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Abstract: Cloud-based software applications are designed to change often and rapidly
during operations to provide constant quality of service. As a result the boundary be-
tween development and operations is becoming increasingly blurred. DevOps provides
a set of practices for the integrated consideration of developing and operating software.
Software architecture is a central artifact in DevOps practices. Existing architectural
models used in the development phase differ from those used in the operation phase in
terms of purpose, abstraction, and content. In this chapter, we present the iObserve ap-
proach to address these differences and allow for phase-spanning usage of architectural
models.

1 Introduction

Cloud Computing technologies have been developed for storing and processing data
using distributed resources which are often located in third party data centers. Con-
structing software systems by incorporating and composing cloud services offers many
advantages like flexibility and scalability. Still, considerable challenges come along
with these technologies such as increased complexity, fragility and changes during op-
erations that are unforeseeable at development time. As cloud-based systems are de-
signed to change rapidly, they require increased communication and collaboration be-
tween software developers and operators, a strong integration of building, evolving and
adaptation activities, as well as architectures satisfying deployability in heterogeneous
contexts.

DevOps is an umbrella term of practices for enabling software developers and oper-
ators to work more closely and thus reducing the time between changing a system and
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putting the change into normal production, while ensuring high quality (Bass et al.
2015). DevOps practices contribute to an integration of the roles of developer and op-
erator. Software architecture is an essential artifact for both, developers and operators.
The phase-spanning consideration of software architecture is foundation of DevOps
practices. Besides life cycle processes and responsibilities, DevOps practices have
strong impact on the software architecture. New architectural styles such as micro-
services (Newman 2015) emerged to satisfy needs for scalability, deployability and
continuous delivery.

By merely introducing new architectural styles, however, the actual problems in col-
laboration and communication among developers and operators are not solved. Existing
architectural models used in the development phase differ from those used in the oper-
ation phase in terms of purpose (finding appropriate design vs. reflecting current system
configurations), abstraction (component-based vs. close to implementation level), and
content (static vs. dynamic). Consequences of these differences are limited reuse of
development models during operations and limited phase-spanning consideration of the
software architecture.

In this chapter, we propose the iObserve approach for the reuse of architectural de-
velopment models of cloud-based software applications during the operation phase. We
enrich and update the development models with operational observations to construct
architectural runtime models. A technology-independent monitoring approach is ap-
plied for operational observation. iObserve maintains the semantic relationships be-
tween monitoring outcomes and architectural models. We introduce a cloud-based soft-
ware application as an illustrative example in Sec. 2 before we describe current differ-
ences in architectural models among development and operations in Sec. 3. An over-
view of the iObserve approach is given in Sec. 4. We describe concepts of the iObserve
approach to address the differences in architectural models in Sec. 5. A megamodel
integrates development models, code generation, monitoring, runtime model updates,
as well as adaptation candidate generation and execution. The combination of descrip-
tive and prescriptive architectural models improves the communication and collabora-
tion between operators and developers once a software system is in operation phase.
The consideration of static and dynamic content in architectural models supports oper-
ation-level adaptations. The application of these concepts is described in Sec. 6. We
mention limitations of iObserve in Sec. 7. Related work is discussed in Sec. 8. The
chapter concludes with a summary and listing of future work in Sec. 9.

2 A Cloud-based Software Application

We use an illustrative example in this chapter built upon an established community case
study — the Common Component Modeling Example (CoCoME) (Herold et al. 2008)
— and an associated evolution scenario (Heinrich et al. 2015a). CoCoME resembles a
trading system as it may be applied in a supermarket chain. It implements processes at
a single cash desk for processing sales, like scanning products or paying, as well as
enterprise-wide administrative tasks, like ordering products or inventory management.
The detailed design and implementation of CoCoME is described in (Heinrich et al.



2016) and the source code is available for download!. We refer to the Java Enterprise
implementation of CoCoME in this chapter.

CoCoME uses a database service hosted on data centers that are distributed around
the globe, as shown in Fig. 1. The figure illustrates the CoCoME core application and
the global reach of prospective cloud providers that offer Database-as-a-Service
(DBaaS). During development, architectural models are created and analyzed for qual-
ity aspects like performance, e.g. using the Palladio approach for software architecture
modelling and simulation (Reussner et al. 2016). If an appropriate design has been
found, the system is implemented into source code and deployed on the cloud. This is
the point where developers hand over the system to operators to put it in production.

Cloud Provider 1

Cloud Provider 2

=
Cloud Provider 3

<<PaaS>>

<<Data Center>>

<<Data Center>>

<<Data Center>>

loginf
External ogin{) [CoCoME:
Client _\Nebsho;l] CoCoME: £

Tradingsystem <<PaaS>> 1 <<Paas>>
Internal [ Jsalef) [CoCaME: Database :DBaa$ | Database :DBaas
Client “|Frontend ! -

“n

<<Paas>>
Database :DBaas

N
o ———

T

T
L 1

Fig. 1: Actual (solid line) and conceivable (dashed line) component deployment of a cloud-
based software application within a global reach of prospective data centers

