

i②bserve

Introduction to Palladio

09:00-09:10	Welcome and General Introduction				
09:10-09:40	Study Foundations				
09:40 - 10:00	Model-based Software Application Monitoring				
10:00-10:30	Runtime Architecture Modeling and Visualization				
10:30-11:00	Coffee Break				
11:00 – 12:15	Introduction to the ExplorViz, Palladio, and iObserve Approaches with following Tool / Visualization Demos				
12:15-12:30	Study Setup				
12:30-14:00	Lunch				
14:00-15:30	Comprehensibility Study				
14:00 - 15:30 15:30 - 16:00	Comprehensibility Study Coffee Break				
14:00-15:30	Comprehensibility Study				

Palladio Book

i@bserve

Modeling and Simulating Software Architectures

The Palladio Approach

Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Koziolek, Heiko Koziolek, Max Kramer, Klaus Krogmann By Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Koziolek, Heiko Koziolek, Max Kramer and Klaus Krogmann

400 pp., 98 illus. ISBN: 9780262034760

MIT Press, Cambridge, MA, October 2016.

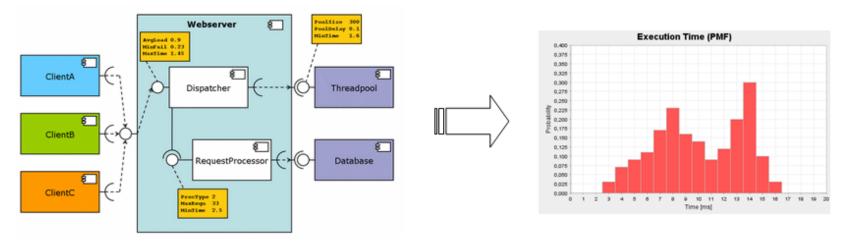
i bserve

- Introduction
- Palladio
- Palladio Component Model (PCM) as a Modeling Language used by Palladio Approach
- Roles in Component -based Software Development
 - Component Developer
 - Software Architect
 - System Deployer
 - Domain Expert
- Conclusion / Summary

i@bserve

Introduction

- Palladio
- Palladio Component Model (PCM) as a Modeling Language used by Palladio Approach
- Roles in Component -based Software Development
 - Component Developer
 - Software Architect
 - System Deployer
 - Domain Expert
 - Conclusion / Summary



Introduction

i②bserve

Prediction of quality properties on a model base

- for systematic design of software systems
- performance, reliability, costs

- Derive performance metrics from the models using
 - analytical techniques and
 - simulation

i@bserve

Introduction

Palladio

- Palladio Component Model (PCM) as a Modeling Language used by Palladio Approach
- Roles in Component -based Software Development
 - Component Developer
 - Software Architect
 - System Deployer
 - Domain Expert
 - Conclusion / Summary

Andrea Palladio

i@bserve

- Andrea Palladio (30 November 1508 – 19 August 1580) was an Italian architect active in the Republic of Venice.
- Palladio, influenced by Roman and Greek architecture, primarily by Vitruvius, is widely considered the most influential individual in the history of Western architecture.
- All of his buildings are located in what was the Venetian Republic, but his teachings, summarized in the architectural treatise, The Four Books of Architecture, gained him wide recognition.

[Wikipedia]

Palladio

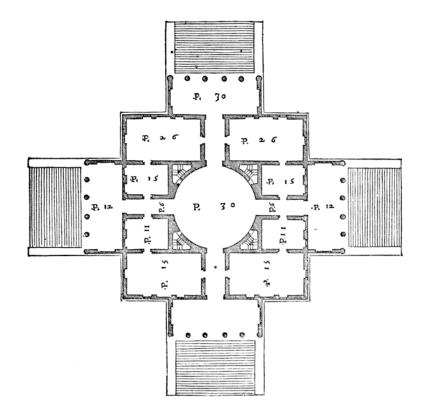
- **i** bserve
- Palladio is an approach for the definition of software architectures with a special focus on performance properties.

[Reussner 2016a]

- The Palladio Component Model
 - as one example for a conceptually clear component model
 - gives an overview on component concepts
 - defines a process view

i@bserve

Introduction


Palladio

Palladio Component Model (PCM) as a Modeling Language used by Palladio Approach

- Roles in Component -based Software Development
 - Component Developer
 - Software Architect
 - System Deployer
 - Domain Expert
 - Conclusion / Summary

Palladio Component Model (1)

i@bserve

- The Palladio Component Model (PCM) is designed to enable early performance predictions for software architectures
- Aligned with a component-based software development process

Targets at

- Performance prediction for component-based software architectures
- Business information systems

Palladio Component Model (2)

