
Increasing the Throughput of Pipe-and-Filter
Architectures by Integrating the Task Farm

Parallelization Pattern

Software Engineering 2017 (CBSE 2016)

Christian Wulf and
Wilhelm Hasselbring

22.02.2017

Software Engineering Group
Kiel University, Germany

The Pipe-and-Filter (P&F) Style

Christian Wulf and Wilhelm Hasselbring 22.02.2017

Read
text file

Circular
shift

Alpha-
betize

Print out
result

Figure 1: An example pipeline: Parnas’ Keyword In Context
program [Parnas1972] as P&F implementation [Rayside2006]

• Challenge: how to leverage contemporary systems for a high throughput?
• One simple approach is to execute each filter concurrently.
• Less effective for unevenly distributed workloads and for too many processing units.

High workload

Low workload
core core core core core core core core

In use

unused

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 2

A Possible Solution with 2 Stages

Christian Wulf and Wilhelm Hasselbring 22.02.2017

Read
text file

Circular
shift

Alpha-
betize

Print out
result

Circular
shift

Advantages:
• Schedules the workload among the stages
• Scales statically with the number of

processing units

Task distribution Task merging

Resulting challenges:
• How and where to distribute efficiently?
• How to merge efficiently?
• How to duplicate the filter?
• Computation cost >> communication cost
• Unbalanced workloads

Duplicate

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 3

Outline

• Motivation
• The Task Farm Parallelization Pattern
• Our Approach
• Evaluation
• Related Work
• Conclusions

Christian Wulf and Wilhelm Hasselbring 22.02.2017Increasing the Throughput with Our Self-Adaptive Task Farm Stage 4

The Task Farm Parallelization Pattern

Christian Wulf and Wilhelm Hasselbring 22.02.2017

Problem
Perform a function on each
task of a given stream of tasks

Solution
Use a task distributor and a task
merger with active duplicated
worker filters

Farm as master/worker Farm with a merger
and a feedback loop Hierarchical farm

composed of farms

Hierarchical farm composed of pipelines

[Cole1991, Aldinucci+1999]

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 5

Outline

• Motivation
• The Task Farm Parallelization Pattern
• Our Approach
• Evaluation
• Related Work
• Conclusions

Christian Wulf and Wilhelm Hasselbring 22.02.2017Increasing the Throughput with Our Self-Adaptive Task Farm Stage 6

Our Task Farm Stage (TFS)

Christian Wulf and Wilhelm Hasselbring 22.02.2017

Duplicable stage

Merger

Duplicable stage

Distributor

Dedicated or shared thread

High-performance synchronized lock-free pipes

Basic or composite stage

Port creation and removal at runtime

<<Interface>>
ITaskFarmDuplicable<I, O>

+duplicate() : ITaskFarmDuplicable<I, O>
+getInputPort() : InputPort<I>
+getOutputPort() : OutputPort<O>

Provides support for all task farm variations.

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 7

Our Self-Adaptation Manager (SAM)

Christian Wulf and Wilhelm Hasselbring 22.02.2017

Duplicable stage

Merger

Duplicable stage

Distributor

Monitoring

Reconfiguration

Analysis

1

2

3a 3b

Task Farm Stage

Self-Adaptation Manager

Based upon MAPE-K [Kephart2003] and SLAstic [vanHoorn2014]

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 8

Monitoring Component

=> Monitoring has no performance influence on the
threads executing the given P&F architecture

Christian Wulf and Wilhelm Hasselbring 22.02.2017

Consumer
stageDistributor

producer queue index

synchronized queue
(lock-free & cache-optimized)

consumer queue index

p = p + 1 c = c + 1

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝐶𝐶𝑡𝑡: 𝑡𝑡𝑡𝑡𝑐𝑐 = 𝑐𝑐𝑡𝑡 − 𝑐𝑐𝑡𝑡−1
where 𝑐𝑐𝑡𝑡 is the consumer queue index at timestamp 𝑡𝑡

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 9

Analysis Component

Throughput score 𝑡𝑡𝑠𝑠 = 𝑣𝑣−𝑝𝑝
𝑝𝑝

−∞ < 𝑡𝑡𝑠𝑠 < ∞ and 𝑣𝑣, 𝑡𝑡 > 0

𝑣𝑣: most recent measurement
𝑡𝑡: calculated predicted throughput based on recent history measurements

