
Juggling with Data:

On the Lack of Database Monitoring in Long-Living Software Systems

Christian Zirkelbach
Software Engineering Group
Kiel University, Germany
czi@informatik.uni-kiel.de

Abstract

Long-living software systems often challenge associ-
ated software engineers and operators with changing
requirements or increasing workload. In addition, per-
formance issues or customer requests may cause in-
evitable software updates or refactoring tasks. These
legacy systems are often based on outdated technolo-
gies and are poorly documented. In combination with
insufficient knowledge of the (actual) system, the nec-
essary transformations can be difficult. While the
described situation is discussed in the software engi-
neering community, databases are rarely covered. As
databases are an essential part in almost every soft-
ware system, they are affected by evolutionary tasks
as well and have to face the same challenges. In this
paper, we (i) describe problems based on non-existing
database monitoring in long-living software systems
and (ii) propose an approach as a solution, which ad-
dresses the described problems, and supports devel-
opers and operators in performing evolutionary tasks
alike. Finally, we conclude and delineate open ques-
tions concerning our envisioned approach.

1 Introduction

During the life-cycle of a software system, software
engineers and operators, who are responsible for the
development and maintenance, have to face several
challenges, as these systems evolve over time. An evo-
lutionary step is often based on changing requirements
and can be initiated by modernization aspects like
cost-effectiveness or performance issues, which may
be caused by inevitable software updates or increas-
ing workload.

Software engineers, who maintain or extend soft-
ware systems often have a lack of knowledge on these
systems, which is needed to overcome these challenges.
Similarly, operators require knowledge to perform var-
ious tasks, e.g., configuration, capacity planning, or
performance monitoring and tuning, to maintain soft-
ware systems. Long-living software systems are often
part of a large software landscape and are based on
obsolescent architectures and technologies, which tend
to be poorly documented. In many cases this circum-
stance is worsened through insufficient knowledge of

the legacy software system, which may be caused by,
e.g., the age of a system, employed obsolete languages,
technologies, and platforms, or retired colleagues [2].

In the area of software engineering, the described
situation, regarding the evolution and refactoring of
software systems, has been discussed in literature
[4, 11]. Unfortunately, these descriptions rarely
address the database, which is an essential part of
or is at least employed in almost every software
system, even if it is not distinguishable in the first
place. Databases juggle with data – they provide
well-defined interfaces for related applications based
on standards, e.g., JDBC or JPA, store relevant
application data, and allow further processing and
analysis. The two latter tasks are often related to the
terms Data Warehousing (technological) or Big Data
(architectural), when talking about systems, which
hold large amounts of data [9]. The key problem
is the insufficient knowledge of (i) software systems
and employed database systems and (ii) especially on
the actual usage of these systems. For this reason,
we propose a solution, which faces this problem by
performing a live monitoring on software systems and
related databases on the one hand and visualizing
the results on the other hand. Finally, our approach
is designed to aid developers and operators alike.

The remainder of this paper is organized as follows.
In Section 2, we describe the problems based on the
lack of database monitoring in software systems in
long-living software systems. Afterwards, we present
a first draft of our approach to counter the presented
problems in Section 3. In Section 4, we discuss related
work regarding our approach. Finally, the conclusions
are drawn and open questions are delineated.

2 Problem Description

Godfrey and German [8] described that “software sys-
tems need documenters, who are also historians of the
system. Their role includes documenting not only the
system’s behavior, but also the evolution of the sys-
tem from a more holistic point of view”. Without
having such documenters, the previous described lack
of knowledge is inevitable. Teams often have a team



Req. 
Analysis

Design Implementation Testing Deployment Operation

Figure 1: Extended system development life cycle (SDLC) based on [5]

historian, who is been asked, if a code related ques-
tion occurs [6]. If this person leaves the team, a valu-
able and crucial amount of knowledge is lost. This
absent information is essential for accomplishing evo-
lution and adaption on the development side, but it is
also important for the daily business in the operating
as well.