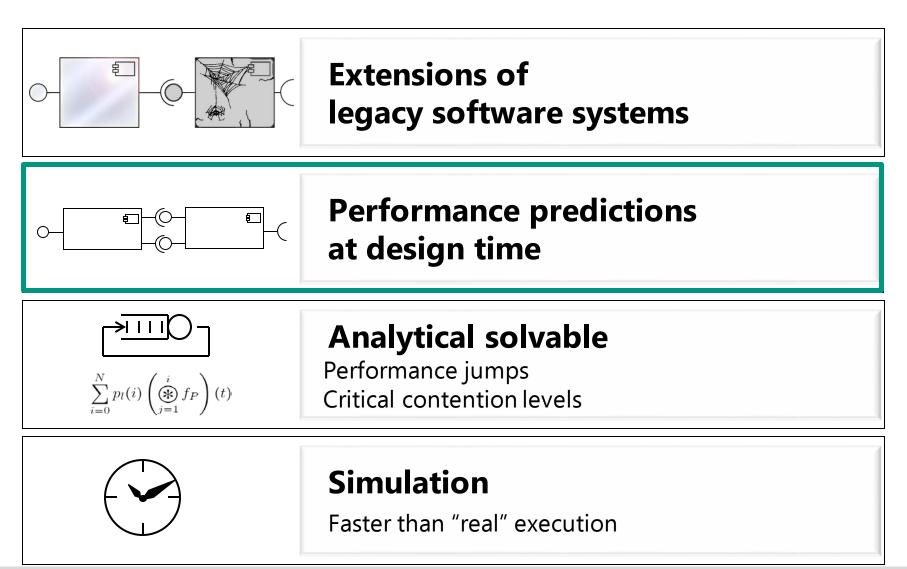
i@bserve

- Enables developers to create PCM model instances with graphical editors
- Derives performance metrics from the models using
 - Analytical techniques and
 - Simulation
- Development started in 2003
- Model is named after famous Italian Renaissance architect Andrea Palladio (1508-1580)
- Extensive metamodel in EMF/Ecore

Application of PCM

- Systematic design of software systems
- Use of component-based technologies
- Focus: Quality properties
 - In particular: Performance
 - Utilises model-driven performance prediction approaches

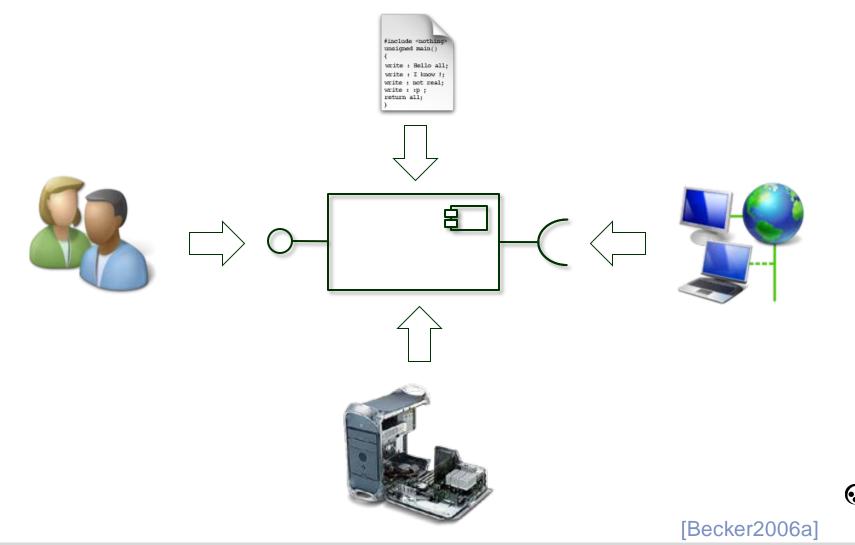
Tool: PCMBench



- Supports the whole component -based design process
- Analysis approaches provide hints on performance bottlenecks / issues

PCMBench cocomePcmModel/default. le Edit Diagram Navigste Search Proje						103
😁 • 🗔 🥧 🗛 • 🛷 🐚 • 🕻	5 • 60 • 5	• 1 • • • • • •	• 🛬 • 21 21 22 🖂 • 100% 💌			
C PCM Protect View 23	*cocome.repos	1000				208 -0
Berner Ver 13 Berner Ver 13 Berner Ver 13	•{CastOeskCorr	STradingSystem.Invento	ProductDepatchetif ProductDepatchetif TradingSystem.Inven. StoreQuindf Persstencet Persstencet	K xec		
II 2 platform:/resource/cocomePcmModel/c			-		1	* VOF
platform:/resource/cocomePcmModel/c platform:/resource/cocomePcmModel/c d	Properties 😂				1	*
es 24 par empresenterenter ennodelle	Appearance	#				
	Rulers & Grid	Property	Value			-
	Advanced	- EMP				
		Entity Name	12			
		Id	*** _4FAgriMPEEduL6bgulTgtzg	2		
		E Yew				
		Measurement Unit	Pixel			
		Name	💷 def ault. system_dlagram			
		III Styles				
(F		24				

Why Creating Models?



