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Abstract 

ABSTRACT 
 

The aim of this thesis is to improve the mechanistic understanding of nitrogen fixation by the 

marine non-heterocystous cyanobacterium Trichodesmium.  This diazotroph is a major 

contributor to the marine nitrogen cycle and thus is important for parameterizations for 

nitrogen fixation in Ocean Biogeochemical Circulation Models.  A wide-ranging amount of 

information on ecophysiological characteristics of Trichodesmium has been published and is 

summarized in a literature review (chapter I).  This review stresses that Trichodesmium 

abundance in the open ocean can be limited by the nutrients iron and/or phosphorus and is  

constrained by the physical parameters temperature and light.  Nevertheless, chapter I also 

identifies that the effects of temperature and light availability on diazotrophic growth of 

Trichodesmium were not fully understood and required further investigation.  Laboratory 

results (chapter III) demonstrate that Trichodesmium N2 fixation is confined to water 

temperatures of 20 – 34 °C with an optimum range of 24 – 30 °C.  These findings are of 

particular interest with respect to global warming, considering the important role of 

Trichodesmium in the marine nitrogen cycle.   Combining these data with climate models 

(HadCM3 and GFDL R30) chapter III predicts a future decline in the fixed nitrogen input by 

Trichodesmium that could significantly affect marine nitrogen cycling within this century.  

Chapters IV and V address the role of light for diazotrophic growth of Trichodesmium.  

Results show that Trichodesmium is well adapted to the light regimes throughout the 

euphotic zone of tropical and subtropical oceans.  The carbon specific growth rate increases 

up to an irradiance of 180 µmol quanta m-2 s-1, and is constant (0.26 d-1) thereafter up to 

1100 µmol quanta m-2 s-1, where light inhibition sets in.  The maximum nitrogen fixation rate 

measured was 350 nmol N2 fixed l-1 h-1.  Chapter IV further provides a simple numerical 

model to describe nitrogen input into seawater by Trichodesmium as a function of light 

intensity.  This outcome is complemented by a conceptual model of nitrogen and carbon 

fixation of Trichodesmium presented in Chapter V.  Additionally, a reassessment of a 

commonly applied method to measure nitrogen fixation (Acetylene Reduction Assay) was 

conducted (chapter II).  This method was improved by providing newly derived ethylene gas 

solubility coefficients that are required to accurately calculate nitrogen fixation rates.  These 

were previously unavailable from published literature and thus the presented publication 

contributes to a standardization of nitrogen fixation measurements.  Further methodological 

approaches to assess nitrogen fixation and release of fixed nitrogen by diazotrophs are 

provided in an outlook for future work in chapter V. 
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Zusammenfassung 

ZUSAMMENFASSUNG 
 
Ziel dieser Arbeit ist die Untersuchung der Stickstofffixierung zu Grunde liegender Mecha-
nismen am Beispiel des marinen Cyanobacteriums Trichodesmium. Die N2-
Fixierungsleistung dieses Diazotrophen stellt einen maßgeblichen Beitrag zum marinen 
Stickstoffkreislauf dar und wird in vielen Fällen als Grundlage der in marinen biogeochemi-
schen Zirkulationsmodellen verwendeten N2-Fixierungsraten eingesetzt. Veröffentlichungen 
zu ökophysiologischen Studien und Charakteristika von Trichodesmium sind  weitreichend 
verfügbar und in einem Literatur Review (Kapitel I) zusammengefasst. In der Literatur sind 
vor allem die Nährstoffe Eisen und Phosphat sowie die physikalischen Parameter Tempera-
tur und Licht als limitierende Faktoren der Abundanz von Trichodesmium bekannt. Die Rolle 
von Temperatur und Licht als regulierende Faktoren für diazotrophes Wachstum ist jedoch 
noch nicht hinreichend beschrieben und bedarf genauerer Betrachtung. In eigenen Studien 
zu diesem Thema (Kapitel III) wird gezeigt, dass sich das Wachstum von Trichodesmium auf 

einen Temperaturbereich von 20 – 34 °C, mit einem Optimum zwischen 24 – 30 °C, be-
schränkt. In Hinblick auf globale Klimaerwärmung und die zentrale Rolle von Trichodesmium 
im marinen Stickstoffkreislauf sind diese Ergebnisse von großer Bedeutung. Unter Verwen-
dung dieser Daten in Kombination mit verschiedenen Klimamodellen (HadCM3 und GFDL 
R30), lässt sich eine Abnahme des Stickstoffeintrages durch Trichodesmium innerhalb die-
ses Jahrhunderts prognostizieren, welches den marinen Stickstoffkreislauf maßgeblich be-
einflussen könnte. Der Einfluss von Licht auf diazotrophes Wachstum von Trichodesmium 
wird in den Kapiteln IV und V behandelt. Die Ergebnisse zeigen, dass Trichodesmium gut an 
die Lichtbedingungen der euphotische Zone in tropischen und subtropischen Ozeanen an-
gepasst ist.  Bei Lichtintensitäten von 15-180 µmol Quanten m-2 s-1 ist ein Anstieg der koh-
lenstoffspezifischen Wachstumsrate auf ein bis zu einer Intensität von 1100 µmol Quanten 
m-2 s-1 konstantes Maximum von 0.26 d-1 zu erkennen. Erst bei Lichtintensitäten von mehr 
als 1100 µmol Quanten m-2 s-1 setzt eine Lichtinhibition ein. Die in diesen Versuchen ge-
messene maximale N2-Fixierungsrate beträgt 350 nmol N2 l-1 h-1. Des Weiteren wird in Kapitel 
IV ein einfaches numerisches Modell zur Berechnung des N2-Eintrages in Seewasser in Ab-
hängigkeit von der Lichtintensität durch Trichodesmium vorgestellt. In Kapitel V wird dieses 
durch ein Konzeptmodell zur Stickstoff und Kohlenstofffixierung in Trichodesmium ergänzt. 
Ferner wurde in der vorliegenden Arbeit eine häufig verwendete Methode zur Bestimmung 
von N2-Fixierungsraten (Acetylene Reduction Assay) optimiert (Kapitel II).   Zur korrekten 
Berechnung der N2-Fixierung sind Ethylen Gaslöslichkeitskoeffizienten notwendig,  welche 
zuvor in der Literatur nicht angegeben wurden. Diese wurden semi-empirisch ermittelt und 
zur Standardisierung der N2-fixierungsmessungen eingesetzt.   Kapitel V beschreibt die 
Notwendigkeit weiterer methodischer Ansätze zur Untersuchung von N2-Fixierung und N-
Abgabe durch Diazotrophe als Ausblick für zukünftige Arbeiten.  
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Introduction 

PREFACE 
 

This doctoral thesis was conducted in the context of the European Union project 

IRONAGES (Iron Resources and Oceanic Nutrients Advancement of Global 

Environment Simulations).  The goal of IRONAGES was to develop new Ocean 

Biogeochemical Circulation Models (OBCM's) for budgeting and exchanges of 

carbon dioxide (CO2) and Dimethylsulfide (DMS).  In the models co-limitation by 4 

nutrients of 5 major taxonomic classes of phytoplankton, DMS pathways, global iron 

cycling and chemical forms of iron and iron supply into surface waters were 

implemented.  Iron limits phytoplankton productivity in 40% of the oceans, and can 

be a co-limiting nutrient in the remaining 60% of surface waters.  In contrast to the 

paradigm that a single factor is limiting phytoplankton blooms, co-limitations by light, 

and the nutrients N, P, Si and Fe are accounted for.  The task of this thesis is to 

provide data on growth and export production of nitrogen fixing cyanobacteria 

(Diazotrophs, namely Trichodesmium sp.) as one out of three functional groups 

(Diatoms, Diazotrophs, Nano- and Picoplankton), other than DMS(P) producers that 

are considered to represent the 'biological pump' in OBCM's. The new OBCM's 

developed during IRONAGES are targeted to improve climate change scenarios, 

most notably climatic feedbacks on oceanic biogeochemistry.  

 

 

INTRODUCTION 
 

Cyanobacteria are nearly ubiquitous organisms, which can be encountered in almost any 

ecosystem.  They are visible to the bare eye in form of dark coloring of old stone structures, 

surface slicks on lakes and in the ocean or as a thin black slippery crust in the rocky splash 

zone of the sea.  The presence in melt water ponds of Antarctic ice sheets as well as in hot 

springs demonstrates wide ranging adaptations of cyanobacteria to their environment.  

Cyanobacteria form lichens with fungi, symbiosis with unicellular algae and are present in 

root nodules of some higher plants.  Further, cyanobacteria are a major component of the 

microbial communities forming stromatolite reefs.  Cyanobacteria are economically important 

by naturally fertilizing rice fields with fixed nitrogen based on a symbiosis with a water fern 

(Azolla) that also grows in the rice ponds.  
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Introduction 

Evolutionary aspects 

 

Cyanobacteria are of fundamental significance to the history of the biosphere.   The 

primordial atmosphere was mainly composed of H2O, N2, CO2 and CH4, but contained no 

elemental oxygen.  NH3 was present as a gas and sulfides were present in form of H2S and 

FeS.  The average surface temperature on earth was estimated at above 100°C, thus water 

was not present in liquid form.  As the planet gradually cooled down, energy provided by UV, 

lightning and thermal energy from volcanic activity might have caused important biochemical 

molecules such as amino acids and sugars to form from the gases present in the 

atmosphere.  Polymerization of those to polypeptides and polynucleotides eventually set the 

stage for the origin of life.  The first geological records of living organisms are 3.5 billion year 

old stromatolite structures found in Australia.  Ancient cyanobacteria in these stromatolites 

still had to be thermophilic and some are still present as descendent species in modern hot 

springs.  Beginning approximately 3.8 billion years ago, the evolution of oxygenic 

photosynthesis in the proterozoic ocean, first attributed to anaerobic bacteria and 

approximately 100-200 million years later to cyanobacteria, very gradually oxygenated the 

ancient neutral to reducing environment and lead to the transition into the contemporary 

atmospheric composition of mainly N2, O2 and CO2 (Falkowski and Raven 1997; Madigan et 

al. 2000).  In the primordial ocean ammonia was present at high concentrations and thus no 

deficiency of inorganically bound nitrogen for cellular growth would select for the evolution of 

nitrogen fixing enzymes such as nitrogenase.  It is likely that ancestral forms of nitrogenase 

functioned to detoxify cyanides and other chemicals from the reducing atmosphere in the 

cells.  As combined nitrogen was progressively exhausted from the atmosphere and 

nitrogenase is unselective to triple bound compounds such as acetylene, cyanine and N2, 

this form of a detoxase likely evolved into nitrogenase.  In parallel, NH3 was oxidized to 

nitrite and nitrate (Figure 1).  Today, many forms of the nitrogenase enzyme (encoded by 

nifD, nifK, nifE and nifN genes) exist throughout several bacterial kingdoms and archaea.  

Nevertheless, the enzyme originates from a common ancestor in the oxygen free proterozoic 

ocean (Fani et al. 2000).  Nitrogenase is irreversibly inhibited by oxygen, but the 

photosynthesizing cyanobacteria increased the oxygen concentration in the atmosphere 

(Figure 1).  Therefore, nitrogenase in modern day organisms is either confined to anaerobic 

bacteria and archaea or to aerobes that evolved physiological strategies to allow for nitrogen 

fixation and oxygenic photosynthesis within the same organism.  These include oxygen 

protective sheaths (heterocysts, heterocystous cyanobacteria, i.e. Aphanizomenon in the 

Baltic Sea) or temporal and spatial separation of these two contradicting processes including 

oxygen-detoxifying mechanisms within the cells (Berman-Frank et al. 2001b; Berman-Frank 

et al. 2003).   
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Introduction 

 

 
Figure 1: Evolution of the biogeochemical cycles of oxygen, CO2, nitrogen (ammonia and nitrate), 

and the corresponding evolution of the metabolic pathways of oxygenic photosynthesis 
and N2 fixation (presence of nitrogenase) in cyanobacteria. Dashed segment for oxygenic 
photosynthesis indicates the debated origins of this process in cyanobacteria (Berman-
Frank et al. 2003). 

 

 

 

The marine Nitrogen Cycle 

 

Marine nitrogen fixation provides NH4
+, which next to NO3

- and NO2
- is assimilated by 

bacteria and phytoplankton and synthesized into amino acids and proteins.  Organic nitrogen 

can be released as NH4
+.  Ammonia that is not assimilated into organic material can be 

oxidized via nitrification into nitrite and further into nitrate.  This nitrate can be another 

nitrogen source to the euphotic zone by diffusion and advection from below the nitracline.  

Alternatively, nitrate can be reduced back to ammonia (nitrate reduction).  During nitrification 

hydroxylamine (NH2OH) can be formed as an intermediate product.  Ammonia can also be 

oxidized with nitrate via hydroxylamine and hydrazine (N2H4) to elemental nitrogen or N2O 

under anoxic conditions (anamox reaction).   Nitrate is reduced via denitrification in several 

steps into elemental nitrogen.  Intermediate products are NO and N2O (nitrous oxide).  This 

requires anoxic or suboxic conditions and nitrate instead of oxygen acts as an electron 

acceptor.  Assimilatory nitrate reduction refers to biological uptake into organic material via 

nitrite, using energy.  Further, atmospheric deposition of NH4
+, NO3

- and dissolved organic 
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Introduction 

nitrogen (DON) can be a source of fixed nitrogen to the euphotic zone.  Of the gases that are 

exchanged with the atmosphere (NO, N2O, N2 and NH3), N2O is known as a potent 

greenhouse gas (Figures 2 + 3).  The biologically driven nitrogen cycle has been altered 

anthropogenically to a large extent.  Nitrogen oxidation into nitrate via the Haber-Bosch 

process for fertilizer production introduced large amounts of nitrate into lakes and oceans 

and thus unbalanced many coastal ecosystems.   
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Figure 2: The marine N-cycle modified after Capone, 1991. 
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Introduction 

 
The role of Trichodesmium in the marine Nitrogen and Carbon Cycle 

 

The cyanobacterium Trichodesmium is a critical link in the marine nitrogen cycle of the 

contemporary ocean.  This diazotroph has been recognized as one of the major contributors 

to oceanic nitrogen fixation (Capone et al. 1997) and further as an important primary 

producer in tropic and sub-tropic oligotrophic oceans (Carpenter et al. 2004).  In contrast to 

the vertical diffusion or mixing of NO3 through the stable pycnocline, nitrogen fixation 

provides a source of new nitrogen that enters from the atmosphere rather then from below.  

Thus, Trichodesmium also significantly contributes to export production via inputs of fixed 

nitrogen, which fuels the phytoplankton community.   

 

Large imbalances in the budget of nitrogen have recently suggested that the importance of 

N2 fixation has been grossly underestimated (Gruber and Sarmiento 1997; Michaels et al. 

1996).  In particular, data from the Hawaiian Ocean Time Series (HOT) suggest that 

significant amounts of nitrogen fixation stimulated by climatic variations such as the El Nino 

Southern Oscillation (ENSO) can supply nitrogen input to normally nitrogen-limited oceanic 

areas, shifting the ecosystem from nitrogen limitation towards phosphate limitation (Karl et 

al. 1997).  It has also been suggested that variations in Fe inputs may be instrumental in 

modulating the importance of new production driven by N2 fixation in oligotrophic 

environments (Berman-Frank et al. 2001a; Karl et al. 1997).  Recently, Montoya et al. (2004) 

and Zehr et al. (2001) suggested that unicellular nitrogen fixers in addition to the filamentous 

cyanobacterium Trichodesmium may be of great significance to the marine nitrogen cycle as 

well.  Their contribution to the marine nitrogen budget has not been determined yet and to 

date no information on distribution and ecophysiological characteristics exist. 

 

Currently total marine nitrogen fixation is estimated as 110 Tg y-1 based on the N* parameter 

(Gruber and Sarmiento 1997).   It should be noted, that Gruber and Sarmiento (1997) 

derived N* based on an N:P ratio of 125  for blooming Trichodesmium (Capone and 

Carpenter 1999; Karl et al. 1991).  Thus, even though Capone and Carpenter (1999) 

calculated nitrogen fixation by Trichodesmium of 80 Tg y-1 based on species abundance 

data, Gruber and Sarmiento’s (1997) estimation of total marine nitrogen fixation is partly 

based on physiological patterns of this diazotroph as well.   
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Figure 3: The marine carbon and nitrogen cycle.  Note that the carbon cycle does not budget.  
The 1100 Tg C y-1 brought into the oceans by riverine influx are not shown in the figure.  Atmospheric 
deposition of NH4

+, NO3
- and DON is not shown in the nitrogen cycle, but may be of great importance.  

Further, details of denitrification or the anamox reaction are not shown in the nitrogen cycle, but can 
be seen in Figure 2.  These processes take place in sub- or anoxic waters as well as in sediments.  
Nitrogen fixation is inhibited by NH4

+ and NO3
- (see also chapters I and IV).  High concentrations of 

NH4+ and NO3
- can reduce or completely alleviate the role of diazotrophy in providing inorganic 

nitrogen to the euphotic zone.  Is this not the case, diazotrophs, namely Trichodesmium in the 
oligotrophic sub-tropical oceans, fuel other primary producers with ammonia and DON, thus contribute 
to PON and POC export themselves and indirectly.  Calcifiers are potentially fuelled by diazotrophs.  
Planktonic calcifiers are not described to co-occur with Trichodesmium.  In contrast, calcifying coral-
reef organisms do co-occur with Trichodesmium and account for approximately 50% of the global 
calcium carbonate production.  Carbon and nitrogen cycle pathways that are directly influenced by 
diazotrophy are highlighted in red. 
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Clearly these estimates are subject to uncertainties.  Hansell et al. (2004) derive a nitrogen 

input of 0.045 mol N m-2 year into the North Atlantic Ocean based on abundance of excess 

nitrate, which is only 62% of the estimate provided by Gruber and Sarmiento (1997).  The 

estimates by Hansell et al. (2004) are in accordance with marine nitrogen fixation 

measurements, which in return are largely represented by data on nitrogen fixation by 

Trichodesmium.  Matching the estimates by Hansell et al. (2004), Hood et al. (2004) provide 

an assessment of the contemporary distribution and nitrogen fixation of Trichodesmium in 

the Atlantic Ocean by a numerical model based on field observations of Trichodesmium, 

mixed layer depth (MLD) and light.   

 

On an organism level, Trichodesmium clearly differs from other conspicuous nitrogen fixers 

in that it does not possess heterocysts, but yet simultaneously fixes nitrogen and carbon 

during daytime.  This is an apparent paradox and functional adaptations to this are 

discussed in the chapters I and V.  Trichodesmium shares this distinctive feature with three 

other non-heterocystous diazotrophs grouped in the order Oscillatoriales: Symploca sp. 

(Fredriksson et al. 1998), Lyngbya majuscula and Katagnymene sp..  It should be noted that 

descriptions of the nitrogen and carbon fixation pattern of Lyngbya majuscula are 

controversial (Jones 1990; Lundgren et al. 2003).  Further, Katagnymene sp. has also been 

grouped as one genus with Trichodesmium (Lundgren et al. 2001).  Of those genera, 

Trichodesmium species are described to be the most abundant dinitrogen fixing 

cyanobacteria in tropical and subtropical waters and their contribution to marine nitrogen 

fixation is estimated at 80 Tg N2 fixed year-1 of a total of 110 Tg year-1 (Capone et al. 1997; 

Gruber and Sarmiento 1997).  Next to the simultaneous activity of the photosynthetic 

enzymes and nitrogenase in an aerobic environment, Trichodesmium is characterized by 

two other important ecophysiological aspects.   This diazotroph carries out vertical 

migrations in the water column and a significant proportion (up to 50%) of the nitrogen fixed 

is extracellularly released as dissolved amino acids and NH4
+ (Glibert and O'Neil 1999; 

Letelier and Karl 1998; Mulholland and Capone 2000).  Detailed information on the biology 

and ecophysiology of Trichodesmium is provided in Chapter I.   

 

 

AIM OF THIS THESIS 
 

This thesis aims to contribute to the mechanistic understanding of diazotrophic growth by 

Trichodesmium.  Chapter I reviews published literature and identifies gaps of knowledge 

required for parameterization of OBCMs.  Particular tasks identified were the effect of the 

abiotic factors temperature and light on growth and nitrogen fixation by Trichodesmium.  
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These are addressed in laboratory studies within this project (Chapter III + IV).  Prior to this, 

potential sources of methodological error were identified in a commonly applied nitrogen 

fixation measurement technique, the Acetyle Reduction Assay (ARA).  A reevaluation of this 

method was carried out and synthesized in chapter II.   

 

 

Nitrogen fixation measurement techniques   

 

A number of methods are at hand to research nitrogen fixation processes.  Most commonly, 

nitrogen fixation is measured using the acetylene reduction assay (ARA), 15N stable isotope 

analysis or to some extend laser photoacoustic detection (Capone and Montoya 2001; 

Montoya et al. 1996; Zuckermann et al. 1997).  ARA has been the method of choice in 

numerous marine studies for the past 30 years, mainly due to its low cost and ease of use.  

Generally this method involves analyzing a gaseous phase that is in equilibrium with the 

liquid phase of interest.  As a substrate, acetylene (C2H2) blocks the reduction of dinitrogen 

by the nitrogen fixing enzyme nitrogenase, and is instead reduced to ethylene (C2H4).  

Ethylene is detected easily and with high sensitivity using gas chromatography.  As for any 

gas, the solubility of ethylene in aqueous solution depends on the solutions temperature, 

pressure and salinity.  Even though numerous studies have been conducted applying the 

ARA, gas solubility coefficients for ethylene in seawater were not available from the 

literature.  In order to assess the effect of temperature on nitrogen fixation of the marine 

cyanobacterium Trichodesmium (Chapter III), the ARA method was reevaluated.  Gas 

solubility coefficients of ethylene (here Bunsen coefficients) were determined and corrections 

were made to gas solubility calculations applied in the ARA (Chapter II).   

 
 
Marine Nitrogen Fixation and Global Warming 

 

It is of great interest how biogeochemical cycles are affected by global change processes.  

Published perspectives of future marine nitrogen fixation diverge largely.   While a potential 

decrease of nitrogen input by Trichodesmium during this century is suggested  due to 

reducing iron fluxes into the ocean (Berman-Frank et al. 2001a), Boyd and Doney (2002) 

predict a future increase of marine nitrogen fixation by 27% (from 80 to 94 Tg yr-1) at low and 

mid latitudes.  Analogous to these findings, Cox et al. (2000) further predict a decrease in 

ocean productivity as a feedback mechanism due to global warming based on the same 

(HadCM3) model used in Chapter III.  While increased stratification results in decreased 

upwelling at low latitudes and thus lower primary productivity of non-diazotrophs (Bopp et al. 
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2001), this mechanism would favor diazotrophic growth.  This in return though would not 

yield increased primary productivity if these diazotrophs were growing outside their 

temperature optima, regardless of nutrient conditions.  Cox et al. (2000) argue that (in 

terrestrial systems) increasing temperature does not necessarily yield increasing 

productivity, and thus CO2 uptake, due to increasing respiration rates.  This might be well 

applicable to marine phytoplankton, which could increase carbon uptake with increasing 

pCO2 in seawater (Riebesell et al. 1993) without necessarily resulting in increased growth 

rates and thus incorporation of carbon in particulate matter.  Nevertheless, temperature and 

pCO2 rise might affect species succession and thus marine biogeochemistry (Rost et al. 

2003; Tortell et al. 2000).  In order to isolate the single effect of temperature on diazotrophy, 

the relationships between temperature and growth and nitrogen fixation by Trichodesmium 

were assessed and incorporated into global warming scenarios from state-of-the-art climate 

models (Chapter III).   

 
 

Co-limitation of iron, phosphorus and light on diazotrophic growth

 

The possibility that Fe limits N2 fixation in the ocean has been recently considered on the 

basis of theoretical arguments and it has been speculated that differences in Fe supplies to 

the oceans and thereby nitrogen fixation fluxes may account for glacial/interglacial changes 

in atmospheric CO2 (Raven and Falkowski 1999).  The theoretical iron requirement for 

photosynthetic diazotrophs is higher than in other phytoplankton.  Additional Fe is required 

for the Fe-Mo subunit of nitrogenase and thus initially the iron requirement was calculated to 

be 100 times higher than for phytoplankton growing on nitrate (Raven 1988).  This has been 

recently revised and derived to be only 3-4 times higher (Sanudo-Wilhelmy et al. 2001) in 

close agreement with Kustka et al. (2002) (5 times higher).   The high iron requirements of 

Trichodesmium led to the assumption that nitrogen fixation could be iron limited in 

oligotrophic oceans.  As aforementioned, Berman-Frank et al. (2001a) derives future iron 

limitations from laboratory results on iron limited Trichodesmium growth.  In contrast, 

Sanudo-Wilhelmy et al. (2001) concludes phosphorus and not iron limitation for diazotrophy 

in the sub-tropical Atlantic Ocean.  Interestingly, Trichodesmium can bloom where PO4 

concentrations are very low and it is therefore likely that Trichodesmium relies heavily on 

DOP to meet its P requirements (Sanudo-Wilhelmy et al. 2001; Wu et al. 2000) (see chapter 

I).  Nevertheless, in agreement with Berman-Frank et al. (2001a), Mills et al. (2004) clearly 

stress the importance of aeolian dust input and thus iron supply for nitrogen fixation in the 

eastern subtropical North Atlantic and conclude an iron-phosphorus co-limitation.  An open 

question to date is how atmospheric deposited iron in surface waters is taken up by 
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phytoplankton.  Trichodesmium can scavenge Fe from a variety of siderophores, but it is 

unclear whether Trichodesmium itself can produce siderophores (Rueter 1988).  

Siderophore ‘piracy’ from associated heterotrophic bacteria (Hutchins et al. 1999) may play 

an essential role in the Fe chemistry in Trichodesmium colonies.  Further details are 

discussed in chapter I.   

 

Assessing the photosynthetic characteristics of Trichodesmium grown at different Fe 

concentrations showed that this diazotroph possesses reduced photosynthetic efficiency and 

lowered light compensation points under conditions of iron limitation (E. Breitbarth, unpubl. 

data).  This suggests an inverse co-limitation of iron and light.  If Trichodesmium is iron 

limited, the patterns in reduced light compensation points and maximum electron transport 

rates indicate that the photosynthetic apparatus could not process high light levels efficiently.  

Photosynthesis at high light levels, as common in tropic and sub-tropic oceans, is bound to 

iron replete conditions.  Diazotrophically growing cyanobacteria require additional energy (16 

ATP per N2 molecule reduced) compared to NH4
+ assimilating phototrophs.  This energy is 

provided by the photosystem.  Thus light limitation for diazotrophic cyanobacteria may occur 

at higher light levels compared to other phototrophs.  Hood et al. (2002) measured nitrogen 

fixation by Trichodesmium as a function of light intensity in the tropical Atlantic Ocean and 

included the parameter to model nitrogen fixation.  While the model proved to be insensitive 

to forcing by surface irradiance, field measurements showed a wide scatter of maximum 

nitrogen fixation rates (0.64 – 10 nmol N µg Chl-a-1 h-1), light inhibition (266 – 3519 µmol 

quanta m-2 s-1) and the light limited slope of nitrogen fixation (0.003 – 0.092 nmol N µg Chl-a-

1 h-1 (µmol quanta m-2 s-1)-1).  To better understand the basic mechanistics, the direct effect 

of light intensity on diazotrophic growth is assessed using Trichodesmium cultures that were 

grown under iron replete conditions (chapters IV+V).  Photoautotrophs adjust the 

photosynthetic apparatus to ambient light regimes via acclimation of light harvesting 

pigments.  As a general response, the relative amount of chlorophyll-a per carbon biomass 

is reduced with increasing light intensities (Geider et al. 1997).  This may result in a bias of 

physiological rate measurements if these are normalized to chlorophyll biomass, as modeled 

by Hood et al. (2002).  Chapter IV addresses this by comparing chlorophyll-a and carbon 

normalization of nitrogen fixation rates of Trichodesmium at different light intensities.  The 

chapter aims to improve the parameterization of light for nitrogen fixation throughout the 

euphotic zone and provides a three-step model to describe diazotrophic growth of 

Trichodesmium as a function of light intensity.   

 
Chapter V provides an outlook for perspective future work based on new questions raised by 

the work presented in chapters II-IV.  The thesis concludes with a synthesis of published 
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data and own results to a conceptual model of nitrogen and carbon fixation in 

Trichodesmium with particular respect to energy limitation in different light regimes.   
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Abstract

Nitrogen fixation is one of the important biochemical pathways that play a role in controlling the oceanic nitrogen inventory.

