
Model-driven Generation of
Microservice Architectures for Benchmarking

Performance and Resilience Engineering Approaches∗

Thomas F. Düllmann and André van Hoorn
University of Stuttgart, Institute of Software Technology, Germany

ABSTRACT
Microservice architectures are steadily gaining adoption in
industrial practice. At the same time, performance and re-
silience are important properties that need to be ensured.
Even though approaches for performance and resilience have
been developed (e.g., for anomaly detection and fault tol-
erance), there are no benchmarking environments for their
evaluation under controlled conditions. In this paper, we
propose a generative platform for benchmarking performance
and resilience engineering approaches in microservice archi-
tectures, comprising an underlying metamodel, a generation
platform, and supporting services for workload generation,
problem injection, and monitoring.

1. INTRODUCTION
The new microservice architectural style [7] makes use of

independent entities being loosely coupled to be more flexi-
ble in terms of maintenance and scalability. A guiding prin-
ciple of microservice architectures is the assumption that
misbehavior or outages may happen anytime (“design for
failure”). This architectural style also makes it possible to
adopt new software engineering paradigms like DevOps [1]
which again makes heavy use of approaches like Continuous
Deployment [4]. Many methodologies, techniques, and tools
have been developed in the recent years to measure and im-
prove the performance and resilience of software systems [8].
To evaluate these approaches in microservice environments,
systems under test (SUTs) with representative characteris-
tics (e.g., topology, size) are required. For approaches ex-
plicitly considering failures (e.g., detection, diagnosis, pre-
vention, and tolerance), a way to inject them is needed [6].

In this paper, we propose a generative platform for bench-
marking performance and resilience engineering approaches
in microservice architectures. The approach comprises a

∗This work is partially funded by the Baden-Württemberg
Stiftung (ORCAS Project, Elite Programme for Postdocs).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’17 Companion, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4899-7/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3053600.3053627

JMeter JMS Server

Registry

Monitoring
ServerSUT

Requests

Monitoring
Data

Injected
Delays

Monitoring
Data

Injector

Timed
Injections

Ecore
Metamodel

Instance

Microservice
Application

Generation

Monitoring
Data

Deployment &
Execution

Supporting
Services

Legend:

Figure 1: Overview of the generation steps

metamodel (Section 2) defining the topology of the microser-
vices, a generator (Section 3) for the deployable artifacts of
the synthetic microservices, and supporting services (Sec-
tion 4) for workload generation, problem injection, and mon-
itoring. Figure 1 depicts the aspects that will be covered in
this paper. Based on the metamodel (implemented with
Eclipse Ecore [2]), a microservice environment can be spec-
ified by creating an instance of the said metamodel. After
the generation process, the resulting artifacts can be built,
deployed, and executed with the supporting services to gen-
erate workload, gain monitoring data, inject problems, etc.

Complementary to using real systems, this generative ap-
proach provides the possibility to generate microservice envi-
ronments with specified properties, which can then be used
for measurement-based evaluation of performance and re-
silience engineering approaches.

2. METAMODEL
In Figure 2 the part of the metamodel defining microser-

vice types and microservice instances is depicted. The Mi-
croserviceRepository holds all MicroserviceTypes, which have
RESTOperations that define which URL path is mapped to
which method of the microservice.

Microservice architectures are designed to be flexible and
to be changed frequently. A Configuration represents a spe-
cific state of a microservice architecture in terms of instances
of microservices. The Configuration object holds all Mi-
croservices which are deployed in an ExecutionEnvironment.
An ExecutionEnvironment may be a physical host, a virtual
machine or a container. A Microservice is an instance of

http://dx.doi.org/10.1145/3053600.3053627

Microservice

Configuration

MicroserviceType

Version
Endpoint

RESTOperation MicroserviceRepository
1..**

1..*

1..*

1..*

*

1
1..*

1

ExecutionEnvironment

*
1

DependencyModel

OperationToOperationCallingDependency

*

1 1

called
Operation

calling
Operation

1

called
Microservice

*
dependencies

1

calling
Microservice

1
calling
Version*

*
*

*

*

*

Figure 2: Metamodel excerpt for microservice types,
instances, and their dependencies

a MicroserviceType with a specific Version. Depending on
the deployment, the endpoint is deducted in terms of IP
address or hostname, and port. The dependencies between
microservices are modeled as follows. The caller is defined
by the microservice type, its version, and the calling REST
operation while the callee is defined by the microservice type
and the called REST operation.