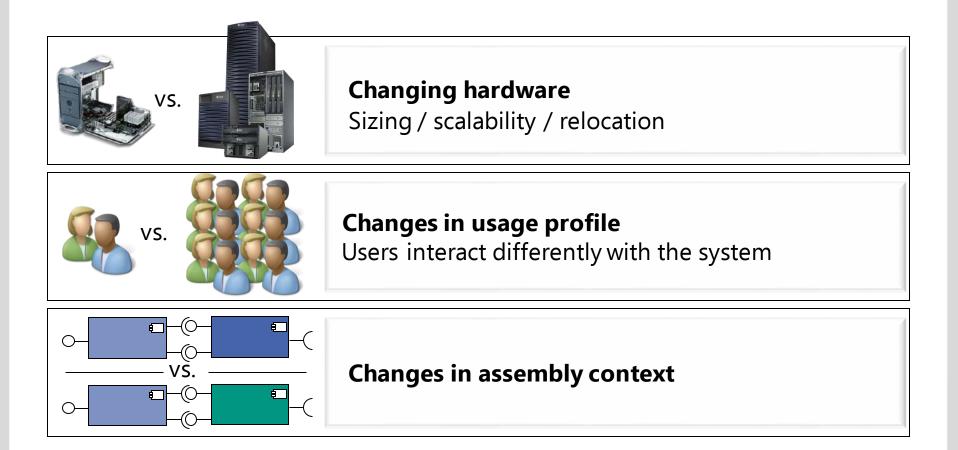
i@bserve

Component Performance (1)

iØbserve

Component Performance (2)

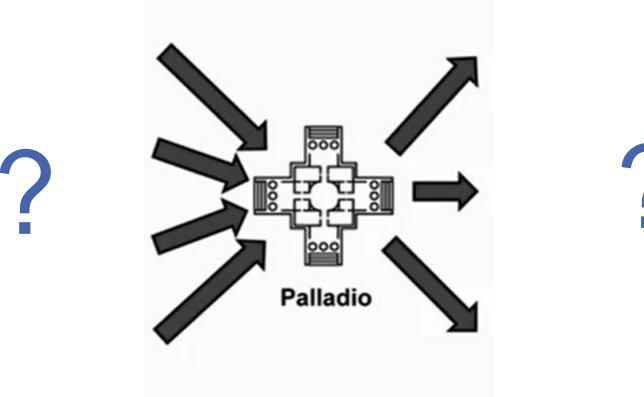
i@bserve


- All influence factors are made explicit in the PCM
- Required for conceptually clear components
- Supported context changes:
 - Allocation context → execution system (hardware / middleware / virtual machines)
 - Usage context \rightarrow usage profile

 - \rightarrow Explicit parameters in the PCM

Supported Context Changes

i②bserve



Component Description

What are the intuitive inputs and outputs for a performance prediction model?

also see: http://www.youtube.com/watch?v=H0Gj-kdG

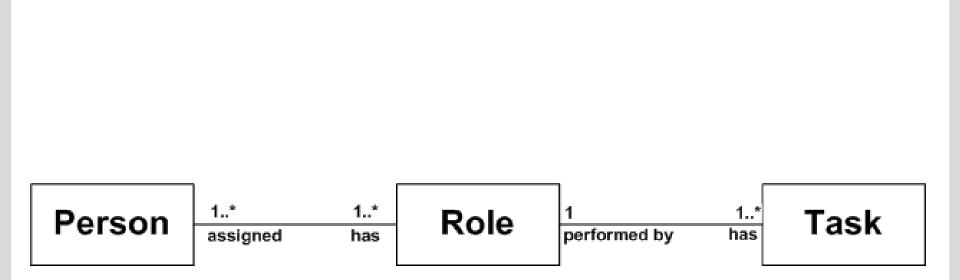
i②bserve

Introduction

- Palladio
- Palladio Component Model (PCM) as a Modeling Language used by Palladio Approach

Roles in Component -based Software Development

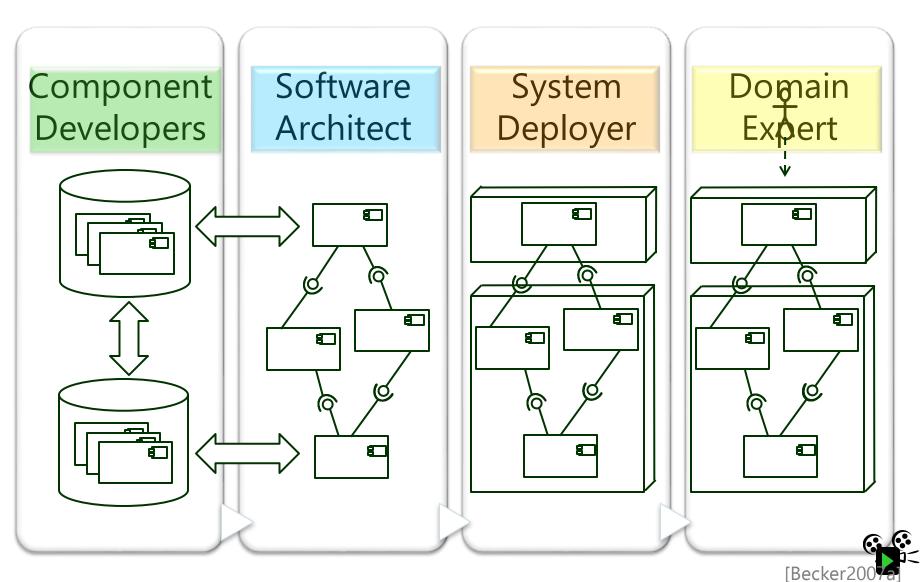
- Component Developer
- Software Architect
- System Deployer
- Domain Expert
- Conclusion / Summary