Here we review nitrogen fixation in the ocean, with a particular emphasis on Trichodesmium, one of the dominant marine

diazotrophs. Distribution data for diazotrophs are scarce, except in specific regions where Trichodesmium is known to bloom.

Although some regions are clearly under-sampled, Trichodesmium can generally be found in tropical regions where temperature

is at least 20 8C, except in the North Atlantic, where drift to higher latitudes is possible via the Gulf Stream. Likewise, biomass

estimates are problematic because of the colony-forming habit of this organism. Trichodesmium grows slowly with reported

maximum growth rates of approximately 0.14 d-1. Studies of the photosynthetic physiology indicate that Trichodesmium can

tolerate high light intensity with Ik and Ic values of ~300 and ~140 Amole photons m�2 s�1, respectively. Review of the

elemental composition of Trichodesmium indicates that the C:N molar ratio of 6.3:1 does not depart significantly from the

predicted Redfield stoichiometry of 6.6:1. Overall, measured N:P ratios from the field and the laboratory were around 50, a

significant departure from the Redfield stoichiometry of 16:1. Whether this indicates phosphorus limitation is not clear at

present. The iron requirements of diazotrophs in general and of Trichodesmium in particular have been the subject of debate, but

some recent laboratory studies have converged on Fe:C (Amole:mole) of approximately 50 at 70% of the maximum growth rates

(Amax) to 250 at Amax for this species. There is a noticeable lack of information on growth rate as a function of phosphorus and

fixed nitrogen sources. Although Trichodesmium is a non-heterocystous cyanobacterium, carbon and nitrogen fixation co-occur

during the light period, indicating that light energy is required for both of these processes. This is likely to be achieved through

cellular differentiation of the trichomes and a tight control of the temporal expression of many biochemical pathways. A

summary table presents a set of values for the initial parameterisation of parameters relevant to the incorporation of nitrogen

fixation in biological and biogeochemical models.
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1. Introduction

1.1. Role of nitrogen fixation in the N cycle

Gruber and Sarmiento (1997) calculated pelagic

nitrogen fixation to be 110 TgN y�1, which is 47.5% of

the total nitrogen sources (231 Tg N y�1) in the global

marine nitrogen budget. Next to riverine input (33%),

atmospheric deposition (13%) and benthic nitrogen

fixation (6.5%) account for a large fraction of the

nitrogen sources to the oceans. However, atmospheric

and riverine inputs disproportionately affect the coastal

zone and continental shelf. Thus, pelagic nitrogen

fixation is the dominant source of new nitrogen to the

open oligotrophic ocean. In contrast, denitrification is

the major sink (86% of 204 Tg N y�1) with pelagic

denitrification accounting for 80 Tg N y�1 (39%). The

loss to sedimentation is estimated at 12% and N2O

formation is responsible for 2% of the nitrogen sinks

from the ocean. Denitrification, which releases N2 to

the atmosphere, and biological nitrogen fixation, which

fixes N2 gas, are thus the two opposing biochemical

pathways balancing the oceanic nitrogen cycle. In the

ocean, a change in the rate of either of these pathways

will result in a change in the global oceanic nitrogen

inventory. All of these figures are subject to consid-

erable uncertainty, particularly N2 fixation. For exam-

ple, recent estimates of nitrogen fixation using

geochemical methods (Hansell et al., 2004) were only

15% of those calculated by Gruber and Sarmiento

(1997) for the North Atlantic.

The contribution of fixed nitrogen to the marine

environment has been at the centre of a long-term

debate concerning whether nitrogen or phosphorus is

the nutrient ultimately limiting oceanic production

(Falkowski, 1997; Falkowski et al., 1998; Tyrell,

1999). Geologists have argued that over geological

time scales, phosphorus rather than nitrogen must be

limiting, any deficiency in nitrogen being compensated

by fixation of dinitrogen gas. Conversely, biologists

have argued that evidence for significant nitrogen

fixation in oligotrophic areas has not been documented

and that environmental factors regulating nitrogen

fixation are not well understood. Dissolved phosphorus

and energy supplies are important, but trace elements

may also play a role. It has recently been established

through in situ Fe enrichment experiments that Fe

limits primary production in HNLC regions (Falkow-

ski, 1997; Boyd et al., 2000). It also appears that Fe

plays an important role in shaping the community

structure in other marine environments (Hutchins et

al., 2001) or for particular algal groups (e.g. red tides)

(Lenes et al., 2001). It has recently been hypothesised

that low Fe concentrations throughout the world

oceans, and particularly in warm oligotrophic waters,

may limit the abundance of diazotrophs (Falkowski,

1997). The debate as to whether dissolved phosphorus

(Sanudo-Wilhelmy et al., 2001) or iron supply (Wu et

al., 2000) to the euphotic zone controls diazotroph

growth awaits field experimental evidence and addi-

tional measurements of the optimal elemental compo-

sition of marine diazotrophs.

1.2. Nitrogen fixation

Biological nitrogen fixation is a biochemical proc-

ess that is confined to a limited number of prokaryotes.

It plays an indispensable role in the global nitrogen

cycle by providing fixed nitrogen. Bacteria performing

this function are present in virtually all ecosystems.

Diazotrophs are found in all environments ranging

from Azotobacter species in aerobic soils, Rhizobium

in nodules of legume roots to Trichodesmium in the

surface layer of the oceans.

The nitrogenase complex catalyses biological

nitrogen fixation, the conversion of N2 to NH4
+, as

represented by:

N2 þ 8Hþ þ 8e� þ 16ATP ¼ 2NH3 þ H2 þ 16ADPþ 16Pi

where ATP, ADP and Pi represent adenosine triphos-

phate, adenosine diphosphate and inorganic phospho-

rus, respectively. Although thermodynamics favours

the reduction of N2 to NH3, the high activation energy

required to break the triple bond is responsible for the

high ATP requirements. The nitrogenase enzyme

complex catalyses the reaction. The electrons are

obtained from reduced ferredoxin while various ATP-

generating processes are involved in providing the

energy necessary for the reaction. Nitrogenase func-

tions under anaerobic conditions and is deactivated by

high levels of oxygen. Thus the high energy demands

for nitrogen fixation together with the need to reduce

intracellular O2 levels set some constraints on their

light and temperature requirements, and ultimately on

the growth rates of diazotrophs.
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1.3. Goals

Although recent studies demonstrated that the

diversity of marine diazotrophs is greater than

previously thought (Zehr et al., 1998, 2000; Zehr

and Ward, 2002; Montoya et al., 2004), this review

will focus primarily on Trichodesmium. This fila-

mentous non-heterocystous species is considered the

most important diazotrophs globally, and is physio-

logically well characterised. Several reviews on

Trichodesmium have been published within the past

ten years (e.g. Gallon et al., 1996; Bergman et al.,

Table 1

Summarised physiological parameters of Trichodesmium species (for references see text and http://www.nioz.nl/projects/ironages)

Parameter Value mean (range) Unit

Photosynthesis and growth

Optimal specific rate of photosynthesis kmax 26 (6.3–91) mg O2 mg Chl-a�1 h�1

Photosynthetic efficiency a 0.09 (0.01–0.27)

Light adaptation parameter Ik 296 (142–687) Amol photon m�2 s�1

Light compensation Ic 143 (59–280) Amol photon m�2 s�1

Photoinhibition index h small up to 2000 Amol photon m�2 s�1

Specific rate of maintenance metabolism 30 % of gross photosynthesis

Maximum specific growth rate A 0.14 d�1.

Temperature range for growth 20–34 8C

Nutrient limitation/uptake

Ks/Vmax NO3 39/not detected mmol m�3/h�1

Ks/Vmax NH4 0.26/13 mmol m�3/h�1

Ks/Vmax PO4 0.0004/0.29 mmol m�3/d�1

Ks/Vmax SO4 not applicable

Elemental composition

C : N 6.3 (4.7–7.3) mol:mol

N : P 51.3 (4.8–150) mol:mol

Chl-a: C 96.5–320 Amol:mol

Fe : C 7.1–500 Amol:mol

(req. for diazotrophic vs. NH4 replete growth) (38–48 vs. 8)

Loss terms

Sinking rate buoyant

Cell lysis virus and apoptosis

Grazing rate 0.14–2.75 mg C m�2 d�1

Carbon fixation

Carbon fixation rate biomass�1* up to 4.5 Ag C Ag Chl-a�1 h�1

Estimated total annual carbon fixation rate** 0.41 Gt y�1

Nitrogen fixation

Total annual nitrogen fixation rate 0.065 Gt y�1

Nitrogen fixation rate volume�1*** 40 (0.0071–711) Amol N l�1 d�1

Nitrogen fixation rate biomass�1**** 0.1–10 mol N mol Chl-a�1 h�1

Photoinhibition 813 (266–3519) Amol photon m�2 s�1

Inhibition by NO3 70% At 10 AM NO3

* Function of groth phase and daytime (Berman-Frank et al., 2001b; Mulholland and Capone, 2001).

** Based on annual N-fixation rate and C : N = 6.3.

*** Own laboratory N-fix measurement on exponentially growing batch culture (0.06 Amol Chl-a l�1), mass balance in agreement with PN

increase in cultures (literature range in parentheses).

**** Represents range in possible agreement with mass balance, highest measurements reported are 40 and 2242 mol N mol Chl-a�1 h�1 in

the laboratory and in the field, respectively.
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1997; Bergman, 1999; Mulholland and Capone,

2000). These reviews mainly focus on specific

morphological or physiological aspects of diazotro-

phic growth of Trichodesmium. In the present work

we summarise data from both laboratory and field

studies performed with Trichodesmium in order to

provide (a) a general overview of current knowledge

of the biology of Trichodesmium, (b) a compilation

and evaluation of data relevant to the parameter-

isation of oceanic biogeochemical models. Initial

estimates of parameters needed for physiologically

based phytoplankton growth models are summarised

(Table 1), emphasising important biochemical path-

ways and other factors that can influence nitrogen

fixation. Additionally, we provide conversion factors

for biomass units generally applied in physiological

rate measurements (Table 2). More detailed infor-

mation can be found in a set of Appendices (http://

www.nioz.nl/projects/ironages) organised by type of

parameters measured, including range, median, mean

and standard deviation of each parameter listed

whenever possible (Table 3; http://www.nioz.nl/

projects/ironages). We also point out where discrep-

ancies are found and whether the experimental

techniques or conditions for measurements differed

greatly from the rest of similar data.

Finally, we indicate where further knowledge is

required and propose a list of processes that should

be considered for incorporation into ecological and

biogeochemical models but for which data are

missing.

2. Diversity of marine diazotrophs

2.1. Overall diversity of diazotrophs

Historically, marine diazotrophs have not been

considered to be either diverse or abundant, with

Trichodesmium, a genus of filamentous cyanobac-

teria without heterocysts, as the only globally

significant oceanic photosynthetic diazotroph

(Capone et al., 1997). Although the prevalence of

Trichodesmium in the Sargasso Sea has long been

acknowledged (Dugdale et al., 1964; Goering et al.,

1966; Dugdale and Goering, 1967), unequivocal

evidence that this filamentous cyanobacterial species

rather than the associated heterotrophic bacteria was

the diazotroph came years later (Bergman and

Carpenter, 1991; Ohki and Fujita, 1988). Diatoms

containing cyanobacterial endosymbionts (Janson et

al., 1999b) have also been observed to form intense

blooms, but the frequency of these blooms is

poorly characterised.

Recent work using molecular biological techniques

has revealed a much higher diversity in the nifH gene,

Table 2

Cells, trichome and colony sizes and elemental contents (for details

and references see http://www.nioz.nl/projects/ironages)

Parameter Data Units

Cell, trichome, colony measures

cell volume 540–1690 Am3

cell diameter 5–21 Am
trichome width 8–10 Am
colony diameter 0.5–1000 mm

cells trichome�1 ~ 100 (6–340) Cells

cells colony�1 29800 (+/�7800) U
trichomes colony�1 ~ 100 (7.5–372) Trichomes

Elemental content

C trichome�1 4.2–4.8 nmol C trichome�1

C colony�1 0.81–0.92 Amol C colony�1

N cell�1 3.6–70.4 pmol N cell�1

N trichome�1 0.69 nmol N trichome�1

N colony�1 7.1–172.8 nmol N colony�1

Protein N colony�1 97 (51–204) nmol col�1

P trichome�1 16.5 pmol P trichome�1

P colony�1 3.9–15.5 nmol P colony�1

Chl-a cell�1 1.18–1.73 fmol Chl-a cell�1

Chl-a colony�1 89.5 (42.2–109.7) fmol Ch-a colony�1

Table 3

Overview of Appendices

Appendix Parameters measured in Trichodesmium sp.

I cell density and biomass in the field

II a cells, trichome and colony sizes and conversion factors

II b elemental content

III a carbon turnover times

III b growth rates-field data

III c growth rates-lab data

IV photosynthetic characteristics

V a nitrogen fixation rates-field data

V b nitrogen fixation rates-lab data

VI a elemental composition-field data

VI b elemental composition-lab data

VII cellular Fe stoichiometry and iron uptake rates

VIII nutrient uptake rates

The appendices are available at: www.nioz.nl/projects/ironages.
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encoding for the iron protein component of the

nitrogenase enzyme (Zehr et al., 1998, 2000, 2001),

from nucleic acids isolated from the marine environ-

ment. Perhaps of greatest importance so far, is the

identification of a group of larger unicellular cyano-

bacteria (3–10 micron in size) phylogenetically related

to Cyanothece (ATCC 51142) or Synechocystis

(WH8501). Nitrogen fixation by these unicellular

species may contribute significantly to the global

nitrogen cycle (Montoya et al., 2004). However, the

limited information on their overall global distribution

and their physiology (Mitsui et al., 1986) prevents the

incorporation of these organisms into global biogeo-

chemical models. In addition to cyanobacteria, several

other groups of marine heterotrophic bacteria also

harbor nifH genes (Zehr et al., 1998). The role of

these organisms in the oceanic nitrogen cycle is not

understood at present.

2.2. Diversity of the genus Trichodesmium

This genus was first described in 1830 by

Ehrenberg (Ehrenberg, 1830) and since then has

been shown to be widely distributed in many

tropical and subtropical oceans (Capone et al.,

1997). Although there are potentially other impor-

tant diazotrophs in the ocean, Trichodesmium is

unique in its capacity to form visible blooms, often

dense enough to locally modify the environment.

Trichodesmium is the only marine photosynthetic

diazotroph species that has been experimentally

manipulated in the laboratory and in the field and

for which there is significant quantitative informa-

tion. Its genome has been sequenced by the Joint

Genome Institute, U.S. Department of Energy and

the resulting database will provide invaluable

information concerning the biochemical pathways

involved in regulating nitrogenase activity, photo-

synthesis, nutrient (N, P, and Fe) uptake, and

growth.

Several species of Trichodesmium have been

reported as well as several morphotypes within a

given species. Two cultured isolates are available:

Trichodesmium NIBB1067 from the Pacific Ocean

and IMS 101 from the Atlantic Ocean. Molecular

phylogenetic data showed that both of the cultured

strains are isolates of Trichodesmium erythraeum

(Ben-Porath and Carpenter, 1993). A recent study

(Janson et al., 1999a) comparing morphological

characteristics of Trichodesmium species and DNA

sequence information (Janson et al., 1995) shows

clustering of T. contortum and T. tenue and clustering

between T. thiebautii and T. hildebrandtii. Another

filamentous diazotroph, Katagnymene sp. forms a

monophyletic group within the Trichodesmium genus

(Lundgren et al., 2001), based on the sequence

similarity of the nifH and hetR genes, and despite

the wide phenotypic variation observed within this

proposed single genus. The strategy of nitrogen

fixation under aerobic conditions, i.e. the spatial

and temporal segregation of nitrogen fixation and

photosynthesis is conserved throughout this group

(Lundgren et al., 2001), supporting the molecular

phylogenetic data.

3. Autoecology of Trichodesmium

3.1. Observed distribution

Accurate global distribution maps of Trichodes-

mium do not exist yet because of the difficulty in

sampling this species. The diazotrophic growth of

Trichodesmium is generally confined to waters warmer

than 208C of oligotrophic provinces and this has been

an important factor in generating theoretical distribu-

tion limits for this species. Thus, distribution maps of

Trichodesmium are more often based on physiological

criteria such as temperature tolerance range, nutrient

regime preferences and iron requirements (Capone et

al., 1997; Berman-Frank et al., 2001a) than on field

observations. With a few exceptions (Wille, 1904;

Lipschultz and Owens, 1996; Tyrrell et al., 2003),

distribution and abundance of Trichodesmium have

been reported primarily for regions where this species

can form blooms, biasing to some extent our view of

the global distribution of Trichodesmium. Fig. 1 shows

a distribution map of Trichodesmium that combines

temperature-based theoretical distributions and field

observations. Detailed assessments of the Trichodes-

mium distribution has been hindered by the lack of

appropriate techniques. TrichodesmiumTs buoyancy

prevents its enumeration using traditional Utermohl

techniques. In fact there is very little agreement in

general between Trichodesmium counting techniques

(Chang, 2000; Tyrrell et al., 2003), and the presence of
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trichomes and multiple colony morphotypes necessi-

tates the use of conversion factors in order to compare

cell densities (Table 2). Despite the sampling difficul-

ties, the observed distribution patterns of Trichodes-

mium remain within the temperature limits except for a

region in the north Atlantic that probably reflects

passive drift with the Gulf Stream (Fig. 1). Trichodes-

mium inhabits oligotrophic tropical and subtropical

regions and is found in high abundance in western

boundary currents, in tropical portions of gyres and

ocean margin seas. Sightings of Trichodesmium

blooms in tropical and subtropical seas have often

been made by sailors because when abundant, this

organisms is readily identified by its sawdust appear-

ance and reddish colour in surface waters of calm seas

(e.g. in the Red Sea).

On the East African coast, T. thiebautii is a

permanent member of the plankton, together with a

frequently present symbiotic Richelia intracellularis-

Rhizosolenia association (Villareal, 1991). Trichodes-

mium is responsible for the red tides in these areas

which occur mainly during the dry season (Aleem,

1980). Most of the reports of Trichodesmium blooms

are from tropical coastal areas. For example, surface

blooms were abundant throughout the Gulf of Mexico

in 1995 (Biddanda and Benner, 1997). In certain

areas, Trichodesmium abundance follows a seasonal

pattern as is the case in the coastal waters of Tanzania

(East Africa) where Trichodesmium blooms dominate

during the northern Monsoon period (Bryceson and

Fay, 1981), which lasts from November to March.

Trichodesmium also showed seasonal variability in

coastal areas of tropical northern Australia (Burford et

al., 1995,) where it bloomed in the wet season (i.e.

during the light northeast to northwest monsoon when

water temperature is generally higher and winds are

also lighter). The most extended blooms are during

periods of low or no winds. The largest bloom of

Trichodesmium reported so far was off the coast of

New Caledonia in the South Pacific and had an

estimated coverage of 90 000 km2 (Dupouy et al.,

1988). Other important areas are shelf waters of north

and northwest Australia, Great Barrier Reef, west and

east coast of India, east coast of Africa, Madagascar

during the Northeast Monsoon, Gulf of Thailand,

south-western South Pacific Ocean, Caribbean Sea

and Gulf of Mexico (Carpenter and Capone, 1991).

The southwest coast of Florida (about 75 km off

Fig. 1. Global distribution of Trichodesmium based on field studies as reported in peer reviewed literature. The distribution of the data points

illustrates occurrences, but not abundances of Trichodesmium. Sampling points where no Trichodesmium was encountered are not shown. Red

dots show sampling points where either physiological rate measurements were done or where nitrogen fixation by Trichodesmium. is likely

because the organism was encountered within oligotrophic waters with surface temperatures (SST)N208C. The 208C isotherm of the annual

mean SST (Levitus Atlas) is shown by the pink dotted line. Blue dots indicate Trichodesmium that drifted to higher latitudes within the Gulf

Stream and are unlikely to fix nitrogen due to unfeasible abiotic factors (Lipschultz and Owens, 1996) Note that most cruises were set out to

specifically work in regions where Trichodesmium is known to occur (i.e. Caribbean and Sargasso Sea). Thus, a wider distribution throughout

the tropical and subtropical oligotrophic oceans is likely (i.e. Indian Ocean and South Pacific), but not represented in this map due to under-

sampling of these regions.
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shore) has a record of Trichodesmium blooms dating

back to the 1950s (Lenes et al., 2001). It is clear that

blooms of Trichodesmium can either be coastal or

oceanic, and in some region the blooms are seasonal

(e.g. Indian Ocean) (Bergman, 2001). In addition to

the distribution and abundance data of Trichodesmium

reported from trans-meridional cruises in the Atlantic

Ocean, seasonal distribution data are available for

time-series sites such as HOTS and BATS (Karl and

Michaels, 1996).

Satellite remote sensing of Trichodesmium abun-

dance holds some promises in providing a global

picture of Trichodesmium distribution, at least for

the documentation of bloom occurrence and magni-

tude. The identification of Trichodesmium in

SeaWifs images is possible at a concentration

greater than 0.5 mg chl-a m�3 (Subramaniam and

Carpenter, 1994; Subramaniam et al., 2002; Borstad

et al., 1991). Trichodesmium is well suited to

detection by satellite because its absorption and

reflectance characteristics give it a relatively unique

spectral signature. Its buoyancy results in high cell

densities in surface waters and a shallow subsurface

maximum, also facilitating detection from space.

Incorporating the strong reflectance of Trichodes-

mium relative to other cyanobacteria makes it

possible to differentiate between unicellular cyano-

bacteria and Trichodesmium.

3.2. Physical factors influencing distribution

In general, conditions favourable for Trichodes-

mium growth are a stable water column, with an upper

mixed layer around 100 m, low nutrients, very clear

water and deep light penetration (Capone et al., 1997).

The ranges and optimum temperature, salinity and

light for Trichodesmium growth provide an empirical

framework upon which to base the distribution of

Trichodesmium in models.

Anecdotal information suggests that nitrogen fix-

ation by this cyanobacterium is limited to water

temperatures above 208C and that its presence in

waters with lower temperature is due to drift rather

than net growth (Lipschultz and Owens, 1996).

Temperature is often reported to have a significant

effect on nitrogen fixation rates but there are no

laboratory data documenting the long-term physio-

logical effect of low temperature on growth, nitrogen

fixation and photosynthesis in Trichodesmium. The

observed correlation of Trichodesmium with high

temperatures in the field does not necessarily signify

a direct relationship between growth and temperature.

Variables that tend to co-vary with temperature

including low nutrients, higher light or increased

stratification of the water column, may provide the

underlying mechanism that accounts for the observed

co-variability of Trichodesmium with temperature.

For example, models based on mixed layer depth

and light were sufficient to reproduce the distribution

of Trichodesmium in the Atlantic Ocean (Hood et al.,

2004). Trichodesmium can grow well at a temperature

of 28 8C (Mulholland et al., 1999b) but can tolerate

growth temperatures ranging between 20 and 34 8C
(Eike Breitbarth, pers. obs.). Field studies report

active blooms of Trichodesmium at temperatures as

high as 35 8C in the Arabian Sea (Capone et al.,

1998). These authors concluded that a temperature

increase from 30.5 to 35 8C during an 8-d period was

partially due to the formation of the bloom. Through a

positive feedback, the accumulation of Trichodes-

mium colonies during calm conditions of minimal

mixing led to heat absorption, increased stability and

further warming of the water column. It has been

speculated that the biologically mediated heating of

the surface layer might indeed influence the air-sea

heat exchange (Sathyendranath et al., 1991).

In Trichodesmium , both photosynthesis and

nitrogen fixation as well as the genes encoding

for the components of these systems exhibit a

circadian rhythm of approximately 24 h, when

entrained by a light-dark cycle (Chen et al., 1998,

1999). The period of this circadian rhythm after

transfer to continuous light is temperature compen-

sated, with very little effect on the length of the

period at temperatures ranging from 24 to 28 8C
but the periodicity breaks down completely above

308C. At 318C, nitrogenase activity was not

detectable under continuous light while the light-

dark controls behaved normally (Chen et al., 1998).

If the observed circadian rhythms of photosynthesis

and nitrogen fixation are an essential requirement

for diazotrophic growth of this non-heterocystous

filamentous cyanobacteria, then the temperature

dependence may be linked to the lower and upper

limit for temperature compensation of the circadian

rhythm (Chen et al., 1998).
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Short-term nitrogenase activity in Trichodesmium

increases linearly between 15 and 358C (Staal et al.,

2003). As there are no apparent restrictions for the

nitrogenase enzyme to function over a wide temper-

ature range (Staal et al., 2003), the effect of temperature

on Trichodesmium growth and other physiological

processes definitely require further investigation, espe-

cially in laboratory cultures. Work on tropical and

Antarctic strains of Gloeocapsa sp. showed that the

nitrogenase in the Antarctic strain had a temperature

optimum at 208C, 10 degrees lower than the tropical

strain (Pandey et al., 2000). However higher temper-

ature should be more favourable for nitrogen fixation

because of the inverse relationship between temper-

ature and the solubility of O2 in seawater coupled with

higher respiration rates at higher temperatures. The

temperature optimum and tolerance range in Tricho-

desmium are likely to be related to the overall

physiology of this organism rather than to a specific

requirement of the nitrogenase enzyme. This is

discussed in more detail in Section 5.1.

In the laboratory, Trichodesmium can tolerate

salinities ranging from 22 to 43, with an optimum

for growth and nitrogen fixation between 33 and 37

(Fu and Bell, 2003a). Trichodesmium is most often

found in waters with a salinity around 35, but has also

been regularly cited in waters with a salinity ranging

from 27 to 36, for example in the Red Sea and in

coastal regions around the Great Barrier Reef. How-

ever, as for temperature, the field observations do not

necessarily reflect physiological requirements for a

high salinity but may be confounded with other

variables correlated with high salinity, for example,

nutrients. Eastern Caribbean waters of lower salinity,

highly influenced by the Orinoco River discharge,

were devoid of Trichodesmium colonies, probably due

to an excess of dissolved reactive nitrogen (Navarro et

al., 2000). The light requirements of Trichodesmium

are included in a general discussion of the photo-

synthetic apparatus in Section 5.1. and the effect of

light on nitrogen fixation is described in Section 5.3.

3.3. Biological factors influencing distribution

Trichodesmium species often form surface blooms.

This capability can be attributed both to the presence of

gas vacuoles and to a photosynthetic apparatus that can

tolerate high light (see Sections 5.1. and 5.3.). The gas

vacuoles account for perhaps 5–15% of the total cell

protein and exhibit some of the strongest turgor

pressure observed in cyanobacteria (Walsby, 1991).

It is possible that the large floating velocities (0.1 to 3

mm s–1) observed in Trichodesmium enable the

colonies to stay in the euphotic zone, and when

mixed down, allows them to rapidly float back to the

surface. However, highest Trichodesmium densities

are often at a depth of 20–40 m, implying boyancy

regulation in this species. Carbohydrate ballasting is

the most likely mechanism for boyancy regulation and

the observed daily cycles of sinking and rising

(Villareal and Carpenter, 1990). These vertical excur-

sions have been proposed to serve as a mechanism for

phosphorus mining at the nutricline, but this hypoth-

esis is not supported by simple model calculations that

take into account the natural buoyancy, the sinking

velocity as a function of carbohydrate loading, the

high respiration rate of Trichodesmium, and the depth

of the nutricline in oligotrophic regions (100–180 m) .

The measured carbohydrate content of Trichodes-

mium in the laboratory and in the field can support

vertical excursions of approximately 50 m. Thus it is

not clear at this point whether the vertical excursions

due to carbohydrate loading are simply a result of the

uncoupling between nitogen fixation and photosyn-

thesis, or whether they are of true adaptive value for

Trichodesmium (Villareal and Carpenter, 1990; Lete-

lier and Karl, 1998).