During system operations, an advertisement campaign of the supermarket chain
leads to an increased amount of sales and thus to variations in the application’s usage
profile and intensity. Increased usage intensity causes an upcoming performance bot-
tleneck due to limited capacities in the given service offering of the cloud provider
currently hosting the database. For the sake of simplicity we assume each cloud pro-
vider owns exactly one data center. Migrating or replicating the database from one data
center to another may solve the scalability issues. Conceivable component deployments
are illustrated by dashed lines in Fig. 1. However, migrating or replicating the database
may cause privacy issues if sensitive data are transferred outside the European Union
(Heinrich et al. 2015a). Privacy has been analyzed for CoCoME in (Schmieders et al.
2014, Schmieders et al. 2015). In cloud-based software applications there is often a
trade-off between performance and privacy as further discussed in Sec. 5.2. These pri-
vacy issues cannot be foreseen at development time as prospective cloud providers are
unknown. In order to analyze upcoming quality flaws during operations and react on
them, operators need to observe the system and run analyses based on a model that
represents the current application configuration and usage during operations. This
model is called an architectural runtime model (Heinrich 2016). However, there are
often differences between architectural models used in development and operations
which hamper a phase-spanning consideration of the architecture as discussed based on
the example in the following.

! https://github.com/cocome-community-case-study



3 Differences in Architectural Models Among Development and
Operations

This section discusses three differences in architectural models among development
and operations — the level of abstraction, the use of prescriptive and descriptive models,
and the differences in static and dynamic content reflected by the architectural models.

There are different abstraction levels of architectural models in development and
operations. Architectural models especially in early phases of development commonly
adhere to a component-based paradigm (e.g., Szyperski 2002, Hasselbring 2002). Ar-
chitectural models used in operations are closer to an implementation level of abstrac-
tion. In the CoCoME example, developers specify software components and their in-
teractions in architectural models. Component-based models allow for keeping track of
the architecture and structure the system by encapsulated components interconnected
via interfaces. During operations the system is observed and architectural models are
created from monitoring data. This monitoring data is related to source code artifacts
(e.g., service calls or class signatures). For example, observing the sales service of Co-
CoME (cf. sale() in Fig. 1) results in monitoring records for the service itself and all
invoked internal services. In addition, the class signature is recorded per service. Yet,
no information about the component structure is provided by monitoring. Models de-
rived from the data are close to implementation level, e.g. depict the dependencies be-
tween invoked services. Thus, it is hard to reproduce development component models
from monitoring data as knowledge about the initial component structure and compo-
nent boundaries is missing. This knowledge is important for system comprehension and
reverse engineering.

For supporting DevOps practices it is useful to combine prescriptive and descrip-
tive architectural models. However, a combination of both kinds of models can sel-
dom be found. Prescriptive architectural models are employed during development to
document the system to be designed and implemented. During operations, descriptive
architectural models are used to reflect the actual state of the running system. Thus,
descriptive architectural models are again often created from observation data. Cur-
rently there is no phase-spanning notion of software architecture which impedes the
combination of prescriptive and descriptive models. In the CoCoME scenario a pre-
scriptive model may be applied during development to make early quality predictions
or to make quality predictions for evolutionary changes conducted by developers. An
example of an evolutionary change is adding a web shop component (highlighted grey
in Fig. 1) to the trading system (Heinrich et al. 2015a). Such a change will have strong
impact on various quality properties like privacy, security, performance, and reliability.
Developers may want to analyze such quality properties in advance before implement-
ing the change. Descriptive architectural models are applied in the CoCoME example
during operations to describe the current system state, potentially after adaptations to
the system, e.g. the number of replicated components or the actual geographical loca-
tion of a migrated component. Developers can modify the descriptive models according
to evolutionary changes to construct prescriptive models for quality analysis.



There is different content (static vs. dynamic) in architectural models used in de-
velopment and operations. Architectural models are applied during development to de-
scribe the static software design and structure. During operations, architectural models
show dynamic content like object stacks in memory, service utilization, and response
times of services. Visualization of dynamic content allows the operators to investigate
current bottlenecks, analyze for anomalies, and support the decision process for human
intervention. In the CoCoME example, a development view of the architecture may
comprise the component types, package structure, and class declarations of the appli-
cation. The operations view may contain charts of resource consumption for the several
parts of the architecture and events occurred during operations visualized in sort of a
dashboard.

4. The iObserve Approach

The iObserve approach (Hasselbring et al. 2013, Heinrich 2016) specifies operation-
level adaptation and development-level evolution as two mutual, interwoven processes
that affect each other. Fig. 2 gives an overview of iObserve. The figure is inspired by
Oreizy et al. 2008. The evolution activities are performed by human developers, while
the adaption activities are executed automatically by predefined procedures where pos-
sible without human intervention.
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Fig. 2: Overview of the iObserve approach

iObserve tackles architectural challenges in DevOps by following the MAPE (Mon-
itor, Analyze, Plan, Execute) control loop model. MAPE is a feedback cycle commonly
used for managing system adaptation (Brun et al. 2009). The MAPE loop is extended
with models and transformations between them to facilitate the transition between op-



eration-level adaptation and development-level evolution. The executed software ap-
plication is observed and used to update the architectural runtime model. Based on the
up-to-date model, the current application configuration is analyzed to reveal anomalies
and predict quality flaws. The architectural runtime model is then applied as input either
for adaptation or evolution activities depending on the outcome of a planning step. In
the adaptation process an adaptation plan is selected and evaluated to mitigate devia-
tions. Finally, the plan is executed to update the application architecture and configu-
ration. In the evolution process changes are designed, evaluated and implemented by
human developers.

