
DFG Priority Programme 1593
Design For Future - Managed Software Evolution

ICSA 2017 Tutorial: Study Foundations
Architecture Styles and Evolution
Robert Heinrich

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

2 04.04.2017

Schedule of Events

09:00 – 09:10 Welcome and General Introduction

09:10 – 09:40 Study Foundations

09:40 – 10:00 Model-based Software Application Monitoring

10:00 – 10:30 Runtime Architecture Modeling and Visualization
10:30 – 11:00 Coffee Break
11:00 – 12:15 Introduction to the ExplorViz, Palladio, and iObserve

Approaches with following Tool / Visualization Demos
12:15 – 12:30 Study Setup

12:30 – 14:00 Lunch

14:00 – 15:30 Comprehensibility Study

15:30 – 16:00 Coffee Break

16:00 – 16:30 Live Database Trace Visualization in Large Software Landscapes

16:30 – 17:00 Feedback and Open Discussion

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

3 04.04.2017

SCENARIOS
Running Example Scenarios

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

4 04.04.2017

Change Scenarios

Given an existing software system
Insert new component “database persistence”
Create new functionality “add billing”
Update GUI “red  blue button”

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

5 04.04.2017

ARCHITECTURE PATTERNS

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

6 04.04.2017

Design vs. architectural patterns

Design pattern
Small-scale / low-level solution
Usually a number of design patterns is “mixed”

Architectural pattern
Large-scale / high-level solution
(== balance design forces)
Dominate the structure of a whole software -
system

Architectural patterns and design patterns
usually are combined

!
!

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

7 04.04.2017

Architecture Patterns

Layers
Client-Server
Pipe & Filter
Shared Data
PAC

Referred to as “architecture style”
Single architecture style applied to a whole system

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

8 04.04.2017

LAYERS
Architecture Patterns

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

9 04.04.2017

Layers
Expresses is-allowed-to-use relation
Each layer consists of one or
several modules
Any piece of software is allocated to
exactly one layer
A lower layer cannot use a higher
layer!

(“There is more to layers diagrams than the ability
to draw separate parts on top of each other!” [1],
p. 78)
No call-backs
Forwarding is OK

Information hiding
Better changeability

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

10 04.04.2017

Example Scenarios

“database persistence”
Where to add?
Which interface?

“add billing”
All data accessible?
GUI + Business Layer
+ Persistence?

“red  blue button”
1. Which layer?
2. Which component(s)?

 Right layer, interfaces between layers, cycle avoidance

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

11 04.04.2017

CLIENT SERVER
Architecture Patterns

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

12 04.04.2017

Client Server Architecture

Distributed system model which shows how data
and processing is distributed across a range of
components
Set of stand-alone servers which provide specific
services such as printing, data management, etc.
Set of clients which call on these services
Network which allows clients to access servers

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

13 04.04.2017

Client Server: Example

Film and picture library

Figure: [2]

Wide-bandwidth network

Client 2

Video
server

Film clip
files

Client 1

Cataloge
Server

Cataloge

Client 3

Picture
server

Digitized
photographs

Client 4

Hypertext
server

Hypertext
web

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

14 04.04.2017

Client Server Characteristics

Advantages
Distribution of data is straightforward
Makes effective use of networked systems.

May require cheaper hardware
Easy to add new servers or upgrade existing servers

Disadvantages
No shared data model so sub-systems use different data
organisation.

Data interchange may be inefficient

Redundant management in each server
No central register of names and services

It may be hard to find out what servers and services are available

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

15 04.04.2017

Example Scenarios

“database persistence”
Which server?
Local / remote?

“add billing”
Client or server?
New client type?
Common client functionality?

“red  blue button”
Client!
Server-side colour schema?

 interface between server/client, (de-) centralisation criteria

Wide-bandwidth network

Client 2

Video
server

Film clip
f iles

Client 1

Cataloge
Server
Cataloge

Client 3

Picture
server

Digitized
photographs

Client 4

Hypertext
server

Hypertext
w eb

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

16 04.04.2017

PIPE AND FILTER
Architecture Patterns

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

17 04.04.2017

Pipe and Filter (1)

Elements:
Components with in- and out-ports
Pipe-Connectors with data-in and data-out roles

Attached-to relation
Topology: acyclic
Example:
unix-pipes
ps efl |grep mozilla |wc -l

C2 C3C1

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

18 04.04.2017

Pipe and Filter (2)
Filter

Incrementally transform some amount of the data at inputs to data
at outputs

Stream-to-stream transformations
Preserve no state between instantiations

Pipe
Move data from a filter output to a filter input
Pipes form data transmission graphs

Overall Computation
Run pipes and filters (non-deterministically) until no more
computations are possible

When transformations are sequential, this is a batch
sequential model which is extensively used in data
processing systems
Not really suitable for interactive systems

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

19 04.04.2017

Pipe and Filter: Example

Invoice processing system

Figure: [2]

Read
invoices

Identify
payments

Issue
receipts

Find
Payments
due

Issue
payment
reminder

Invoices Payments

Receipts

Reminder

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

20 04.04.2017

Example Scenarios

“database persistence”
Data source or data sink?
What are input / output steps?