3.4. Trichome and colony morphology

Trichodesmium can be present in the water column

as single trichome or as colonies. There is evidence that

trichome morphology differs between species of

Trichodesmium, but that alone is not sufficient for

species identification. Likewise, the colonies are

characterised into two forms: puffs or spherical

aggregates of trichomes and tuft, a fusiform aggregate

(Paerl and Bebout, 1988; Paerl et al., 1994). Recent

work suggests that there is very little phylogenetic

diversity between the spherical and fusiform aggre-

gates of a single species (Janson et al., 1999a). The

ecological significance of the two different types of

colonies is not clear. Many factors, for example high

salinity (Fu and Bell, 2003a), appear to enhance colony

formation, but the underlying reason for the change

from isolated trichomes to colony has not been
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elucidated. Whether or not the Trichodesmium are

present as single trichomes or as colony may affect the

physiological characteristics but it is not clear if colony

type is also important. For example, light absorption

cross section (Lewis et al., 1988) should be different

between single trichomes, fusiform or spherical colo-

nies, and size of colonies may be limited by self-

shading (Carpenter et al., 1991). Colony shape may

affect the extent of O2-depleted microzones measured

in colonies of Trichodesmium (Paerl and Bebout,

1988). It was once believed that the internal sections

of the colonies carried out little photosynthesis, thereby

providing spatial segregation of CO2 and nitrogen

fixation (Paerl, 1994), and therefore suggesting that

only the colonial form could fix nitrogen. Recent and

more detailed immunocytological work has to a large

extent refuted this hypothesis (Lin et al., 1998). It is

now known that single trichomes can also actively fix

nitrogen.Most of the recent work points to some degree

of cell differentiation along the trichome of Trichodes-

mium (Lin et al., 1998; El-Shehawy et al., 2003).

Immuno-labelling indicates that about 15% of the

diazocytes, cells containing nitrogenase, seems to be

adjacent to each other and concentrated in the lighter

region of the trichome (Lin et al., 1998). Unlike

heterocysts, the diazocytes are consecutive, contain

the PSII pigment phycoerythrin and lack thick cell

walls. The early hypothesis of cellular segregation of

the photosynthetic and nitrogen fixation processes

remains equivocal even with immunocytological stud-

ies (Siddiqui et al., 1992b; Lin et al., 1998).

3.5. Associated organisms

Several organisms are associated with Trichodes-

mium blooms or communities, including bacteria and

fungi, as well as other phytoplankton species such as

the dinoflagellate Peredinium trochoideum and dia-

toms of the genus Nitzschia. Colonies can harbour

large populations of ciliates and flagellates as well as

hydroids (Pelagiana trichodesmiae) (Borstad and

Borstad, 1977; O’Neil and Roman, 1991; Sheridan et

al., 2002).

3.6. Grazers

Out of several pelagic copepods only the harpacti-

coid copepod species Macrosetella gracilis Dana

1848 can graze Trichodesmium (O’Neil and Roman,

1994). The biology of Macrosetella has been studied

in detail (Huys and Boettger-Schnack, 1994) but only

information relevant to grazing is presented here. The

cyanobacterial filaments serve both as food source for

adults and as substrate for the non-pelagic juveniles

(Roman, 1978). Studies of the vertical migration and

population structure of Macrosetella in the Red Sea

suggest a very tight dependence on the occurrence of

Trichodesmium blooms for successful reproduction

(Boettger-Schnack and Schnack, 1989). Reproduction

of this copepod species occurs only during blooms of

Trichodesmium but the mature individuals appear to

have a resting stock at depth ready to reproduce again

during blooms. Macrosetella sp. can graze 90–126%

of their body weight per day as Trichodesmium

biomass (Roman, 1978), particularly the non-toxic T.

erythraeum. Although the copepod can consume

100% of the newly fixed nitrogen each day, 48% of

its body nitrogen can be released again each day via

excretion (O’Neil et al., 1996). Reported grazing

rates range between 0.14–2.75 mgC m�2 d�1 and

0.03–0.06 mgN m�2 d�1 (Roman, 1978).

3.7. Ecology, toxicity and economics

It has been suggested that nitrogen fixation by

Trichodesmium or Rhizosolenia-Richelia in the sub-

tropical North Pacific gyre can fuel surface phyto-

plankton blooms over several months (Wilson, 2003).

In this region, blooms consisting primarily of diazo-

troph species appear to last for only a few weeks, but

are often followed by a succession of diatoms.

Similar effects have been observed in tropical

coastal regions that have suffered increased discharge

of phosphorus. There, Trichodesmium may contribute

to the general eutrophication problem by adding newly

fixed nitrogen to the water, promoting the growth of

other bloom-forming species such as Nitzschia pun-

gens andGymnodinium sp. (Lenes et al., 2001). In both

coastal and oceanic regions, the fuelling of secondary

blooms has been attributed to the release of nitrogen

upon the demise of the Trichodesmium bloom.

Increased nutrient concentrations on coral reefs pro-

mote growth of micro-and macro algae and thus can

result in a benthic community structure shift from coral

to macro algae and filter feeders (Bell, 1991; Lapointe,

1997; Lapointe et al., 1997; Gast et al., 1999).
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Trichodesmium has become common on the list of

toxic algae (Chen and Gu, 1993). Toxin has been

reported more often in T. thibautii (Carpenter et al.,

1991; Hawser and Codd, 1991) but recently also in T.

erythraeum (Endean et al., 1993). These authors

provide a comparison of T. erythreum and T. thibautii

in the field and conclude that the higher abundance of

T. thibautii may be due to the higher nitrogen fixation

rates and in part to the presence of a neurotoxin which

would be absent in T. erythraeum. Blooms of

Trichodesmium have been reported to cause extensive

damage to coastal aquaculture initiatives in tropical

regions (Suvapepun, 1991; Negri et al., 2004).

Problems associated with Trichodesmium blooms

may be due to toxin production, anoxia or starvation

of cultured organisms due to gill clogging.

4. Growth physiology of Trichodesmium

4.1. Growth rate

The maximum specific growth rate for Trichodes-

mium is low compared to other phytoplankton species,

ranging between 0.12 and 0.16 d�1 under optimal

growth conditions in the laboratory (Prufert-Bebout et

al., 1993; Mulholland and Capone, 1999; Berman-

Frank et al., 2001a). Growth rate estimates are highest

in T. thibautii, perhaps due to higher nitrogen fixation

rates in this species (Ohki and Fujita, 1982; Prufert-

Bebout et al., 1993). Estimated division rates in the

field, based on turnover of C, N or ATP, are highly

variable ranging between 0.006 and 0.88 d�1, but

overall confirmed that Trichodesmium grows slowly.

4.2. Photosynthesis and oxygen uptake

Although numerous studies have reported photo-

synthesis rates, only four studies so far (Lewis et al.,

1988; Kana, 1993; Roenneberg and Carpenter, 1993;

Villareal, 1995) can be used to characterise the

relationship of photosynthesis as a function of photon

flux density (Platt and Silvert, 1981). Half-saturation

parameters for photosynthesis (Ik) range between 142

and 687 Amol photons m�2 s�1, with a median of

300 Amol photons m�2 s�1 (Kana, 1993; Carpenter

and Roenneberg, 1995; Villareal, 1995) (http://

www.nioz.nl/projects/ironages Appendix 4). How-

ever, in some of these studies, saturation of photo-

synthesis by photon flux density was not achieved

even at the maximum photon flux densities tested

(i.e. at 1600 Amol photons m�2 s-1, Kana, 1993),

making photosynthetic parameters difficult to calcu-

late. Trichodesmium is able to tolerate very high

photon flux density without apparent signs of photo-

inhibition. The photon flux density at which photo-

inhibition sets in may be higher in colonies than in

filaments (Lewis et al., 1988). The light compensa-

tion point (Ic) is much higher in Trichodesmium (59–

280 Amol photons m�2 s�1) than in other phyto-

plankton (typicallyb10 Amol photons m�2 s�1), and

showed diel variation with a maximum around 300

Amol photons m�2 s�1 at midday and a minimum of

around 100 Amol photons m�2 s�1 at dusk and dawn.

This diurnal trend in Ic was attributed to the light-

dependent reduction of O2 via the Mehler reaction

(Kana, 1993; Carpenter and Roenneberg, 1995).

Although dark respiration is usually low in cyano-

bacteria grown in the light, Trichodesmium seems to

be an exception, with high basal dark respiration rates

of 0.18 Amol O2 (Ag Chl-a)�1 h�1 (Kana, 1993;

Carpenter and Roenneberg, 1995; Letelier and Karl,

1998; Berman-Frank et al., 2001b). As a result of

these high dark respiration rates, oxygen is consumed

at low light intensity. Together, high dark respiration

rates and O2 uptake in the light result in photo-

synthetic quotients (PQ, moles of O2 evolved: moles

of CO2 fixed) for Trichodesmium that range between

0.46 and 0.61 and are low compared to the character-

istic 1.2 found in other eukaryotic phytoplankton

(Carpenter and Roenneberg, 1995).

The major pigments of Trichodesmium include

phycourobilin (PUB) and phycoerythrobilin (PEB) as

well as Chl-a, and phycobilisomes are the major

light-harvesting antennae of PSII, as for other

cyanobacteria. Under nutrient-replete growth, the

ratio of PSI to PSII of 1.3 (Berman-Frank et al.,

2001a) is high compared to higher plants, but is

within that observed for other cyanobacteria. This has

been suggested as evidence for a low quantum yield

for O2 evolution and for the importance of high

cyclic electron transport activity in Trichodesmium

(Subramaniam et al., 1999; Berman-Frank et al.,

2001a). There appears to be an interconversion

between the PUB and PEB pigments to regulate the

amount of light received by PSII. According to
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detailed absorption spectra, it seems that PUB and

light absorption by PSII would be at their minimum

during the middle of the light period, at a time when

O2 evolution might most hinder nitrogen fixation.

However, the high PSI:PSII ratio found in cyanobac-

teria in general can also be explained in terms of the

relative light-harvesting antennae serving each photo-

system. The phycobilisomes, associated with PSII,

have a large absorption cross-section, while the Chl-a

containing PSI antenna has a small absorption cross

section. The high PSI:PSII ratios may serve to

balance electron flow between PSII and PSI (Fal-

kowski and Raven, 1997). Trichodesmium possesses

mycosporin-like amino acids to protect against UV

irradiation (Subramaniam et al., 1999).

4.3. Nitrogen fixation

Estimates of nitrogen fixation and the relative

contribution from Trichodesmium have been steadily

increasing over the years (Carpenter and Romans,

1991; Capone and Carpenter, 1982). Comparison of

published nitrogen fixation rates is difficult, partly

because of differences in methodology and partly

because poorly defined biomass units, such as

colonies and trichomes, make normalisation of these

rates to a common biomass unit difficult. Whenever

possible, nitrogen fixation rates were normalised to

mol N fixed mol Chl-a�1 h�1 allowing the compar-

ison of data from 26 studies. In these studies, nitrogen

fixation rates varied between 0.006 mol N fixed mol

Chl-a�1 h�1 and 2242 mol N fixed mol Chl-a�1 h�1,

with most of the data ranging between 0.1 and 50 mol

N fixed mol Chl-a�1 h�1 (Fig. 2). As the discrep-

ancies are undoubtedly in part caused by method-

ology, a brief discussion of the currently utilised

methods is warranted.

Most commonly, nitrogen fixation ismeasured using

the acetylene reduction assay (ARA). Alternatively

enrichment of seawater samples with 15N2 gas followed

with stable isotope analysis has been used in field

studies (Montoya et al., 1996; Gallon et al., 2002). New

methods such as extend laser photoacoustic detection

have been developed but are not yet generally available

for field studies (Zuckermann et al., 1997; Capone and

Montoya, 2001). In general ARA is preferred due to its

high sensitivity and ease of use. Detailed method

descriptions can be found in Capone (1993), Montoya

Fig. 2. Overview of field and laboratory measurements of nitrogen fixation by Trichodesmium species. Data represent a compilation of 25

publications and selected references are indicated in the figure. Nitrogen fixation rates are normalised to mol N fixed mol Chl-a�1 h�1.

Conversions between C2H4 and N2 reduction are based on a 4:1 ratio unless a different factor is given in the original publication. Conversions of

other biomass estimates used in the original publications were done according to Table 2, with the exception that a ratio of 10 000 cells colony�1

was used. Note that biomass conversions can yield inaccurate nitrogen fixation rates as biomass ratios such as Chl-a colony�1 are subject to

large uncertainties. Exceptionally high nitrogen fixation rates can be a product of such an artifact. Maximum nitrogen fixation rates and

maximum particulate nitrogen (PN) increase from controlled laboratory experiments are indicated. Reported laboratory measurements of

nitrogen fixation range from 6.1–3 to 40 mol Chl-a�1 h�1. Data of field measurements are distributed over the total range of the illustration.
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et al. (1996), Capone and Montoya (2001) and

Breitbarth et al. (2004). Theoretically, the reduction of

acetylene to ethylene can be converted to nitrogen

reduction through electron equivalents, assuming that

nitrogenase affinity for N2 gas and acetylene are the

same. A theoretical value for acetylene:dinitrogen of

3:1 is based on the fact that 2 e�are needed to reduce

C2H2 to C2H4 and 6 e
�are needed to reduce N2 to NH4

+.

It has been argued that a ratio of 4:1 might be more

appropriate, since hydrogenase activity of nitrogenase

produces 1 mole H2 per mole of N2 fixed, which

requires two additional electrons. However, the ratio of

3:1 should be validwhen theARA is conducted at C2H2

concentration saturating for nitrogenase which blocked

hydrogenase activity (Stewart et al., 1968; Montoya et

al., 1996). In contrast, the 15N stable isotope method

measures new nitrogen fixed into the particulate

organic nitrogen. As a significant and variable fraction

of the nitrogen fixed by diazotrophs can be directly

released into the water as dissolved nitrogen (Glibert

and Bronk, 1994), it is likely that this methodwill result

at times in an underestimate of the true nitrogen fixation

rates (see Section 4.8.). In fact direct comparison of

both the ARA and the stable isotope method rarely

yield the theoretical C2H2 to N2 ratio of 3, with values

ranging from 1.4:1 to 20:1. Variation in this ratio

depends on the physiological state of the population

under study, but this is not well understood at present

(Gallon et al., 2002).

In Trichodesmium, nitrogenase activity occurs

concurrently with photosynthesis, with a narrow peak

around the middle of the light period of a light/dark

cycle, during which a reduction in net oxygen

evolution is observed (Berman-Frank et al., 2001b).

Diel periodicity in nitrogenase activity was initially

observed in field samples (Saino and Hattori, 1978;

Capone et al., 1990; Wyman et al., 1996) both by

immunological measurements of nitrogenase enzyme

and by acetylene reduction, but laboratory experi-

ments confirmed the presence a circadian rhythm in

nitrogenase activity (Chen et al., 1996). The daily

increase in nitrogenase enzyme requires new protein

synthesis. There is an endogenous cycle for the

synthesis, activity and degradation of nitrogenase in

Trichodesmium, set by illumination patterns (Chen et

al., 1998). Cellular clock controlled rhythms are likely

to be important in allowing this non-heterocystous

filamentous cyanobacteria to photosynthesise and fix

nitrogen during the light period. The strong diurnal

cycle in nitrogen fixation observed in Trichodesmium

necessitates that the time of day and length of the

incubation be carefully considered when extrapolating

nitrogen fixation measurements to daily rates.

In laboratory experiments, nitrogen fixation rates

rarely balance the net increase in particulate nitro-

gen biomass over the entire growth curve. In the

few studies that attempted a mass balance compar-

ison, the agreement between N2 fixation rate

measurements and particulate nitrogen accumulation

was poor (Mulholland and Capone, 2001). Nitrogen

fixation only accounted for 14–30% of PN growth

and explained 8 and 60% of particulate N

accumulation (Prufert-Bebout et al., 1993; Chen et

al., 1996). While seawater-based medium used by

Prufert-Bebout et al. (1993) may have contained

additional N sources, mass balance was also not

possible in studies carried out using N-free media,

although N2 fixation could account for a larger

fraction of the PON.

4.4. Nutrient uptake

Trichodesmium can grow on nitrate, ammonium

and urea as sole sources of nitrogen (Mulholland et

al., 1999a), but the potential for the utilisation of

other organic nitrogen substrate is not known. There

are very few measurements of uptake kinetics for

reactive nitrogen sources and the available measure-

ments are derived from cultures grown in nitrogen-

free media or from environmental samples from

oligotrophic waters. In constrast to early studies,

recent studies of nitrogen uptake kinetics using

unialgal cultures found low Ks for NH4 uptake and

maximum uptake rates of 0.26 AM and of 13 h�1 for

Trichodesmium NIBB 1067, respectively (Mulhol-

land and Capone, 1999; Mulholland et al., 1999a). In

addition, Trichodesmium could utilise organic nitro-

gen sources such as urea (Ks=6.95 AM, Vmax=19 h
�1),

and glutamate (Ks=1.34 AM, Vmax=15 h�1) (Mulhol-

land and Capone, 1999). Assuming that only 10–15%

of the Trichodesmium cells contain nitrogenase and

therefore are capable of fixing N2 gas, most of the

nitrogen uptake from the adjacent cells devoid of

nitrogenase should be in the form of recycled nitro-

gen, for example NH4, urea or glutamate released

from the nitrogen fixing cells (Mulholland et al.,
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1999a). This can account for the high NH4 uptake

rates found in cultures (Mulholland et al., 1999a). In

the natural environment, however, other phytoplank-

ton cells may also use the released NH4 and ambient

sources of dissolved inorganic and organic nitrogen

could also be used by Trichodesmium to supplement

nitrogen fixation. NO3 uptake is low in Trichodes-

mium grown in N-free medium and the Ks of nearly

40 AM suggests that nitrate is a poor source of

nitrogen for Trichodesmium (Mulholland et al.,

1999a). However, Trichodesmium possesses an

operon with the full complement of the genes for

nitrate utilisation (Wang et al., 2000). The napA gene

from Trichodesmium, encoding a protein involved in

NO3 transport, could complement a bacterial mutant

deficient in a NO3 transporter gene. Based on the

published data for half saturation constants, Tricho-

desmium preference for various nitrogen could be

ordered as NH4NglutamateNureaNNO3. The position

of N2 gas in this series is problematic: On the one

hand, one would assume that given the high energetic

cost associated with N2 fixation, any fixed nitrogen

sources would be preferred to the N2 gas. However,

only NH4 and urea additions completely repressed the

expression of nitrogenase. Finally, there are no kinetic

studies of nitrogen fixation as a function of partial

pressure of N2 gas. As this is the major component of

our atmosphere, one can probably safely assume that

N2 gas is always saturating and that this biochemical

process is energy-rather than substrate-limited.

Of the macronutrients, both dissolved nitrogen and

phosphorus can be important for Trichodesmium.

Phosphorus uptake kinetic parameters are available

only from the very early work on Trichodesmium.

Half-saturation constant (Ks) for dissolved inorganic

PO4 (DIP) was initially measured to be as high as 9.0

AM PO4 (McCarthy and Carpenter, 1979), suggesting

that Trichodesmium is not well adjusted for uptake of

DIP at very low concentrations. This value appears

unrealistic considering that natural DIP levels do not

usually exceed 200 nM in regions where Trichodes-

mium blooms (Wu et al., 2000; Sanudo-Wilhelmy et

al., 2001) and in the eastern Tropical Atlantic, small

additions of 200 nM DIP, added together with 2 nM

Fe, were sufficient to stimulate nitrogen fixation in

natural populations of diazotrophs dominated by

Trichodesmium (Mills et al., 2004). Nitrogen fixation

rates in cultures grown on DIP as a sole source of

phosphorus became saturated at a concentration of 1.2

AM (Fu and Bell, 2003b) and decreased again at

concentration above 6.5 AM, casting further doubt on

the validity of a high Ks value for DIP uptake by

Trichodesmium.

Trichodesmium grows as well on glycerophosphate

as on DIP based culture media (Stihl et al., 2001). It is

therefore likely that Trichodesmium relies also on

dissolved organic phosphorus to meet its P require-

ments. The uptake of DOP in the field can be very

high with measured values of 170–300 nM P Chl-a�1

h�1 (McCarthy and Carpenter, 1979). In laboratory

culture experiments, alkaline phosphatase activity

(APA) varied as a function of DIP supply and

appeared to be an indicator of P limitation in

Trichodesmium. Low APA was found in cultures

grown with DIP, while high APA was detected in P-

limited cultures or cultures grown on glycerophos-

phate (Stihl et al., 2001). Trichodesmium from coastal

waters, where sufficient DIP was present, hydrolysed

p-nitrophenylphosphate (PNPP) slowly at rates of

0.2–0.5 Amol PNPP Ag Chl-a�1 h�1. In contrast, P-

limited cultures and cultures grown with glycerophos-

phate had APA of 4 and 7 Amol PNPP Ag Chl-a�1

h�1, respectively. Measurements in this study were

carried out at optimum temperature (378C) and

saturating substrate concentration for enzyme activity

and thus may have yielded maximum PNPP turnover

rates. Others have corroborated the repression and

stimulation of APA by DIP and DOP, respectively

(Mulholland et al., 2002) but much lower rates (0.03–

0.24 Amol Ag Chl-a�1 h�1) have been measured at in

situ temperature, using 4-methylumbellyferyl phos-

phate (MUF-P). In oligotrophic regions, concentra-

tions of DOP are higher than DIP implying that DOP

could contribute significantly to the P demand of

Trichodesmium. More laboratory studies are needed

in order to obtain P uptake kinetic parameters from

Trichodesmium grown under controlled conditions for

both organic and inorganic P.

4.5. Elemental composition

As for other phytoplankton groups (Geider and La

Roche, 2002), the C:N ratio of Trichodesmium

biomass deviates only slightly from the Redfield

stoichiometry of 6.6 with a mean value of 6.3 and a

minimum and maximum values of 4.71 and 7.32,
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respectively (http://www.nioz.nl/projects/ironages

Appendix 6). Some of the daily variation observed

in particulate C:N ratio may be due to changes in C

respiration or excretion, leading to a decrease in

PC:PN of ~30% at the peak of nitrogen fixation

(Mulholland and Capone, 2001; Breitbarth unpubl.

laboratory data). In contrast, C:P and N:P ratios from

field samples of Trichodesmium vary tremendously

with a minimum N:P value of 14 (Kustka et al.,

2003b) to a maximum of 125 for blooming Tricho-

desmium (Karl et al., 1991). The variability of the N:P

ratio is not unexpected and has been reported before in

other groups of phytoplankton, even in cultures

growing under optimal conditions (Geider and La

Roche, 2002). In contrast, data on C:P and N:P

stoichiometry from Trichodesmium cultures are sparse

(Berman-Frank et al., 2001a). In contrast to the field

studies, an elemental N:P ratio of 16, in agreement

with Redfield, was reported in Trichodesmium grown

under optimal laboratory conditions (Berman-Frank et

al., 2001a), leading the authors to conclude that

natural Trichodesmium populations tend to be P

limited in general. However, P cellular quotas may

be high in Trichodesmium grown under nutrient-

replete conditions as a result of luxury P uptake and

may not represent the critical N:P ratio at which P may

become limiting (Geider and La Roche, 2002).

The iron requirements and the optimal C:N:P:Fe

molar ratio of Trichodesmium (http://www.nioz.nl/

projects/ironages Appendix 7) has been the subject of

debate (Raven, 1988; Berman-Frank et al., 2001a;

Sanudo-Wilhelmy et al., 2001; Kustka et al., 2003b). It

is generally agreed that the iron requirements should

be higher in diazotrophs because of the high Fe content

of the nitrogenase enzyme and because of the addi-

tional energetic requirements imposed by diazotrophy,

which are partly met by an increase in photosynthetic

proteins (Raven, 1988; Kustka et al., 2003a). Estimates

of the difference in iron requirements between photo-

synthetic diazotrophs and other photoautotrophs range

between 2.5 (Sanudo-Wilhelmy et al., 2001; Kustka

et al., 2003a) and 100 fold higher (Raven, 1988).

However, recent theoretical estimates (Kustka et al.,

2003a) and laboratory studies (Berman-Frank et al.,

2001a; Kustka et al., 2003b) have converged to iron use

efficiencies (IUE) that are 5–10 fold higher than those

of a generic phytoplankton grown on ammonium. In

carbon-based growth rate measurements at various iron

concentrations, the minimum Fe requirement for a

moderately iron-limited photosynthetic diazotroph

growing at 0.1 d�1 has been estimated to be 38–48

Amol:mol Fe:C in Trichodesmium cultures, whereas

the ratio is reduced to 8 Amol:mol Fe:C under NH4
+

replete conditions. Revised theoretical calculations of

IUE in photosynthetic diazotrophs are in agreement

with these experimentally measured values (Kustka

et al., 2003a). However, these estimates are repre-

sentative of the Fe:C ratio for iron-limited growth

rate equivalent to 70% of the maximum observed

growth rate in cultures. As the maximum growth rate

approaches, the relationship with the Fe:C ratio

becomes non-linear, reflecting the saturation of

growth with Fe. At the maximum growth rate of

0.14 d�1, the Fe:C ratios were around 180–250

Amol:mol (Berman-Frank et al., 2001a; Kustka et al.,

2003b). It is not clear yet whether this large increase

in the Fe:C is necessary to achieve the maximum

growth rate in Trichodesmium or whether it repre-

sents luxury consumption and storage of iron.

Compared to the reported Fe:C ratios in diatoms of

1–7 Amol Fe: mol C, this represents 5–100 fold

higher Fe requirements in diazotrophs (Sunda and

Huntsman, 1997; Berman-Frank et al., 2001a).

Biochemical models predict that up to 50% of the

cellular Fe could be associated with the nitrogenase

enzyme, while 38% is contained in the photo-

synthetic apparatus under diazotrophic growth

(Kustka et al., 2003b), In contrast, the photosynthetic

burden accounts for 77% of the cellular Fe during

ammonium-based growth in Trichodesmium.

4.6. Iron acquisition and metabolism

In laboratory experiments, both the cellular Fe content

and the Fe uptake rate increased proportionally (log/log)

to the total Fe concentration in the culture media (Kustka

et al., 2003b). In many phytoplankton species, uptake

rates increase linearly at low Fe concentrations but the

slope of this relationship declines at higher Fe concen-

trations (Sunda andHuntsman, 1995). In Trichodesmium,

Fe uptake is proportional to total iron concentration well

into the region of oxyhydroxide precipitation (Kustka et

al., 2003b), a behaviour that is also observed in some

coastal species of diatoms (Sunda and Huntsman, 1995)

and that allows for luxury Fe consumption. The luxury

uptake of Fe-hydroxide (colloidal) in Trichodesmium
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would be advantageous both in high iron input coastal

regions (e.g.. coastal Australia) and regions of episodic

iron input such as the oligotrophic North Atlantic. In

support of this view, Wang and Dei (2003) report that,

although Fe bound to low molecular compounds is

preferred, Trichodesmium can obtain iron from colloid-

bound iron. Nevertheless, very little is known about the

mechanisms by which Trichodesmium acquire iron in

nature. Trichodesmium can scavenge Fe from a variety of

siderophores, but uptake rates are higher when Fe is

bound to dihydroximate siderophores. In addition,

inorganic Fe (III) supported high Fe uptake rates in

Trichodesmium colonies (Achilles et al., 2003). It is not

clear yet whether Trichodesmium itself can produce

siderophores (Rueter, 1988), but siderophore dpiracyT
from associated heterotrophic bacteria (Hutchins et al.,

1999) may play an essential role in the Fe chemistry in

Trichodesmium colonies. In other marine cyanobacteria,

idiA, an iron-regulated gene is thought to be part of an iron

transporter system (Webb et al., 2001). This gene is also

present in Trichodesmium, although its function has not

been clearly demonstrated. In addition, several intriguing

observations have been reported by (Rueter, 1988).

Trichodesmium appears capable of assimilating iron

directly from dust (Rueter, 1988) and Trichodesmium

cell lysate can dissolve iron dust. However, the latter

appears to have no relation with iron limitation because

the ability of the cell lysate to solubilise dust is directly

correlated with biomass rather than iron limitation itself.

These two observations are interesting given the

ecology of Trichodesmium. Being positively buoyant

and sometimes found at the very surface, Trichodes-

mium would perhaps be capable of dissolving dust

particles and improve the retention of iron in the mixed

layer of tropical waters. Trichodesmium has a high rate

of autolysis (Berman-Frank et al., 2004) and the released

dissolved organic matter that can act as a strong iron

ligand would greatly increase the recycling of iron in

surface layers, after a Trichodesmium bloom, contribu-

ting to the iron retention in oligotrophic systems.

4.7. Energetic demand

The requirements of nitrogenase for ATP are

higher than those of NADPH. The relative contribu-

tion of photosynthetic electron transport (PET),

respiration and other processes such as the Mehler

reaction has not been determined, but it appears that a

very well-regulated balance between the three pro-

cesses tied to a circadian rhythm is key to allowing

co-occurrence of photosynthesis and nitrogen fixation

within the same cell (Berman-Frank et al., 2001b).

The Mehler reaction which can contribute to both the

reduction of O2 and to the production of ATP (Kana,

1993) is discussed in Section 5.1. In addition to

providing energy and reductant, respiration is prob-

ably needed for the production of short carbon

building blocks for the assimilation of the N2 gas

(Berman-Frank et al., 2001b).