iObserve applies an architectural runtime model that is usable for automatized adap-
tation and is simultaneously comprehensible for humans during evolution (Heinrich et
al. 2014). Foundation is a model-driven engineering approach (Hasselbring et al. 2013)
that models the software architecture and deployment in a component-oriented fashion
and generates the artifacts to be executed during operations. Therefore, iObserve relies
on the Palladio Component Model (PCM) (Reussner et al. 2016) as an architecture
meta-model. The PCM consists of several partial meta-models reflecting different ar-
chitectural views on a software application. The repository model describes compo-
nents and their interfaces stored in a repository. The components' inner behavior is de-
scribed in so-called service effect specifications. The system model specifies the soft-
ware architecture by composing components from the repository. The resource envi-
ronment model provides a specification of the processing resources (CPU, hard disk
and network) while the allocation model specifies the deployment of the components
to the resources. The usage model describes the user behavior and usage intensity.
Quality-relevant properties, like resource demands of actions and processing rates of
resources, are part of the models. Changes during operations relevant in the iObserve
context affect the application usage and deployment. In particular, we focus on changes
in user behavior and usage intensity, migration and (de)-replication of components, and
(de)-allocation of execution contexts (Heinrich 2016). These changes are reflected in
the PCM by modifying the usage model and allocation model.

The PCM in its current form is focused on single quality aspects, like performance
and reliability, yet does not reflect, for instance, privacy aspects which are relevant in
the scope of iObserve. For enabling a more comprehensive representation of quality
aspects in the PCM we apply a meta-model modularization and extension approach
(Strittmatter et al. 2015) for component-based architecture description languages. Fol-
lowing a reference architecture the information to be represented in the architecture
meta-model is divided into four dimensions — paradigm, domain, quality and analysis
— as depicted in Fig. 3. Each rectangle with a register symbol in the figure represents a
modular meta-model that extends another meta-model and can itself be extended. Each
rectangle without a register symbol represents a class or attribute that extends a meta-
model. The paradigm layer (w) defines a foundational structure without any semantics,
e.g. object oriented design or componentization. Here components and interfaces are
specified as core entities. Further, composition by connectors is specified. The domain
layer (A) extends m and assigns domain-specific semantics to its abstract first class en-
tities. In the context of the iObserve approach A will capture software systems whereas



in general any A layer is possible, e.g. for embedded or mechatronic systems. For soft-
ware systems A introduces the modules software components and environment. The
control flow module extends software components by abstraction of the component
behavior similar to flowcharts. Additionally, the software components module is en-
riched with information whether a component is source or sink of a dataflow. Dataflows
are represented by inter-component communications via service calls. The quality layer
(Q) defines the inherent quality aspects of A concepts. It contains primarily second class
entities, which enrich the first class entities of A. In the iObserve approach, the Q layer
comprises performance (light grey) and privacy (dark grey) aspects visualized in Fig.
3. For performance modeling the control flow module is extended with performance-
relevant annotations for resource demands of actions and processing rates of resource
containers within the execution environment. The performance metrics module con-
tains the meta-modelled metrics and corresponding units. For privacy modeling the da-
taflows together with information about the geographical location of resource contain-
ers form the basis for privacy analysis. The privacy metrics module comprises meta-
modelled privacy policies. The analysis layer (X) is required if models are used for
analyses or simulation. In the iObserve context the performance results module con-
tains a meta-model of service response times. The performance configuration module
covers the model-based representation of analysis settings like simulated time span and
number of measurements. Analogously, the privacy results module comprises a meta-
model of privacy checks including their results. The privacy configuration model co-
vers settings for a privacy check like sensitivity information for data and a blacklist or
whitelist of geographical locations. Technical details of privacy analyses conducted in
the iObserve context are given in (Schmieders et al. 2014, Schmieders et al. 2015).
Applying the reference architecture enables us adding all iObserve-specific content
in a modular and non-invasive way without bloating the PCM. Further details on the
application of the reference architecture to the PCM are given in (Strittmatter et al.
2015).
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Fig. 3: Exemplary instantiation of the reference architecture for performance and privacy



The cloud application is instrumented with monitoring probes to keep it causally
connected with the architectural runtime model. As technical basis for instrumentation,
we choose the fast and reliable Kieker monitoring framework (v. Hoorn et al. 2012).

5. Addressing the Differences in Architectural Models

In this section, we describe concepts provided by the iObserve approach to address the
three kinds of differences in architectural models among development and operations.
The application of the concepts is demonstrated using the CoCoME example in Sec. 6.

5.1 The iObserve Megamodel

The iObserve approach applies a megamodel to bridge the divergent levels of abstrac-
tion in architectural models used in development and operations. Megamodels describe
the relationships of models, meta-models and transformations (Favre 2004). The
iObserve megamodel depicted in Fig. 4 serves as an umbrella to integrate development
models, code generation, monitoring, runtime model updates, as well as adaptation can-
didate generation and execution. Fig. 4 extends a previously published megamodel
(Heinrich 2016) by models and transformations for planning and execution. Rectangles
depict models and meta-models respectively. Solid lines represent transformations be-
tween models while diamonds indicate multiple input or output models of a transfor-
mation. Dashed lines reflect the conformance of a model to a meta-model, and, in case
of implementation artifacts, the instance of relationship between operations data and
development data types.