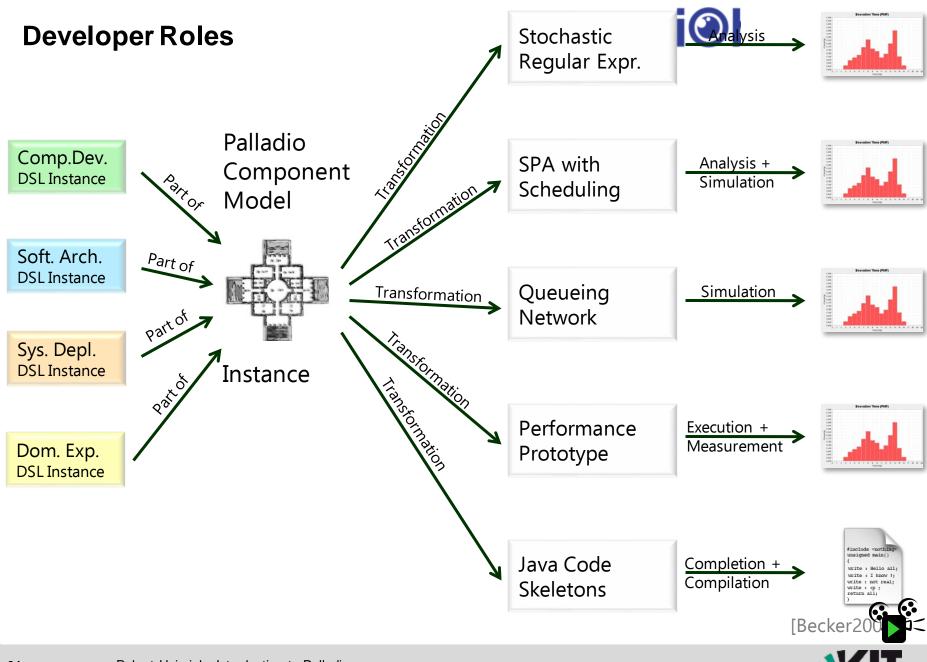


Idea

i@bserve

- Component Based Software Engineering (CBSE) principles require
 - Third party use
 - Readily composable
 - → Separate developer roles
- Component performance depends on
 - External services
 - Resource environment
 - Usage
 - → SEFF and parameterisation


i@bserve


Developer Roles

Developer Roles

i②bserve

- Introduction
- Palladio
- Palladio Component Model (PCM) as a Modeling Language used by Palladio Approach
- Roles in Component -based Software Development

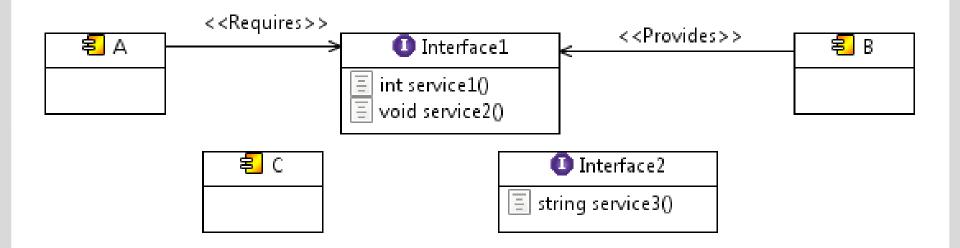
Component Developer

- Software Architect
- System Deployer
- Domain Expert
- Conclusion / Summary

Component Developer: Tasks

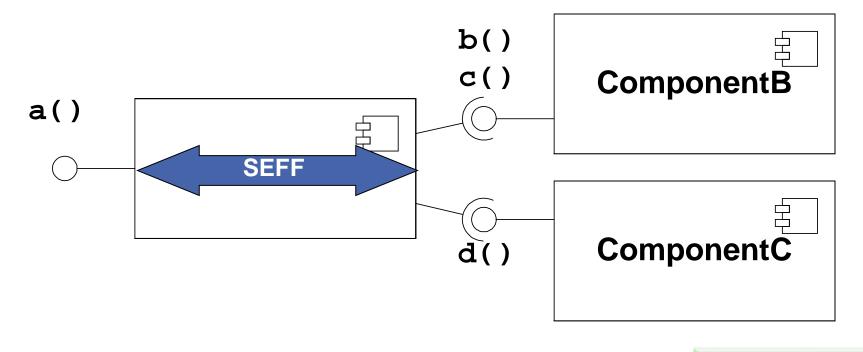
i@bserve

- Specifies components & interfaces
- Specifies data types
- Builds composite components
- Creates service effect specifications
- Stores modelling & implementation artefacts in repositories
- Implements components
- Tests components
- Maintains components