Trichodesmium contains the energy storage product

poly-beta-hydroxybutyric (PHB) acid (Siddiqui et al.,

1992a). Minimum (1.6+/�0.9 mg g�1 dry weight) and

maximum (2.3+/�0.8 mg g�1 dry weight) values of

this compound were observed at night and in the early

morning, respectively. Nitrogenase activity at its peak

is believed to be limited by carbon and energy supply

and it is therefore possible that breakdown of PHB

provides some of the necessary energy to support

maximum nitrogenase activity.

4.8. Dissolved nitrogen release

Dissolved organic nitrogen (DON) release is sig-

nificant in Trichodesmium accounting for up to 50% of

the newly fixed nitrogen (Glibert and Bronk, 1994).

High NH4 uptake rates also imply that the turnover of N

is much higher than the net accumulation in N biomass,

implicating large NH4 release rates. While the NH4

release can be recycled towards Trichodesmium bio-

mass in pure cultures of this organism, the NH4

released in the field will also be available to other

phytoplankton species (Mulholland and Capone,

2001). Dissolved free amino acids such as glutamine

and glutamate are released throughout the day but with

a maximum rate coincident with the peak in nitro-

genase activity. The glutamine to glutamate ratio peaks

around 1200, at midday. The diel cycles of both

glutamine and glutamate suggest that the primary

pathway of nitrogen assimilation in Trichodesmium is

via the glutamine synthetase-glutamate synthase path-

way (Carpenter et al., 1992; Capone et al., 1994). The

lysis of Trichodesmium cultures releases mainly HMW

DON (Gry Berg and Dan Repeta, unpubl. data), and it

becomes therefore important to understand the factors

that lead to cell lysis in nature. Natural cell death

(apoptosis) and viral lysis are two possible mechanisms
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for the rapid demise of Trichodesmium blooms (Ohki,

1999; Berman-Frank et al., 2004).

4.9. Export

Gas vacuoles in Trichodesmium prevent the

sedimentation of the blooms, explaining their persis-

tence in the Red Sea. Walsby (1991) has hypoth-

esised that Trichodesmium grows best below the

surface but subsequently rises to the surface due to its

abundant gas vacuoles. Dense aggregation of Tricho-

desmium at depth is rare but it has been reported as

deep as 240 m in the North Pacific and in the Red

Sea (Sellner, 1991). This sinking at depth has been

attributed to buoyancy regulation. The fate of a

Trichodesmium bloom is generally that of nutrient

recycling through the microbial loop. Grazing by

Macrosetella sp. might be the only direct export of

particulate matter from Trichodesmium via excretion

of fecal pellets (see Section 3.6.).

5. Regulation of nitrogen fixation

5.1. Protection of nitrogenase against oxygen

deactivation

The nitrogenase enzyme is oxygen sensitive and

needs to be protected from the products of photosyn-

thesis. In heterocystous cyanobacteria, spatial segre-

gation of photosynthesis and nitrogen fixation is

achieved by the confinement of nitrogen fixation to

the heterocysts, differentiated cells that do not evolve

oxygen. In contrast, a temporal segregation of photo-

synthesis and nitrogen fixation is usually found in

unicellular cyanobacteria, in which nitrogen fixation

appears confined to a small window within the dark

period (Colon-Lopez et al., 1997).

Trichodesmium fixes nitrogen during the light

period, concurrently with photosynthesis, and in the

absence of well-differentiated heterocysts. This appa-

rent paradox has been discussed (Zehr et al., 1993;

Gallon et al., 1996 and references therein) and recent

work indicates that the problem of nitrogenase protec-

tion against oxygen damage is most likely achieved

through an intermediate situation, combining both

temporal and spatial (diazocytes) segregation of nitro-

gen fixation and photosynthesis. The expression of

genes involved in nitrogen fixation (nifH), cellular

differentiation (hetR) and a global nitrogen regulator

(ntcA) suggest that cellular differentiation occurs in

diazocytes, cells intermediate between heterocysts and

undifferentiated cells. New diazocytes are formed

based on a circadian rhythm, where the hetR and nifH

expression is separated by 6–8 h (peak to onset), which

is typical for heterocystous cyanobacteria as well.

Other evidence for spatial segregation comes from

microscopic studies demonstrating the confinement of

the nitrogenase, carboxysomes and other enzymes to

specific regions of the trichome rather than throughout

(Bergman and Carpenter, 1991; Lin et al., 1998; Paerl,

1999; Carpenter and Price, 1976; Carpenter et al.,

1990). In warm waters, the lack of heterocysts may in

fact confer an ecological advantage for Trichodesmium

relative to heterocystous cyanobacteria (Staal et al.,

2003). At higher temperatures, the lower oxygen

solubility coupled with the increased membrane per-

meability of the diazocytes is advantageous over the

low oxygen permability of the glycolipid layer of

heterocysts, which is temperature independent. Higher

respiration rates with increasing temperatures also

allow dark respiration to be an efficient oxygen

protection mechanism in warm waters.

It has often been suggested that oxygen-deplete

zones form in the centre of aggregates (Paerl and

Bebout, 1988). However, single trichomes can also fix

nitrogen (Ohki and Fujita, 1988), and in situ immuno-

fluorescence showed that nitrogenase-containing cells

are also present on the outer periphery of trichome, and

thus are also exposed to oxygen. Furthermore, both PSI

and PSII can be active in cells containing nitrogenase,

supporting an important role for temporal segregation

in addition to spatial separation.

The photosynthetic apparatus of Trichodesmium

has a strong bias against PS II (PS I:PS IIN1, Berman-

Frank et al., 2001a), and this can in itself be a important

adaptation in facilitating a solution to the problem of

O2 protection (Kana, 1993). At least part of the

protection of nitrogenase against oxygen is apparently

achieved by a balance between photosynthesis and

respiration at the cellular level. Temporal segregation

of photosynthesis and nitrogen fixation is observed as

a depression of photosynthetic activity at midday,

during the peak activity of the nitrogenase enzyme

(Berman-Frank et al., 2001b). Both nitrogen fixation

and photosynthesis are strongly tied to a circadian
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rhythm (Chen et al., 1996, 1998). The observed

decrease in net oxygen evolution during the period of

highest nitrogenase activity implies very efficient

oxygen-scavenging systems, probably resulting from

the activities of several biochemical pathways (Sellner,

1997) such that nitrogenase is rarely exposed to

elevated O2 levels. There are three pathways that can

reduce oxygen concentration in the cell: photorespira-

tion, the Mehler reaction and the classical dark

respiration pathway through cytochrome oxidase reac-

tion (Siddiqui et al., 1991; Li et al., 1980). Respiration

rates are high in Trichodesmium resulting in a high light

compensation point (averaging 100–200 Amole pho-

tons m�2, ranging between 30 and 325 Amole photons

m�2) (Carpenter and Roenneberg, 1995), and exhibit a

diurnal cycle (Kana, 1993). The involvement of

respiration is also supported by a correlation between

the abundance of nitrogenase and the respiratory

enzyme cytochrome oxidase (Bergman et al., 1993).

The light-dependentMehler reaction is well developed

in Trichodesmium supporting the formation of ATP

with increasing light and decrease in O2. RubiscoTs
oxygenase activity is probably acting to decrease O2

at midday (Siddiqui et al., 1992b; Li et al., 1980;

Carpenter and Roenneberg, 1995). It is not clear

whether or not the Mehler reaction produces high

oxygen radicals in cyanobacteria (Helman et al., 2003),

but Trichodesmium certainly possesses superoxide

dismutase that would help in removing oxygen radicals

produced by other O2 protection mechanisms (Cun-

ningham and Capone, 1992). It is likely that this

Mehler activity can double the supply of ATP

available for nitrogen fixation (Kana, 1991). This

dependence on irradiation levels in turn is consistent

with the Mehler reaction and the pattern of nitrogen

fixation (Chen et al., 1996, 1998). High photorespira-

tion rates can account for up to 46% of the gross

photosynthesis rate (Kana, 1993). Overall, it is

possible that the physiological processes required for

the protection of nitrogenase against O2 are respon-

sible for the restricted temperature growth range and

low growth rate of Trichodesmium.

5.2. Regulation of nitrogen fixation by dissolved

inorganic nitrogen

Nitrogenase can also be under the control of other

fixed dissolved inorganic nitrogen sources although

there are few quantitative estimates of the concen-

trations of alternate dissolved nitrogen sources

required to inhibit nitrogenase activity. Moreover,

the qualitative information is also contradictory.

Pulses of 10 AM NO3 added to Trichodesmium

cultures resulted in decreased nitrogen fixation rates

by 35% (Mulholland et al., 2001) to 70% (Holl and

Montoya, 2003), with a recovery of nitrogen fixation

activity at NO3 levels of 0.3–0.4 AM. However, long-

term growth of Trichodesmium with nitrate as a sole

source of nitrogen is possible in pure cultures and

results in the shut down of nitrogen fixation (Berman-

Frank et al., 2001a). This suggests that nitrate can be

utilised after an induction period in pure culture, but

in the field Trichodesmium is unlikely to successfully

compete for nitrate with other faster growing species.

Other fixed nitrogen sources, such as urea or NH4, can

also inhibit nitrogen fixation (Fu and Bell, 2003b). In

contrast, Trichodesmium isolate NIBB1067 can

simultaneously utilize combined N-sources and fix

N2 (Mulholland and Capone, 1999, 2000; Mulholland

et al., 1999a, b) by restricting the release and

recycling of NH4 to a period of the circadian rhythm

where nitrogen fixation is at its minimum. This is

supported by the finding that the glutamine synthease

transferase/biosynthetic ratio changes by 20% over

the course of a diel cycle (Mulholland et al., 1999a).

In addition, physiological studies contradict bio-

chemical and gene expression studies that characterise

nif gene expression as a function of fixed nitrogen

source. In IMS 101, a short-term incubation with

nitrate led to only a partial conversion of the active

form of nitrogenase into the inactive form (Chen et al.,

1998). In particular, sources of fixed nitrogen such as

NH4, NO3 and urea have been tested as potential

repression factors. NH4 was the most effective of the

three nitrogen sources at repressing nifH transcription

while significant repression by nitrate was not

observed even at very high concentrations (20 mM)

(Gallon et al., 1996; Dominic et al., 1998). Although

Trichodesmium grown with NH4 contained nitro-

genase (Ohki et al., 1991), this nitrogenase was larger

than the active form and probably consisted entirely of

a modified, inactive form (Zehr et al., 1993). Repres-

sion by NH4 has also been observed at the nitrogenase

activity level (Gallon et al., 1996). Gallon et al. (1996)

report that the characteristic diel cycle of nitrogen

fixation with a peak at midday during the light cycle,
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followed by decreased activity, could correspond to

nitrogen sufficiency that occurs after a few hours of

active nitrogen fixation. This is supported by fluctua-

tions in intracellular glutamine and glutamate levels

(Carpenter et al., 1992). The expression pattern of the

glnA gene encoding for glutamine synthetase also

indicates coordination of nitrogen fixation with other

assimilation enzymes (Kramer et al., 1996). GlnA

shows a bimodal expression pattern with peaks in early

morning and late evening, bracketing the maximal

nitrogen fixation period during midday. More work is

needed to provide quantitative measures of the

inhibition of nitrogen fixation by alternate sources of

fixed nitrogen.

5.3. Regulation of nitrogen fixation by light

Trichodesmium can grow at high photon flux in

sub-tropical/tropical oligotrophic surface waters and

can adjust its photosynthetic characteristics accord-

ingly to its position in the water column and to

seasonal changes in the light regime (Carpenter and

Roenneberg, 1995). While photoinhibition of photo-

synthesis is rarely detected, even at 2500 AE m�2 s�1,

decreases in nitrogenase activity in T. erythraeum has

been observed at the same irradiance (Carpenter et al.,

1993). The relationship between light intensity and

nitrogen fixation is poorly described and has been

derived from the photosynthesis-photon flux relation-

ships (Fennel et al., 2002; Hood et al., 2001). Model-

based results suggest that in Trichodesmium, nitrogen

fixation versus photon flux density is characterised by

an initial slope (a) of 0.023 (Amol N (mg Chl-a h)�1

(Amole photons m�2 s�1)�1) and a mean photon flux

for light inhibition of nitrogen fixation at 1195 Amole

photons m�2 s�1 (Hood et al., 2002). However,

laboratory studies on nitrogen fixation have not been

conducted at photon flux exceeding 180 Amole

photons m�2 s�1 and therefore the experimental

evidence for photoinhibition of nitrogen fixation is

lacking (Ohki and Fujita, 1988; Fu and Bell, 2003b).

6. Conceptual model of the genetic control of the

growth and distribution of Trichodesmium

The genome of Trichodesmium IMS101 has been

sequenced and is available at the Joint Genome

Institute (http://genome.jgi_psf.org/draft _microbes/

trier/trier.home.html). Some of the information sum-

marised below was obtained from searching the

genome information.

6.1. Temperature

Trichodesmium can grow at temperatures ranging

between 20 and 348C with optimal growth occurring

at 278C. The strong temperature dependence of

Trichodesmium growth is probably a result of intrinsic

physiological limitation due to the co-occurrence of

nitrogen fixation and photosynthesis. Some recently

published works indicate that the protection of the

oxygen sensitive nitrogenase enzyme from the oxygen

evolved during photosynthesis is achieved via the

consumption of oxygen by various metabolic path-

ways, including dark respiration. While light absorp-

tion itself is not temperature dependent, the processes

of carbon fixation and respiration are and the correct

balance between energy acquisition and oxygen

consumption is probably limited to a narrow range

in temperature.

6.2. Circadian rhythm

Trichodesmium possess the cyanobacterial genes

(kaiABC) that control circadian rhythms. The pro-

cesses of respiration, photosynthesis and nitrogen

fixation all show some diurnal variations with the

peak in nitrogen fixation at midday corresponding to a

dip in photosynthesis, which combined with the

steady increase in respiration, maintain the correct

oxygen concentration that allows nitrogen fixation to

proceed over a narrow window.

6.3. Iron uptake

Trichodesmium possess at least two types of uptake

system for iron. The ones that are readily identified

from the annotated genome are a Fe (II) system

paralogous to the FeoAB (ferrous uptake system).

Trichodesmium also contains a Fe (III) uptake system

that is an ABC-transporter system composed of a

permease, an ATPase and a periplasmic Fe binding

protein. The genes coding for permease and the

ATPase are contiguous and may be regulated in

concert. A third type of iron uptake system appears

J. LaRoche, E. Breitbarth / Journal of Sea Research 53 (2005) 67–9184

 

 47



Chapter I 

to be related to hydroxamate siderophore utilisation

(periplasmic binding proteins). The ferric uptake

regulator (fur) protein is present in the genome and

may be a global regulator of iron metabolism in

Trichodesmium as it is for other cyanobacteria. It is

not clear which of these systems is induced under

iron-limitation. In other species of cyanobacteria,

more than one system are induced under iron

limitation.

6.4. Phosphorus uptake

Phosphorus uptake is done by the Pst operon, also

a high affinity ABC-transporter system. In addition,

Trichodesmium contains many genes for the transport

of phosphonate, also arranged in an operon. It is not

clear whether this system is involved in organic

phosphorus uptake. Also present is a gene encoding

for alkaline phosphatase, and the activity of this

enzyme in Trichodesmium has been confirmed exper-

imentally. Because Trichodesmium is found in areas

where dissolved P concentrations are extremely low,

one would expect that alternate P acquisition path-

ways would have evolved in this species.

6.5. Nitrogen uptake

Trichodesmium possesses genes for ammonium

permease, urease (operon), nitrate permease, nitrite

reductase and nitrate reductase (operon), and several

amino acid transporters. It can therefore probably

grow on any of these nitrogen sources if they are

available in its growth environment. One major

consequence is that nitrogen fixation is repressed by

dissolved fixed nitrogen as supported by numerous

published reports cited above. Trichodesmium pos-

sesses the genes ntcA and ntcB, a two-component

system known to regulate nitrogen assimilation in

cyanobacteria.

7. Perspectives for future work

The compilation of the data available on Tricho-

desmium has shown very clearly that the bulk of the

physiological measurements have been collected

from field samples before this species was axenic,

or even isolated in a unialgal culture. There is

therefore a need to confirm some of the available

data with more controlled laboratory experiments. A

look at parameterisation for nitrogen fixation in some

recent biogeochemical models quickly identifies the

areas where more work is needed. Most models or

estimates of nitrogen fixation impose strong temper-

ature dependence on this process, with a critical

temperature ranging between 22 and 25 8C (Berman-

Frank et al., 2001a; Fennel et al., 2002). The choice

of this temperature optimum is at present anecdotal,

and reflects the field distribution of Trichodesmium.

The relationship between growth and temperature

needs to be investigated in the laboratory under

controlled conditions. Elemental composition data

that include P and iron requirements are also few and

need to be obtained for optimally growing laboratory

cultures, in order to resolve the discrepancy between

theoretical and measured cellular Fe quotas (Raven,

1988; Rueter et al., 1991; Berman-Frank et al.,

2001a; Sanudo-Wilhelmy et al., 2001). Given the

apparent tight regulation between photosynthesis,

respiration, the Mehler reaction and nitrogen fixa-

tion, there is a need to better understand the

interaction between temperature, light and the

circadian rhythm in the balance of energy utilisation.

Additionally, more quantitative data are needed on

the inhibition of nitrogen fixation rates by dissolved

organic and inorganic nitrogen sources.

Although we are beginning to acquire a good

understanding of the processes controlling Trichodes-

mium growth in the ocean, the discovery of other

potentially important unicellular marine diazotrophs

(Mitsui et al., 1986; Zehr et al., 2001; Montoya et al.,

2004) is opening a new window on the importance of

nitrogen fixation in the ocean. This may lead to a

paradigm shift regarding the marine nitrogen cycle,

but awaits the isolation and cultivation of these new

diazotrophs as well as improvements in the methods

to detect them quantitatively in nature.
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Appendix I: Cell density and biomass in Trichodesmium sp.  in the field 
 

 
location/date 

 

 
Biomass 

1)

 
cells l-1 

 

 
depth 

 
comments 

 
Reference 

     
NP, ALOHA 4.6 x 104 

tr m-3 

 
2 - 140 

co m-3 

 
1.1-8.4 x 104 

tr m-3 

 

4.6 x 103 

 
60 -  

4.2 x 103

 
1.1 - 8.4 

x 103 

 

0-45 m 
 
 
" 

" 

 

2) 

 

2) 

 

2)

Karl et al. 
1995 

 
Letelier + Karl 

1996 
 
" 

NP, ALOHA  4.2 x 103 upper 45 m Letelier + Karl 
1996 

NP, ALOHA  8.4 x 103 upper 45 m

seasonal and 
annual variation 

  
" 

NA 1 - 5 x 103 

co m-3
3-15 
x 104

 density mean 
2)

Carpenter 1983
 

NA 10 - 13 
µg chl-a l-1

   Subramaniam et 
al. 1999 

 
NA, 10.3N ~20W  
off NW Africa 

6.5 x 103

tr m-3 

 

6.5 x 102   
" 

Vidal et al. 1999
 
 

" 2.21 x 106

co l-1
6.63 x 109 bloom  

" 
 
" 

NA north 30N  10.5 - 4737 
co m-3

2.5-16.4 
x 104

 range 
2)

compiled in 
Carpenter + 

Romans 
NA south 30N 835 - 5500 

co m-3
0.25-1.6 

x 105
 range 

 
1991 

 
NA south 30N 76.3 

(50 - 250) 
µg chl-a l-1 

 
2.5 - 12.5 
µg chl-a m-2

 
 

3500 
co m-3

 
1415 
co m-3

 
 
 
 
 
 
 
 

1.05 x 105

 
 

4.25 x 104

  
range 

 
range 

integrated 
over50m 

 
density 

maximum2) 3)

 
density minimum

2) 3) 

 

Carpenter + 
Romans 1991 

SAR   6.50 x 104 25 m 3) Carpenter + 
Price 1977 

SAR  1.70 x 103 15 m 3)  
" 

western SAR  1.18 x 103 25 m density 
maximum3) 

Carpenter + 
McCarthy 1975

western SAR  8.30 x 102 1 m  
" 

 
" 

CAR  3.00 x 105  3) Carpenter + 
Price 1977 

CAR  7.58 x 104 15 m 3)  
" 
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location/date 

 

 
Biomass 

1) 

 
cells l-1 

 

 
depth 

 
comments 

 
Reference 

      
AS 8.74 x 106 

tr dm-3 
8.74 x 108 average  Somasundar 

et al. 1990 
 

IO 
off Kenia  

2 - 268 
co l-1 

8.04 x 106 20-2000 m  Kromkamp  
et al. 1997 

 
GBR - 92/93 1 x 103 

tr l-1 
1.00 x 105  + 103 since 

1928/29 
Bell 1999 

 
 

GBR 4 x 104 
tr l-1 

4.00 x 106  max. in a bloom Bell 1991 
 
 

 5.7 x 106 
 

1.76 - 3.14 
x 105 

tr l-1 

5.7 x 108

 
1.76-3.14

x 107 

 density maximum 
in a bloom 

 
average in a 

bloom 

Suvapepun 
1991 

 
" 
 
 

 1.3 -  9720  
x 103 

tr l-1 

1.3 x 102

- 
9.72 x 108

 range in blooms compiled in 
Carpenter and 
Capone 1991 

 
  0.6-2 x 

106 
 

  Furnas 1991 

 4 x 104 
tr l-1 

4 x 106   Revelante + 
Gilmartin 1982 

min cells l-1 ⇒ 60    
max cells l-1 ⇒ 6.63 x 109    
      
range µg chl-a l-1 50 - 250     
range µg chl-a m-2 2.5 - 12.5     
      
integrated cell density  cells m-2    

CAR  2.11 x 109   Carpenter + 
Price 1977 

SAR  3.63 x 108    
" 

western SAR  6.40 x 107  50m integrated  Carpenter + 
McCarthy 1975

subsurface maximum  depth  
m 

   

 
single trichomes 

 
 

 
2 - 5 

 
total 

  
20 - 50 
to >50 

 
NP, ALOHA, correlated  

with stratification, 
not correlated with SST 

 
Letelier + Karl 

1996 
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Appendix I abbreviations and footnotes 
 
 
NP    = North Pacific  
NA    = North Atlantic  
SAR  = Sargasso Sea 
CAR = Caribbean 
AS = Arabian Sea 
IO = Indian Ocean 
GBR = Great Barrier Reef 
 
 
1) tr = trichomes, co = colonies      
2) conversion to cells l-1 see Table 2     
3) converted from cells volume-1 as originally published 
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Appendix II a:  Cells, trichome and colony sizes and conversion factors 
 

 
parameter 

 

 
data 

 
units 

 
comments 

 
Reference 

 
     

cell volume 
 

1690 µm3 radial colonies 

 
 

540 " spherical colonies 

 
Carpenter 1983 

 

     
cell size 7 – 15 µm diameter, T.erythraeum 

 12 – 21 " diameter, T.hildenbrantii
 5 – 12 " diameter, T. thiebautii 

Bortstadt 
et al. 
1991 

 
     

trichome width 8 - 10 µm T.thiebautii Prufert-Bebout et al. 
1993 

     
trichomes colony-1 7-8 

2 – 65 
trichomes T erythraeum, average 

T.erythraeum, range 
Brycson + Fay 1981 

 
 

  
21 / 47 

 
" 

 157 / 360 " 

T.thiebautii, av./max  
longitud. colonies 
radial colonies 

 
Bell et al. 

1999 
 

 100 - 250 "  Carpenter + 
Romans 1991 

 
 <10 - 372 " 

 132 - 241 " 
seasonal + annual 
variability at Station 
ALOHA, NP 

Letelier + Karl 1996 
 

 several  
hundred 

"  Carpenter + Price 
1976 

 
     

cells trichome-1 100 cells  Carpenter + Price 
1976 

 
 6 - 250  

(x ~ 100) 
" seasonal + annual 

variability at Station 
ALOHA, NP 

Letelier + Karl 1996 
 
 
 

 59 " GBR, T. thiebautii 
 3 - 340 " GBR, range, T.thiebautii

Bell et al. 
1999 

 
 50 "  Furnas 1991 

 
     

cells colony-1 29800 
(s.d = 7800) 

" western SAR Carpenter + 
McCarthy 1975 

 
     
diameter of colony 0.5 - 3 mm tropical NA 
dimensions of colony 3-5 x 1 "  

Carpenter + 
Romans 1991 

" 
 
 

 
1 - 1000 

 
" 

 Carpenter + 
Capone 1991 
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Appendix II b:   
Elemental content of Trichodesmium spp. measured under various conditions    
 
 

 
Carbon 

 
Nitrogen 

 

 
Phosphorus 

 

 
location 
comment 

 
reference 

ng ng ng   
   

content per colony   
9.7x103

 
2,4x103

 
120 

 
North Pacific 1) Mague et al. 1977 

 
1x104

 
2 x 103 

 
-  Carpenter 1983 2)

1.1x104 2.3x103  Bahamas  
and Caribbean 3)

Carpenter 1993 

1.1x104 

 
2 x 103 

 
- North Atlantic McCarthy and Carpenter 

1979 4)

   
mean (range)   

1.02 x 104

(1.3 x 103) 
2.13 x 103

(0.4 x 103) 
120   

   
   

content per filament   
50.0 – 51.6 

 
9.2 – 9.8 

 
0.40 – 0.48 

 
North Pacific 5)

 
Letelier and Karl 

1996 
     

57.7 9.6 0.51 North Pacific 6) " 
   

mean (range)   
53.1 
(5.7) 

9.5 
(0.6) 

1.39 
(0.1) 

  

   
   

content per cell   
- 0.05 - Caribbean/Sargasso Carpenter and Price 1977
     
- 0.99 - Caribbean  7) Carpenter et al. 1987 

   
mean (range)   

- 0.52 
(0.94) 

-   

     
     

1.1 x 10-2 
ng N ng cell-1

2  
ng N ng cell-1

- West Pacific 7) Marumo 1975 8)
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Appendix II abbreviations
 
 
NP    = North Pacific  
GBR = Great Barrier Reef 
SAR  = Sargasso Sea 
NA    = North Atlantic
 

 

 

Appendix II footnotes 
 

1)   ATP = 13 (µg colony-1), ATP carbon = (3.3 µg colony-1) 
    ATP carbon : N = 1.4 : 1 (weight:weight) 
    C : ATP   = 746 :1 (weight:weight) 
    Chl-a = 34 µg colony-1 
2)  in Carpenter and Roennegerg 1995 
3)  T. erythraeum and T.thiebautii means 
4)  ATP = 17 + 21 (µg colony-1), C:ATP = 650 + 540, spherical + fusiform respectively 
5)  trichome morphology 

6)   colony morphology 

7)   assuming 100cells trichome-1 
8)   in Carpenter et al. 1987 
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Appendix III a:   Carbon turnover times of Trichodesmium sp. – field data 
 
 
 
 

 
turnover 

time 
d 

 
variable/location/ 

comments 
 

 
reference 

   
   

0.93 CAR/BAH  
SST 24.5-26.5°C  

Jan-Feb 1992 

Carpenter and 
Roenneberg 1995 

7.8 CAR 
SST 28.3-29.3°C 

Sept. 1992 

" 

6.13 BAH 
SST 28.5-29.7°C 

Sept.1993 

" 
 
 

11.6 central CAR Carpenter and Price 1977 
 

18 eastern CAR Li et al. 1980 
 

   
mean  

(range) 
  

8.9 
0.93 - 18 

  

 
 

61



Chapter I 

Appendix III b:   growth rates of Trichodesmium sp. – field data 
 

 
growth rate 

d-1

 
technique 

 
variable/location/ 

comments 
 

 
reference 

    
0.046 based on total part. carbon 

 
NP Mague et al. 1977 

0.023 based on part. C doubling times NP " 
 

    
0.13 

(0.066 - 0.14) 
based on N assimilation NP " 

 
0.14 based on ATP NP " 

    
0.55 - 0.88  

 
based on part. N doubling times various oceanic 

regions 
Carpenter et al. 1987 

 
0.009 - 0.025 

 
N-fix and 15NH4 uptake SAR Carpenter and 

McCarthy 1975 
 

0.005 based on part. N doubling times NA McCarthy and 
Carpenter 1979 

 
0.055 based on part. N doubling times CAR Li et al. 1980 

 
    
    

0.06 3:1 C2H4:N fixed western NP, July Saino + Hattori 1978 
0.16  

“ 
Kuroshio Current, 

March 
" 

0.66  off Tanzania, Mar. Bryceson and Fay 
1981 

0.02 6.3 : 1 CAR Carpenter and Price 
1977 

0.01  SAR " 
0.03  central NA, May-June McCarthy and 

Carpenter 1979 
0.006 - 0.02   Florida Current,  

Jan - Oct 
Taylor et al. 1973 

0.77  average, CAR Carpenter et al. 1987 
0.56 assuming 100 cells trichome-1 BAH  

 
" 

    
mean 

(range) 
   

0.19 
(0.005 - 0.88) 

   

    
 
 
CAR = Caribbean 
BAH = Bahamas 
SAR  = Sargasso Sea 
NP    = North Pacific  
NA    = North Atlantic  
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Appendix III c: specific growth rates of Trichodesmium sp. – lab data 
 

 
µ 

 
technique 

 
species 

 
reference 

d -1    
 

    
    

0.16 chl-a based T. thiebautii Prufert-Bebout et al. 
1993 

    
0.12 carbon specific IMS 101 Berman-Frank et al.