In Figure 1 an extended version of the system de-
velopment life cycle (SDLC) is shown. The SDLC de-
scribes an approach from planning towards developing
an information system [13]. In our version, the SDLC
consists of six, consecutive phases from Requirement
Analysis to Operation. Every software system passes,
at least one time, through the entire cycle. The Evo-
lution phase, as mentioned in Section 1, spans the
first four illustrated phases (colored in white). In or-
der to successfully perform an evolutionary task on
a software system, an extensive amount of informa-
tion is needed. This information needs to be collected
and evaluated at least in the Deployment and Oper-
ation (colored in green) phases to be an useful input
for the proposed evolution. Especially in the context
of long living software systems, the documentation of
employed or embedded databases is often insufficient.
Changes towards the database management system,
or included data structures like schemes, tables, and
queries, affect directly the usage of the database, but
the related software system as well. If these changes
are undocumented and cause problems, the software
system can become unstable or unreliable. Further-
more, as often operators (database administrators)
are responsible for the latter changes, there may be
a communication gap between operators and develop-
ers, which further complicates this process.

Based on our own professional experience in combi-
nation with extensive discussions with operators and
developers in industry, there is a need for appro-
priate monitoring and visualization on the usage of
databases in (long-living) software systems. Addi-
tionally, we conducted a performance analysis on the
long-living open repository software EPrints, which is
been developed for more than fifteen years [14]. Our
results showed, that database-related bottlenecks ex-
isted within the software. These findings led to a per-
formance improvement in the following released ver-
sion. This work substantiates the need for appropriate
database monitoring in long-living software systems.

To the best of our knowledge, there exists no suit-
able approach, which faces the described problems
and especially addresses developers and operators.
For this reason, we propose an approach as a solu-

tion to support system and database comprehension
in large software landscapes. We focus on the evolu-
tion and actual usage of software systems and related
databases.

3 Approach

Our envisioned approach includes four consecutive
activities (A1 to A4), which are briefly described in
the following. Figure 2 illustrates an overview of the
activities in our approach.

A1 – Monitoring: Within a software landscape ex-
isting applications and included or related databases
are monitored. The gathered information, basically
executed database related methods, will be provided
in form of a data stream, which contains monitoring
records.

A2 – Analysis: Based on the data stream, we an-
alyze and process the monitoring records. The pro-
cessing contains – (i) the reconstruction of monitoring
records into corresponding traces and (ii) the aggrega-
tion of similar traces. Furthermore, we create a per-
sistent data model for the software landscape, which
is needed as we want to enable a live visualization.

A3 – Transformation: To enable a visualization
of our database operations and related databases, we
need to transform the data model into a visualization
model.

A4 – Navigation: We offer three different visual-
ization perspectives. The user can navigate between
them. The first visualization features a landscape-
level perspective, orientated on UML deployment
diagrams, which provides a good overview of the
reconstructed software landscape based on the mon-
itored applications and databases. In comparison,
the architecture-level perspective offers a database
specific visualization based on the entity relationship
model (ERD) [1], which is a common used visualiza-
tion of relational databases. The visualization shows
employed database tables and relations between
them. Possibles use cases are providing an overview
of the database usage for development and operation.
The last perspective, presents a live usage-level
visualization, which is based on the 3D city metaphor
[7]. The visualization shows the actual database
usage of a single application or an entire database.
Possibles scenarios are exploration and enhanced
system and database comprehension.

For performance analysis purposes, we plan to pro-
vide an additional visualization, which will be inte-



Existing
Database

Legend
A1: Monitoring
A2: Analysis
A3: Transformation
A4: Navigation

A1

A3

Data Model

132743373;createStatement;SELECT..
132743373;createStatement;SELECT..
132743377;createStatement;INSERT..
132743377;createStatement;INSERT..