𝑡𝑡𝑠𝑠 > 0 ⇒ more than expected 𝑡𝑡𝑠𝑠 < 0 ⇒ less than expected

Christian Wulf and Wilhelm Hasselbring 22.02.2017

𝑡𝑡 is calculated by a throughput prediction algorithm:

mean algorithm 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑡𝑡𝑖𝑖

weighted algorithm ∑𝑖𝑖=1
𝑛𝑛 𝜔𝜔𝑖𝑖𝑝𝑝𝑖𝑖
∑𝑖𝑖=1
𝑛𝑛 𝜔𝜔𝑖𝑖

𝜔𝜔𝑖𝑖 > 𝜔𝜔𝑗𝑗 für 𝑖𝑖 > 𝑗𝑗

regression algorithm common least squares regression model

Based upon [Ehlers2012, Rohr2015]

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 10

Reconfiguration Component

Christian Wulf and Wilhelm Hasselbring 22.02.2017

D M

2 4
1

5 3

𝑡𝑡𝑠𝑠 > 𝑡𝑡𝑡𝑡𝑎𝑎: add a stage

D M

1

𝑡𝑡𝑠𝑠 < −𝑡𝑡𝑡𝑡𝑟𝑟: remove a stage

𝑡𝑡𝑠𝑠 ∈ [−𝑡𝑡𝑡𝑡𝑟𝑟 , 𝑡𝑡𝑡𝑡𝑎𝑎]: do nothing

𝑡𝑡𝑡𝑡𝑎𝑎 : throughput boundary for addition, 𝑡𝑡𝑡𝑡𝑟𝑟 : throughput boundary for removal

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 11

Outline

• Motivation
• The Task Farm Parallelization Pattern
• Our Approach
• Evaluation
• Related Work
• Conclusions

Christian Wulf and Wilhelm Hasselbring 22.02.2017Increasing the Throughput with Our Self-Adaptive Task Farm Stage 12

Research Questions

• Feasibility
1a) Does our TFS increase the overall throughput?
1b) Does our SAM automatically adapt the number of
stages according to the current runtime workload?

• Performance (Overhead)
2a) To what extent does the throughput prediction
algorithm influence the overall throughput?
2b) To what extent does the throughput boundary
influence the overall throughput?

Christian Wulf and Wilhelm Hasselbring 22.02.2017Increasing the Throughput with Our Self-Adaptive Task Farm Stage 13

Evaluation Setup

• 3 scenarios on 4 multi-core systems with 3
throughput prediction algorithms

• TFS implemented with our Java P&F framework

Christian Wulf and Wilhelm Hasselbring 22.02.2017

http://teetime-framework.github.io

• First-class entities: stage, pipe, port, configuration
• Support for pipelines, branches, feedback loops, stage composition
• Multi-threaded, high-throughput execution of stages

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 14

Evaluation Scenarios

Christian Wulf and Wilhelm Hasselbring 22.02.2017

CPU-intensive scenario represented by Benchmark 1

I/O-intensive scenario represented by Benchmark 2

Combined CPU-I/O-intensive scenario represented by Benchmark 3

balanced

unbalanced

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 15

1a) Lowest Mean Execution Times

Christian Wulf and Wilhelm Hasselbring 22.02.2017

Table 1: Lowest mean execution times of the benchmark configurations achieved without and, respectively, with our TFS
on the four multi-core systems. For each benchmark configuration, the regression prediction algorithm was used.

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 16

1b) Throughput w.r.t. Stages

Christian Wulf and Wilhelm Hasselbring 22.02.2017

Figure 2: Benchmark 1 with a balanced workload on the Intel Xeon system

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 17

2a+2b) Performance Influences

Christian Wulf and Wilhelm Hasselbring 22.02.2017

B1 (balanced workload) B1 (unbalanced workload)

B2 (balanced workload) B3 (balanced workload)

Measurement results from the Intel Xeon system

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 18

Outline

• Motivation
• The Task Farm Parallelization Pattern
• Our Approach
• Evaluation
• Related Work
• Conclusions

Christian Wulf and Wilhelm Hasselbring 22.02.2017Increasing the Throughput with Our Self-Adaptive Task Farm Stage 19

Related Work

Christian Wulf and Wilhelm Hasselbring 22.02.2017

Self-adaptation in general:
• MAPE-K control loop [Kephart2003]
• Frameworks: Rainbow [Garlan+2004], AQuA [Diaconescu+2004], the Adaptive

Server Framework [Gorton+2008], SLAstic [vanHoorn2009]

Related P&F-similar frameworks:
• FastFlow [Aldinucci2013]
• StreamIT [Thies2002]
• Pipes [http://www.tinkerpop.com]
• Akka [http://akka.io]

Related patterns:
• Map-Reduce [Dean2008]
• Fork-Join [Lea2000]