3. GENERATION
Based on an instance of the metamodel, the code arti-

facts for each microservice are generated using the template
features of Xtend1. The resulting artifacts are:

• Java source code using Spring Boot2 annotations for
creating a web service environment and including in-
strumentation for the Kieker monitoring framework [9]

• An Apache Maven3 pom.xml file for building the syn-
thetic microservice application.

• A Dockerfile that allows the creation of a Docker4 con-
tainer for the microservice application.

• YAML files required for deploying the microservice
container on a Kubernetes5 cluster.

After the generation process has finished, the Maven pom.xml
can be used to pull in all required dependencies and compile
an executable Java JAR file. Once the executable is present,
the Docker image for the microservice can be created and it
can be deployed to a Kubernetes cluster.

4. SUPPORTING SERVICES
The approach comprises supporting services as depicted

in Figure 1. User requests are generated by a microservice
that runs Apache JMeter.6 Every generated microservice is
set up to send its monitoring data to a microservice running
a JMS server which collects the monitoring data of all mi-
croservice instances in the SUT. The Monitoring Server col-

1https://www.eclipse.org/xtend/
2http://projects.spring.io/spring-boot/
3https://maven.apache.org/
4https://www.docker.com/
5https://kubernetes.io/
6https://jmeter.apache.org/

lects the monitoring data (including data about distributed
execution traces) received from the JMS server. By default,
each microservice of the SUT is configured to request infor-
mation about problems (e.g., delays or other performance
anti-patterns [5]) to be injected for every REST operation
from the Registry service. Based on the microservice type,
its version, and its unique ID, the Registry microservice re-
turns the corresponding problem. These problems get con-
trolled by a component named Injector. It uses the applica-
tion programming interface (API) of the Registry microser-
vice to change the behavior by modifying the problems that
are returned to the SUT microservice instances.

5. CONCLUSION
With the proposed model-based generation tool set for

performance and resilience benchmarking it is possible to
use instances of a metamodel to define the microservice ar-
chitecture that will be generated. The generated synthetic
microservices can then be monitored while problems get in-
jected into the microservice environment. The proposed
setup was developed and used for evaluation purposes in our
work on anomaly detection in microservice architectures [3].
Even though it is not a full-fledged tool set yet, it can provide
building blocks for further extension for different aspects in
terms of performance and resilience benchmarking. In the
future, the range of possible injections could be extended by
antipatterns as proposed in [5] and resource demand injec-
tions. Furthermore, support for more monitoring tools, au-
tomatic extraction of model instances from monitoring data,
and generation of user request scripts could be extended.

The presented generative platform is publicly available at
https://github.com/orcas-elite/arch-gen.

6. REFERENCES
[1] L. J. Bass, I. M. Weber, and L. Zhu. DevOps - A

Software Architect’s Perspective. SEI series in software
engineering. Addison-Wesley, 2015.

[2] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven
software engineering in practice. Synthesis Lectures on
Software Engineering, 1(1):1–182, 2012.

[3] T. F. Düllmann. Performance anomaly detection in
microservice architectures under continuous change.
Master’s thesis, University of Stuttgart, 2017.

[4] J. Humble and D. Farley. Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment
Automation (Adobe Reader). Pearson Education, 2010.

[5] P. Keck, A. van Hoorn, D. Okanovic, T. Pitakrat, and
T. F. Düllmann. Antipattern-based problem injection
for assessing performance and reliability evaluation
techniques. In Proc. ISSRE Workshops 2016, pages
64–70, 2016.

[6] R. Natella, D. Cotroneo, and H. S. Madeira. Assessing
dependability with software fault injection: A survey.
ACM Comput. Surv., 48(3):44:1–44:55, Feb. 2016.

[7] S. Newman. Building Microservices. O’Reilly Media,
Inc., 2015.

[8] M. Nygard. Release it!: design and deploy
production-ready software. Pragmatic Bookshelf, 2007.

[9] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: a
framework for application performance monitoring and
dynamic software analysis. In Proc. ICPE’12, pages
247–248, 2012.

https://www.eclipse.org/xtend/
http://projects.spring.io/spring-boot/
https://maven.apache.org/
https://www.docker.com/
https://kubernetes.io/
https://jmeter.apache.org/
https://github.com/orcas-elite/arch-gen

	Introduction
	Metamodel
	Generation
	Supporting Services
	Conclusion
	References