…

Monitoring Data

A2

Visualization

Landscape-Level Perspective Usage-Level PerspectiveArchitecture-Level Perspective

A4 A4

TracesExisting
Application

Figure 2: Overview of our envisioned approach

grated into the three presented perspectives, based on
the representation of call tree views (CTV) [3]. Em-
ploying CTVs allows to represent the hierarchy of a
database call and simplifies filtering and sorting tasks.
This feature is particularly interesting for operators,
when conducting database optimizations, finding per-
formance issues [15], or evaluating database perfor-
mance [10]. As our envisioned approach is only a first
draft, a more detailed description, particular in re-
spect of the visualization, will be published in near
future.

4 Related Work

There are several approaches, which are related to-
wards our envisioned approach, based on the method-
ology, visualization, or research topic. Due to space
restrictions, we only list closely related work focusing
on the visualization.

ExplorViz [16] is a web-based monitoring and visu-
alization tool for large software landscapes. Further-
more, it features two distinct visualizations, showing a
monitored software landscape on the one hand, and an
application level visualization on the other hand. In
contrast, our approach focuses on the monitoring and
visualization of software systems and related database
systems, in order to facilitate system and database
comprehension.

DAHLIA [12] provides visual analysis of database
schema evolution. The tool harvests the history of
database schemes from a software repository based
on static analysis and features an interactive 3D visu-
alization for exploring software evolution. In their re-
cently released version 2.0, they included support for
Object-Relational-Mapping (ORM) frameworks [17].
This allows to analyze the evolution of a database over
its lifetime more precisely. In contrast to DAHLIA,

our approach utilizes dynamic analysis to obtain a live
visualization of the database and executed database
queries from associated software systems.

InspectIT1 is an open source application perfor-
mance management (APM) tool, which provides a
monitoring sensor for databases. Based on the
gathered information, it is possible to perform a
performance analysis on executed database queries.
Although, analyzing the performance of executed
database queries is an important use case within our
approach, we draw our primary attention on the vi-
sualization and the previously presented perspectives,
in order to aid the comprehension process.

5 Conclusions

In this paper, we reported on the lack of database
monitoring in the context of long-living software sys-
tems. Afterwards, we described problems based on
the absence of database monitoring and revealed the
need for detailed documentation and appropriate tool-
ing in this context. Furthermore, we proposed a first
draft of our approach as a solution, which faces the
discussed challenges, and aids developers and opera-
tors alike. Our approach facilitates the monitoring of
applications and related databases and provides basi-
cally three different visualization options.

First, we offer a landscape-level perspective, orien-
tated on UML deployment diagrams, which provides
an overview of the monitored applications and related
databases. Second, we provide an architecture-level
perspective, which is inspired by the ERD, and re-
veals employed database tables and relations between
them. Finally, we present an usage-level perspective,
based on a 3D city metaphor, which allows the user
to take a look on the actual usage of database by

1https://github.com/inspectIT/inspectIT

https://github.com/inspectIT/inspectIT


a specific application or an entire database at once.
All three visualizations have in common, that they
provide a visual abstraction of the displayed objects.
Only necessary information is shown in the first place
and further data and visualization objects are revealed
on demand, in order to avoid overstraining the user.
Our open questions are:

• Which layout is suitable for our landscape-level
perspective, that comprises the complete software
landscape including the databases?

• How do we link databases and related artifacts
(e.g. deployed Software) for our visualization?

• Which concrete visualization is suitable for differ-
ent developer and operator scenarios in the usage-
level perspective?

• Does our 3D visualization within our usage-level
perspective offer an advantage over a traditional
2D visualization like the architecture-level per-
spective?

• Are our three perspectives in combination with
further monitoring information appropriate for
performing a performance analysis?

• How can we successfully combine our database
monitoring and visualization approach with an
APM tool?

• Which related approaches or tools could be em-
ployed, when evaluating our approach within a
controlled experiment?

References

[1] P. P.-S. Chen. “The Entity-Relationship Model
– Toward a Unified View of Data.” In: ACM
Trans. Database Syst. 1.1 (Mar. 1976), pp. 9–
36.