2001 
    

0.12 cell number and chl-a " Mulholland and 
Capone 2001 

    
0.14 carbon specific “ Kustka et al. 2003 

    
    

mean (range)    
0.14 

(0.12 - 0.16) 
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Appendix IV: Photosynthetic characteristics of Trichodesmium spp. 
 

 
Ik

 
Pmax

 
R 

 
Ic

 
α 

 
C 

assimilation

 
location 

 
reference 

E mgO2 mg 
chl-a-1h-1

mgO2 mg 
chl-a-1h-1

E   comment  

        
687 41.9 14.9 ~150 -  CAR/ 

BAH 1)
Carpenter et al. 1993

324 36.9 24.9 ~150 -  2) " 
        
- 66 - 91 12 - 27 78 - 160  0.23 - 0.27  CAR/ 

BAH 1)
Roenneberg and 
Carpenter 1993 

295 44.7 17.6 134 0.137 10.8 
µg C colony-1d-1

CAR/ 
BAH 3)  

Carpenter and 
Roenneberg 1995 

142 8.29 4.93 96 0.055 1.29 CAR 4)  " 
285 6.45 2.41 130 0.019 1.63 BAH 5)  " 

 
~ 200 (at 600 

µE) 
(30) 6) 280 0.012 0.06 

0.08 
µg C colony-1d-1

BAH
1)  

Kana 1991 
              

- - (13 – 46) 
6) 

- -  1) Kana 1993 
 

~ 220 6.3 
12.5 

1.0 
4.1 

59 
169 

0.010 
0.029 

 Belize 
7) 

Villareal 1995 

~300 - - - - 3.9 – 4.3 
% of total 
production 

NP 
 

Letelier and Karl 
1996 

     0.1 – 22.3 
mgC m-2 d-1 

CAR/ 
SAR 

Carpenter and Price 
1977 

     0.38 
µgC µgchl-a-1h-1

NP Mague et al. 1977 

     1.17 
µgC µgchl-a-1h-1

CAR " 

     0.01 - 0.62  
µg C l-1 h-1 

 Goering et al. 1966 

     55 to 275  
mgC m-2 d-1 

NA Carpenter and 
Romans 1991 

     3.78 
mgC mgChl-a-1

 Lewis et al. 1988 

- 18.52 - - -  lab 8) Ohki et al. 1991 
 

- 17.70 - - -  lab 9) 10) Ohki and Fujita 1988
- 10.63 - - -  lab 9) 11) " 
- 11.89 - - -  lab 9) 12) " 
- 7.90 - - -  lab 9) 13) " 
        

~ 90 - 330 (17 – 80) 
 

- - 0.18 - 0.23  lab 14)   own laboratory data

        
mean (range) 

        
296 

(142-687) 
26 

(6.3-91) 
16 

(1-46) 
143 

(59-280)
0.09 

(0.01-0.23)
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Appendix IV abbreviations and footnotes: 
 
CAR = Caribbean 
BAH = Bahamas 
NP    = North Pacific  
SAR  = Sargasso Sea 
NA    = North Atlantic  

 
 
1)   T. thiebautii  
2)   T. erhythraeum 

3)  SST 24.5-26.5C Jan-Feb 1992 
4)  SST 28.3-29.3 September 1992 
5)   SST 28.5-29.7 September 1993 
6)   % gross photosynthesis  
7)   off-shore and in-shore, Atlantic Barrier Reef, Pmax and R units: nmolO2 µgchl-a-1 
8)   NIBB 1067, N2 fixation = 15.4 mol molchla-1 h-1 
9)   NIBB 1067 
10) single trichome and small bundles, exponential growth 
11) single trichomes, linear growth 
12) small bundles, linear growth 
13) spherical colonies 
14) IMS-101, [Fe] = 4 – 800 nM and growth period, Pmax here = maximum electron transport rate 
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Appendix V a: Nitrogen fixation rates of Trichodesium spp. - field data 
 
All data are based on acetylene reduction assays unless otherwise noted.  Conversions between mol and weight units are done without further notice.  
Conversions between C2H4 and N2 reduction are based on a 4:1 ratio unless a different factor is given in the original publication.  See table 2 for conversion 
factors regarding biomass estimates.  Biomass conversions can yield inaccurate nitrogen fixation rates as biomass ratios such as chl-a colony-1 are subject to 
uncertainties.  
 
location N-fixed

cell-1
 

N-fixed 
trichome-1

 

N-fixed 
colony-1

 

N-fixed 
biomass-1

 

N-fixation
rate 

volume-1

time-1

N-fixation 
rate 

area-1 time-1  

standardized  
N-fixation rate  

mol N mol chl-a-1 h-1

temp.
 

°C 
 

 
 

note

 
 

Reference 
 

           
      

          
       

          
        

          
        

         
   

          
   

          

0.08
pg N 

cell-1 h-1

 26 
mmol m-2 y-1

3.9 25 
 

1) 

 
Bell et al. 1999

 
NP  

ALOHA 
31 – 51 

mmol m-2 y-1
n.a.  

2) 

 

Karl et al. 1997

 
80 

mmol m-2 y-1
n.a. 3) Gruber and 

Sarmiento 
1997 

 
 

1.47 
Tg y-1

n.a. 4) Somasundar et 
al. 1990 

  
global / 

IO 
 2 

µmol N  
mmol 

cellular N-1 

h-1

 4.79 / 
3.12 

Tg y-1

 

2.6 n.a. 5) 

6)
Carpenter et 

al. 1983 

 
 
 
 

global 

 87 – 252 
pgN 

trichome-1 h-1

27 375 
mmol m-2 y-1

 
5.4 

Tg y-1

43 - 124  7) Carpenter and 
Capone 1991
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location N-fixed
cell-1

 

N-fixed 
trichome-1

 

N-fixed 
colony-1

 

N-fixed 
biomass-1

 

N-fixation
rate 

volume-1

time-1

N-fixation 
rate 

area-1 time-1  

standardized  
N-fixation rate  

mol N mol chl-a-1 h-1

temp.
 

°C 
 

 
 

note

 
 

Reference 
 

           
global        

       

          
       

      

        
    

       

      

      

       

15.3 
Tg y-1

n.a. 8) Lipschulz and 
Ownes 1996 

 
 

“ 
 
 
 
 

39 
(13 – 105) 

mmol m-2 y-1

 
65 

Tg y-1

n.a. 9) 

 
Capone and 
Carpenter 

1999 

 
AS 0.34 

Tg y-1
 10) Subramaniam 

et al. 1999 
“ 14.6 – 47  

mmol m-2 y-1
   Capone et al. 

1998 
   

  ~0.25 - 8.0 
nmol C2H4 

1000 
trich-1 h-1

0.4 - 14 28.2 – 
33.2 

11) Bryceson and 
Fay 1981 

CAR   156 + 305
ngN  

col.-1 h-1

   765 + 1497 n.a. 12) Capone et al. 
1994 

CAR   273 + 457
~ 

   1340 + 2242 n.a. 13) " 
 

NA 
subtrop. 

0.6
nmol col.-1 

h-1

41 n.a. 14) Mulholland and 
Capone 1999

 
 0.25 

nmol N 
µg chl-a-1h-1

0.06 n.a. 
 

15) Paerl and 
Bebout 1988 

 2.11 
~ 

0.46 ~ 16) " 
 

2.11
ngN  

col.-1 h-1

0.26 
~ 

0.06 n.a. 17) Carpenter and 
Price 1976 
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location N-fixed
cell-1

 

N-fixed 
trichome-1

 

N-fixed 
colony-1

 

N-fixed 
biomass-1

 

N-fixation
rate 

volume-1

time-1

N-fixation 
rate 

area-1 time-1  

standardized  
N-fixation rate  

mol N mol chl-a-1 h-1

temp.
 

°C 
 

 
 

note

 
 

Reference 
 

           
CAR        

        

        

        

        

        

        

        

     

     

       

       

       

      

     

60
pgN 

trichome-1 h-1

29 n.a. Carpenter et 
al. 1987 

18)

 
“ 2.46

pmol C2H4  
trich.-1 h-1

4.2 ~ 19) " 

“ 2.53
~ 

4.4 ~ 20) " 

BAH 4.04
~ 

6.9 ~ 21) " 

“ 4.87
~ 

8.4 ~ 22) " 

SAR 4.97
~ 

8.5 ~ 23) " 

CAR 5.75
~ 

9.9 ~ 24) " 

“ 6.45
~ 

11.1 ~ 25) " 
 

0.069
pg N 

cell-1 h-1

 0.0071 
nmol N l-1 h-

1

 3.4 26-27 26) Carpenter and  
McCarthy 1975

0.2
~ 

 0.046 
~ 

 9.8 ~ 27) " 

0.6 
mmol m-2 y-1

~ 28) " 
 

SAR 0.033
~ 

 1.4
~ 

1.62 n.a. 29) 

 
Carpenter and 

Price 1977 
“ 0.077

~ 
 32.9

~ 
3.78 ~ 30) " 

“ 0.09
~ 

2.11
ngN  

col.-1 h-1

 147.5
~ 

4.42 / 10.35 ~ 31) " 

“ 0.26
~ 

 0.499 
~ 

 1.28 ~ 32) " 
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location N-fixed
cell-1

 

N-fixed 
trichome-1

 

N-fixed 
colony-1

 

N-fixed 
biomass-1

 

N-fixation
rate 

volume-1

time-1

N-fixation 
rate 

area-1 time-1  

standardized  
N-fixation rate  

mol N mol chl-a-1 h-1

temp.
 

°C 
 

 
 

note

 
 

Reference 
 

           
       

       

   

   

   

       

  

     

       

      

     

     

304 - 1520 
mmol m-2 y-1

 33) Carpenter and 
Romans 1991

TA 913 
~ 

 34) " 
 

CAR 
+BAH 

  159 – 266
~ 

780 – 1305 n.a. 35) 

 
Gilbert and 
Bronk. 1994 

“   182 +/- 33
~ 

893 +/- 162 ~ 36) " 

“   156 +/- 27
~ 

765 +/- 132 ~ 37) " 

“   159 +/- 7
~ 

   780 +/- 34 ~ 38) " 
 

0 – 0.016 
~ 

 25 or 
SST 

39) Goering et al. 
1966 

IO   0.13 - 3.0
nm C2H4 
col.-1 h-1

 5729
mmol m-2 y-1

2.2 - 52   

40)
Kromkamp et 

al. 1997 

“ 0.24
~ 

  0.037 – 31.7 
~ 

4.1  41) " 
 

 
620
pmol 

C2H4 h-1 
max. rate

2.09 
nmol N 

µg chl-a-1h-1

1.9 n.a. 42) Mague et al. 
1977 

 1.08 
~ 

0.96 ~ 43) " 
 
 

 18.9 +/- 1.1
pmol C2H4

µg atom N-1

h-1

6.1 x 10-3 

+/- 3.6 x 10-4 

 

28 44) Saino and 
Hattori 1978 

 504 +/- 7.1
~ 

0.16  
+/- 2.3 x 10-3

~ 45) " 
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location N-fixed
cell-1

 

N-fixed 
trichome-1

 

N-fixed 
colony-1

 

N-fixed 
biomass-1

 

N-fixation
rate 

volume-1

time-1

N-fixation 
rate 

area-1 time-1  

standardized  
N-fixation rate  

mol N mol chl-a-1 h-1

temp.
 

°C 
 

 
 

note

 
 

Reference 
 

           
     

     

     

     

   

        
     
     

      

 1.41 - 5.57
nmol C2H4

µg atom N-1

h-1

0.46 - 1.8 n.a. 46) 

 
Saino and 

Hattori 1982 
 

 7.05 - 9.92
~ 

2.3 - 3.2
 

~ 47) 

 
" 
 

 15.7 - 22.5
~ 

5.1  - 7.3 ~ 48) 

 
" 
 

 6.53 - 29.0
~ 

2.1 – 9.4 ~ 49) 

 
" 

 6.25 – 
518.89 

µm N mol 
C-1 h-1

  1.29 x 10-3

1.1 x 10-1
n.a.  Sanudo-

Wilhemy 
et al. 2001 

   
min  1.29 x 10-3    
max  2242    

     
 
 
 
abbreviations 
 
NP  = North Pacific 
IO  = Indian Ocean 
AS = Arabian Sea  
NA = North Atlantic 
CAR = Caribbean 
BAH = Bahamas  
SAR = Sargasso Sea 
TA = Tropical Atlantic
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Appendix V b  Nitrogen fixation rates of Trichodesium sp. 
lab data, all acetylene reduction unless otherwise noted 

 
 

N-fixation rate area-1

or biomass-1 time-1

 
 

 
 

unit 

standardized 
N-fixation 

rate biomass-1 time-1

mol N 
mol chl-a-1 h-1

 
temp. 

°C 
 

(light) 
µE 

 
note 

 
Reference 

 
 

      
max. 50 - 300 

 
nmol ethylene  
µg chl-a-1 h-1

11 - 40 26 
 

(90) 

 

1) 4)
Chen et al.  

1996 
 
 

0.0086 - 1.046 
% h-1

 

  28 
(55-65) 

 

1) 5)
Mulholland and 
Capone 1999 

 
0.5 

% h-1

 

  26 
(30-40) 

 

2) 6)
Mulholland et al. 

1999 

14 – 16 
% d-1

  ~ 
  

2) 7) " 

12.5 
 

fmol N  
cell-1 h-1

8.6 
 

~  

2) 8)
" 

2.75 
 

“ 1.9 ~  

2) 9)
" 

~0.3 - 0.6 
 

“ 0.2 - 0.4 ~  

2) 10)
" 

14.5 
 

µmol N 
l-1 d-1

 ~  

2) 11)
" 

6 to 18 
 

µmol N l-1 d-1  ~ 2) 12) " 

3.5 
 

mol C2H4
mol chl-a-1 h-1

0.9 25 
(7W m-2) 

2) 13) 

 
Ohki and Fujita 

1988 
4.7 

 
“ 1.2 ~ 2) 14) 

 
" 

22 
 

“ 5.5 ~ 2) 15) 

 
" 

26 
 

“ 6.5 ~ 2) 16) 

 
" 

35 
 

“ 8.8 ~ 2) 17) 

 
" 

46.2 
 

“ 11.6 25 2) 18) 

 
Ohki et al.  

1991 
 

1.32 - 3.11 
 

“ 0.3 – 0.7 25 
 

3) 19) 

 
Paerl  
1994 

 
 

5 - 13 
 

“ 1.1 - 2.9   Berman-Frank  
et al. 2001 

0.02 - 0.18 pg cell-1 h-1 1.1 - 7.8   Fu and Bell 2003
      

min  0.2    
max  40    
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Appendix V a: Footnotes: 
 
1)  max. was 0.40 for L-colonies, values similar to T. erythraeum  (Bell 1993 cited in this paper) 
2)  51 equals the equivalent to 50% PN export at ALOHA 
3)  equals ~90% of input via atmosph.  
4)  Arabian Sea, estimate based on abundance data by Devassy (1983) 
5)  first value global annual rate, second value Indian Ocean annual rate (as cited in Somasundar et al.  

1990) 
6)  cellular value meas. in NP gyre 
7)  in blooms 
8)  ocean wide calculation based on reviewed data 
9)  extrapolation to depth integrated N2 fixation in latitudinal bands of the ocean, season corrected, 10 

fold higher that 1982 estimate 
10)  5.88x1011 m2 bloom, Arabian Sea 
11) related to windspeed + time of day+bundledness 
12) light + dark, two years / Caribbean/Atlantic 
13) light only, two years / Caribbean/Atlantic 
14) diel variation 
15) small colonies (<30 trichomes/colony) 
16) large colonies (>75 trichomes/colony) - shading effect 
17) equivalent to high sea state, comp.w/ Roenneb+Carp. 1993 
18) based on av. from Car. (6.45 ethyl) w/ 3:1 mol. conversion factor 
19) hand collect. by divers, Caribbean, ultra clean methods 
20) net collected, Caribbean, ultra clean methods 
21) Bahamas, ultra clean methods, in situ 
22) Bahamas – standard methods 
19-22) no significant difference between the procedures 
23) Sargasso Sea, no diff. To Bahamas, ultra clean methods in situ 
24) average, Caribbean found sign. diff. between days, standard methods 
25) average, Caribbean, ultra clean methods 
26) 3:1 used, vol. rate converted from ng at 1m depth, maximum av. 
27) as 26), max. measured 
28) 3:1 used, rate per area was integrated over 50m depth, 9 % of surface value at 3% light (45m), 10 
h d-1

29) Sargasso 
30) Caribbean progr. decrease below 15m, 5% at 75m of rate at 15m 
31) per cell: 15m depth Caribbean, max. measured, surface Sargasso Sea per area: Caribbean,  
    colonies shaken (not stirred) - disrupted 
32) maximum at 10 – 15 depth 125x higher in Caribbean than in Sargasso, colonies intact p<0.05 
33) estimate based on turnover and colony density data 
34) tropical NA 
35) Caribbean + Bahamas - Jan/Feb92, 15N method in correlation to (LMW DON release) estim. 
36) Caribbean + Bahamas - Jan/Feb92, 15N method 
37) Caribbean + Bahamas - Jan/Feb92, 15N method incorp. into low molecular weight comp. only 
38) note that LMW and acet. rates are virt. equivalent 
39) up to max. 19.0% uptake, vol. converted from liter 
40) bloom , density=221000col./l),  Indian Ocean 2.3'S - 4.25'S off Kenia, ratio 8:1 
41) density=2-268col./l, ratio 8:1  
42) acetylene reduction compared to 15N method, results in ratio: 1.93 : 1  but authors recommend ratio 

3 : 1, converted µg algal N to µg chl-a – 25:1   
43) % h  (0.40 = 0.6 nmol N/colony/h) diel var. 
44) measured 20:45 – 22:25 h 
45) measured 13:40 – 14:45 h 
46) trichomes anaerobic 
47) colonies anaerobic 
48) colonies aerobic 
49) trichomes aerobic 
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Appendix V b Footnotes: 
 
 
1)  IMS – 101 
2)   NIBB1067 
3)   Trichodesmium sp. 
4)  differences in media, circadian rhythm 
5)  circadian rhythm, 14:10h light:dark 
6)  N-fix - N-turnover (urea enriched (30µM)) 
7)  N-fix turnover rate at exp. growth, bell shaped curve (Chen et al. 1996) or flat (lower estimate) 
8)  maximum measured value 
9)  N-fix NO3 enriched (150µM) 
10) N-fix urea enriched (30µM), calc. from data in paper 
11) mean fixation rate in non-enriched media based on PN increase  
12) at a Biomass of 55 µg chl-a-1 l-1 (mean) and 30-40 µE, depending on calc. 
13) large bundle shaped colonies 
14) spherical colonies 
15) single trichomes, linear growth 
16) small bundles, linear growth 
17) single trichome and small bundles, exponential growth 
18) constant: 0.18 d-1, exp. phase at 12 h light:dark, 15W m-2

19) at 100 µE differences depending on aggregation and age/growth phase of culture  
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Appendix VI a:  Elemental composition of Trichodesmium spp.  
measured under various conditions  (all field data) 

 
 

 
C:N 

 
N:P 

 
C:N:P 

 
location 

 
reference 

- molar ratio - comment 
 

 

     
 

5.98* 
 
- 

 
- 

 
BAH and CAR 1)  

 
Carpenter et al. 

1993 
7.0 - - NA 2) Lewis et al. 1988 

 
6.8 - 7.0** 
6.4 - 6.5** 

- 
- 

- 
- 

 
NP 3)  

Saino and 
Hattori 1978 

 
6.0* -  BAH and CAR 4)  Carpenter et al. 

1993 
 

4.71* 44.3* 209:44:1* NP Mague et al. 1977 
 

5.4* - -  Carpenter 1983 
 

6.53* 
 

- - WP 5) Marumo 1975 5)

6.4 
(4.6 - 7.5) 

29 
(14 - 52) 

185:29:1 
(C:P 79 - 310)

 

WP Kustka et al. 2003 

6.06 - 6.30* - - NA McCarthy and 
Carpenter 1979 

 
7.32 42.76 313:43:1*** NP 6) Letelier and Karl.  
6.32 43.75 277:44:1*** NP 7)  1998 
6.61 44.8 296:45:1*** NP 8)  " 
5.88 34.19 201:34:1*** NP 9)  " 

 
6.14 - 6.34 45 - 52 303:49:1*** NP 10) Letelier and Karl 

1996 
6.4 42 269:42:1*** NP 11)  " 

 
     
     
     

7.13 125 891:125:1 NP 12) Karl et al. 1991 
 

8.9 21 188:21:1 RS Nagvi et al. 
1986 

     
     
     

mean (range)   
6.5 

(4.6 - 7.5) 
47.5 

(14 - 125) 
313:48:1 
(79:17:1-

891:125:1) 
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Appendix VI b:  Elemental composition of Trichodesmium spp.  
measured under various conditions  (laboratory data) 

 
 

 
C:N 

 
N:P 

 
C:N:P 

 
treatment

 
note 

 
reference 

- molar ratio -  
 

  

      
      

12 
 

4.8 
 

58:4.8:1 
 

IMS101 
Fe-limited

Berman-Frank  
et al. 2001 

 
12 13 156:13:1 IMS101 

Fe-replete

 
 

13)

" 

      
 23.6 - 140  1 µM DOP 

 
 23.8 - 150  3 µM DOP 

 
 5.7 - 35.2  50 µM DOP 

14)

Mulholland et al. 
2002 

 

      
  

 
 
 

  
 

 

 
 
 
Appendix VI abbreviations and footnotes: 
 
 
BAH  = Bahamas 
CAR = Caribbean 
NA = North Atlantic 
NP  = North Pacific 
WP = West Pacific 
RS = Red Sea 
 
 
*   coverted from weight to molar ration with C/12:N/14,   
**  converted in a similar way based on the assumption that the data were given on weight basis, not 

indicated by the authors 
*** calculated based on C:N and N:P values given in the paper 

 
 
1)  15m, T.thiebautii 
2)   in a bloom
3)  first value at day second value at night (p < 0.05), T.thiebautii 
4)  based on T. erythraeum and T.thiebautii means 
5)   assuming 100cells/trichome, in: Carpenter et al. 1987 
6)   neg. buoyant colonies at 5m 
7)  pos. buoyant colonies at 5m 
8)  neg. buoyant colonies at 100m 
9)  pos. buoyant colonies at 100m 
10)  trichome morphology, calc. based on means(C:N=6.24; N:P=48.5), PC:Chl = 187 - 199 (w:w) 
11) colony morphology, PC:Chl = 163weight:weight) 
12) in a bloom 
13) see Appendix VII e for Fe-ratios 
14) cultures grown on DOP (glycerol-P) as sole source for Phosphorus, variations in elemental  rations 

are due to growth phase 
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Appendix VII: cellular Fe stoichiometry and iron uptake rates of Trichodesmium 
 
Iron requirements for diazotrophic growth – compiled field and laboratory data. 
 
 

field/lab Fe:C 
 

µmol:mol 

variable/ 
comments 

Reference 
 
 

    
lab 13 - 168 1) Berman-Frank 
“ 7.1 - 214 2) et al. 2001 

 
" 38 - 48 requirement for 

diazotrophic vs. 
Kustka 

et al. 2002 
" 8 NH4

+ replete 
growth 

 

" 

field 20 - 500 different oceanic regions " 
 

“ 18 - 222 Australia (north coast) 
 

Kustka et al. 2003 
 

“ 333  Rueter et al. 
1991 

    
“ 20  Sanudo-Wilhemy et al. 

2001 
    
 7.1 - 500 over all range  
    

 
 
 
the theoretical minimum value of the Fe:C ratio for diazotrophic growth of Trichodesmium  
equals 13.5 (Kustka et al. 2002) 
 
 
 
1)  total iron treatments: 2.13 to 2030 nM with EDTA added to the media at a constant 

concentration (20 µM), resulting in log [Fe’] (denoting the sum of the total inorganic Fe 
species) from -11.78 to -7.8  

 (see table below for the effect on elemental stoichiometry) 
 
 
2)  total iron treatments: 0.04 to 4 nM with EDTA added to the media at a constant ratio to the 

total iron concentration, resulting only in a minor change of log [Fe’] from -7.95 to -7.8 
 
 total Fe:C quotas, the intracellular quotas are 60 – 70 % lower 
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Effects of iron concentrations on Trichodesmium elemental composition and physiology.   
modified after Berman-Frank at al. (2001) 
 
total [Fe] 

 
nM 

log [Fe’] chl a :C 
 

µg : µmol 

Fe:C 
 

µmol:mol 

C:N 
 

mol:mol 

C:P 
 

mol:mol 

N:P 
 

mol:mol 

C:N:P:Fe 
 

molar 
        

2.1 -10.78 0.018 13 12 58 4.8 58 : 4.8 : 1 : 7.5x10-4

16.9 -9.88 0.17 30 8.9 55 6.2 55 : 6.2 : 1 : 1.7x10-3

51.1 -9.40 0.19 33 9 60 6.7 61 : 6.7 : 1 : 2.0x10-3

1768 -7.86 0.25 48 16 66 4.8 66 : 4.8 : 1 : 3.2x10-3

2030 -7.80 0.29 168 12 156 13 156 : 13 : 1 : 2.6x10-3

       

       
       

 
field   806 6.13 154 25 154 : 25 : 1 : 1.3x10-2

 
 

 
ks for µc 

 
µc at ks       

 
16.13 
nM Fe 

 
0.062 

d-1

      

        
 
Note: ks for µc and µc at ks were derived from this publication 
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Iron and nitrogen measurements on Trichodesmium collected in the Caribbean.   
modified after Rueter et al. (1991) 
 

  Fe
colony-1

 

protein N 
colony-1

 

Chl-a 
colony-1

N2 – fixation 
 

nmol N fixed  

N:Fe  
 
 

chl-a : Fe nmol N fix 
mol Fe-1 h-1

 

 nmol nmol nmol   
         

colony-1 h-1 mol:mol mol:mol   

range 0.135  - 0.470 51 - 204 0.044 – 0.098 0.0054 – 0.6616 166 - 707 0.128 – 0.709 0.03 – 3.01  
         

        
        
        

     

        
  

         
     

         
         

mean 0.231 97 0.080 0.136 465 0.387 0.65
 
 

examples of 
particular  

0.470 
highest value 

78 0.060 0.0914 166 
lowest value 

0.128 
lowest value 

0.19

interest 
from the 
data set 

0.220 57 
near low limit 

0.090 
near max. limit 

0.6616 
highest value 

259 0.410 3.01 
max value 

 

 0.140 
near low limit 

99 0.069 0.0162 
low value 

707 
highest value 

0.439 0.12

 
 
Iron uptake rates and specific growth rates measurements of Trichodesmium collected in the Caribbean.   
modified after Rueter et al. (1991) 
 

     Fe
colony-1

 

55Fe  
uptake 

Fe specific 
growth rate 

Fe based 
doubling time 

 

 pmol pmol colony-1 

min-1
min-1 d-1   

         

  

range  22 - 68 0.06 - 0.26 0.0014 - 0.0040
 

0.12 – 0.34 
 

    
mean 55      

         
         

0.05 0.0029 0.20
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Appendix VIII:  Nutrient uptake rates of Trichodesmium sp.  
 