The iObserve megamodel exhibits four sections defined by two dimensions: one for
development vs. operations, and one for model vs. implementation level. On the devel-
opment side at model level, the megamodel depicts the combination of an architectural
model with our model-driven monitoring approach (Jung et al. 2013). The monitoring
approach comprises an instrumentation record language (IRL) to define the data struc-
tures used for monitoring in a record type model. Further, the monitoring approach
comprises an instrumentation aspect language (IAL) to specify the collection of data
and the probe placement in an instrumentation model. The architectural model, the rec-
ord type model, and the instrumentation model are applied for generating source code
artifacts of the application and the corresponding monitoring probes. On the operations
side at model level, monitoring data that adheres to source code artifacts like Java clas-
ses is associated with the elements of the architectural runtime model. Thus, the
iObserve megamodel enables the reuse of development models during operation phase
by updating them based on operational observations. Moreover, the operation side
shows the generation of adaptation candidate models and the adaptation plan construc-
tion.

At implementation level, the megamodel depicts development and operations arti-
facts. The development artifacts comprise the generated implementation of the record
types, the instrumentation aspects which implement the probes, and the technology spe-
cific artifacts which implement the application, like Servlets and Enterprise Java Beans



in the Java Enterprise context. The operations side shows the monitoring data and their
aggregation together with an execution plan describing the precise steps for adaptation
on implementation level.
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The Runtime Architecture Correspondence Model (RAC) is the central element of
the megamodel and crucial for the use of an architectural model at development and
operations. The RAC relates architectural model elements to implementation artifacts,
like classes and services. It is created during code generation by the transformation
Tapp, as depicted in Fig. 4, or may be specified by hand in scenarios where the code is
implemented by a developer. The RAC is also used for the generation and configuration
of probes by our model-driven monitoring approach. Monitoring data is a continuous
data stream which may comprise large amounts of events, i.e. millions of events per
second in large enterprise applications (Fittkau 2012). iObserve first filters and aggre-
gates the monitoring data (Tpreprocess). Then, iObserve allocates the monitoring data to
architectural model elements, and finally uses the aggregated information to update the
architectural runtime model by the transformation TruntimeUpdate-

Therefore, the architectural runtime model relates development and operation
phases. It allows for phase-spanning consideration of software architecture. Further-
more, it enables quality analyses based on the architecture specification and thus con-
tributes to quality-aware DevOps. Since we update development models by operational
observations, our models contain all design decisions, e.g. about component boundaries
and the distribution of the application to several execution containers.

Further, in iObserve, the level of abstraction of the initial architectural model and
the updated model is maintained, due to:

a) both, the initial architectural model and the architectural runtime model,
rely on the same meta-model (the PCM),
b) the decomposition of a development model element in one or more source
code artifacts is recorded in the RAC during code generation, and
c) restored while transforming monitoring events related to the source code
artifacts to the component-based architectural runtime model.
In consequence, using the iObserve approach changes in the operations phase can be
seamlessly integrated with evolutionary changes in the development phase. Operators
get access to higher level abstractions through which to view and manipulate the run-
ning application while developers can integrate tightly with adaptations that have been
made for operational reasons.

5.2. Descriptive and Prescriptive Architectural Models in iObserve

The iObserve approach applies descriptive and prescriptive architectural runtime mod-
els for realizing the MAPE control loop as depicted in Fig. 5. In the Monitor phase,
iObserve uses information gathered by probes to maintain the semantic relationship
between the descriptive architectural runtime model and the underlying cloud applica-
tion. Descriptive architectural runtime models are applied in the Analyze phase to re-
veal quality flaws like performance bottlenecks or violations of privacy policies and
thus trigger adaptations. If a performance or privacy issue has been recognized, adap-
tation candidates are generated by the transformation T candidateGeneration i form of candi-
date architectural runtime models in the Plan phase as depicted in Fig. 4. These pre-
scriptive candidate models are generated based on a degree of freedom model that spec-
ifies variation points in the software architecture. We apply the PCM-based design



space exploration approach PerOpteryx (Koziolek et al. 2011) to the architectural
runtime models to find adaptation candidates and rank them regarding quality aspects
like performance and costs. PerOpteryx provides a Pareto frontier of optimal design
candidates.

Trade-offs between various quality aspects must be considered while planning for
adaptation. In the cloud context there is often a trade-off between performance, costs,
and privacy. The application usage effects on the performance of the application. Elas-
ticity rules trigger the migration or replication of software components among geo-
graphically distributed data centers. Both, migration and replication, may increase per-
formance, however, may lead to violation of privacy policies and increasing costs. We
apply PerOpteryx for analyzing trade-offs between performance and costs. Including
privacy in design optimization and trade-off analysis is subject of current work (Seifer-
mann 2016).

Once an adaptation candidate has been selected, the model is operationalized by de-
riving concrete tasks of a plan for adaptation execution. These tasks are derived by the
transformation Tpanning While comparing a candidate model to the original model and
applying the KAMP approach to architecture-based change impact analysis (Rostami
et al. 2015). KAMP provides for each change to the architecture elements a set of tasks
to implement the change and has already been applied for deriving work plans for solv-
ing performance and scalability problems (Heger and Heinrich 2014). The aggregation
of the tasks forms the adaptation plan which is transferred in the Execution phase to an
execution plan at implementation level by Texecution-

In case that no specific model among the candidates can be selected fully automati-
cally, e.g. when there are trade-offs between quality aspects, or if an adaptation plan
cannot be derived fully automatically, the human operator (cf. Fig. 5) chooses among
the presented adaptation alternatives. Also when no candidate model can be generated,
e.g., due to lack of information or criticality of decision, the operator will be involved.

