
Architectural Runtime Modeling and Visualization
for Quality-Aware DevOps in Cloud Applications

Robert Heinrich
Karlsruhe Institute of Technology

Email: heinrich@kit.edu

Christian Zirkelbach
Kiel University

Email: czi@informatik.uni-kiel.de

Reiner Jung
Kiel University

Email: rju@informatik.uni-kiel.de

I. TOPIC

In this paper, we present a tutorial on modeling and visu-
alizing software architectures in form of architectural runtime
models to support quality-aware DevOps in cloud applications.
The tutorial is held in context of the 2017 14th IEEE In-
ternational Conference on Software Architecture to share our
findings and experiences with conference participants and give
them the opportunity to expand their knowledge and skills on
software architecture modeling, visualization, and analysis in
development and operations.

A. Summary

Cloud-based software applications are designed to change
often and rapidly during operations to provide constant quality
of service. This leads to increasing blurring of the boundary
between development and operations. DevOps denotes a set
of practices to support communication and collaboration of
developers and operators of software applications. Software
architecture is the key artifact for documenting and analyzing
a software application during development and operations.
However, while comparing architectural models used in the
development phase to those used in the operation phase
we can identify several differences in terms of purpose,
abstraction, and content [2]. Consequences are constrained
reuse of development models during operations and limited
phase-spanning consideration of the software architecture.

In this tutorial, we present approaches to address gaps
between architectural modeling in development and operations
and thus allow for phase-spanning usage of architectural mod-
els. The foundation is maintaining the semantic relationships
between monitoring outcomes and architectural models [3].
We discuss the integration of development models, code gen-
eration, monitoring, runtime model updates, as well as adap-
tation candidate generation and execution. We describe the
combination of descriptive and prescriptive architectural mod-
els to improve the communication and collaboration between
operators and developers. The consideration of static and dy-
namic content in architectural models supports operation-level
analysis and adaptations. Furthermore, we present different
architectural runtime model visualizations, which allow to
detect the above mentioned gaps for development on the one
hand and for operating on the other hand.

B. Goals

In the tutorial we pursue three goals:
1. Share our knowledge and experience on architecture mod-

eling and analysis in dynamic cloud applications with the
tutorial audience.

2. Gather feedback from the tutorial audience and identify
potentials for future collaborations.

3. Conduct a comprehensibility study among the tutorial au-
dience to evaluate the applicability and usefulness of the
proposed approaches and tools.

C. Tutorial Audience

The intended tutorial audience consists of PhD students,
researchers, and industrial engineers with strong interests and
background in software architecture modeling and analysis.
The audience should have completed their bachelor degree
in computer science, software engineering or a related area
and should have basic knowledge in software architecture. We
explicitly welcome participants with industrial background and
practical experience related to software architecture. We will
present essential foundations, so the participants do not require
specific expertise.

D. Key Take-Away Messages

The audience should leave with three take-away messages:
1. The audience is aware of approaches and tools for software

architecture modeling, analysis, and visualization during
operations.

2. The audience is aware of how semantic relationships be-
tween monitoring outcomes and architectural models can
be maintained.

3. The audience is aware of combining architectural models
during development and operations to support DevOps
activities.

II. IMPLEMENTATION

We apply for a full-day tutorial with the following prelim-
inary schedule of events as shown in Table I.

The tutorial will cover presentations of approaches and
demonstrations of tools for modeling and analyzing software
architectures for dynamic cloud applications. This part of
the tutorial will be conducted in form of a lecture with
facilitated discussions and includes examples for illustration



Table I
SCHEDULE OF EVENTS

Time Topic

09:00 – 09:10 Welcome and General Introduction

09:10 – 09:40 Study Foundations

09:40 – 10:00 Model-based Software Application Monitoring

10:00 – 10:30 Runtime Architecture Modeling and Visualization

10:30 – 11:00 Coffee Break

11:00 – 12:15 Introduction to the ExplorViz, Palladio, and iObserve
Approaches with following Tool / Visualization Demos

12:15 – 12:30 Study Setup

12:30 – 14:00 Lunch

14:00 – 15:30 Comprehensibility Study

15:30 – 16:00 Coffee Break

16:00 – 16:30 Live Database Trace Visualization in Large Software
Landscapes

16:30 – 17:00 Feedback and Open Discussion

purposes and short exercises for the audience. We start
with an introduction of established approaches on software
architecture modeling and analysis, e.g., the Palladio approach
[5], which provides the basis for approaches presented in
the following. Afterwards, we will present the runtime
modeling approach iObserve [2] for updating development
architectural models by observations made during operations.
iObserve supports the integration of operation-level adaptation
and development-level evolution of cloud applications [3].
ExplorViz is an approach for visualizing large software
landscapes and embedded applications during development
and operations [1]. Furthermore, it features two distinct
visualizations, showing a monitored software landscape on
the one hand, and an application level visualization on the
other hand.

The lecture part of the tutorial is followed by a hands-on
part, where a comprehensibility study is conducted among the
audience. In the comprehensibility study we will evaluate the
applicability and usefulness of the presented approaches and
tools for system and program comprehension. Subject of the
study is the Common Component Model Example (CoCoME)
– a community case study for component-based software
engineering and software evolution [4]. The audience will
apply the presented approaches and tools on the subject in
order to answer questions to assess their comprehension on
the CoCoME application. The audience answers will allow us
to draw conclusions on the applicability and usefulness of the
approaches and tool for system and program comprehension.
Details are given in the schedule.