Component Developer

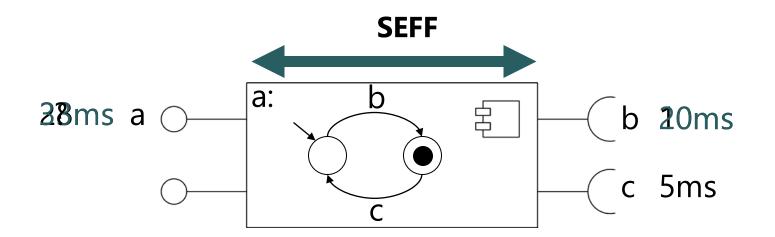
Example: Component Description in Palladio

i@bserve


- Component interfaces need to be described
- Created components are stored in a repository

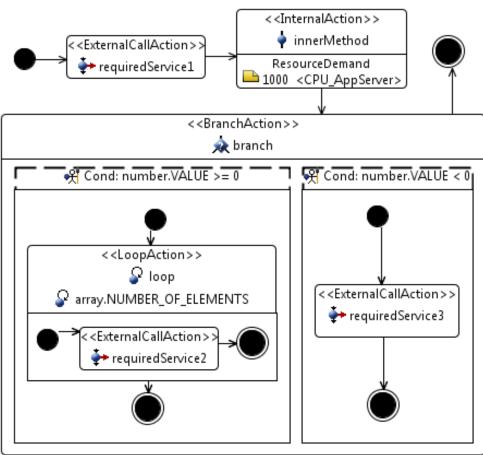
Component Developer

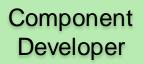
Example: Service Effect Specification: Idea



i②bserve

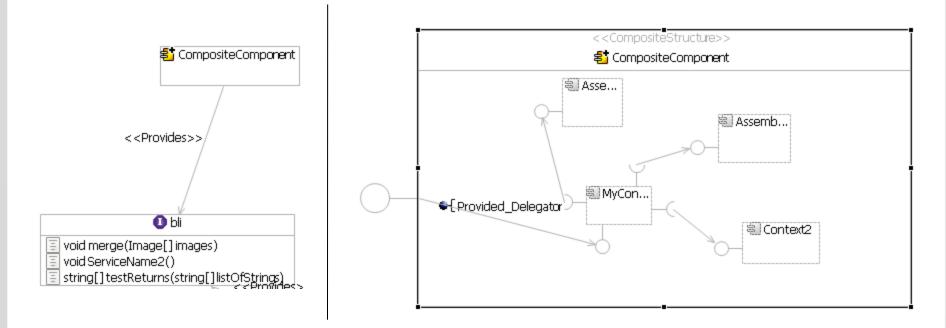
Example: Service Effect Specification: Idea




i②bserve

Example: Service Effect Specification in Paladoserve

 Component behaviour needs to be described in so -called Service Effect Specification (SEFF)



Example: Composite Component in Palladio

- **i@bserve**
- Composed from Basic Components and/or other Composite Components

Component Developer

i②bserve

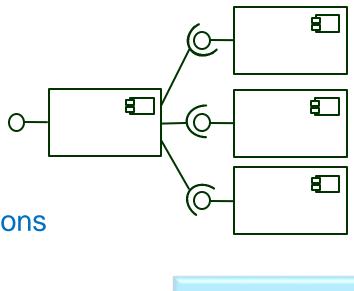
Introduction

- Palladio
- Palladio Component Model (PCM) as a Modeling Language used by Palladio Approach

Roles in Component -based Software Development

Component Developer

Software Architect


- System Deployer
- Domain Expert
- Conclusion / Summary

Robert Heinrich: Introduction to Palladio

Software Architect: Tasks (1/2)

- Specifies an architecture (boxes and lines) from existing components and interfaces
- Specifies new components and interfaces
- Uses architectural styles and architectural patterns
- Analyses architectural specification and makes design decisions

Software

Architect

i@bserve

Software Architect: Tasks (2/2)

i@bserve

 Conducts performance prediction based on architectural specification

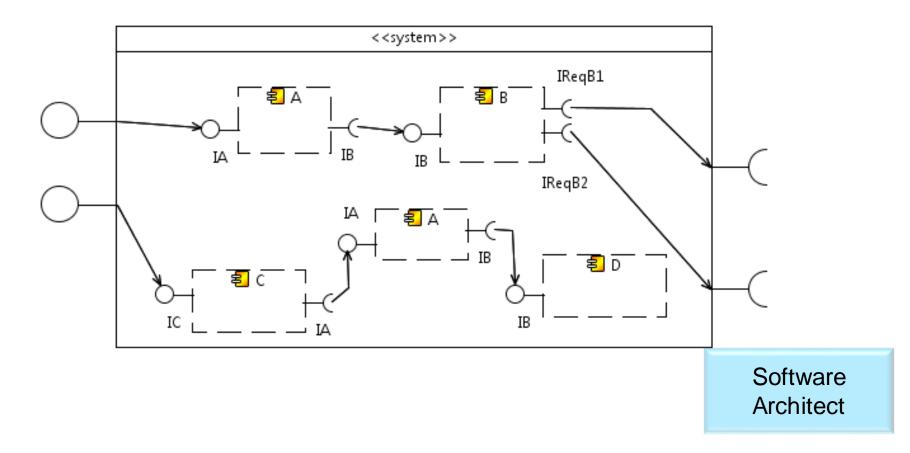
 Delegates implementation tasks to component developers