Operator-in-the-Loop Adaptation
in case of trade-offs,
missing information,

¢ or criticality of decisions

Monitor Analyze Plan Execute
h
Y [
Descriptive architectural Prescriptive architectural
runtime models runtime models

Fig. 5: Descriptive and prescriptive architectural runtime models in the MAPE loop of our op-
erator-in-the-loop adaptation approach (Heinrich et al. 2015b)

5.3. Static and Dynamic Content in Architectural Models

iObserve applies the PCM as an architecture meta-model for modeling usage profiles,
the software architecture and deployment as well as quality properties. The PCM is well
suited to reflect static system design and structure and due to the extensions of iObserve



it is also able to reflect adaptations during operation phase gathered by monitoring the
software system, e.g. component migration or replication. To further improve the sup-
port of human operators and thus facilitate operator-in-the-loop adaptation (Heinrich et
al. 2015b), iObserve is extended by live visualization of software architectures. Key for
live visualization and model inspection (e.g. for performance and privacy) are dynamic
attributes of the application, which are collected by our monitoring framework.

Existing live visualization approaches, as listed in (Fittkau 2016), provide interactive
visualizations of the deployed application and its internal structure. They monitor and
aggregate events during operations to create and update their architectural models.
However, they lack static design information, such as component structure, do not pro-
vide analyses for privacy, and cannot relate monitoring data to the application architec-
ture defined during development. Consequently, model visualizations of these ap-
proaches relate to the implementation level of abstraction. This hinders communication
between operators and developers about issues occurred during operations as they use
different models.
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Fig. 6: Extension of the iObserve megamodel for live visualization

In iObserve, we eliminate this drawback by combining static and dynamic content,
like in-memory object creation, communication, and execution traces, in an architec-
tural runtime model. This is possible through the mapping capabilities of the RAC
which provides model traces relating source code artifacts to architectural model ele-
ments. iObserve is inspired by visualization concepts of the live visualization approach
ExplorViz (Fittkau 2016). ExplorViz provides two views, called landscape and appli-
cation level perspective. The first provides an aggregated view on the deployment of
software applications solely based on dynamic information. The second allows for
viewing the internal structure of a service. The visualizations of iObserve provide sim-
ilar views. In contrast to ExplorViz, iObserve also allows for utilizing static information
which provides further insights into the state of the software application. To provide
the information to the operator, iObserve uses a view model depicted in Fig. 6. The
view model is created or updated by the transformation TvisualizationUpdate @and subse-
quently used to generate the specific views. In detail, TvisualizationUpdate 15 triggered after
the architectural runtime model has been updated and the results of the performance



and privacy analysis are available. TvisualizationUpdate cOllects information from the archi-
tectural runtime model regarding execution contexts, services, and communication on
type and instance level as simple named entities. It associates results of the privacy and
performance analyses as well as time series information to these entities, together with
other properties, such as call traces, user interaction, and system utilization. While this
might seem like a duplication of information, the view model is designed to be a concise
representation to support the presentation of different views for the operator. In contrast
to the architectural runtime model, the entities do not exhibit any semantics. Instead,
they contain information prepared for visualization.

Based on the view model, three views for architecture, deployment, and service are
generated by the transformations T architecturalViews 1 DeploymentViews and Tserviceview. The
views are continuously updated triggered by changes in the view model. Furthermore,
the transformations are parametrized by operator selections and are re-executed based
on changes to operator selections. Examples based on the CoCoME scenario are given
in Sec. 6.3.

To reduce the visual complexity the architectural view and deployment view display
multiple instances of a service in an aggregated form. By operator choice, the aggre-
gated services can be selectively expanded showing every service instance. This allows
for investigating the state of the software application in more detail. For example, if the
response time of a service does not conform to constraints, the aggregated service
shows a warning like the box representing the aggregated service is highlighted. The
operator can now expand the aggregated view of the service and see all instances. The
layout is updated accordingly and only the instances violating the constraint are now
highlighted. To further investigate the response time issue, the operator may select the
individual service and continue the investigation in the service view. The service view
is the adopted application level perspective of ExplorViz, which can now rely on the
iObserve view model and present information on a package and component level.

The communication between services is shown as arrows pointing from the caller to
the callee. The thickness of the arrow indicates the intensity of the communication,
which can be either throughput or number of requests per second. The view model con-
tains both values, while the architecture and deployment view can only visualize one
value at a time. In the service view, communication is depicted as lines representing the
call traces. The thickness of the lines increase based on number of requests per second.

The three views are limited to the visualization of the current application state in-
cluding aggregated information on response times and communication intensities.
However, in many cases it is important to inspect these values over time. Therefore,
execution contexts, services, communication, call traces, and components can be se-
lected and corresponding time series data is displayed in addition to the three views.
The time series view is created or updated by Trimeseriesview, Which is executed only in
case a time series is displayed. The transformation is therefore parameterized based on
the selection in one of the three views.



6. Applying iObserve to CoCoME

In this section, we sketch the application of parts of the iObserve approach based on the
CoCoME example. We assume code has been generated initially by the transformation
Tapp and the correspondences between architectural model elements and the Java clas-
ses have been stored in the RAC. Further, the application is deployed and running.

6.1 Applying the iObserve Megamodel

The observation of the running application using the Kieker monitoring framework pro-
duces a stream of heterogeneous events. Following the CoCoME scenario, increased
usage intensity of the application triggers changes in the workload specification of the
architectural model. iObserve filters out single entry and exit events to services of the
application (e.g., the sales service) and aggregates them to sequences of events. The
sequences are input to the calculation of the new usage intensity which is then trans-
formed to the PCM workload specification.

