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The Pipe-and-Filter (P&F) Style
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Figure 1: An example pipeline: Parnas’ Keyword In Context 
program [Parnas1972] as P&F implementation [Rayside2006]

• Challenge: how to leverage contemporary systems for a high throughput?
• One simple approach is to execute each filter concurrently.
• Less effective for unevenly distributed workloads and for too many processing units.

High workload

Low workload
core core core core core core core core

In use

unused
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A Possible Solution with 2 Stages
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Advantages:
• Schedules the workload among the stages
• Scales statically with the number of

processing units

Task distribution Task merging

Resulting challenges:
• How and where to distribute efficiently?
• How to merge efficiently?
• How to duplicate the filter?
• Computation cost >> communication cost
• Unbalanced workloads

Duplicate
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The Task Farm Parallelization Pattern
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Problem
Perform a function on each
task of a given stream of tasks

Solution
Use a task distributor and a task
merger with active duplicated
worker filters

Farm as master/worker Farm with a merger
and a feedback loop Hierarchical farm

composed of farms

Hierarchical farm composed of pipelines

[Cole1991, Aldinucci+1999] 
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Our Task Farm Stage (TFS)
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Duplicable stage

Merger

Duplicable stage

Distributor

Dedicated or shared thread

High-performance synchronized lock-free pipes

Basic or composite stage

Port creation and removal at runtime

<<Interface>>
ITaskFarmDuplicable<I, O>

+duplicate() : ITaskFarmDuplicable<I, O>
+getInputPort() : InputPort<I>
+getOutputPort() : OutputPort<O>

Provides support for all task farm variations.
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Our Self-Adaptation Manager (SAM)
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Duplicable stage

Merger

Duplicable stage

Distributor

Monitoring

Reconfiguration

Analysis

1

2

3a 3b

Task Farm Stage

Self-Adaptation Manager

Based upon MAPE-K [Kephart2003] and SLAstic [vanHoorn2014]
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Monitoring Component

=> Monitoring has no performance influence on the
threads executing the given P&F architecture
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Consumer 
stageDistributor

producer queue index

synchronized queue
(lock-free & cache-optimized)

consumer queue index

p = p + 1 c = c + 1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝐶𝐶𝑡𝑡: 𝑡𝑡𝑡𝑡𝑐𝑐 = 𝑐𝑐𝑡𝑡 − 𝑐𝑐𝑡𝑡−1
where 𝑐𝑐𝑡𝑡 is the consumer queue index at timestamp 𝑡𝑡
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Analysis Component

Throughput score 𝑡𝑡𝑠𝑠 = 𝑣𝑣−𝑝𝑝
𝑝𝑝

−∞ < 𝑡𝑡𝑠𝑠 < ∞ and 𝑣𝑣, 𝑡𝑡 > 0

𝑣𝑣: most recent measurement
𝑡𝑡: calculated predicted throughput based on recent history measurements

𝑡𝑡𝑠𝑠 > 0 ⇒ more than expected 𝑡𝑡𝑠𝑠 < 0 ⇒ less than expected
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𝑡𝑡 is calculated by a throughput prediction algorithm: 

mean algorithm 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑡𝑡𝑖𝑖

weighted algorithm ∑𝑖𝑖=1
𝑛𝑛 𝜔𝜔𝑖𝑖𝑝𝑝𝑖𝑖
∑𝑖𝑖=1
𝑛𝑛 𝜔𝜔𝑖𝑖

𝜔𝜔𝑖𝑖 > 𝜔𝜔𝑗𝑗 für 𝑖𝑖 > 𝑗𝑗

regression algorithm common least squares regression model

Based upon [Ehlers2012, Rohr2015]
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Reconfiguration Component
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D M

2 4
1

5 3

𝑡𝑡𝑠𝑠 > 𝑡𝑡𝑡𝑡𝑎𝑎: add a stage

D M

1

𝑡𝑡𝑠𝑠 < −𝑡𝑡𝑡𝑡𝑟𝑟: remove a stage

𝑡𝑡𝑠𝑠 ∈ [−𝑡𝑡𝑡𝑡𝑟𝑟 , 𝑡𝑡𝑡𝑡𝑎𝑎]: do nothing

𝑡𝑡𝑡𝑡𝑎𝑎 : throughput boundary for addition, 𝑡𝑡𝑡𝑡𝑟𝑟 : throughput boundary for removal
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Research Questions

• Feasibility
1a) Does our TFS increase the overall throughput?
1b) Does our SAM automatically adapt the number of 
stages according to the current runtime workload?

• Performance (Overhead)
2a) To what extent does the throughput prediction 
algorithm influence the overall throughput?
2b) To what extent does the throughput boundary 
influence the overall throughput?
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Evaluation Setup

• 3 scenarios on 4 multi-core systems with 3 
throughput prediction algorithms

• TFS implemented with our Java P&F framework
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http://teetime-framework.github.io

• First-class entities: stage, pipe, port, configuration
• Support for pipelines, branches, feedback loops, stage composition
• Multi-threaded, high-throughput execution of stages
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Evaluation Scenarios
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CPU-intensive scenario represented by Benchmark 1

I/O-intensive scenario represented by Benchmark 2

Combined CPU-I/O-intensive scenario represented by Benchmark 3

balanced

unbalanced
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1a) Lowest Mean Execution Times
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Table 1: Lowest mean execution times of the benchmark configurations achieved without and, respectively, with our TFS
on the four multi-core systems. For each benchmark configuration, the regression prediction algorithm was used.
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1b) Throughput w.r.t. Stages
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Figure 2: Benchmark 1 with a balanced workload on the Intel Xeon system
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2a+2b) Performance Influences
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B1 (balanced workload) B1 (unbalanced workload)

B2 (balanced workload) B3 (balanced workload)

Measurement results from the Intel Xeon system
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Related Work
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Self-adaptation in general: 
• MAPE-K control loop [Kephart2003]
• Frameworks: Rainbow [Garlan+2004], AQuA [Diaconescu+2004], the Adaptive 

Server Framework [Gorton+2008], SLAstic [vanHoorn2009]

Related P&F-similar frameworks: 
• FastFlow [Aldinucci2013]
• StreamIT [Thies2002]
• Pipes [http://www.tinkerpop.com]
• Akka [http://akka.io]

Related patterns: 
• Map-Reduce [Dean2008]
• Fork-Join [Lea2000]

Self-adaptation in P&F achitectures:
• Training phase [Suleman2010]
• Thread stages and shader stages [Sugerman2009]
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Conclusions

• Design & implemenation of a task farm stage and an associated self-adaptation 
manager

• Evaluation of the feasibility and the performance (speedups up to 7.3)
• Best: regression algorithm with a „low“ boundary
• Replication package [doi: 10.5281/zenodo.46776] with all data and code provided
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http://www.teetime-framework.net

Future work:
• Speedup sensitive to throughput boundary => Automatic identification at runtime
• Extend the duplicable interface to more than one input/output port
• More throughput prediction algorithms, e.g., ARIMA and Random
• Comparison of related approaches
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Unknown Stage Responsibility
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A

C

B

X

Z

Y

Conflict: it is unclear whether the 
thread of X or Y should execute the 
passive stage Z.

Conflict: it is unclear whether the 
thread of B or C should execute the 
passive stage A.

Distributor

SAM

some stage
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Used Multi-Core Systems
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