 

 
PO4  

uptake 

 
NO3  

uptake 

 
NO2  

uptake 

 
NH4

uptake 

 
urea 

uptake 

 
Glu 

uptake 

 
note 

 
reference 

        
        
        

~0.8 - ~7.9 
nmol cell-1 d-1

80.6 
nmol cell-1 d-1

    1) Ramamurthy and 
Krishnamurthy 

1967 
~0.2 - ~1.2 
nmol cell-1 d-1

24.2 – 
104.8 

nmol cell-1 d-1

    2) " 
 
 

 ~ 0.58 
fmol N cell-1 h-1

~ 12.5 
fmol N cell-1 h-1

 ~ 1.66 
fmol N cell-1 h-1

 3) Carpenter + 
McCarthy 1975 

        
 < 0.2  

fmol N cell-1 h-1 
5)

 20  
fmol N cell-1 h-1

 0.4 – 0.6 
fmol N cell-1 h-1

4) Mulholland et al.
1999  

 25  
fmol N cell-1 h-1

    6) " 

    3 - 6  
fmol N cell-1 h-1

 7) " 

 0.0003 - 
0.0043  

% h-1

 0.04  
- 1.84  
% h-1

0.0007 -
0.11 
% h-1

0.015 - 
0.37 
% h-1

8) Mulholland and 
Capone 1999 

 
   18 

µmol N l-1 d-1
   Mulholland and 

Capone 2001 
        
        

 
 
 
 
1) changing N:P ratio 20:1 - 20:15 (increasing P), T. erythraeum, lab, 24h incubation 
2) changing N:P ratio 1:1 - 25:1 (increasing N), T. erythraeum, lab, 24h incubation 
3) T. erythraeum, lab 
 

4)  NIBB1067, lab
  

 NH4 Ks = 0.26 µM NH4 Vmax = 13 /h x 10e-3 
NO3 Ks = 39 µM  NO3 Vmax = ND 
urea Ks = 6.75 µM urea Vmax = 19 /h x 10e-3 
Glu Ks = 1.34 µM Glu Vmax = 15 /h x 10e-3 

 

5)  calculated from data given in paper 

6) NO3 uptake max - NO3 enriched  (150µM), lab, NIBB1067 
7) urea enriched (30µM), lab, NIBB1067 
 
8) field NH4 Ks = 3.5 µM NH4 Vmax = 22 /h x 10e-3 

NO3 Ks = 0.4 µM NO3 Vmax = 0.2/h x 10e-3 
urea Ks = 31 µM urea Vmax = ND 
Glu Ks = 3.1 µM  Glu Vmax = 4.5 /h x10e-3 
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The global nitrogen cycle is balanced by two opposing bio-
chemical pathways: denitrification, which releases N2 to the
atmosphere, and biological nitrogen fixation, which fixes N2

gas. In the ocean, a change in the rate of either of these path-
ways will result in a change in the global oceanic nitrogen
inventory. Estimates of total global and marine nitrogen fixa-
tion increased from 90 to 250-500 and 14 to 80-200 × 106 tons
of nitrogen year–1, respectively, over the past 30 y (Capone and
Carpenter 1999). Karl et al. (2002), in a recent review on
marine nitrogen fixation processes and their importance for
the biogeochemistry of the oceans, state that these estimates of
marine nitrogen fixation are subject to large uncertainties. It is
therefore of wide scientific interest to verify and improve gen-
erally applied methods to measure nitrogen fixation.

Most commonly, nitrogen fixation is measured using the
acetylene reduction assay (ARA). The acetylene reduction
assay can be applied to various types of marine and freshwater
environments such as water column studies, sediment incu-
bations, seagrass meadows, and so on. This assay measures the

production of ethylene (C2H4) in a sample after incubation
with acetylene (C2H2), which is an alternative substrate for the
N2 reducing enzyme nitrogenase. Ethylene is easily detected
with high sensitivity using gas chromatography (Capone 1993;
Capone and Montoya 2001; Montoya et al. 1996; Stewart et al.
1968). The solubility of C2H4, required for the calculation of
N2 fixation, is dependent on the temperature and salinity at
which the assay is carried out.

The amount of C2H4 dissolved in an aqueous phase can be
calculated based on the amount of C2H4 detected in the over-
lying gas phase by applying the Bunsen gas solubility coeffi-
cient. The Bunsen coefficient (α) represents the solubility of a
real gas, where α is the unit volume of gas (v0), reduced to To =
273.15 K and po = 1 atm (101.325 kPa), which is absorbed by
unit volume (V) of solvent at the temperature of the measure-
ment when the partial pressure of the gas is equal to one stan-
dard atmosphere (po)

. (1)

Therefore, the amount of gas present in the aqueous phase equals

(2)

where naq denotes the total amount of gas (mol) dissolved in
the aqueous phase, pgT is the partial pressure of the gas in
the headspace (atm) at the temperature of measurement, α
is the Bunsen coefficient at the temperature and salinity of the

n
p

R Taq

gT aq
V

 
    

 
  

=
×

× ×α

0

α   =
v

V
0

The Bunsen gas solubility coefficient of ethylene as a function
of temperature and salinity and its importance for nitrogen 
fixation assays
Eike Breitbarth1*, Matthew M. Mills1, Gernot Friedrichs2, and Julie LaRoche1

1IFM-GEOMAR, Düsternbrooker Weg 20, 24105 Kiel, Germany.
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Abstract
The acetylene reduction assay is a common method for assessing nitrogen fixation in a variety of marine and

freshwater systems. The method measures ethylene, the product of the conversion of the gas acetylene to its
reduced form by nitrogenase. Knowledge of the solubility of ethylene in aqueous solution is crucial to the cal-
culation of nitrogen fixation rates and depends on the temperature and salinity of the assay conditions. Despite
the increasing interest in marine nitrogen fixation, no gas solubility (Bunsen) coefficients for ethylene in seawater
are published to date. Here, we provide a set of equations and present semiempirically derived Bunsen coefficients
for ethylene in water (ranging from 0.069 to 0.226) for a range of temperatures and salinities that are relevant for
aquatic nitrogen fixation. We apply these data to nitrogen fixation scenarios at different temperatures and salin-
ities and stress the importance of using accurate Bunsen coefficients in nitrogen fixation assays.
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measurement, Vaq is the volume of the aqueous phase (liter),
and R is the gas constant (0.08206 atm L mol–1 K–1).

The application of the Bunsen coefficient has been com-
mon practice throughout nitrogen fixation studies applying
ARA (Flett 1976; Capone 1993; Capone and Montoya 2001).
As with any analysis of dissolved gases in liquids, the accuracy
of the measurement largely depends on the correct gas solu-
bility coefficients. Flett et al. (1976) discussed the temperature
effect on the solubility of ethylene in freshwater and stated
that α = 0.122 at 20°C and 1 atm. To the best of our knowledge
no published values of ethylene Bunsen coefficients as func-
tions of temperature and salinity are available. Therefore,
deriving and supplying appropriate Bunsen coefficients for
nitrogen fixation studies in aquatic systems is necessary.

In the present paper we derive Bunsen coefficients appro-
priate for a variety of marine systems ranging in temperature
from 0°C to 35°C and salinities from 0 to 40. Our calculations
can be readily applied to determine Bunsen coefficients for any
temperature and salinity. The example calculations demon-
strate that significant errors can be generated in ARA depend-
ent nitrogen fixation rates when the effects of salinity and tem-
perature on ethylene solubility are not taken into account.

Materials and procedures
All temperatures in this section are referred to as absolute

temperature in Kelvin. Experimental data for the solubility of
ethylene in water and aqueous electrolyte solutions are pub-
lished by Clever et al. (1970), Grollman (1929), McAuliffe
(1966), Morrison and Billett (1952), Narasimhan et al. (1981),
Onda et al. (1970a , 1970b), Orcutt and Seevers (1937), Taft et al.
(1955), Truchard et al. (1961), Wu et al. (1985), Yano et al.
(1968), and Yano et al. (1974). The aforementioned publica-
tions are compiled and evaluated in the IUPAC Solubility Data
Series by Hayduk et al. (1994). Recently, R. Battino (pers.
comm. unref.) published gas solubility measurements for eth-
ylene in water in Clever and Battino (2003). Additionally,
technical solubility coefficients (λ), Ostwald coefficients (β),
and Bunsen coefficients (α) of ethylene in water as a function
of temperature are summarized in D’Ans et al. (1967), Dean
(1999), and Wilhelm et al. (1977).

The technical solubility coefficient is defined as the volume
of gas in cm3 at 273.15 K and 1 at (technical atmosphere, 1 at =
0.9678 atm) partial pressure that is absorbed by 1 g of solvent:

(3)

where D is the density of the solvent (in g cm–3) at the tempera-
ture of the measurement. Additionally, Ostwald coefficients (β) for
ethylene in water can be converted into Bunsen coefficients as

. (4)

The Ostwald coefficient is defined as the solubility of a real gas
in unit volume gas per unit volume of pure solvent at the tem-

perature of measurement, where the partial pressure in the gas
phase is one standard atmosphere. Commonly, gas solubility
is also expressed as mole fraction (x), which can be converted
to α as follows:

(5)

where D equals the density of the solvent at the temperature
of measurement and M represents the molecular weight of the
solvent. Since Flett’s (1976) original description of the ARA
method, α has become the standard parameter describing the
C2H4 solubility, and we have retained this convention. The
available gas solubility coefficients from the literature, con-
verted to α, are summarized in Fig. 1. We used these data to
calculate Bunsen coefficients at relevant temperatures and
salinities for marine nitrogen fixation studies. Further, we
applied these Bunsen coefficients to a theoretical scenario of
measured nitrogenase activity via ARA at different tempera-
tures and salinities.

Semiempirical calculation of ethylene solubility coefficient (α) in
seawater—We adapted the equation for the temperature
dependence of gas solubility at a constant salinity from Weiss
(1970) and obtained a fit of α versus temperature (Fig. 1) based
on the measurements by Clever et al. (1970), Grollman (1929),
McAuliffe (1966), Morrison and Billett (1952), Onda et al.
(1970a), Orcutt and Seevers (1937), R. Battino (pers. comm.
unref.), Taft et al. (1955), Truchard et al. (1961), Wu et al.
(1985), and Yano et al. (1968). Ethylene gas solubility coeffi-
cients published by D’Ans et al. (1967), Dean (1999), and Wil-
helm et al. (1977) agree well with the data used but are either
derived from Morrison and Billett (1952) or have undefined pri-
mary sources and therefore were not used in the calculations.

(6)

In addition to the temperature, the salt content influences the
solubility of gases in liquids. The logarithm of the gas solubil-
ity in freshwater (α0) over the gas solubility at a specific salt
concentration (αI) as a function of the ionic strength of the
solution yields a linear dependency, where the slope (k) is the
empirical salt coefficient and can be used to correct α relative
to different ionic strengths I (Setschenov 1889):

. (7)

The ionic strength of a solution is defined as ,
where ci is the molar concentration and zi is the charge of the ith
ion. The salt effect coefficient itself is temperature dependent.

I = ( )∑0 5.
i i

o
i
2c /c z

log /
10 0

α α
I

k I( ) = ×    

ln ln(

.

( /
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0 1
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   +  + 

 = 
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(
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We derived a temperature function for k based on data for
NaCl given by Morrison and Billett (1952) and Onda et al.
(1970a). A linear function was found to be sufficient, since the
application of a quadratic function had an insignificant effect
on the calculated Bunsen coefficients as a function of temper-
ature and salinity (Fig. 1):

. (8)

The ionic strength of seawater at the desired salinity can be
derived from the molar concentration of Cl– ions (0.54588
mol L–1) in seawater at a salinity (S) of 35:

or
. (9)

Thus one can derive Bunsen coefficients as a function of tem-
perature and salinity (Table 1) based on

. (10)

Assessment

We derived semiempirical Bunsen coefficients for a range of
seawater salinities and temperatures based on laboratory data
obtained for freshwater of different temperatures and for NaCl
solutions of different concentrations and temperatures. Of the

α    + 
K)

 + K)  - 2.3=
⎛
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( /
ln( /a
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a T
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Fig. 1. Temperature dependence of the Bunsen coefficient α (for freshwater) and of the salt effect coefficient k (for NaCl). The temperature dependence
is largely described by Morrison and Billett (1952) – � [black] and R. Battino (pers. comm. unref.) – � [black]. Further measurements accounted for were
published by Clever et al. (1970) – x [purple], Grollman (1929) – x [black], McAuliffe (1966) – � [cyan], Narasimhan et al. (1981) – x [blue], Orcutt and
Seevers (1937) – x [cyan], Taft et al. (1955) – x [yellow], Truchard et al. (1961) – � [black], Wu et al. (1985) – x [red] and Yano et al. (1968) – x [orange].
The solid line represents the fit of the experimental data based on equation 6.  Data for the salt effect coefficient (k) are based on measurements of Mor-
rison and Billett (1952) – � [black], Onda et al. (1970a) – � [black] and Yano et al. (1974) – � [orange] and the dashed line represents a linear fit of k based
on equation 8.
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major electrolytes in seawater (NaCl, MgCl2, Na2SO4, CaCl2,
KCl, NaHCO3, KBr, and CsBr), Hayduk et al. (1994) summarize
salt effect coefficients for NaCl, Na2SO4, KCl, NaHCO3, and KBr
at 298.15 K. However, the salt effect coefficient as a function
of temperature is only reported for NaCl (data from Morrison
and Billett 1952). In our analysis we exclusively used NaCl-
based data to derive the temperature-and salinity-dependent
salt effect coefficient. The composition of seawater was taken
into account by using the ionic strength of seawater as given
by Eq. 8. Thus, we assumed that all single charged electrolytes
such as NaCl (∑zi

2 = 2) have a similar salt effect coefficient,
whereas double charged electrolytes such as Na2SO4 (∑zi

2 = 6)
have a three times higher k value. Actually, salt effect coeffi-
cients (in parentheses) of single charged electrolytes NaCl
(0.139) (Onda et al. 1970a), KCl (0.136), and KBr (0.118) (Yano
et al. 1974) are indeed in relatively close agreement with each
other, whereas Na2SO4 (0.394) is 2.8 times higher and thus lies
within the expectation (Onda et al. 1970a). However for elec-
trolytes such as NaHCO3 (0.195), a simple ionic strength–based
method seems less accurate (Onda et al. 1970b). Nevertheless,
the mole fraction (xi) of NaCl in seawater relative to the total
salt content is very high (0.837). Despite the lack of data for
MgCl2 (xi = 0.104) and the minor importance of KBr (xi =
0.0015) and NaHCO3 (xi = 0.005), we are confident that the use
of the salt effect coefficient of NaCl, in combination with the
application of the ionic strength of seawater, is sufficient to
account for the salting-out effect of seawater (Millero 1996;

Schwarzenbach et al. 1993). To the best of our knowledge,
there are no other data for the salting-out effect of NaCl than
those given by Morrison and Billett (1952), Onda et al.
(1970a), Yano et al. (1974) (0.154), and the measurements pub-
lished in D’Ans et al. (1967) (0.140) available. Based on the rec-
ommendation by Hayduk et al. (1994), preference was given to
the measurements by Morrison and Billett (1952) and Onda et
al. (1970a). The semiempirical approach presented here yields
the most representative Bunsen coefficients for ethylene in
seawater to date. Direct measurements of ethylene solubility in
natural seawater are needed to verify or further improve these
calculations.

The practical details of the ARA are well described (Capone
1993; Capone and Montoya 2001). In general the acetylene
reduced to ethylene during ARA is detected using flame ioniza-
tion detection–gas chromatography. In the following, an ARA
case study serves as an illustrative example for the crucial role of
the Bunsen coefficient of ethylene in nitrogen fixation studies.

In ARA, the total amount of ethylene produced in the assay
vessel is determined by measuring the partial pressure of eth-
ylene in the headspace. The amount of ethylene present in the
gas phase is then given by the ideal gas law:

(11)

where ng is the amount of ethylene in mol, pgT equals its partial
pressure (atm) at the temperature of measurement T (K), Vg is

n
p V

R Tg

gT g=
×

×
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Table 1. Bunsen coefficients (α) for ethylene in water of different temperatures and salinities (S) at 1 atm

Temperature (°C) S = 0 S = 5 S = 10 S = 15 S = 20 S = 25 S = 30 S = 32 S = 35 S = 40

0 0.226 0.218 0.210 0.203 0.196 0.189 0.182 0.180 0.176 0.170

2 0.210 0.203 0.196 0.189 0.182 0.176 0.170 0.167 0.164 0.158

4 0.196 0.189 0.183 0.176 0.170 0.164 0.159 0.156 0.153 0.148

5 0.189 0.183 0.177 0.171 0.165 0.159 0.154 0.151 0.148 0.143

6 0.183 0.177 0.171 0.165 0.159 0.154 0.149 0.147 0.144 0.139

8 0.172 0.166 0.160 0.155 0.150 0.144 0.140 0.138 0.135 0.130

10 0.161 0.156 0.151 0.146 0.141 0.136 0.131 0.130 0.127 0.123

12 0.152 0.147 0.142 0.137 0.133 0.128 0.124 0.122 0.120 0.116

14 0.143 0.139 0.134 0.130 0.125 0.121 0.117 0.116 0.113 0.109

15 0.139 0.135 0.130 0.126 0.122 0.118 0.114 0.112 0.110 0.107

16 0.136 0.131 0.127 0.123 0.119 0.115 0.111 0.109 0.107 0.104

18 0.128 0.124 0.120 0.116 0.113 0.109 0.105 0.104 0.102 0.099

20 0.122 0.118 0.114 0.111 0.107 0.103 0.100 0.099 0.097 0.094

22 0.116 0.112 0.109 0.105 0.102 0.099 0.095 0.094 0.092 0.089

24 0.111 0.107 0.104 0.100 0.097 0.094 0.091 0.090 0.088 0.085

25 0.108 0.105 0.101 0.098 0.095 0.092 0.089 0.088 0.086 0.084

26 0.106 0.102 0.099 0.096 0.093 0.090 0.087 0.086 0.084 0.082

28 0.101 0.098 0.095 0.092 0.089 0.086 0.083 0.082 0.081 0.078

30 0.097 0.094 0.091 0.088 0.085 0.083 0.080 0.079 0.078 0.075

32 0.093 0.090 0.087 0.085 0.082 0.080 0.077 0.076 0.075 0.072

34 0.089 0.087 0.084 0.081 0.079 0.077 0.074 0.073 0.072 0.070

35 0.088 0.085 0.082 0.080 0.078 0.075 0.073 0.072 0.071 0.069
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the headspace volume in liters, R equals the gas constant =
0.08206 atm L mol–1 K–1. Because the amount of C2H4 present
in the aqueous phase can be calculated based on Eq. 2, the total
amount of C2H4 produced in the assay equals the sum of Eq. 2
and Eq. 11.

These calculations were applied to a theoretical scenario of
85 ppm ethylene production detected in a gas sample from a
20.2-mL headspace vial generally used in our laboratory (19 mL
culture and 1.2 mL headspace) over a range of temperatures and
salinities. We assumed a biomass of 50 µg chlorophyll a (Chl a)
L–1 and an incubation time of 2 h. These values were based on
common conditions and observations for ARA-dependent
nitrogen fixation studies using cultures of the cyanobacteria Tri-
chodesmium (strain IMS 101) in our laboratory. We calculated
theoretical nitrogen fixation rates using a ratio of C2H2 reduced
: N2 reduced of 4:1 (Montoya et al. 1996) for temperatures
between 10°C and 35°C and salinities ranging from 0 to 40 ppm
(Fig. 2) using the Bunsen coefficients from Table 1. Additionally,

we compared these results to calculated nitrogen fixation rates
based on identical settings, but using a Bunsen coefficient of
0.122 independent of temperature and salinity. This exercise
illustrates how differences in α result in significant differences
in ARA determined nitrogen fixation rates.

With the exception of Flett (1976), Bunsen coefficients are
generally not reported in studies of marine nitrogen fixation.
Identical to Dean (1999) and in agreement with our calcula-
tions, Flett (1976) reports α = 0.122 as a value for freshwater at
20°C but gives no information on α as a function of salinity and
temperature. Our calculations show that Bunsen coefficients
range from 0.069 to 0.226 for temperatures (0°C to 35°C) and
salinities (0 to 40) relevant for aquatic nitrogen fixation studies
(Table 1). As a function of temperature and salinity, nitrogen fix-
ation rates range between 1.18 (salinity = 40, temperature  =
35°C) and 2.11 nmol N fixed (µg Chl a)–1 h–1 (S = 0, T = 10°C).
In contrast, nitrogen fixation rates only vary from 1.69 to 1.73
nmol N fixed (µg chl-a)–1 h–1 over a temperature range from

Breitbarth et al. Bunsen coefficient and N2 fixation
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Fig. 2. Theoretical nitrogen fixation rates at temperatures and salinities relevant for marine nitrogen fixation using semiempirically derived Bunsen coef-
ficients. � represents values at S = 0, � at S = 30, and � at S = 40. The solid line represents theoretical nitrogen fixation rates using a Bunsen coefficient
of 0.122 independent of T and S in comparison with fixation rates based on T and S dependent Bunsen coefficients as derived in this work (– – –). Per-
centages illustrate difference between nitrogen fixation rates at a salinity of 35 (– – –) and 5 (— — —, values in italics) versus α = 0.122.
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10°C to 35°C when a Bunsen coefficient of 0.122 is used (Fig. 2).
Employing α = 0.122 in assays with a temperature higher than
19°C thus yields overestimation of nitrogen fixation rates
regardless of the salinity and an underestimation in freshwater
assays at temperatures lower than 19°C. If the ARA is conducted
in oceanic environments (S ≈ 35), underestimation and overesti-
mation of nitrogen fixation will occur if α = 0.122 is employed
below or above 11.5°C, respectively (Fig. 2). Because gas solu-
bility is negatively correlated with temperature and salinity, the
strongest deviations from results that apply α = 0.122 arise at
high temperatures and salinities (>40% for T = 35, S ≥ 35). These
deviations are large compared to the precision of the gas phase
analysis. Gas chromatography using flame ionization detection
responds linearly to the concentration of C2H4, and a detection
limit as low as 2.5 ppb can be achieved. Thus errors in a cali-
bration curve generated by imprecise calibration standards are
obvious and can be excluded. Note that the ratio of the volume
in the aqueous phase to the volume of the headspace has an
effect on the sensitivity of the method, and optimum volume
ratios may need to be determined for each assay setup individ-
ually (Montoya et al. 1996).

Discussion
Whereas high salinities and temperatures are of particular

interest for studies of nitrogen fixation in vast regions of olig-
otrophic tropical and subtropical oceans, lower temperatures
and brackish waters are encountered in temperate fjords and
semi-enclosed oceans such as the Baltic Sea, which experience
seasonal episodes of nitrogen fixation. Here, a salinity range of
5 to 15 and a water temperature of 10°C to 20°C are common
in regions possessing cyanobacterial summer blooms. For
example, blooms of Nodularia spp., Anabaena spp., and Apha-
nizomenon spp. regularly occur during late summer in the Both-
nian Sea and the Gulf of Finland where salinity averages 5 to 6
and water temperature 10°C to 14°C. Similar blooms have also
been reported from the Western Baltic where the water tem-
perature ranges from 15°C to 20°C in the summer with pre-
dominant salinities around 15 (Gallon et al. 2002; Lozán et al.
1996). At such a wide range of temperature and salinity, the
Bunsen coefficients corrected for temperature and salinity are
important for the accuracy of the N2 fixation rate estimates. In
some systems, α can deviate as much as 28% from 0.122 (α =
0.156, T = 10°C, S = 5) and nitrogen fixation rates can be under-
estimated by 15.6% if measurements employ α = 0.122. If stud-
ies are carried out in freshwater systems, deviations can even be
larger (Table 1, Fig. 2).

In the open ocean salinity shows much less considerable
change (S ≈ 35) and temperatures regularly do not exceed 30°C
(Levitus and Boyer 1994). The application of α = 0.122 devi-
ates up to 36% from appropriate values (α = 0.078, T = 30°C,
S = 35) and results in a bias toward too high N2 fixation rate
measurements by ~33% (Table 1, Fig. 2). The salt effect on the
solubility of ethylene in seawater compared to the tempera-
ture effect can sometimes be negligible in oceanic systems. In

contrast, N2 fixation rates can be overestimated by more than
40% in tropical lagoons and other semienclosed water bodies
when temperatures are elevated up to 35°C and the salinity is
increased above 35 (Fig. 2).

The application of the ARA as a true measure for nitrogen fix-
ation relies on the fact that nitrogenase is the only enzyme that
reduces acetylene to ethylene and is based on a theoretical ratio
between the rate of acetylene reduction to cellular N2 reduction
of 4:1 (Postgate 1982; Montoya et al. 1996; Gallon et al. 2002).
However, this ratio frequently deviates from its theoretical
value. Gallon et al. (2002) demonstrates that even though 15N2

nitrogen fixation measurements accurately measure incorpora-
tion of nitrogen into cellular material, measurements of acety-
lene reduction more truly reflect the gross rate of N2 fixation.
The 15N2 assay can underestimate the actual amount of N2 fixed,
because the population under investigation can release a signif-
icant portion of its newly fixed nitrogen (Bronk 2002) stressing
the importance of the ARA for field measurements of nitrogen
fixation. In our view, it also supports the need for increased
accuracy of this method as provided here.

Comments and recommendations
Based on our calculations of Bunsen coefficients we agree

with the validity of the recommendation by Flett et al. (1976),
Capone (1993), and Capone and Montoya (2001) stating that
appropriate gas solubility coefficients for ethylene must be
applied for calculating nitrogen fixation rates and advise
future authors to report the gas solubility coefficients used in
their assays. Using available experimental data we provide
interpolation formulas and also a convenient table (Table 1)
for α values at temperature/salinity combinations of interest
in aquatic research. Further, we stress the need for measure-
ments of gas solubility coefficients of ethylene in seawater
under temperature and salinity conditions that are relevant to
marine nitrogen fixation studies. Estimates of the oceanic
nitrogen budget as well as biogeochemical models, largely rely
on ARA results to calculate N2 fixation rates (Capone and Car-
penter 1999; Fennel et al. 2001; Hood et al. 2001). The tropical/
subtropical cyanobacterium Trichodesmium spp. or Richelia spp.
have been assumed to be the major representatives of oceanic
nitrogen fixers. Zehr et al. (2001) recently discovered unicel-
lular diazotrophs, but their distribution as well as their contri-
bution to the oceanic nitrogen budget is unknown. Thus
measurements of marine nitrogen fixation may be extended
to regions of different temperature and salinity than assessed
to date. The need for standardized methods of nitrogen fixa-
tion measurements is apparent, and our contribution is
intended to be a step toward that goal.
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Abstract 
The cyanobacterium Trichodesmium is an important link in the global nitrogen cycle due to 

its significant input of atmospheric nitrogen into the ocean.  Incorporating Trichodesmium in 

ocean biogeochemical circulation models relies on field-based correlations between 

temperature and Trichodesmium abundance.  Temperature affects Trichodesmium growth 

directly by controlling physiological rates or indirectly through its influence on mixed layer 

depth, light and nutrient regimes.  Here we present an empirical relationship between 

temperature and diazotrophic growth.  This relationship and global warming scenarios from 

state-of-the-art climate models predict a future decline in Trichodesmium abundance and 

nitrogen input that could significantly affect global nitrogen cycling.   

 

 

Main text 

Present total marine N2-fixation is estimated at 110 Tg yr-1 (1).  A major fraction of up to 80 

Tg yr-1 is directly attributed to Trichodesmium (2), which is estimated to account for up to 

47% of the primary production in the tropical North Atlantic Ocean (3) and contributes to 

export production via nitrogen fueling of the phytoplankton community (4).  Trichodesmium is 

generally limited to oligotrophic waters and its observed temperature distribution range 

(20°C - 30°C) is used to constrain N2-fixation in ocean biogeochemical circulation models.  

The upper temperature limit is set by current sea surface temperature (SST) maxima and not 

by observed physiological constrains of high temperature on Trichodesmium distribution. 

Parameterizations based solely on field correlations cannot differentiate between direct and 

indirect effects of temperature on Trichodesmium growth and thus are of limited predictive 

value.   

Therefore, we derived growth and N2-fixation temperature tolerance and optima ranges of 

Trichodesmium based on controlled laboratory experiments.  Trichodesmium grows and 

fixes nitrogen at temperatures between 20-34°C.  N2-fixation (suppl.1) and maximum specific 

growth rates (suppl.2) of the axenic Trichodesmium IMS-101 strain peak at 27°C (0.13 mmol 
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N mol POC-1 h-1, µmax carbon specific = 0.25 day-1) (Fig. 1A).  The photosystem II acclimates 

up to a maximum quantum yield at 27°C and maintains a high efficiency up to the maximum 

temperature of 34°C (suppl.figure).  We infer an optimum temperature range for diazotrophic 

growth between 24 and 30°C.  Growth and N2-fixation rates are significantly reduced at 

lower or higher temperatures.  Analogous, positive correlations of Trichodesmium 

abundance and water temperature were observed in field studies, and Capone et al. (2) 

used the 20°C sea surface temperature (SST) isotherm as poleward boundary to describe 

the distribution of Trichodesmium.   

