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ABSTRACT
Microservice architectures are steadily gaining adoption in
industrial practice. At the same time, performance and re-
silience are important properties that need to be ensured.
Even though approaches for performance and resilience have
been developed (e.g., for anomaly detection and fault tol-
erance), there are no benchmarking environments for their
evaluation under controlled conditions. In this paper, we
propose a generative platform for benchmarking performance
and resilience engineering approaches in microservice archi-
tectures, comprising an underlying metamodel, a generation
platform, and supporting services for workload generation,
problem injection, and monitoring.

1. INTRODUCTION
The new microservice architectural style [7] makes use of

independent entities being loosely coupled to be more flexi-
ble in terms of maintenance and scalability. A guiding prin-
ciple of microservice architectures is the assumption that
misbehavior or outages may happen anytime (“design for
failure”). This architectural style also makes it possible to
adopt new software engineering paradigms like DevOps [1]
which again makes heavy use of approaches like Continuous
Deployment [4]. Many methodologies, techniques, and tools
have been developed in the recent years to measure and im-
prove the performance and resilience of software systems [8].
To evaluate these approaches in microservice environments,
systems under test (SUTs) with representative characteris-
tics (e.g., topology, size) are required. For approaches ex-
plicitly considering failures (e.g., detection, diagnosis, pre-
vention, and tolerance), a way to inject them is needed [6].

In this paper, we propose a generative platform for bench-
marking performance and resilience engineering approaches
in microservice architectures. The approach comprises a
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Figure 1: Overview of the generation steps

metamodel (Section 2) defining the topology of the microser-
vices, a generator (Section 3) for the deployable artifacts of
the synthetic microservices, and supporting services (Sec-
tion 4) for workload generation, problem injection, and mon-
itoring. Figure 1 depicts the aspects that will be covered in
this paper. Based on the metamodel (implemented with
Eclipse Ecore [2]), a microservice environment can be spec-
ified by creating an instance of the said metamodel. After
the generation process, the resulting artifacts can be built,
deployed, and executed with the supporting services to gen-
erate workload, gain monitoring data, inject problems, etc.

Complementary to using real systems, this generative ap-
proach provides the possibility to generate microservice envi-
ronments with specified properties, which can then be used
for measurement-based evaluation of performance and re-
silience engineering approaches.

2. METAMODEL
In Figure 2 the part of the metamodel defining microser-

vice types and microservice instances is depicted. The Mi-
croserviceRepository holds all MicroserviceTypes, which have
RESTOperations that define which URL path is mapped to
which method of the microservice.

Microservice architectures are designed to be flexible and
to be changed frequently. A Configuration represents a spe-
cific state of a microservice architecture in terms of instances
of microservices. The Configuration object holds all Mi-
croservices which are deployed in an ExecutionEnvironment.
An ExecutionEnvironment may be a physical host, a virtual
machine or a container. A Microservice is an instance of
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Figure 2: Metamodel excerpt for microservice types,
instances, and their dependencies

a MicroserviceType with a specific Version. Depending on
the deployment, the endpoint is deducted in terms of IP
address or hostname, and port. The dependencies between
microservices are modeled as follows. The caller is defined
by the microservice type, its version, and the calling REST
operation while the callee is defined by the microservice type
and the called REST operation.

3. GENERATION
Based on an instance of the metamodel, the code arti-

facts for each microservice are generated using the template
features of Xtend1. The resulting artifacts are:

• Java source code using Spring Boot2 annotations for
creating a web service environment and including in-
strumentation for the Kieker monitoring framework [9]

• An Apache Maven3 pom.xml file for building the syn-
thetic microservice application.

• A Dockerfile that allows the creation of a Docker4 con-
tainer for the microservice application.

• YAML files required for deploying the microservice
container on a Kubernetes5 cluster.

After the generation process has finished, the Maven pom.xml
can be used to pull in all required dependencies and compile
an executable Java JAR file. Once the executable is present,
the Docker image for the microservice can be created and it
can be deployed to a Kubernetes cluster.

4. SUPPORTING SERVICES
The approach comprises supporting services as depicted

in Figure 1. User requests are generated by a microservice
that runs Apache JMeter.6 Every generated microservice is
set up to send its monitoring data to a microservice running
a JMS server which collects the monitoring data of all mi-
croservice instances in the SUT. The Monitoring Server col-

1https://www.eclipse.org/xtend/
2http://projects.spring.io/spring-boot/
3https://maven.apache.org/
4https://www.docker.com/
5https://kubernetes.io/
6https://jmeter.apache.org/

lects the monitoring data (including data about distributed
execution traces) received from the JMS server. By default,
each microservice of the SUT is configured to request infor-
mation about problems (e.g., delays or other performance
anti-patterns [5]) to be injected for every REST operation
from the Registry service. Based on the microservice type,
its version, and its unique ID, the Registry microservice re-
turns the corresponding problem. These problems get con-
trolled by a component named Injector. It uses the applica-
tion programming interface (API) of the Registry microser-
vice to change the behavior by modifying the problems that
are returned to the SUT microservice instances.

5. CONCLUSION
With the proposed model-based generation tool set for

performance and resilience benchmarking it is possible to
use instances of a metamodel to define the microservice ar-
chitecture that will be generated. The generated synthetic
microservices can then be monitored while problems get in-
jected into the microservice environment. The proposed
setup was developed and used for evaluation purposes in our
work on anomaly detection in microservice architectures [3].
Even though it is not a full-fledged tool set yet, it can provide
building blocks for further extension for different aspects in
terms of performance and resilience benchmarking. In the
future, the range of possible injections could be extended by
antipatterns as proposed in [5] and resource demand injec-
tions. Furthermore, support for more monitoring tools, au-
tomatic extraction of model instances from monitoring data,
and generation of user request scripts could be extended.

The presented generative platform is publicly available at
https://github.com/orcas-elite/arch-gen.
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