 Guides the whole development process

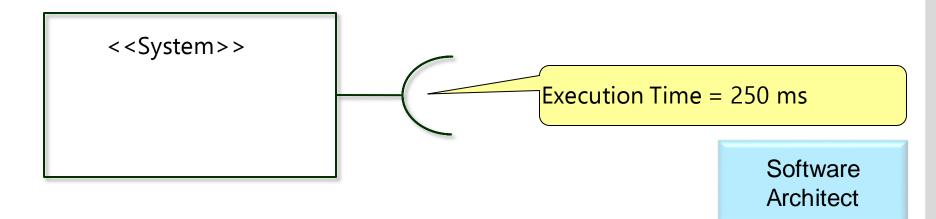
System Model

- Models the component-based architecture to be analysed
- May include components from different repositories
- Provides an interface for users
- Excludes uninteresting services and connects to them via system required interfaces
- Is a prerequisite for the system deployer to allocate the components

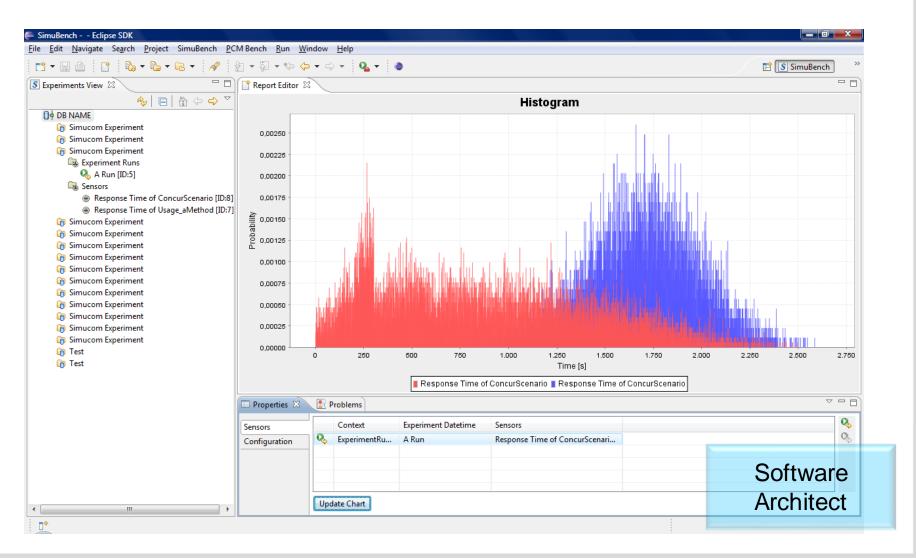
i@bserve


Software Architect

Example: System Composition in Palladio


System is composed of components from repository

QoS Annotation


- System Required Interfaces: connection to functionality not modelled in the system
- Example: web service, unknown component
- Execution time specification necessary

Example: Performance Evaluation in Palladio

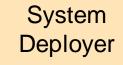
iØbserve

Overview

i②bserve

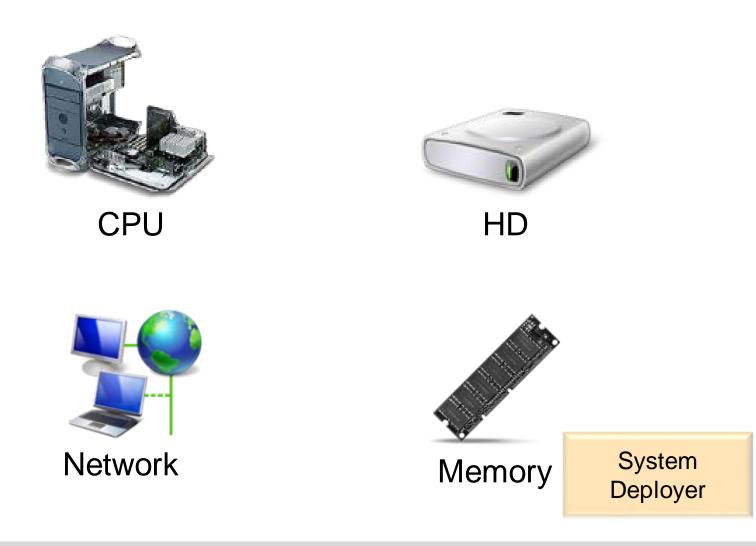
- Introduction
- Palladio
- Palladio Component Model (PCM) as a Modeling Language used by Palladio Approach

Roles in Component -based Software Development


- Component Developer
- Software Architect
- System Deployer
- Domain Expert
- Conclusion / Summary