The Tpreprocess transformation pipeline depicted in Fig. 4 listens to the stream of mon-
itoring events related to entry level services and creates an entry call event for each
invocation of the sales service. The transformation aggregates the sales service together
with other entry calls (e.g., for reporting or browsing the product catalogue) by exploit-
ing user session information contained in the monitored events. All observed user ses-
sions are combined in a graph-based entry call sequence model to calculate usage-re-
lated properties such as path probabilities, loop iterations or usage intensities. The se-
quence model is input to the TruntimeUpdate transformation.

TRuntimeUpdate cOmprises transformations to modify the architectural runtime model
according to changes in usage, deployment, and allocation. In the CoCoME scenario,
we monitored increased invocations to the sales service which triggers TruntimeUpdate tO
modify the workload specification within the PCM usage model. As there might be
various usage profiles for different user roles in the model, the transformation takes a
look into the RAC to identify the workload specification to be updated for the observed
sales service. Note, only the PCM usage model is modified. The other partial models
of the PCM (cf. Sec. 4) are taken as they are. If the architectural runtime model is cre-
ated initially, the other partial models are taken from the architectural model on devel-
opment side. Otherwise, the models are taken from the existing architectural runtime
model. The result of this transformation pipeline is an updated descriptive architectural
runtime model.

Similar procedures are applied for observing and processing other changes during
operation like migration and (de-)replication of software components and (de-)alloca-
tion of execution contexts (Heinrich 2016).

In the CoCoME scenario deployment changes (i.e. migration and (de-)replication)
are evoked in the planning phase and therefore already contained in a prescriptive ar-
chitectural runtime model (cf. Sec. 6.2). Nevertheless, iObserve is capable to observe
and processes deployment changes. iObserve first filters out deployment events from
the stream of monitoring events. In contrast to aforementioned entry and exit events, a



preprocessing of deployment events is not necessary. A deployment event can be di-
rectly mapped to the corresponding resource environment in the architectural runtime
model as it contains information about deployed classes and the deployment target (i.e.
the resource container). For each deployment event TruntimeUpdate modifies the resource
environment. The RAC is required to identify components corresponding to the ob-
served classes. The same procedure is executed for undeployment events. Moreover,
new execution contexts become available (allocation) or existing ones disappear (de-
allocation) without creating distinct (de-)allocation events. Yet, as a deployment always
requires an existing execution context, we can apply the deployment target information
contained in the (un-)deployment events to update the resource environment with re-
spect to (de-)allocation. TRruntimeupdate checks whether (de-)allocation was observed and,
if necessary, updates the resource environment before the deployment is updated.

6.2 Applying Descriptive and Prescriptive Architectural Models

After the descriptive architectural runtime model is updated by aforementioned trans-
formations it can be applied for quality analysis. In the CoCoME scenario, the model
is analyzed for performance using simulators of the Palladio approach (Reussner et al.
2016). Based on the PCM, including the usage model updated by transformations, the
response time distribution for each service of the CoCoME application is simulated.
The simulation is depicted as Tperformance in Fig. 4 pointing to the performance results
model. The simulation indicates upcoming performance bottlenecks caused by in-
creased usage intensity due to the advertise campaign. More precisely, the average re-
sponse time of the sales services increases by increased usage intensity. For mitigating
the performance issues iObserve automatically generates various prescriptive adapta-
tion candidate models by the transformation TcandidateGeneration. FOT candidate generation
the degree of freedom in the CoCoME scenario is deployment. Therefore, various can-
didate models are generated using evolutionary algorithms (Koziolek et al. 2011) each
differ in deployment of the database service to data centers. This includes replication
and migration of the database service.

During candidate generation, the candidate models are analyzed for performance
(Tperformance) and additionally for privacy (Tprivacy). For privacy, dataflows are analyzed
by constraint checking techniques to ensure that sensitive data do not exceed the EU
borders. As CoCoME contains data of different sensitivity we do not peremptorily ex-
clude data centers outside the EU. Data with low sensitivity can be located outside the
EU. If privacy violations are identified, the candidate is discarded. This means it is not
further evolved to generate new candidates.

Once an appropriate candidate is found the system is adapted based on the prescrip-
tive model (Texecution). If no candidate model can be generated based on the given de-
grees of freedom (e.g., if there are no alternative data center) or if no appropriate can-
didate model can be identified (e.g., if all candidates that satisfy privacy show perfor-
mance issues), the human operator is involved for decision making. This is supported
by visualization techniques discussed in the next section.



6.3 Applying Live Visualization

The deployment of the CoCoME cloud application is presented in a 2D live visualiza-
tion in Fig. 7. The visualization has been created from the view model using the trans-
formation Tpeploymentview- The system border of CoCoME is depicted by the outer box
which comprises the execution contexts named WebNode, DataCenter, Adapter, and
LogicNode. Inside these execution contexts the single services of CoCoME are shown
connected by arrows. Note, the services depicted are composite services each consisting
of hierarchically aggregated services. The execution contexts can be virtual machines
and dedicated servers, which can be dynamically allocated and deallocated.