[2] V. Raijlich et al. “Software cultures and evolu-
tion.” In: Computer 34.9 (Sept. 2001), pp. 24–
28.

[3] W. De Pauw et al. “Visualizing the Execution
of Java Programs.” In: Software Visualization.
Springer, 2002, pp. 151–162.

[4] T. Mens and T. Tourwé. “A Survey of Software
Refactoring.” In: IEEE Trans. Softw. Eng. 30.2
(Feb. 2004), pp. 126–139.

[5] D. Avison and G. Fitzgerald. Information Sys-
tems Development: Methodologies, Techniques
and Tools. 4th. Information systems series.
McGraw-Hill Higher Education, 2006.

[6] T. D. LaToza, G. Venolia, and R. DeLine.
“Maintaining Mental Models: A Study of Devel-
oper Work Habits.” In: Proceedings of the 28th
International Conference on Software Engineer-
ing. ICSE ’06. Shanghai, China: ACM, 2006,
pp. 492–501.

[7] R. Wettel and M. Lanza. “Visualizing Software
Systems as Cities.” In: Proceedings of the 4th
IEEE International Workshop on Visualizing
Software for Understanding and Analysis. 2007,
pp. 92–99.

[8] M. Godfrey and D. German. “The past, present,
and future of software evolution.” In: Frontiers
of Software Maintenance, 2008. FoSM 2008.
Sept. 2008, pp. 129–138.

[9] A. Cuzzocrea, I.-Y. Song, and K. C. Davis. “An-
alytics over Large-scale Multidimensional Data:
The Big Data Revolution!” In: Proceedings of
the ACM 14th International Workshop on Data
Warehousing and OLAP. 2011, pp. 101–104.

[10] S. Ray, B. Simion, and A. D. Brown. “Jack-
pine: A benchmark to evaluate spatial database
performance.” In: Proceedings of the 27th Inter-
national Conference on Data Engineering. Apr.
2011, pp. 1139–1150.

[11] Z. Durdik et al. “Sustainability guidelines for
long-living software systems.” In: Proceedings
of the 28th IEEE International Conference on
Software Maintenance (ICSM). 2012, pp. 517–
526.

[12] L. Meurice and A. Cleve. “DAHLIA: A visual
analyzer of database schema evolution.” In: Pro-
ceedings of the IEEE Conference on Software
Maintenance, Reengineering, and Reverse En-
gineering (CSMR-WCRE). 2014, pp. 464–468.

[13] J. S. Valacich, J. F. George, and J. A. Hoffer.
Essentials of Systems Analysis and Design. 6th.
Pearson Education, 2015.

[14] C. Zirkelbach, W. Hasselbring, and L. Carr.
“Combining Kieker with Gephi for Performance
Analysis and Interactive Trace Visualization.”
In: Symposium on Software Performance 2015:
Joint Developer and Community Meeting of
Descartes/Kieker/Palladio. 2015.

[15] T. H. Chen et al. “Finding and Evaluating the
Performance Impact of Redundant Data Ac-
cess for Applications that are Developed Us-
ing Object-Relational Mapping Frameworks.”
In: IEEE Transactions on Software Engineering
42.12 (Dec. 2016), pp. 1148–1161.

[16] F. Fittkau, A. Krause, and W. Hassel-
bring. “Software landscape and appli-
cation visualization for system compre-
hension with ExplorViz.” In: Informa-
tion and Software Technology (2016).
http://dx.doi.org/10.1016/j.infsof.2016.07.004.

[17] L. Meurice and A. Cleve. “DAHLIA 2.0: A Vi-
sual Analyzer of Database Usage in Dynamic
and Heterogeneous Systems.” In: Proceedings of
the IEEE Working Conference on Software Vi-
sualization (VISSOFT). 2016, pp. 76–80.


	Introduction
	Problem Description
	Approach
	Related Work
	Conclusions