 

In order to extrapolate our results to the field and to predict future changes in the distribution 

of Trichodesmium, we employed global warming scenarios of two coupled atmosphere-

ocean general circulation models (HadCM3 and GFDL R30).  Both models predict a SST 

increase of up to 3°C by 2090 in our area of interest (20-30°C isotherms, Fig 1B, suppl.3).  

This warming results in A: a poleward shift of the 20°C isotherm, predicting an 11% areal 

increase of Trichodesmium’s potential geographic distribution; B: maximum predicted SSTs 

of still less than 34°C, which will not limit the potential distribution of Trichodesmium in 

tropical waters; and C: a decrease in the area characterized by optimum growth and fixation 

conditions (24-30°C) by about 16% (Fig 1C). 

 

Because of the much higher fixation and growth rates of Trichodesmium in the 24-30°C SST 

range, the effect of C is likely to outweigh that of A.  We thus expect a net decrease of N2-

fixation by Trichodesmium by the end of this century.  Note, that our estimate is based on 

SST only and does not account for possible changes in nutrient supply which, to date, are 

more difficult to predict than SST.  

 

Other future predictions of marine nitrogen fixation diverge.  In contrast to our findings Boyd 

and Doney (5), predict a future increase of N2-fixation by 27% (from 80 to 94 Tg yr-1) due to 

a floristic shift towards diazotrophy by Trichodesmium caused by combined effects of mixed 
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layer depth (MLD), stratification and nutrient regimes.  Time series measurements near 

Hawaii (4) support this trend.  Although, SSTs in this area of the North Pacific are estimated 

to increase by almost 3°C (Fig. 4b) they do not exceed the physiological optimum range.   

Nevertheless, large regions of the tropical and subtropical oceans are predicted to fall 

outside the optimum range.  Particularly temperature shifts above 30°C in N2-fixation 

hotspots will result in significant changes of the regional nitrogen budgets.  In the North 

Atlantic, for example, SSTs will exceed 30°C in the Caribbean Sea as well as in equatorial 

waters off West Africa, all of which are currently hotspots of N2 fixation in a model based on 

field observations, MLD and light (6).  Similarly high SSTs are predicted for the western 

Pacific and a large part of the Indian Ocean, which both are characteristic provinces for 

present-day Trichodesmium abundance.  Whether or not other (i.e. latitudinally shifted) 

hotspots develop largely depends on feasible physical and chemical conditions, which might 

not be met elsewhere.  A community shift towards other (unicellular) diazotrophs is 

hypothetical, but the effect of warming SST on these is completely unknown.  

 

In conclusion our results suggest reduced fixed nitrogen input by Trichodesmium due to 

global warming processes based on the fundamental limitation of temperature on growth.  

The areal change in feasible SST sets constrains on the potential distribution of 

Trichodesmium.  We expect that, within these limits, a combination of other controlling 

factors such as MLD, light, nutrient regimes (including iron) will further restrict 

Trichodesmium distribution.  Considering the large fraction of N2-fixation by Trichodesmium 

on total oceanic nitrogen input, the predicted ecophysiological changes to this diazotroph 

may cause significant changes in global biogeochemical cycles.  

 

94



Chapter III 

References 

 

1. N. Gruber, J. L. Sarmiento, Global Biogeochemical Cycles 11, 235-266 (1997). 

2. D. G. Capone, J. P. Zehr, H. W. Paerl, B. Bergman, E. J. Carpenter,  

Science 276, 1221-1229 (1997). 

3. E. J. Carpenter, A. Subramaniam, D. G. Capone, Deep-Sea Research I 51,  

173-203 (2004). 

4. D. Karl et al., Nature 388, 533-538 (1997). 

5. P. W. Boyd, S. C. Doney, Geophysical Research Letters 29, 53,1-53,4 (2002). 

6. R. R. Hood, V. J. Coles, D. G. Capone, Journal of Geophysical Research 109, 

L06301 (2004). 

 

 

 

 

 

 

We thank K. Lochte and M.M. Mills for discussions and comments on the manuscript, as well 

as G. Petrick and U. Rabsch for technical advice and assistance.  We also thank J. 

Waterbury for the axenic Trichodesmium IMS-101 culture.  The experimental work was 

funded by EU-project IRONAGES (EVK2-CT–1999-00031) awarded to J.L.R 

95



Chapter III 
                    

        A 

15 20 25 30 35 40
temperature °C

0

0.

0

0.1

0.2

0.3

m
ax

im
um

 s
pe

ci
fic

 g
ro

w
th

 ra
te

 d
-1

04

080.

0.12

m
m

ol
 N

2 
fix

ed
 m

ol
 P

O
C

-1
 h

-1

         

24 - 30°C

> 30°C 

> 20°C

96



Chapter III 

Figure caption: 

 

1A: 

Maximum carbon (x, orange), nitrogen (x, blue) and chlorophyll-a (x, green) specific 

growth rates as a function of temperature.  The green line denotes the function of 

chlorophyll-a specific growth based on the polynomial function:  

 

µ =  2.29-5 x4  -  2.50-3 x3 + 9.71-2 x2 + 1.58 x + 9.15 

 

where x denotes temperature in °C.  Triangles and circles describe carbon specific 

nitrogen fixation as a function of temperature.  Different symbols denote individual 

measurement series.   

 

 

1 B+C: 

The observed present-day annual mean sea surface temperature (B) (suppl.3) in 

comparison to the annual mean sea surface temperature incremented by the 

modeled increase over the period 1990 to  2090 (C) based on HadCM3.  The black 

line (B+C) indicates the maximum latitudinal boundary of the 20°C isotherm and the 

white line (C) indicates its 1990 distribution superimposed on the 2090 model.
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supplemental material: 

 

Footnotes – Methods: 

 

(suppl.1) 

Nitrogen fixation rates were measured using the Acetylene Reduction Assay (ARA) 

(D. G. Capone, Handbook of Methods in Aquatic Microbial Ecology, (1993).), while 

calculations were modified after Breitbarth et al. (E. Breitbarth, M. M. Mills, G. 

Friedrichs, J. LaRoche, Limnology and Oceanography: Methods 2, 282-288, (2004)).  

Three replicates at each temperature were incubated simultaneously.  A ratio of C2H2 

reduced : N2 reduced of 4:1 was used (J.P. Montoya, M. Voss, P. Kaehler, D.G. 

Capone, Applied and Environmental Microbiology 62(3), 986-993, (1996)) and 

nitrogen fixation data were normalized to POC content of the incubated culture 

material. 

 

(suppl.2)  

Maximum specific growth rates were determined by identifying the exponential 

growth phase in the batch cultures and applying a linear fit to the respective log-

transformed POC, PON and chl-a values. The slope of the linear fit represents the 

growth rate. 

 

 (suppl.3)  

We applied sea surface temperature (SST) increase predictions based on two 

coupled atmosphere-ocean general circulation models (HadCM3 and GFDL) to 

current annual SST (S. Levitus, T. Boyer, in World Ocean Atlas, NOAA Atlas 

NESDIS 4, U.S. Department of Commerce, Washington, D.C., vol. 4. (1994)). The 

HadCM3 model is based on the assumption that future emissions of greenhouse 

gases will follow the IS92a 'business as usual' scenario   
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(http://www.met-office.gov.uk/research/hadleycentre/models/modeldata.html).   

This prognosis is generally verified by similar calculations using the GFDL R30 

climate model which is also based on the IS92a climate scenario until 1990 and 

assumes a 1% CO2 level increase per year thereafter. 

(http://www.gfdl.noaa.gov/~kd/ClimateDynamics/NOMADS/index.html).  

 

 

supplemental figure 
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Photosynthetic quantum use efficiency of exponentially growing batch 

cultures acclimated to the respective temperatures measured as variable 

fluorescence versus maximum fluorescence (Fv/Fm) of the Photosystem II.  

The Fv/Fm increases up to 27°C and remains at high levels up to the 

maximum feasible growth temperature of 34°C. 
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Abstract: 
 

The diazotrophic cyanobacterium Trichodesmium is a significant contributor to the marine 

nitrogen cycle and has been incorporated in biogeochemical ocean circulation models.  To 

date, parameterization of light as a controlling factor for nitrogen fixation has been based on 

field observations, where factors other than light also affect Trichodesmium physiology.  

Here we present data on light dependent diazotrophic growth from controlled laboratory 

experiments with implications for modeling approaches.  We further supply a 3-step model to 

assess nitrogen fixation by Trichodesmium in batch cultures.  Axenic Trichodesmium IMS-

101 was grown at light intensities between 15 and 1350 µmol quanta m-2 s-1.  Growth rates 

increased up to 180 µmol quanta m-2 s-1 and did not vary significantly up to light intensities of 

1100 µmol quanta m-2 s-1 (µPOC ~ 0.26 d-1), after which cultures were photoinhibited.  

Nitrogen fixation rates varied significantly as a function of growth phase.  When normalized 

to Chl-a, N2 fixation rates further are significantly affected by light intensity during mid-

exponential growth (0.74 – 4.45 mol N fixed mol Chl-a-1 h-1), which was not the case if 

nitrogen fixation rates were normalized to POC (0.42 – 0.59, averaging 0.5 mmol N mol 

POC-1 h-1).   Thus, POC can be used to estimate the nitrogen input by Trichodesmium into 

the ocean.  Nitrogen fixation rates level at a maximum of 350 nmol N fixed l-1 h-1. 

 

 

Introduction: 
 

Trichodesmium is an unusual cyanobacterium in that it simultaneously fixes nitrogen and 

carbon in daylight conditions (Bergman et al. 1997; Gallon et al. 1996).  This pattern has 

only been reported for two other cyanobacteria, Lyngbya majuscula and Symploca sp. 

(Fredriksson et al. 1998; Jones 1990).  Trichodesmium is very abundant and has been 

recognized as one of the most important nitrogen fixers in tropical and subtropical 

oligotrophic oceans (Capone et al. 1997).  Current estimates of marine nitrogen fixation 

range between 100 – 200 Tg yr-1 with Trichodesmium contributing 80 - 110 Tg N yr-1 

(Capone and Carpenter 1999; Gruber and Sarmiento 1997; Karl et al. 2002).   

 

Nitrogen fixation is an integral part in ocean biogeochemical circulation models (OBCM) and 

Trichodesmium is used as a model organism representing diazotrophic growth (Fennel et al. 

2001; Hood et al. 2001; Hood et al. 2004; Hood et al. 2002).  The parameterization of 

nitrogen fixation in OBCM's has been improved during recent years as Trichodesmium sp. 

received an increasing amount of scientific attention.  While forcing variables affecting 

growth, nitrogen and carbon fixation of this cyanobacterium such as macro- and micro-
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nutrient availability were determined to a large extent, irradiance as a factor has not been 

fully described (Berman-Frank et al. 2001; Kustka et al. 2003a; Kustka et al. 2003b; 

Mulholland and Capone 1999; Mulholland et al. 1999; Rueter et al. 1991; Sanudo-Wilhelmy 

et al. 2001).  Fennel et al. (2001) and Hood et al. (2001) supplement the lack of precise 

information on irradiance versus nitrogen fixation patterns by adapting parameters from 

photosynthesis versus irradiance (P vs. I) functions.  Carpenter et al. (1993) subjected field 

collected Trichodesmium from one sampling depth to light intensities up to 2500 µmol 

quanta m-2 s-1 photosynthetic active radiation (PAR), being the full surface irradiance, and 

described a P vs. I resembling nitrogen fixation pattern as a function of irradiance with 

indication of photoinhibition in T. erythraeum.  Hood et al. (2002) based model equations for 

nitrogen fixation of Trichodesmium sp. on field observations and used a similar approach to 

assess nitrogen fixation versus irradiance parameters.  In general it is problematic to 

distinguish between different forcing variables such as light, temperature or nutrient 

availability on the observed patterns in a natural environment.  Thus parameter values from 

field data are subject to uncertainties and laboratory experiments are needed to verify 

observations and to isolate the effect of individual forcing variables.  

 

The effect of short-term exposure to light intensities up to 180 µmol quanta m-2 s-1 on 

acetylene reduction of Trichodesmium has been studied under laboratory conditions (Fu and 

Bell 2003; Ohki and Fujita 1988).  Nitrogen fixation rates increase with irradiance, whereas 

the applied maximum irradiances were relatively low for sub-tropical environments and a 

saturating irradiance was not clearly determined.  In all experiments cultures were not grown 

at the respective light intensities.  Plant cells adjust in various ways to different light regimes.  

Physiological responses to short-term shifts in the light regime, i.e. pigment acclimation, are 

discussed elsewhere (Chapter V and manuscript in prep).   Here we focus on long term 

acclimations of Trichodesmium physiology grown under different light conditions.  

 

For laboratory experiments using batch cultures, growth phase has to be considered as a 

physiological factor.  Various authors (Berman-Frank et al. 2001; Chen et al. 1998; 

Mulholland and Capone 2001) have described nitrogen fixation and carbon fixation rates as 

a function of growth phase as well as of daytime.  In general, nitrogen fixation rates are 

elevated during the exponential growth phase and show a maximum at midday.    

 

Published laboratory experiments to date use light conditions with between 10 and 14 hours 

of full light intensity and dark period for the remaining time (L:D cycle).  We conducted two 

factorial experiments, one using L:D cycle conditions (50 and 900 µmol quanta m-2 s-1) and 

one applying a natural light cycle with peak intensities between 15 and 1100 µmol quanta  
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m-2 s-1, to elucidate the effect of light intensity and the type of the diurnal light curve on 

diazotrophic growth of Trichodesmium. The experiments further aim to describe a light 

dependent stoichiometry of particulate organic carbon and nitrogen (POC, PON), 

Chlorophyll-a, and total protein content of cultures grown at different light intensities.  As Chl-

a content per cell in phytoplankton can be adjusted to acclimate to light intensity (Geider et 

al. 1997), normalization of nitrogen fixation rates to Chl-a versus POC as a biomass 

measure is compared.  Finally, results compiled in this study are synthesized into a model to 

describe diazotrophic growth and nitrogen input into seawater by Trichodesmium as a 

function of light intensity.   

 

 

Materials and Methods: 
 

Growth of Trichodesmium cultures 

The strain Trichodesmium IMS 101 was grown at 26° C under axenic conditions using 

phosphorus and iron replete YBC II media without dissolved nitrogen added (Chen et al. 

1996).  Cultures were transferred during the exponential growth phase into 2l polycarbonate 

bottles, three replicates for each light intensity.  An incubator (Rumed, Germany) was set up 

to imitate the natural solar cycle of 12h at 0N 90W Julian day 1.  The cycle was modified by 

setting light intensities >97% as 100% resulting in a 2 hour peak intensity.  Light intensities 

15, 50, 180, 300, 600, 900, and 1100 µmol quanta m-2 s-1 photosynthetic active radiation 

(PAR) were created using neutral density screening and verified by measuring light 

penetration into an incubation bottle containing water using a submersible 4pi PAR sensor 

(LiCOR Inc, USA).  Additionally cultures were grown at 50 and 900 µmol quanta m-2 s-1 PAR 

in the same incubator with the light cycle set up at 1h dusk and dawn each and a 10h period 

of full light intensity.   Over the course of the growth period, samples for all parameters were 

generally taken at 11:00.   Maximum specific growth rates (µ) were determined by identifying 

the exponential growth phase in the batch cultures and applying a linear fit to the respective 

natural logarithm transformed POC, PON and Chl-a values.  The slope of the regression 

represents the growth rate. 

   

 

Chlorophyll-a analysis: 

Chlorophyll samples were filtered on GF/F filters, stored at -20°C and analyzed by 

fluorometry after bursting the cells in 90% Acetone by shaking and refreezing for 24h  

(modified after Welschmeyer (1994)).  This simple extraction method was previously 
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compared to the application of mechanical disruption of the cells and proved to be as 

efficient for Chlorophyll-a analysis of Trichodesmium (E. Breitbarth, unpublished data).  

 

Elemental analysis of particulate organic nitrogen PON and particulate organic carbon POC: 

Culture material was filtered on pre-combusted GF/F filters, frozen at -20°C for intermediate 

storage and finally dried for 48h at 45°C.  Filters were analyzed for PON and POC content 

on an elemental analyzer (Euro-EA, Hekatech, Germany) equipped with a chromium-

oxid/cobalt-oxid oxidation reactor, a copper reduction reactor and a CHN column at an oven 

temperature of 45°C.  Carrier gas flow (He) was set at 96ml min-1.  Measurements were 

corrected for blank values using measurements of similarly treated filters without culture 

material (Sharp 1975).   

 

Nitrogen fixation measurements 

Nitrogen fixation was measured using the Acetylene Reduction Assay (ARA) as described in 

Capone (1993) and Capone and Montoya (2001) while calculations were modified after 

Breitbarth et al. (2004).  Gas samples were analyzed on a Shimadzu GC-19B equipped with 

a flame ionization detector and a 30m wide bore capillary column (0.53 mm, AluminaPlot®, 

Resteck, USA).  Using this set-up, an oven temperature of 40°C, injector and detector 

temperature of 200°C and a carrier gas flow (N2) of 14.5 ml min-1 yielded optimal peak 

separation and detection limits.  Three replicates for each light intensity were incubated 

simultaneously for 2 h in 20.2 ml headspace vials containing 19 ml culture and 1.2 ml 

headspace with 0.4 ml acetylene added.  ARAs were carried out every second day at peak 

light intensity.  A ratio of C2H2 reduced : N2 reduced of 4:1 was used (Montoya et al. 1996) 

and nitrogen fixation data were normalized to POC and Chlorophyll-a content of the cultures.  

The ARA is prone to error and often yields a highly variable data outcome.  The coefficient of 

variation (CV*, corrected for bias in small sample size of 3 replicates (Sokal and Rohlf 1995)) 

was used to estimate the variation between triplicate measurements.  Data resulting in a CV* 

> 25 were excluded from the analysis after identifying the source of error, whereas all data 

were used in the statistical calculations.  Common errors include false biomass 

determinations (disagreement in POC/PON and Chl-a values, aggregate formation by 

Trichodesmium and thus patchy distribution in the vial) and leaking crimp seals or blocked 

syringe needles (high biomass with exceptionally low ethylene production rates).   

 

 

PAM fluorometry: 

A PhytoPAM equipped with Optical Unit ED-101US/MP (Walz, Germany) was used to 

measure the ratio of variable to maximal fluorescence (Fv/Fm) of Trichodesmium in 

105



Chapter IV 

response to different light intensities (Kolbowski and Schreiber 1995).  Cellular fluorescence 

signals were recorded every second day over the complete growth period of the cultures.  

Samples were dark-adapted for 10 minutes prior to the measurements. 

 

Protein analysis: 

Protein samples were taken at noon and midnight on day 16 of the natural light cycle 

experiment.  Sample material was extracted from filtered Trichodesmium material by 

sonicating the filters in SDS/CO3 buffer (La Roche et al. 1993).  Total protein was analyzed 

according to the bicinchoninic acid method using BCA protein assay reagents (Pierce, USA) 

and a 96-well plate reader.  The absorbance signal was calibrated versus 0 – 1500 µg 

protein l-1 standards  (Smith et al. 1985). 

 

Statistic analysis: 

All data were analyzed by applying 1-way ANOVA models and Fisher post-hoc tests using 

StatView (Version 5.0.1, SAS, USA).  Time series measurements were analyzed using a 

repeated measures 2-way ANOVA model.  The significance level was set at P < 0.05. 

 

  

Results: 
 

Growth of Trichodesmium cultures 

 

Trichodesmium IMS 101 grown at a natural cycle of different light intensities possessed 

typical microbial growth patterns with a clear exponential and stationary phase.  The lag 

phase was reduced as cells were transferred during the exponential growth phase from the 

start culture.   

 

Maximum PON and POC biomass was reached at 300 µmol quanta m-2 s-1 and maximum 

Chl-a biomass was reached at 180 µmol quanta m-2 s-1 at day 20 (Fig. 1, Tab. 1+2, Chl-a 

data not shown).   Cultures grown under L:D cycle conditions reached higher biomasses at 

50 and lower biomasses at 900 µmol quanta m-2 s-1 compared to cultures grown under 

natural light conditions during the same period of growth (Tab. 1).  The L:D light cycle 

experiment was stopped at day 15 after PhytoPAM measurements indicated reduced cellular 

fluorescence and carbon as well as nitrogen specific growth declined, whereas the natural 

light cycle experiment was continued until day 20.   Note that the highest POC biomasses 

are reached at 300 µmol quanta m-2 s-1 and the highest chlorophyll-a biomass is reached at 

180 and 300 µmol quanta m-2 s-1.  Final biomasses of POC and chl-a diverge and the high 
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light treatments show a reduced chl-a biomass, which is due to photoacclimation and 

reflected in the chl-a : POC ratio (Tab. 3).  Reduced biomasses at high light intensities are 

not significantly reflected in the maximum growth rates specific to each light intensity (Fig. 2), 

but are accounted for as an irradiance specific maximum biomass in the model.   

 

The experiment imitating the natural solar cycle yielded increasing growth rates up to 180 

µmol quanta m-2 s-1.  A significant effect of light intensity was detected for carbon, nitrogen 

and Chlorophyll specific growth rates (ANOVA, P < 0.0001).  Carbon specific growth rates at 

15 and 50 µmol quanta m-2 s-1 (µPOC = 0.03 d-1 and 0.08 d-1 respectively) differed significantly 

(post-hoc f-test, P < 0.05) to higher light intensities and to each other.  Carbon specific 

growth at light intensities ≥ 180 µmol quanta m-2 s-1 averaged 0.26 d-1 and did not differ 

significantly.  Chlorophyll-a specific growth rates were similar to carbon specific growth (Fig. 

2).  Nitrogen specific growth rates were lower than carbon and chlorophyll specific growth 

rates at all treatments, whereas general trends were similar.  Nitrogen specific growth rates 

ranged from 0.02 d-1 and 0.03 d-1 at 15 and 50 µmol quanta m-2 s-1 respectively to an 

average of 0.23 d-1 at 180 – 1100 µmol quanta m-2 s-1.   

 

Carbon and nitrogen specific growth rates at L:D light cycle conditions versus the imitated 

natural solar cycle were statistically identical at 50 µmol quanta m-2 s-1 but were significantly 

reduced at 900 µmol quanta m-2 s-1 at which they also differed from each other (0.19 d-1 

carbon specific and 0.16 d-1 nitrogen specific growth rate, Fig. 2, nitrogen specific growth 

rates not shown).   

 

The energy provided by the L:D light cycle treatments equals 1.48 times the energy supplied 

by the natural light treatment over the course of a day.  Thus the 50 µmol quanta m-2 s-1 is 

equivalent to 74 and the 900 µmol quanta m-2 s-1 to 1330 µmol quanta m-2 s-1 of the natural 

light cycle treatment, respectively.  Therefore the reduced growth rates between 1100 

(natural light cycle) and 1330 (converted from 900 µmol quanta m-2 s-1 L:D cycle) indicate 

photoinhibition of diazotrophic growth.  In order to better compare the effect of these two 

light treatments, growth rate data are also plotted versus total PAR received per day in 

Figure 2.   
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Figure 1: Carbon specific biomass as a function of light intensity and growth phase of the 

natural light cycle experiment.  The light intensity is indicated on the right hand side in 

µmol quanta m-2 s-1 PAR.   
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Figure 2: Carbon (black triangle) and chlorophyll-a (green triangle) specific growth rates of 

axenic Trichodesmium IMS-101as a function of light intensity.  Carbon specific growth 

rates from the L:D cycle experiment are plotted as open circles.  Light intensity from 

the L:D cycle experiment can be converted to the equivalent amount of light energy of 

the natural light cycle treatment (conversion factor = 1.48, both lower x-axis, see text).  

Growth rates are plotted versus total amount of photosynthetic active radiation per 

day (upper x-axis) for comparison.  The solid line indicates carbon specific growth 

rates derived from the data based on equation 1.  Error bars denote standard 

deviations. 
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Stoichiometry of PON, POC and Chl-a: 

 

Like growth rates POC:PON ratios (mol:mol) were similar (overall ~ 5.4 – 5.6) at light 

intensities ≥ 180 µmol quanta m-2 s-1.  In comparison the POC:PON ratios at 15 and 50 µmol 

quanta m-2 s-1 were significantly reduced and averaged 3.6 and 3.8 respectively.  Values 

only increased at the end of the experiment to values near the other light treatments.  Ratios 

of POC:PON from cultures grown at 180 – 1100 µmol quanta m-2 s-1 increased with growth 

phase from ~ 4.5 to 5.5 (days 2-10), values slightly decreased thereafter until day 16, 

recovered afterwards and averaged 5.7 – 5.9 (Tab. 4). 

As expected, the ratio of Chl-a :POC (w:w) in Trichodesmium decreased with increasing light 

intensity.  For example Chl-a :POC at 180 µmol quanta m-2 s-1 averaged 0.018 and 

decreased to 0.012 at 1100 µmol quanta m-2 s-1.  At 15 and 50 µmol quanta m-2 s-1 the ratio 

was highly variable averaging at 0.028 and a maximum of 0.058 was measured.  For details 

see table 3 and figure 4. 

 

 

Total protein content 

Total protein contents of the cultures were analyzed on day 16.  Like other biomass 

parameters, total protein content was significantly affected by the light treatment (ANOVA, P 

< 0.0001).  Values ranged from 708 to 5763 µg protein l-1 at 50 and 300 µmol quanta m-2 s-1 

respectively.  No significant differences in total protein content were detected between 15 

and 50 as well as between all light intensities between 180 and 900 µmol quanta m-2 s-1.  

The total protein content was significantly reduced at 15-50 and at 1100 µmol quanta m-2 s-1 

compared to the rest of the treatments (post-hoc f-tests, P < 0.05).  Night-time 

measurements taken 12h after the day-time measurements verified these trends differences 

to daytime measurements are compliant with growth rates (data not shown).  

 

The POC:total protein ratio (weight:weight) resembles a similar pattern versus light intensity 

as the POC:PON ratio.  Values range from 0.5 to 2.4 and are reduced at light treatment < 

180 µmol quanta m-2 s-1 versus higher light intensities (Fig. 4).   The low POC:PON ratios in 

the low light treatments indicate that here PON is mostly present as pure protein.   

 

 

Cellular fluorescence and photosynthetic efficiency: 

 

Over all Fv/Fm increased from ~0.15 to ~0.28 from day 2 to day 10 of the growth period 

regardless of the light treatment.  While high light treatments in general had lower Fv/Fm 
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ratios than low light treatments it is only possible to clearly distinguish two groups of 

responses from day 14 on.  Light intensities between 600 and 1100 µmol quanta m-2 s-1 

possessed Fv/Fm ratios of 0.15 – 0.3 while cultures grown at lower intensities continued to 

yield higher Fv/Fm peaking between 0.39 and 0.43 on day 18.  The highest photosynthetic 

efficiency on average was measured at 180 µmol quanta m-2 s-1 (Fig. 3). 