The tutorial is therefore well appropriate for an audience
from academia and industry with basic knowledge in
software architecture, which wants to broaden its knowledge
for up-to-date dynamic cloud applications. There is no

specific expertise needed as we will introduce all necessary
foundations. The proposed tutorial aims at PhD students,
experienced researchers, and industrial engineers and experts.
Therefore, we think the ICSA participants fit the intended
audience for our tutorial very well. Moreover, we are
convinced that our tutorial suits the topics of ICSA very
well and will enrich the conference by imparting background
knowledge and presenting recent tooling. The tutorial will
be conducted as a lecture with facilitated discussions and
tool demonstrations followed by a study, which comprises
program comprehension tasks based on our tools. The study
results are collected in an online-questionnaire.

Afterwards, we present a novel and practically oriented
approach, which facilitates a live database trace visualization
in large software landscapes. As databases are a crucial part
in almost every software system, they are embedded in the
overall architecture and need to be understood as well. The
described approach supports system, program, and database
comprehension, extends the previous presented approaches,
and aids developers and operators alike. The idea behind the
approach is motivated by a previous case study we conducted
on the open repository software EPrints, when we detected
performance bottlenecks, which were database-related [6]. At
the end of our proposal, we conduct a concluding feedback
session and give the opportunity for an open discussion.

III. BACKGROUND OF THE PRESENTERS

Robert Heinrich is a senior researcher and head of the
Quality-driven System Evolution research group at the
Software Design and Quality chair, Karlsruhe Institute of
Technology. He holds a doctoral degree from Heidelberg
University. His research interests include software evolution
and adaptation using model-driven monitoring, run-time
architecture modeling and analysis techniques. Robert
Heinrich holds the Certificate for University Didactics of
the State Baden Württemberg (Germany) and is active in
academic teaching since more than eight years. He presented
his research at major international conferences and published
in major international journals. Currently, he is involved in
the iObserve research project on integrated observation and
modeling to support adaptation and evolution of software
systems.

Christian Zirkelbach is a junior researcher and Ph.D.
student in the Software Engineering research group at the
Kiel University. He is particularly interested in software and
database visualization, software architecture, and empirical
methods. Parallel to his studies, he worked for five years
part-time as a system administrator. Prior to his academic
career, he completed an apprenticeship in industry as an
IT specialist for systems integration followed by working
for about 2 years as an Oracle DBA at the Federal Motor
Transport Authority. He is involved in academic teaching
for about two years and presented his research at smaller
conferences. At the moment, he is working on the ExplorViz



research project and his doctoral thesis.

Reiner Jung is a senior researcher at Kiel University. He
holds a doctoral degree from Kiel University. His research
focus are domain-specific modeling, model-driven monitoring,
run-time models and analysis, model and code generation, both
at design-time and runtime. He presented his research at major
international conferences, e.g., MODELS and ICMT, and is
currently involved in iObserve and the application of domain-
specific modeling in context of research software.

IV. BACKGROUND OF THE TUTORIAL

This tutorial has been developed for ICSA 2017 exclusively.
It has not been offered previously. We expect between 20 and
30 participants.

ACKNOWLEDGMENT

This work was partially supported by the DFG (German
Research Foundation) under the Priority Programme SPP1593:
Design For Future – Managed Software Evolution and the
MWK (Ministry of Science, Research and the Arts Baden-
Württemberg) in the funding line Research Seed Capital
(RiSC).

REFERENCES

[1] F. Fittkau, A. Krause, and W. Hasselbring Software landscape and
application visualization for system comprehension with ExplorViz, In:
Information and Software Technology, http://dx.doi.org/10.1016/j.infsof.
2016.07.004, 2016, Elsevier.

[2] R. Heinrich, R. Jung, C. Zirkelbach, W. Hasselbring and R. Reussner
An Architectural Model-Based Approach to Quality-aware DevOps in
Cloud Applications, In: Software Architecture for Big Data and the Cloud,
Elsevier, 2017, to appear.

[3] R. Heinrich Architectural run-time models for performance and privacy
analysis in dynamic cloud applications, ACM SIGMETRICS Perfor-
mance Evaluation Review, 43(4):13-22, 2016, ACM.

[4] R. Heinrich, S. Gärtner, T.M. Hesse, T. Ruhroth, R. Reussner, K. Schnei-
der, B. Paech, and J. Jürjens A platform for empirical research on infor-
mation system evolution, In: 27th International Conference on Software
Engineering and Knowledge Engineering, 2015, pages 415-420.

[5] R.H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, H. Kozi-
olek, M. Kramer, and K. Krogmann Modeling and Simulating Software
Architectures - The Palladio Approach, MIT Press 2016.

[6] C. Zirkelbach, W. Hasselbring, and L. Carr Combining Kieker with
Gephi for Performance Analysis and Interactive Trace Visualization,
In: Symposium on Software Performance 2015: Joint Developer and
Community Meeting of Descartes/Kieker/Palladio, 35(3):26-28, 2015,
Softwaretechnik-Trends.