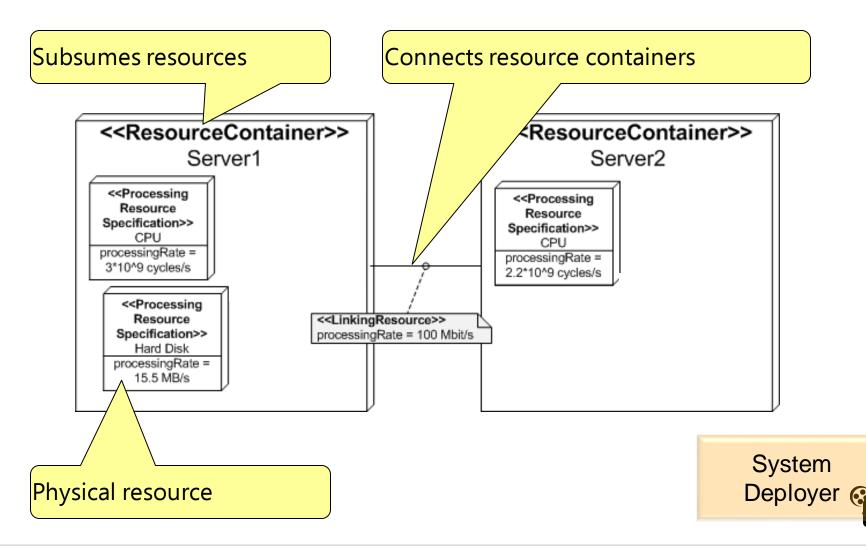
System Deployer: Tasks

- Models the resource environment (e.g., middleware, OS, hardware)
- Models the allocation of components to resources
- Sets up the resource environment (e.g., installing application servers, configuring hardware)
- Deploys components on resources (e.g., writing deployment descriptors)
- Maintains the running system

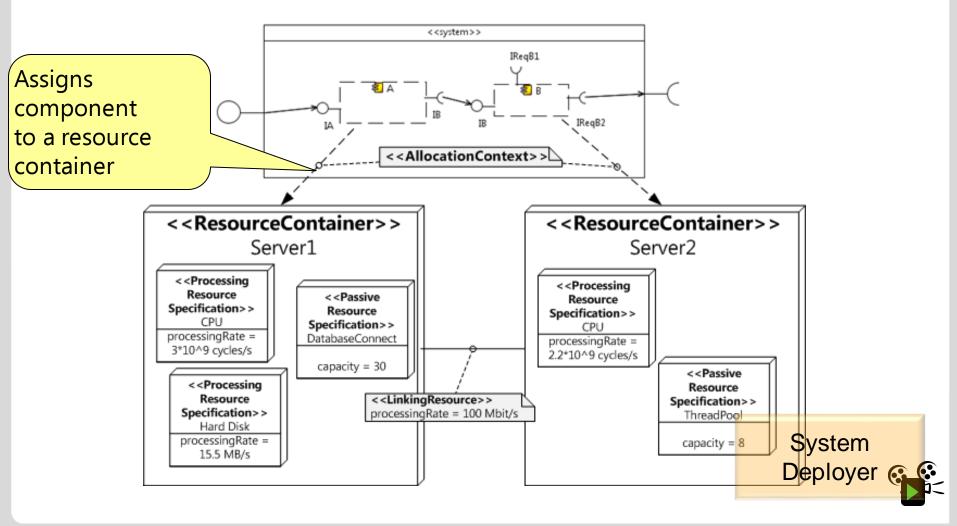

i@bserve

- Abstract specification of resources (e.g. CPU, HD, Net)
- Why?
 - concrete resources (e.g. 2 GHz CPU, 20 MB/s HD, 1 Gbit/s Net) unknown during component specification and implementation
- Thus: component developers provide
 SEFF specifications referring to resource types
- Once the concrete resource environment is specified, timing values can be derived

System Deployer



Resource Types in PCM



Example: Allocation in Palladio

Software Architect vs. System Deployer

- Software Architect
 - Specification of a system
 - "Wiring" of components
- System Deployer
 - Resource types
 - Specification of a resource environment
 - Specification of an allocation

Overview

i②bserve

- Introduction
- Palladio
- Palladio Component Model (PCM) as a Modeling Language used by Palladio Approach

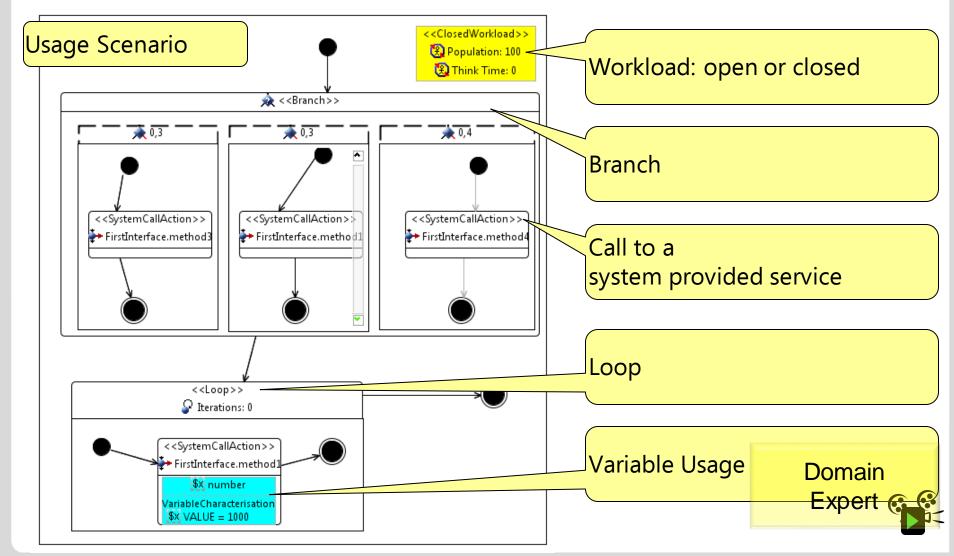
Roles in Component -based Software Development