The arrow pointing from WebService to CashDesk indicates intensive communica-
tion between the two services. Furthermore, the direction indicates that the WebService
is calling the CashDesk service. Based on the intensity of the communication, the op-
erator may decide to replicate the CashDesk service. However, before triggering a rep-
lication, the operator may want to know more about the service and its communication.
Therefore, the operator selects the execution context LogicNode, the CashDesk service,
and the TCP connection between WebService and CashDesk to inspect their properties,
like the current resource consumption. Consequently, the transformation Tpeploymentview
is re-executed parametrized by the operator selections. The properties are presented on
the right side of Fig. 7 in a small table. In addition, time series data and statistics, such
as throughput and response time, can be viewed as time series graphs in the side pane
as well by triggering the transformation TrimeScricsView-

To support the operator, the views indicate bottlenecks and violations of constraints
by highlighting the specific elements. In Fig. 7, the Inventory service is highlighted
indicating a warning level issue based on an SLA violation.

iObserve Home Syslems  Architecture < Apply Updates -

. ___CaCoME
WebNode

Frontend

Adapter DataCenter
CashDesk TeRR | Data i TR Database
pt—)

JorP e
Inventory

Fig. 7: Deployment view of iObserve depicting a running CoCoME instance




The operator can now consult time series on performance and other properties pro-
vided on the side pane, or inspect the interior of the service utilizing the 3D service and
component view of ExplorViz depicted in Fig. 8. In the figure, the LogicNode is shown
in a 3D live visualization including the Inventory and CashDesk service. The green
blocks represent the static package structure of the services, which are alternating col-
ored for better identification. Packages can be opened to show contained classes, like
the application.store package, or closed to provide an aggregated view, like the
data.store package. The blue pillars visualize dynamic stacks of object instantiations.
The communication, based on call traces, is depicted by the orange lines between the
classes and packages. Fig. 8 indicates intensive internal communication between clas-
ses of the data and application package. This could be the cause of the SLA violation.
Based on the visualization, the operator is able to identify potential performance bot-
tlenecks. For further investigation, the operator can inspect the call traces and determine
the invoked methods in the classes. If the cause cannot be found on this level, the op-
erator can hand over the information to the developer who then can inspect the related
source code, through an integrated source code view or external tools, and the architec-
tural model to identify implementation errors.

store

application cashdesk

inventory cashdaskline

tradingsystem

cocoma

<LogicNode>

Fig. 8: Service and component view of iObserve visualized in ExplorViz depicting the
LogicNode with the Inventory and CashDesk service

7 Limitations

In this section we describe limitations of iObserve identified while applying the ap-
proach to the CoCoME community case study.

Currently iObserve is limited to observation and processing of changes in the appli-
cation’s usage and deployment, i.e. migration and (de-)replication of software compo-
nents and (de-)allocation of execution contexts. These are the most common changes



for cloud-based software applications discussed in literature (Heinrich 2016). iObserve
can be extended for additional types of changes easily by adding new monitoring probe
specifications and new transformations to the megamodel.

iObserve focuses on the software application architecture and does not consider in-
ternal events of the cloud infrastructure. Thus, the impact of infrastructure internals,
e.g. changes in the technology stack or internal replications, on the application’s quality
is not considered. We use a PAAS cloud. Therefore, we assume we can observe all
events needed from the perspective of an application developer and operator. Never-
theless, SAAS-based services can be represented in the architectural model and may be
supported by additional monitoring technologies in the future development of iObserve.

Increased criticality and limited observability of cloud-based applications require
involving humans in the operation and adaptation process (Heinrich et al. 2015b). The
iObserve approach supports human engagement at several points in the process. Hu-
mans are supported by visualization of the current situation and reveling consequences
of design decisions. At the end, the human operator still needs knowledge and experi-
ence to make a good decision. However, due to the support given by iObserve decision
making is expected to be much easier.

A common limitation of runtime modelling approaches is the accuracy of the model
depends on the length of the time span of observation. If the time span is too short,
services invoked seldom may not be observed or probabilities calculated may be inac-
curate.

8. Related Work

Work related to the concepts proposed in this chapter can be distinguished into four
major categories — (i) approaches for reusing development models during operations,
(i1) approaches for model extraction from observation data, (iii) approaches for archi-
tecture conformance checking, and (iv) approaches for trace visualization.

Work on reusing development models during operations (e.g., Morin et al. 2009,
Ivanovic et al. 2011, Canfora et al. 2008) employs development models as foundation
for reflecting software systems during operations. Bencomo et al. 2014 gives an over-
view of runtime modeling and analysis approaches. The work in (Morin et al. 2009)
reuses sequence diagrams to verify running applications against their specifications.
However, the approach does not include any updating mechanisms that changes the
model whenever the reflected systems is being alternated. Consequently, changes dur-
ing operation phase are not supported. Other than this, the runtime models in (Ivanovic
etal. 2011) and (Canfora et al. 2008) are modified during operations. These approaches
employ workflow specifications created during development phase in order to carry out
performance and reliability analyses during operation phase. The approaches update
the workflow models with respect to quality properties (e.g., response times) of the
services bound to the workflow. However, these approaches do not reflect component-
based software architectures. Further, this work updates the model with respect to sin-
gle parameters and does not change the model’s structure.