Self-adaptation in P&F achitectures:
• Training phase [Suleman2010]
• Thread stages and shader stages [Sugerman2009]

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 20

Outline

• Motivation
• The Task Farm Parallelization Pattern
• Our Approach
• Evaluation
• Related Work
• Conclusions

Christian Wulf and Wilhelm Hasselbring 22.02.2017Increasing the Throughput with Our Self-Adaptive Task Farm Stage 21

Conclusions

• Design & implemenation of a task farm stage and an associated self-adaptation
manager

• Evaluation of the feasibility and the performance (speedups up to 7.3)
• Best: regression algorithm with a „low“ boundary
• Replication package [doi: 10.5281/zenodo.46776] with all data and code provided

Christian Wulf and Wilhelm Hasselbring 22.02.2017

http://www.teetime-framework.net

Future work:
• Speedup sensitive to throughput boundary => Automatic identification at runtime
• Extend the duplicable interface to more than one input/output port
• More throughput prediction algorithms, e.g., ARIMA and Random
• Comparison of related approaches

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 22

References
[Parnas1972] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,” Commun. ACM, vol. 15, no. 12, 1972.

[Rayside2006] D. Rayside, L. Mendel, and D. Jackson, “A dynamic analysis for revealing object ownership and sharing,” in Proceedings of the
International Workshop on Dynamic Systems Analysis. ACM, 2006.

[Cole1991] M. Cole, Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press, 1991.

[Aldinucci+1999] M. Aldinucci and M. Danelutto, “Stream Parallel Skeleton Optimization,” in Proceedings of the International Conference on PDCS,
1999.

[Kephart2003] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer, vol. 36, no. 1, pp. 41–50, Jan 2003.

[vanHoorn2014] A. van Hoorn, Model-Driven Online Capacity Management for Component-Based Software Systems, ser. Kiel Computer Science Series.
Kiel, 2014, no. 6, dissertation, Faculty of Engineering, Kiel University.

[Ehlers2012] Ehlers, Jens, Self-Adaptive Performance Monitoring for Component-Based Software Systems, dissertation, Kiel University, 2012, 252 pp

[Rohr2015] Rohr, Matthias, Workload-sensitive Timing Behavior Analysis for Fault Localization in Software Systems, dissertation, Faculty of Engineering,
Kiel University, 2015, 224 pp

[Garlan+2004] D. Garlan, S. W. Cheng, A. C. Huang, B. Schmerl, and P. Steenkiste, “Rainbow: architecture-based self-adaptation with reusable
infrastructure,” Computer, vol. 37, no. 10, pp. 46–54, Oct 2004.

[Diaconescu+2004] A. Diaconescu, A. Mos, and J. Murphy, “Automatic performance management in component based software systems,” in
Proceedings of the International Conference on Autonomic Computing, May 2004.

[Gorton+2008] I. Gorton, Y. Liu, and N. Trivedi, “An extensible and lightweight architecture for adaptive server applications,” Software: Practice and
Experience, vol. 38, no. 8, 2008.

Christian Wulf and Wilhelm Hasselbring 22.02.2017Increasing the Throughput with Our Self-Adaptive Task Farm Stage 23

Unknown Stage Responsibility

Christian Wulf and Wilhelm Hasselbring 22.02.2017

A

C

B

X

Z

Y

Conflict: it is unclear whether the
thread of X or Y should execute the
passive stage Z.

Conflict: it is unclear whether the
thread of B or C should execute the
passive stage A.

Distributor

SAM

some stage

Increasing the Throughput with Our Self-Adaptive Task Farm Stage 24

Used Multi-Core Systems

Christian Wulf and Wilhelm Hasselbring 22.02.2017Increasing the Throughput with Our Self-Adaptive Task Farm Stage 25

	Increasing the Throughput of Pipe-and-Filter�Architectures by Integrating the Task Farm�Parallelization Pattern
	The Pipe-and-Filter (P&F) Style
	A Possible Solution with 2 Stages
	Outline
	The Task Farm Parallelization Pattern
	Outline
	Our Task Farm Stage (TFS)
	Our Self-Adaptation Manager (SAM)
	Monitoring Component
	Analysis Component
	Reconfiguration Component
	Outline
	Research Questions
	Evaluation Setup
	Evaluation Scenarios
	1a) Lowest Mean Execution Times
	1b) Throughput w.r.t. Stages
	2a+2b) Performance Influences
	Outline
	Related Work
	Outline
	Conclusions
	References
	Unknown Stage Responsibility
	Used Multi-Core Systems