- Component Developer
- Software Architect
- System Deployer
- Domain Expert
- Conclusion / Summary

Domain Expert: Tasks

- Familiar with the business domain
- Specifies user behaviour
 - Number of users
 - User requests to the system
 - Input parameters characterisations

Usage Model


i@bserve

- Models user behaviour, not component!
- Similar to SEFFs, but
 - Does not refer to resources
 - Does not refer to inner components of a system
 - Does not model parametric dependencies
 - Includes a workload specification
- Usage Model
 - 1...n usage scenarios (1 per use case)
 - 1 workload per usage scenario

Domain Expert

Usage Model

Overview

- Introduction
- Palladio
- Palladio Component Model (PCM) as a Modeling Language used by Palladio Approach
- Roles in Component -based Software Development
 - Component Developer
 - Software Architect
 - System Deployer
 - Domain Expert
- Conclusion / Summary

Summary: Contexts: Specified Properties

- Assembly Context
 - Horizontal Composition: Binding to other Components
 - Vertical Composition: Encapsulation in Composite Components
- Allocation Context
 - Allocation to Hardware Resources
 - Configuration
 - Component, Container
 - Communication
 - Security, Concurrency
- Usage Context
 - Usage at System Boundaries
 - User Arrival Rate
 - Number of Users
 - Request Probabilities
 - Parameter Values

Summary: Contexts and Roles

Assembly Context	Allocation Context	Usage Context
Specified by Software Architect:	Specified by System Deployer:	Specified by Domain Expert:
 Horizontal Composition: Binding to other Components Vertical Composition: Encapsulation in Composite Components 	 Allocation to Hardware Resources Configuration Component, Container Communication Security, Concurrency 	 Usage at System Boundaries User Arrival Rate Number of Users Request Probabilities Parameter Values
Computed by Tools:	Computed by Tools:	Computed by Tools:
 Behaviour of the whole system "Overall SEFF" 	 Allocation-dependent QoS Characteristics Timing Values for Resource Demands Failure Probabilities 	 Usage inside Components Branch Probabilities Loop Iteration Numbers Input/Output Parameters Usage-dependent Resource Demands

Palladio – Tool-Demo

- PCM Installation:
 - The PCM 4.0.0 release is only available for Eclipse 4.4 (Luna) and Eclipse 4.5 (Mars).
 - Download the Eclipse Luna Standard or Modeling Package:
 - http://www.eclipse.org/downloads/
 - Optional: Edit the eclipse.ini to change the memory settings to -Xms64m -Xmx2048m
 - Install Palladio from the site:
 - https://sdqweb.ipd.kit.edu/eclipse/palladiobench/releases/4.0.0/
- Media Store
 - https://svnserver.informatik.kit.edu/i43/svn/code/CaseStudies/MediaStore3/br anches/PCM nightly build model/Model/MediaStore3_Model
 - Username: swaq2016
 - Password: swaq2016mediastore

Palladio Book

i@bserve

Modeling and Simulating Software Architectures

The Palladio Approach

Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Koziolek, Heiko Koziolek, Max Kramer, Klaus Krogmann By Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Koziolek, Heiko Koziolek, Max Kramer and Klaus Krogmann

400 pp., 98 illus. ISBN: 9780262034760

MIT Press, Cambridge, MA, October 2016.

References

- [Reussner 2016a]Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Koziolek, Heiko Koziolek, Max Kramer, and Klaus Krogmann Modeling and Simulating Software Architectures -The Palladio Approach, MIT Press 2016.
- [Becker2006a] Steffen Becker, Jens Happe, and Heiko Koziolek. Putting Components into Context: Supporting QoS-Predictions with an explicit Context Model. In *Proc. 11th International Workshop on Component Oriented Programming (WCOP'06)*, Ralf Reussner, Clemens Szyperski, and Wolfgang Weck, editors, July 2006, pages 1-6.
- [Becker2007a] Steffen Becker, Thomas Goldschmidt, Boris Gruschko, and Heiko Koziolek. A Process Model and Classification Scheme for Semi-Automatic Meta-Model Evolution. In *Proc. 1st Workshop MDD, SOA und IT-Management (MSI'07)*, 2007, pages 35-46. GiTO-Verlag. 2007.
- [Becker2008] Becker, Koziolek, Happe, Reussner, "Life-Cycle Aware Modelling of Component-based Software Architectures" CBSE2008