Work on model extraction creates and updates model content during operations. Ap-
proaches such as (Song et al. 2011, Schmerl et al. 2006, van der Aalst et al. 2011)
establish the semantic relationships between executed applications and runtime models
based on monitoring events (for a comprehensive list of approaches see Szvetits and
Zdun 2013). Starting with a “blank” model, these approaches create model content dur-
ing operation phase from scratch, e.g. by observing and interpreting service traces.
Therefore, they disregard information that cannot be gathered from monitoring data,
such as development perspectives on component structures and component boundaries.
For instance, the work in (van der Aalst et al. 2011) exploits process mining techniques
for extracting state machine models from event logs. Without knowledge about the
component structure created during development, the extracted states cannot be
mapped to the application architecture specified in development phase. In consequence,
the model hierarchy is flat and unstructured, which hinders software developers and
operators in understanding the application at hand. Further, the work reflects processes
but neither components nor their relationships. Other than this, the work in (Schmerl et
al. 2006) extracts components and their relationships from observations for architecture
comparison. With this approach we share the application of transformation rules to up-
date a runtime model based on monitoring events. The resulting model in (Schmerl et
al. 2006) is coarse-grained, which is sufficient for their purposes. However, when con-
ducting performance and privacy analyses the observation and reflection of resource
consumptions is crucial. Reflecting the consumption by the means of usage profiles
requires processing event sets rather than single events, which outruns the capacity of
this approach. Further, the observation and analysis of usage and component changes
causes complex relationships between the investigated applications, probe types, and
runtime models, which is not discussed in (Schmerl et al. 2006).

Work on architecture conformance checking compares the static source code of a
software application to an architectural model or architectural constraints. An early ap-
proach of architecture conformance checking is based on Sotograph and allows for
comparing different source code versions with an architectural model to detect archi-
tecture degradation (Bischofberger 2004). A unifying approach (Caracciolo et al. 2015)
integrates different conformance checking tools and provides a common rule based in-
terface to them. As a rule based approach no explicit architecture model is used. (Passos
etal. 2010) investigate three different conformance check approaches based on depend-
ency matrices, source code queries and reflexion models. All these approaches rely only
on static information and cannot capture the deployment of a software application. Fur-
thermore, they try to recover the architecture or architectural properties based on the
source code without knowledge of the actual relationship of code and architectural
model. In iObserve, we use the RAC to ensure that the correct code is related to the
architecture and due to operational observations, we are able to include dynamic prop-
erties in our analyses.

Related work on trace visualization utilizes concepts similar to those proposed in
the paper. The visualizations of iOberve are inspired by ExplorViz (Fittkau 2016) and
therefore most related to this approach. ExplorViz creates views based on monitoring
data, however, neglects development decisions. The TraceCrawler approach (Greevy
et al. 2006) visualizes prerecorded program traces relating to a single software service.



Therefore, TraceCrawler implements an offline analysis, while iObserve focuses on
live visualization of multiple software systems in a large software landscape. The vis-
ualization of TraceCrawler is based on a 3D graph metaphor where each instance of a
class is represented by a box and the invocation is represented by edges between these
boxes (Greevy et al. 2006). This individual representation of instances and invocations
can lead to a complex web of boxes and edges which are hard to comprehend. There-
fore, we use an aggregated view, where each class is represented by a single box and
edges are drawn between classes instead of instances. The amount of instances is rep-
resented through the height of a box, and the number of invocations determines the
thickness of edges. The CodeCity approach (Wettel and Lanza 2007) uses a city meta-
phor for large-scale software systems, like ExplorViz. However, CodeCity is only able
to visualize static properties of source code, like classes and packages, where iObserve,
ExplorViz, and TraceCrawler include dynamic content. Furthermore, CodeCity visual-
izes the whole application in class level detail at once. In contrast, we employ a top-
down driven hierarchical approach, which allows for inspecting single packages inter-
actively.

To summarize, development models reused during operation phase provide good
comprehensibility to humans, but are not updated with respect to structural changes yet.
However, structural updates are required to reflect changes during operations like rep-
lication or migration as further described in (Heinrich 2016). Work on model extraction
automatically creates runtime models from scratch. As development decisions on the
application architectures cannot be fully derived from monitoring events the resulting
models lack understandability. Approaches on architecture conformance checking ne-
glect dynamic properties as they are limited to the conformance between static source
code and architectural models. The visualization of models is essential to support un-
derstandability. Most visualization approaches reflect only static models and source
code, which cannot provide insight in operational properties. Approaches like Trace-
Crawler incorporate monitoring data however are not able to provide live visualiza-
tions, which are necessary to support operators. ExplorViz offers live visualization but
neglects development decisions.

Moreover, there are approaches for model synchronization using triple graph gram-
mars for instance. Trollmann and Albayrak 2016 propose a triple graph for synchroniz-
ing Enterprise Java Beans and component models. However, data do not result from
monitoring a running application.

9. Conclusion

In this chapter we proposed the iObserve approach to address architectural challenges
in DevOps of cloud-based software applications. The iObserve megamodel bridges dif-
ferent abstraction levels among architectural models in development and operations.
iObserve employs descriptive and prescriptive architectural runtime models in the con-
text of the MAPE control loop. Extending the iObserve megamodel for live visualiza-
tions allows for depicting static as well as dynamic content in architectural models used
in operator-in-the-loop adaptation.



In the future, we plan to further investigate the planning and execution phases of
iObserve. Besides further analyzing design space exploration and optimization ap-
proaches to find optimal architectural runtime model candidates, we will investigate the
execution of adaptation plans to allow for a maximum degree of automation where ad-
aptation is possible without human intervention. Our live visualization supports cases
where human intervention is required. We will extend the visualization approach by
additional 3D views to further improve support of human operators. We will conduct
experiments for evaluating our architectural runtime models with respect to fidelity,
usefulness for human inspection, and scalability.

Moreover, we will extend and revise the PCM following our reference architecture
for meta-model modularization and extension to support additional quality aspects that
may become relevant in the iObserve context.
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