/
https://www.docker.com/products/docker-swarm
https://www.docker.com/products/docker-swarm
https://www.elastic.co/
http://eprints.uni-kiel.de/31829/
http://eprints.uni-kiel.de/31829/
http://eprints.uni-kiel.de/14418/
http://eprints.uni-kiel.de/14418/
https://kieker-monitoring.atlassian.net/browse/KIEKER-1452
https://kieker-monitoring.atlassian.net/browse/KIEKER-1452
https://kieker-monitoring.atlassian.net/browse/KIEKER-1452
http://www.kieker-monitoring.net/
http://www.kieker-monitoring.net/
http://marathontesting.com/
http://dx.doi.org/10.5281/zenodo.61227
http://dx.doi.org/10.5281/zenodo.61227
http://dx.doi.org/10.5281/zenodo.61227
http://dx.doi.org/10.5281/zenodo.61227
http://doi.acm.org/10.1145/2095536.2095583
http://doi.acm.org/10.1145/2095536.2095583
https://github.com/rbee-dev/mlog/
https://hub.docker.com/r/rbee/mlog/
https://hub.docker.com/r/rbee/mlog/
http://www.rbee.io/
http://scs-architecture.org/
http://scs-architecture.org/
http://www.ubuntu.com/server
http://www.ubuntu.com/server

	Introduction
	Kieker Extension
	Data Storage
	Test Environment
	Evaluation
	Conclusion