“add billing”
Which processing steps
inside billing?
In which sub-chain to add?

“red  blue button”
Suitable architecture?
Which are interactive nodes?

 interface between steps, thinking in terms of clear input / output relation, distinct
locations during processing

Read is sued
invoices

Identify
payments

Issue
receipts

Find
Payments
due

Issue
payment
reminder

Invoices Payments

Receipts

Reminder

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

21 04.04.2017

SHARED DATA
Architecture Patterns

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

22 04.04.2017

Shared Data (1)

Elements:
Component types:

Shared data repositories
Data accessors (sinks and sources)

Connector types: data reading and writing
Attached-to relation
Topology: star (bus) or connected stars

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

23 04.04.2017

Shared Data: Example

Data Oriented Repository (Blackboard)

Blackboard
(shared Data)

ks2ks1

ks8

ks7

ks6 ks5

ks4

ks3

Direct access Computation

Memory

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

24 04.04.2017

Example Scenarios

“database persistence”
Blackboard!
Which subcomponent of the blackboard?

“add billing”
New node operating on
blackboard?
New data structure for
blackboard?

“red  blue button”
Which are interactive nodes?

 interface between nodes and blackboard, hierarchical data storage, strict separation
of storage and processing/calculation/import/export, guide for new
processing/input/output steps

Blackboard
(shared Data)

ks2ks1

ks8

ks7

ks6 ks5

ks4

ks3

Direct access Computation

Memory

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

25 04.04.2017

PAC – HIERARCHICAL SOFTWARE
ARCHITECTURE

Architecture Patterns

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

26 04.04.2017

PAC - Overview

PAC-AgentP C A

Presentation: View + Control
Abstraction: Model
Control

Communication not only via update()
(like in Model View Control, MVC)
Mediator

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

27 04.04.2017

PAC
Top Level AgentP C A

Data access

Intermediate
Level

P C A
Working leaf

P C A
View Coord.

Bottom
Level

Bottom
Level

P C A
Pie chart

P C A
Histogram

P C A
Tabular

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

28 04.04.2017

Example Scenarios

“database persistence ”
Which level?
New Agent!
Abstraction node!

“add billing”
Which agent?
P, C, and A!

“red  blue button”
Which agent’s P?

 Clear hierarchy, strict interfaces between levels and inside agents, repeating interaction
patterns, unified extensions via new agents

Top Level
Agent

P C A
Data access

Intermediate
Level

P C A
Work ing leaf

P C A
View Coord.

Bottom
Level

Bottom
Level

P C A
Pie chart

P C A
Histogram

P C A
Tabular

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

29 04.04.2017

CONCLUSION

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

30 04.04.2017

Architecture Patterns

Layers
Client-Server
Pipe & Filter
Shared Data
PAC

ICSA 2017 Tutorial - Architecture Styles and Evolution

Software Design and Quality Group
Institute for Program Structures and Data Organization

31 04.04.2017

References

[1] Clements et al. “Documenting Software
Architectures”, Addison Wesley, 2003

[2] Ian Sommerville “Software Engineering”, 7th
edition, Pearson Education, 2004

ICSA 2017 Tutorial - Architecture Styles and Evolution

	Slide Number 1
	Slide Number 2
	ScenArios
	Change Scenarios
	Architecture Patterns
	Design vs. architectural patterns
	Architecture Patterns
	Layers
	Layers
	Example Scenarios
	Client Server
	Client Server Architecture
	Client Server: Example
	Client Server Characteristics
	Example Scenarios
	Pipe and Filter�
	Pipe and Filter (1)
	Pipe and Filter (2)
	Pipe and Filter: Example
	Example Scenarios
	Shared Data
	Shared Data (1)
	Shared Data: Example
	Example Scenarios
	PAC – Hierarchical Software Architecture
	PAC - Overview
	PAC
	Example Scenarios
	Conclusion
	Architecture Patterns
	References

