
Increasing the Throughput of Pipe-and-Filter Architectures
by Integrating the Task Farm Parallelization Pattern

Christian Wulf1 und Wilhelm Hasselbring2

Abstract: The Pipe-and-Filter style represents a well-known family of component-based architec-
tures. By executing each filter on a dedicated processing unit, it is also possible to leverage con-
temporary distributed systems and multi-core systems for a high throughput. However, this simple
parallelization approach is not very effective when (1) the workload is uneven distributed over all
filters and when (2) the number of available processing units exceeds the number of filters.

In this paper, we explain how we utilize the task farm parallelization pattern in order to increase the
throughput of Pipe-and-Filter architectures. Furthermore, we describe an associated modular self-
adaptive mechanism which enables the automatic resource-efficient reaction on unevenly distributed
workload. Finally, we refer to an extensive experimental evaluation of our self-adaptive task farm
performed by us. The results show that our task farm (1) increases the overall throughput and (2)
scales well according to the current workload.

Keywords: Pipe-and-Filter, TeeTime, parallelization, task farm pattern, self-adaptation

With the use and adoption of big data, the Pipe-and-Filter (P&F) architectural style gained

an increased popularity both in industry and in research. Recent research [Al13, GTA06,

Su10] addresses the problem of how to leverage and to optimize contemporary multi-core

systems for a high throughput.

Our approach [WWH16b] provides a solution for this problem by automatically duplicat-

ing a given stage3, preferably the slowest one, and executing their instances in parallel.

A distributer stage ensures that incoming data elements are evenly distributed among the

instances. Analogously, a merger stage collects the outgoing data elements from the in-

stances and passes them on to the next stage. For the sake of reusability, we provide a

composite stage which implements this behavior for a given stage in a transparent way.

We call this stage the Task Farm Stage (TFS) since it effectively implements the Task

Farm parallelization pattern [Al13].

Moreover, we provide an associated self-adaptation manager (SAM) which automatically

adapts the number of stage instances at runtime based on the current throughput of the

TFS. A Monitoring component monitors the throughput of the pipes which connect the

distributor and the stage instances with each other. An Analysis component analyzes the

measurements of the Monitoring component and calculates how much the throughput of

the TFS has changed since the last few measurements. A Reconfiguration component

1 Kiel University, Software Engineering Group, 24098 Kiel, chw@informatik.uni-kiel.de
2 Kiel University, Software Engineering Group, 24098 Kiel, wha@informatik.uni-kiel.de
3 We use the term stage as generalization for data sources, filters, and data sinks, as categorized by [Bu96].

Jan Jürjens, Kurt Schneider (Hrsg.): Software Engineering 2017,

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 83



takes the result of the Analysis component and decides whether the TFS should add or

remove a stage instance. The cycle is then completed and starts again with the Monitoring

component after a user-defined delay (our default is 50 ms).

We performed an extensive experimental evaluation of our TFS and the associated SAM

on four different multi-core systems. We employed a CPU-intensive, an I/O-intensive, and

a hybrid scenario in order to show (1) that our TFS is able to increase the throughput of var-

ious P&F architectures and (2) that our SAM scales well. We achieved speedups ranging

from 1.5 to 7.3 for our scenarios. For more details, we refer to the full paper [WWH16b]

and our replication package [WWH16a].

For our evaluation, we use the P&F framework TeeTime [Th, WEH14]. It allows to model

and to execute arbitrary P&F architectures. For example, it supports feedback loops, mul-

tiple input/output ports per stage, and the composition of several stages to a single one.

Stages modeled with TeeTime can be stateless or stateful and can reuse other stages. Ports

are typed and allow to interconnect stages with synchronized and unsynchronized pipes.

However, TeeTime’s major strengths are its support for a concurrent execution and its abil-

ity to provide a high throughput. It utilizes contemporary multi-core systems by executing

stages of a P&F architecture in parallel. In particular, threads can be assigned to stages in

an arbitrary manner. Hence, we chose this framework for our evaluation.

References
[Al13] Aldinucci, Marco; Danelutto, Marco; Kilpatrick, Peter; Torquati, Massimo: FastFlow:

high-level and efficient streaming on multi-core. In: Programming Multi-core and
Many-core Computing Systems, Parallel and Distributed Computing, chapter 13. Wi-
ley, 2013.

[Bu96] Buschmann, Frank; Meunier, Regine; Rohnert, Hans; Sommerlad, Peter; Stal, Michael:
Pattern-oriented Software Architecture: A System of Patterns. Wiley, 1996.

[GTA06] Gordon, Michael I.; Thies, William; Amarasinghe, Saman: Exploiting Coarse-grained
Task, Data, and Pipeline Parallelism in Stream Programs. In: Proc. of the 12th Interna-
tional Conference on ASPLOS. 2006.

[Su10] Suleman, M. Aater; Qureshi, Moinuddin K.; Khubaib; Patt, Yale N.: Feedback-directed
Pipeline Parallelism. In: Proc. of the Int. Conf. on PACT. 2010.

[Th] The TeeTime project. https://teetime-framework.github.io.

[WEH14] Wulf, Christian; Ehmke, Nils Christian; Hasselbring, Wilhelm: Toward a Generic and
Concurrency-Aware Pipes & Filters Framework. In: Symposium on Software Perfor-
mance: Joint Descartes/Kieker/Palladio Days. November 2014.

[WWH16a] Wulf, Christian; Wiechmann, Christian Claus; Hasselbring, Wilhelm: Data for: Increas-
ing the Throughput of Pipe-and-Filter Architectures by Integrating the Task Farm Par-
allelization Pattern. doi: 10.5281/zenodo.46776, March 2016.

[WWH16b] Wulf, Christian; Wiechmann, Christian Claus; Hasselbring, Wilhelm: Increasing the
Throughput of Pipe-and-Filter Architectures by Integrating the Task Farm Paralleliza-
tion Pattern. In: Proceedings of the 19th International Symposium on CBSE. 2016.

84 Christian Wulf und Wilhelm Hasselbring