 

 

Nitrogen fixation measurements versus light intensity and growth phase  

 

We tested if nitrogen fixation rates differ as a function of growth phase, light intensity and 

normalization to a specific biomass parameter.  Nitrogen fixation rates were significantly 

affected by the growth phase of the culture regardless of which biomass parameter was 

used for normalization (rep. measures ANOVA, P < 0.01) (Fig. 5).  Fixation rates were 

generally high in the beginning of the growth phase, likely due to the fact that cultures were 

transferred from a start culture during the exponential growth phase.  Fixation rates 

decreased until day 8, the onset of the linear phase of exponential growth (Fig. 1), and 

reached a maximum at day 12 after which they decreased again.  Cultures grown at 15 and 

50 µmol quanta m-2 s-1 showed increased nitrogen fixation rates towards the end of the 

experiment (day 18+20).  When normalized to POC, nitrogen fixation rates did not show a 

significant interaction with light intensity (ANOVA, P = 0.25, Fig. 5b).  In contrast, 

Chlorophyll-a normalized nitrogen fixation rates are a function of light intensities (ANOVA, P 

< 0.01, Fig. 4a).  This is particularly evident during mid exponential growth (days 8-12).  At 

day 12 rates ranged from 0.74 mol N2 fixed (mol Chl-a)-1 h-1 at 15 µmol quanta m-2 s-1 to 4.45 

mol N2 fixed (mol Chl-a)-1 h-1 at 1100 µmol quanta m-2 s-1, while carbon specific nitrogen 

fixation rates averaged 0.5 mmol N2 fixed (mol POC)-1 h-1 (0.42 - 0.59).   Frequently POC 

and Chl-a specific fixation rates at 180 µmol quanta m-2 s-1 where relatively low compared to 

rates at 50 and 300 µmol quanta m-2 s-1 (Fig. 5).   For detailed results see tables 5+6.  
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Figure 3: Photosynthetic quantum use efficiency (Fv/Fm) of Trichodesmium IMS-101 as a 

function of growth phase and light intensity.  The light treatments are symbolized in 
the legend as µmol quanta m-2 s-1.  Error bars denote standard deviations. 
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Figure 4: Overview of POC:total protein (open circles), POC:PON (solid circles) and Chl-a:POC 

(red circles) stoichiometry of Trichodesmium IMS-101 grown at different light 
intensities on day 16 of the natural light cycle experiment.  Error bars denote standard 
deviations. 
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Figure 5: Chlorophyll-a specific (a) and carbon specific (b) nitrogen fixation rates as a function 

of growth phase (d = number of days, x-axis) and light intensity (µmol quanta m-2 s-1 

PAR, z-axis).  Shown are measurements from days 4-20.  The datasets including 

standard deviations of the measurements are given in tables 5+6.  Results from the 

experiment using a L:D cycle are not included but are presented in table 6 as well.  

The legends denote the nitrogen fixation rates in mol N fixed (mol chl-a)-1 h-1 (a) and 

nmol N fixed (µmol POC)-1 (b) plotted on the y-axis.   

 

113



Chapter IV 

 

Modeling growth and nitrogen fixation by Trichodesmium as a function of light intensity: 

 

The data presented allow for a numeric approach to describe nitrogen input into seawater by 

Trichodesmium in batch culture incubations.   

 

 

Model parameter, symbols, units and values used: 

 

 
Description 
 

 
Symbol 

 
Value 

 
Units 
 

 
physical parameters 

   

Irradiance I  µmol quanta m-2 s-1

light inhibition parameter Iinh 1200 µmol quanta m-2 s-1

incubation time t  d 
    
biological parameters    
maximum growth rate µmax 0.27 d-1

light absorption coefficient for growth α 0.002 d-1 (µmol quanta m-2 s-1)-1

start particulate organic carbon (POC) biomass No 40 µmol l-1
POC biomass at a given incubation time  Nt  µmol l-1
maximum POC biomass K 1600 µmol l-1
nitrogen fixation rate Nfix  nmol l-1 h-1

light absorption coefficient for POC accumulation αN 1.8 µmol l-1 (µmol quanta m-2 s-1)-1

POC biomass specific Nfix inhibition parameter Ft  dimensionless 
    
    

 

 

Specific growth rates under natural light conditions can be described based on equation 1, 

which is modified from Jassby and Platt (1975): 

 

    ⎟
⎠

⎞
⎜
⎝

⎛
=

max
max

 tanh
µ
αµµ I      (1) 

 

where µmax is the maximum specific growth rate measured (0.27 d-1) and α is the initial slope 

of the growth rate (0.002 d-1 (µmol quanta m-2 s-1) -1) versus irradiance (I in µmol quanta m-2 

s-1) curve.  Equation 1 is only applicable for light intensities up to 1100 µmol quanta m-2 s-1, 

because reduced growth rates of the high light treatment in the L:D cycle experiment 

indicate photoinhibition and a light inhibition term is not included. 

 

 

114



Chapter IV 

 

Trichodesmium biomass as a function of incubation time (number of days) and light intensity 

can be described as: 

 

    ( ) tt eNKN
KNN  

00

0

 
 

µ−−+
=      (2) 

 

Where Nt represents the POC biomass (µmol l-1) at the time t (d), N0 is the start value of the 

POC biomass (µmol l-1), µ is the light specific growth rate (d-1) and K is the maximum POC 

biomass reached (µmol l-1). Based on results presented above, a POC start biomass of 40 

µmol l-1 and a maximum POC biomass of 1600 µmol l-1 were used.   

 

POC normalized nitrogen fixation rates are not a direct function of irradiance and thus 

carbon biomass can be used to approximate nitrogen fixation rates per unit volume.  Data 

presented above demonstrate that Trichodesmium fixes approximately 0.5 nmol N2 (µmol 

POC)-1 h-1. Thus, the nitrogen fixation rate (nmol N l-1 h-1) is directly correlated with the 

irradiance specific biomass in the batch cultures and nitrogen fixation per unit volume and 

can be described as: 

 

⎟
⎟
⎠

⎞
⎜
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⎝
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≡

2
fix

 tanh 
2

N
tN

Nt IN α
    (3) 

 

Where αN  is the light absorption coefficient of POC biomass accumulation and tuned to 1.8 

µmol POC l-1 per unit light (µmol quanta m-2 s-1). 

 

At mid-exponential growth, observed maximum fixation rates average 350 nmol nitrogen 

fixed per liter at 300 µmol quanta m-2 s-1  (Fig. 5).  Growth dynamics eventually down 

regulate nitrogen fixation rates due to NH4
+ exuded from cells (Holl and Montoya 2003; 

Mulholland and Capone 1999; Mulholland et al. 1999; Mulholland et al. 2001).  Reduced 

fixation rates at high irradiances in the later growth phase were observed (Fig. 5b, table 1) 

and thus equation 3 would only be valid for cultures in the exponential growth phase.  

Mulholland et al. (2001) provide data on NH4
+ and POC concentrations from batch cultures 

of Trichodesmium IMS-101 grown under similar conditions as here.  We applied the NH4
+ 

data (not shown) to derive a simplified relationship between POC concentration and NH4
+ in 

solution: 
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and derive a correction factor Ft for nitrogen fixation, using a type 4 Hill function.  Ft is 

specific to an incubation time t and therefore also to the POC and the NH4
+ concentration in 

solution: 
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Where the parameters were tuned to the following values: a = 2, b = 8, c = 3.1.   

 

Nitrogen fixation (Nfix, nmol l-1 h-1) is described based on equation 3, whereas the NH4
+ 

inhibition correction factor (Ft) and a light inhibition parameter (Iinh) at 1200 µmol quanta m-2 

s-1 are added. 
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tmax denotes the maximum incubation time in days.  The modeled nitrogen fixation rates are 

in agreement with the measured nitrogen fixation rates (Fig. 6). 
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Figure 6: Results of modeled (a) and measured (b) nitrogen fixation rates as a function of light 

intensity and growth phase.  The legend on the right denotes days of growth.  In 

comparison to the measured rates the model fit yields lower nitrogen fixation rates 

during the early growth phase.  The model applies photoinhibition regardless of the 

age of the culture, whereas this pattern may be affected by growth phase as indicated 

in (a).  Fixation rates were stronger reduced at high light intensities during the late 

growth phase than during early exponential growth (a).  Modeled and measured 

results agree reasonably well on maximum nitrogen fixation rates (~ 350 nmol N fixed 

l-1 h-1) during mid and late exponential growth.  See table 1 for exact values and 

standard deviations of nitrogen fixation and carbon biomass measurements. 
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Discussion: 
 

Photosynthetic organisms occupy specific niches of light regimes.  Light energy is converted 

into ATP via photophosphorylation, which is then available for physiological processes.  

Trichodesmium sp. has a higher energy demand than other phototrophic organisms in order 

to maintain diazotrophic growth since nitrogen fixation requires additional 8 e- and 16 ATP 

per molecule N2 reduced to NH4
+ in comparison to non-diazotrophic organisms that utilize 

dissolved NH4
+.  Additionally the organism has to cope with the paradox of photosynthetically 

producing oxygen while utilizing the nitrogenase enzyme, which is irreversibly blocked by 

oxygen.  Thus Trichodesmium has to create an intracellular oxygen environment feasible for 

nitrogen fixation.  Next to high respiration rates, the energetically costly photoreduction of 

oxygen in photosystem I (Mehler reaction) has been suggested to be the main oxygen 

protective mechanism in this non-heterocystous diazotroph (Carpenter and Roenneberg 

1995; Kana 1991; Kana 1993).  Overall, high energy requirements of phototrophs demand a 

light replete environment.  Thus, not surprisingly, Trichodesmium is generally encountered in 

the upper portion of the euphotic zone and is well adapted to high irradiation in sub-

tropical/tropical oligotrophic surface waters and data shown here are compliant to that 

(Capone et al. 1997; Carpenter and Roenneberg 1995).  

 

We were able to elucidate the effect of different light intensities and light cycle characteristics 

on diazotrophic growth of Trichodesmium IMS-101.  Growth rates increase up to light 

intensities of 180 µmol quanta m-2 s-1 and remain constant thereafter.  Photoinhibition for 

diazotrophic growth was observed at high light intensities (> 1100 µmol quanta m-2 s-1).  POC 

normalized nitrogen fixation rates generally level at 300 µmol quanta m-2 s-1.  The effect that 

Chl-a normalized nitrogen fixation rates are a function of irradiance, while POC normalized 

fixation rates are not, is driven by the acclimation of Chl-a content per cell to specific light 

intensities (Fig. 5).   

 

Light inhibition in Trichodesmium was demonstrated by the reduced growth rates of cultures 

subjected to 900 µmol quanta m-2 s-1 (L:D cycle conditions) versus cultures grown using a 

natural solar cycle.  Carpenter and Roenneberg (1995) though conclude that Trichodesmium 

is adapted to high light regimes and can adjust its photosynthetic characteristics accordingly 

to its position in the water column and to seasonal changes in the light regime.  While the 

authors detected no light inhibition of photosynthesis at 2500 µmol quanta m-2 s-1, light 

inhibition of nitrogenase activity in T. erythraeum at the same irradiance was noticed in 

another study (Carpenter et al. 1993).  The used culture organism, Trichodesmium IMS 101, 

is an isolate of T. erythraeum (Janson et al. 1999) and was grown at the light intensities at 
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which experiments were carried out at.  Therefore cells were fully acclimated.  The treatment 

of 900 µmol quanta m-2 s-1 for 10 h d-1 plus one hour of linear dusk and dawn phase equals a 

total quantum flux of 36 mol quanta m-2 d-1.  This is equivalent to the light energy of a natural 

solar cycle peaking at ~ 1330 µmol quanta m-2 s-1.  Thus cultures grown under L:D cycle 

conditions receive ~50% more light energy than cultures grown using a natural illumination 

cycle, which has to be considered in physiological experiments.  We conclude that 

photoinhibition can affect Trichodesmium blooms at the sea surface.  If in natural waters the 

surface irradiance is 2500 µmol quanta m-2 s-1, the maximum light intensity chosen for this 

experiment resembles natural irradiance in 16 meters depth (based on a light attenuation 

coefficient of 0.05 m-1).  The span of irradiances used in our experiments approximately 

reflects light regimes in a natural water column from the upper meters to the 0.5 - 1% light 

level at ~ 100 meters depth.  Typically Trichodesmium shows a biomass maximum 20 to 40 

m depth and thus resides in a light environment of 300 to 900 µmol quanta m-2 s-1 (Capone 

et al. 1997).  This preference matches the observed growth rate, biomass and nitrogen 

fixation maxima described here.   

 

Higher energy supply, particularly between 180 and 300 µmol quanta m-2 s-1 light, is not 

utilized from the perspective of biomass accumulation.  It is possible though, that increased 

gross photosynthesis or gross nitrogen fixation and thus metabolic activity within the cell 

result in higher turnover of carbon and nitrogen and thus exudation as DOC or DON (Glibert 

and Bronk 1994; Glibert and O'Neil 1999).  This raises a concern regarding the conversion 

factor of ethylene reduced:dinitrogen fixed though.  This factor can vary between 2 and 25 

under different environmental conditions (Gallon et al. 2002), such as temperature (M.Mills 

and E. Breitbarth, unpublished data).  It is likely that light intensity also influences the ratio of 

gross to net nitrogen fixation and thus the ethylene produced to nitrogen fixed conversion 

factor.  Further, the Mehler reaction consumes up to 48% of the total photosynthetic linear 

electron flow (Kana 1993) and thus is partly responsible for a high energetic demand with 

increasing photosynthetic activity at moderate light irradiances which then is not available for 

biomass growth.  The cells have to maintain a steady-state with regard to energy budget, 

physiological maintenance processes such as O2 scavenging or photosystem repair and 

growth, which is met at 180 µmol quanta m-2 s-1.  Metabolic processes operate at optimum 

turnover rates, which is achieved between 180 and 300 µmol quanta m-2 s-1.  Higher rates 

would result in luxury nitrogen fixation, which is energetically inefficient.  Measurements of 

cellular fluorescence (Fv/Fm) indicate reduced photosynthetic quantum use efficiency at light 

levels > 300 µmol quanta m-2 s-1 (table 1).  Hence a larger proportion of light energy greater 

300 µmol quanta m-2 s-1 received by the cell is not utilized, matching the growth and nitrogen 

fixation patterns described.  Antagonistically, elemental stoichiometry suggest light limitation 

119



Chapter IV 

below 180 µmol quanta m-2 s-1.  The POC:PON ratio, as well as the POC : total protein ratio, 

are reduced compared to that of cultures grown at higher light levels (Fig. 4, Table 4).  Both 

indicate reduced carbon incorporation into particulate matter.  Photosynthetically fixed 

carbon is likely respired as carbohydrates at increased rates to provide energy necessary for 

nitrogen fixation and cellular maintenance at low light intensities.  Increased carbohydrate 

storage at high light intensities has also been suggested by (Letelier and Karl 1998) in order 

to regulate the buoyancy of Trichodesmium in the water column. 

 

We derive an optimum light regime for diazotrophic growth between 180 and 1100 µmol 

quanta m-2 s-1.  The cut-off of the increase in growth rate at an irradiance of 180 µmol quanta 

m-2 s-1 agrees reasonably well with reported light compensation points (Ic) in photosynthesis 

versus irradiance curves.  For example, in field studies Carpenter et al. (1993) report Ic at ~ 

150 µmol quanta m-2 s-1 while Kana (1991) states a value of 280 µmol quanta m-2 s-1.  

Growth rates are constant above this light intensity (µPOC ~ 0.26 d-1) and nitrogen fixation 

rates are constant above 300 µmol quanta m-2 s-1 during mid-exponential growth (~ 350 

nmol N fixed l-1 h-1).  Light inhibition can occur at irradiances above 1100 µmol quanta m-2s-1, 

which in most cases is only reached at the sea surface.  The application of Chlorophyll-a as 

a biomass measure and normalization parameter for physiologic rate measurements is 

unsuitable, as the cellular Chlorophyll-a content is adjusted to the light regime.  The 

particulate carbon concentration is better suited for this application as it is the more 

conservative biomass parameter.  Based on the presented findings we can state the 

following recommendations for the application in ocean biogeochemical circulation models.  

A: Diazotrophic growth of Trichodesmium can be described based on equation 1.  Under 

nutrient and light replete conditions the maximum Trichodesmium biomass of ~ 1500 µmol 

POC l-1 and 240 µmol PON l-1 is reached at 300 µmol quanta m-2 s-1 and a light inhibition 

term can be set at > 1100 µmol quanta m-2 s-1.  B: Nitrogen fixation is a function of [POC] 

during exponential growth and can be simplified to 0.5 x POC (µmol l-1) = N fixed (nmol l-1).  

C: The maximum nitrogen fixation rate per unit volume is 350 nmol N fixed l-1 and expressed 

as a function of light intensity based on equation 6.  D: Nitrogen fixation is down regulated by 

exuded nitrogen sources during late exponential growth.  The cut off concentrations for 

nitrogen fixation by NH4
+ and NO3

- are ~ 10 µM (Holl and Montoya 2003; Mulholland et al. 

2001), but specific terms for a gradual NH4
+ and NO3

- down regulation of nitrogen fixation 

need to be developed.  Comparing the modeling approach to the measured nitrogen fixation 

data (Fig. 6) reveals an apparent effect of growth phase on the light inhibition parameter, 

which requires further investigation.  While down regulation by light inhibition was only 

measured at a later growth stage (higher NH4
+ concentration), the model applies 

photoinhibition regardless of the age of the culture.  Thus it may underestimate nitrogen 
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fixation at high light intensities in relatively young cultures.  Nevertheless, the model 

represents nitrogen input, particularly maximum rates, reasonably well during mid and late 

exponential growth, which may be well applicable to physiological conditions in natural 

Trichodesmium blooms.   

 

Surface abundance of Trichodesmium can be estimated using SeaWIFS imagery 

(Subramaniam et al. 2002).  Hood et al. (2002) developed a model describing depth 

integrated nitrogen fixation using surface Trichodesmium Chl-a based on SeaWIFS data.  

Results presented here illustrate that Chl-a is not a suitable biomass indicator to normalize 

physiological rate measurements over different of light conditions as the Chl-a:POC ratio is 

acclimated to the respective light regime.  Second, previous measurements of nitrogen 

fixation as a function of light intensity were conducted on non-light-acclimated cells that were 

only exposed to the specific light intensities for short periods of time.  The here presented 

model is based on POC normalized nitrogen fixation measurements of light-acclimated 

Trichodesmium cultures and therefore may help to improve depth integrated nitrogen fixation 

models.   
 

In conclusion, Trichodesmium is well adapted to high light regimes.  Nevertheless, this 

diazotroph also grows at light intensities equivalent to the compensation depth in sub-

tropical waters and results from this study are applicable throughout the euphotic zone.  

Thus, information on light regime, nutrient concentrations and carbon biomass can be used 

to estimate the bulk of nitrogen input into oligotrophic waters by nitrogen fixation of 

Trichodesmium. 
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Table 1: POC concentrations in µmol l-1 of Trichodesmium IMS-101 grown at different light 
intensities.  Photosynthetic active radiation (PAR) is indicated in µmol quanta m-2s-1 
as the mid-day peak light intensity during a natural solar cycle.  The light intensities 
75 and 1350 µmol quanta m-2 s-1 were converted from the L:D cycle experiment as 
described in the text.  Bold numbers denote mean values and non bold numbers 
are standard deviations. 

 
 

 
 
    PAR 
 
day 
 

 
15 

 
50 

 
75 
L:D 
50 

 
180 

 
300 

 
600 

 
900 

 
1100 

 
1350 
L:D 
900 

          

0 14.7 
3.4 

30.4 
14.5 

47.9 
2.3 

13.0 
3.0 

15.7 
3.3 

20.2 
8.1 

23.5 
9.7 

16.1 
15.1 

47.1 
3.4 

2 14.4 
3.0 

21.2 
9.6 

46.3 
1.9 

52.2 
7.9 

66.4 
23.0 

51.4 
3.6 

63.2 
17.4 

51.0 
9.5 

77.5 
3.0 

4 40.0 
8.4 

27.5 
8.4 

55.9 
1.6 

78.7 
9.6 

98.3 
6.7 

110.0 
3.7 

106.8 
13.6 

95.4 
4.4 

130.3 
15.1 

6 51.9 
21.4 

13.7 
5.6 

89.0 
6.5 

127.4 
8.3 

188.2 
3.9 

189.5 
6.4 

175.2 
8.6 

189.4 
2.9 

200.6 
14.7 

8 30.5 
14.4 

18.0 
15.7 

80.3 
3.3 

229.7 
24.1 

286.0 
14.8 

333.5 
34.6 

323.4 
17.6 

271.4 
33.3 

255.9 
34.5 

10 18.0 
5.1 

29.2 
2.4  391.5 

22.2 
464.4 
23.2 

515.1 
25.2 

517.4 
45.9 

457.3 
46.0  

11   91.6 
4.1      414.6 

16.5 

12 50.8 
7.9 

72.6 
7.6  573.4 

52.9 
652.8 

5.3 
581.9 
137.5 

760.1 
40.2 

604.2 
100.7  

13   103.8 
11.1      552.4 

15.8 

14 31.7 
14.4 

37.6 
13.1  681.4 

13.6 
854.7 
42.5 

810.5 
123.5 

977.7 
44.4 

671.4 
46.0  

15   132.0 
9.7      665.6 

63.4 

16 44.8 
20.5 

68.6 
15.2  943.3 

34.0 
1032.9 
136.1 

1044.9 
3.2 

1088.3 
87.8 

717.9 
167.3  

18 16.9 
7.9 

52.7 
6.7  1135.3 

39.3 
1219.7 
129.9 

1328.6 
36.2 

1241.6 
127.9 

808.6 
163.2  

20 55.7 
10.3 

85.5 
5.2  1209.2 

88.6 
1534.7 
119.5 

1315.1 
100.9 

1349.3 
118.0 

1003.1 
100.2  
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Table 2: PON concentrations in µmol l-1 of Trichodesmium IMS-101 grown at different light 
intensities.  Photosynthetic active radiation (PAR) is indicated in µmol quanta m-2s-1 
as the mid-day peak light intensity during a natural solar cycle.  The light intensities 
75 and 1350 µmol quanta m-2s-1 were converted from the L:D cycle experiment as 
described in the text.  Bold numbers denote mean values and non bold numbers 
are standard deviations. 

 
 

 
 
    PAR 
 
day 
 

 
15 

 
50 

 
75 
L:D 
50 

 
180 

 
300 

 
600 

 
900 

 
1100 

 
1350 
L:D 
900 

          

0 7.1 
1.3 

10.7 
2.0 

12.3 
0.4 

8.1 
0.4 

7.0 
0.4 

8.3 
1.9 

6.6 
0.3 

7.2 
2.0 

10.8 
0.2 

2 6.8 
1.6 

6.4 
2.0 

14.6 
1.8 

10.4 
0.6 

13.9 
1.3 

12.5 
0.7 

13.7 
2.6 

13.5 
1.3 

16.6 
0.4 

4 8.3 
0.1 

13.7 
5.0 

17.0 
0.7 

16.2 
0.8 

18.4 
0.6 

22.9 
1.1 

22.8 
3.2 

20.0 
0.5 

27.1 
2.6 

6 6.5 
3.8 

4.1 
1.8 

19.8 
0.8 

22.2 
0.6 

33.0 
2.4 

36.1 
0.4 

35.9 
3.0 

37.1 
4.3 

37.1 
2.0 

8 10.8 
1.9 

7.9 
1.4 

14.5 
0.5 

44.1 
4.8 

51.0 
3.7 

58.3 
3.3 

59.0 
1.0 

48.9 
5.7 

40.7 
5.4 

10 6.6 
0.9 

8.9 
0.4  65.2 

4.1 
76.7 
4.9 

88.8 
12.9 

87.0 
7.9 

76.5 
4.6  

11   18.7 
0.6      71.9 

4.3 

12 8.5 
1.6 

11.6 
1.2  100.2 

9.8 
116.3 

5.0 
109.5 
20.4 

135.3 
5.1 

109.9 
12.5  

13   21.3 
1.7      97.8 

1.4 

14 8.2 
2.0 

12.6 
1.4  124.0 

5.4 
149.6 

5.3 
150.2 
22.0 

171.8 
8.6 

125.0 
8.0  

15   26.2 
2.1      116.3 

7.0 

16 12.8 
4.2 

15.9 
3.8  174.4 

3.9 
187.3 
22.2 

198.0 
4.8 

198.4 
15.7 

136.9 
25.6  

18 9.4 
1.3 

12.9 
0.6  205.7 

14.7 
213.3 
25.0 

232.7 
8.3 

218.5 
21.8 

146.4 
26.3  

20 7.1 
1.9 

12.6 
1.9  201.2 

14.1 
243.2 
22.8 

226.4 
10.8 

215.3 
14.8 

161.7 
12.5  
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Table 3: Chlorophyll-a : POC stoichiometry (weight : weight) of Trichodesmium IMS-101 
grown at different light intensities.  Photosynthetic active radiation (PAR) is 
indicated in µmol quanta m-2 s-1 as the mid-day peak light intensity during a natural 
solar cycle.  The L:D cycle experiment yielded no reliable chlorophyll-a 
measurements and thus the respective data were excluded.  Bold numbers denote 
mean values and non bold numbers are standard deviations.  The mean values for 
all data are calculated for days 4 – 18 of each light treatment and are given at the 
bottom of the table.  

 
 

 
 
    PAR 
 
day 
 

 
15 

 
50 

 
180 

 
300 

 
600 

 
900 

 
1100 

        

0 0.020 
0.001 

0.013 
0.005 

0.030 
0.006 

0.023 
0.004 

0.020 
0.009 

0.015 
0.004 

0.021 
0.006 

2 0.034 
0.005 

0.019 
0.002 

0.015 
0.002 

0.013 
0.003 

0.013 
0.002 

0.011 
0.003 

0.013 
0.003 

4 0.014 
0.002 

0.026 
0.008 

0.020 
0.004 

0.015 
0.002 

0.013 
0.001 

0.013 
0.001 

0.014 
0.001 

6  0.058 
0.020 

0.021 
0.001 

0.015 
0.000 

0.015 
0.001 

0.015 
0.000 

0.013 
0.001 

8 0.030 
0.008 

0.033 
0.010 

0.018 
0.001 

0.015 
0.001 

0.013 
0.001 

0.013 
0.001 

0.013 
0.001 

10 0.033 
0.002 

0.037 
0.004 

0.017 
0.001 

0.015 
0.002 

0.010 
0.003 

0.011 
0.004 

0.013 
0.001 

11        

12 0.015 
0.003 

0.016 
0.001 

0.018 
0.000 

0.018 
0.001 

0.012 
0.001 

0.013 
0.001 

0.011 
0.001 

13        

14 0.019 
0.004  0.016 

0.006 
0.016 
0.001 

0.013 
0.000 

0.013 
0.000 

0.012 
0.000 

15        

16 0.033 
0.006 

0.017 
0.008 

0.018 
0.001 

0.016 
0.003 

0.012 
0.000 

0.012 
0.000 

0.011 
0.001 

18 0.038 
0.007 

0.021 
0.002 

0.014 
0.001 

0.011 
0.002 

0.009 
0.001 

0.011 
0.001 

0.009 
0.001 

20 0.018 
0.003 

0.022 
0.003 

0.019 
0.000 

0.014 
0.001 

0.012 
0.001 

0.010 
0.000 

0.010 
0.000 

        
mean 

sd 
0.025 
0.011 

0.029 
0.016 

0.018 
0.013 

0.015 
0.002 

0.012 
0.002 

0.012 
0.002 

0.012 
0.002 
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Table 4: POC : PON stoichiometry (mol : mol) of Trichodesmium IMS-101 grown at different 
light intensities.  Photosynthetic active radiation (PAR) is indicated in µmol quanta 
m-2s-1 as the mid-day peak light intensity during a natural solar cycle.  The light 
intensities 75 and 1350 µmol quanta m-2 s-1 were converted from the L:D cycle 
experiment as described in the text.  Bold numbers denote mean values and non 
bold numbers are standard deviations.  The mean values for all data are calculated 
for days 4-18 (L:D cycle: 4-15) of each light treatment and are given at the bottom 
of the table.  

 
 

 
 
    PAR 
 
day 
 

 
15 

 
50 

 
75 
L:D 
50 

 
180 

 
300 

 
600 

 
900 

 
1100 

 
1350 
L:D 
900 

          

0 2.07 
0.11 

2.74 
0.77 

3.90 
0.14 

1.59 
0.34 

2.26 
0.55 

2.39 
0.45 

2.74 
0.29  4.36 

0.27 

2 2.16 
0.49 

3.20 
0.92 

3.21 
0.48 

4.53 
0.34 

3.99 
0.11 

4.13 
0.51 

4.58 
0.41 

3.79 
0.72 

4.66 
0.18 

4 4.26 
0.38 

2.93 
0.03 

3.28 
0.19 

4.85 
0.35 

5.33 
0.20 

4.80 
0.22 

4.69 
0.10 

4.77 
0.24 

4.81 
0.10 

6  2.87 
0.89 

4.49 
0.23 

5.75 
0.44 

5.72 
0.40 

5.25 
0.12 

4.90 
0.17 

5.15 
0.64 

5.40 
0.12 

8 3.33 
0.24 

3.07 
0.64 

5.55 
0.05 

5.21 
0.06 

5.62 
0.24 

5.71 
0.36 

5.48 
0.22 

5.55 
0.13 

6.29 
0.16 

10 2.69 
0.52 

3.27 
0.12  6.01 

0.04 
6.06 
0.39 

6.19 
0.26 

5.95 
0.10 

5.97 
0.38  

11   4.92 
0.28      5.77 

0.15 

12 5.98 
0.46 

6.23 
0.12  5.73 

0.03 
5.62 
0.28 

5.28 
0.26 

5.62 
0.18 

5.48 
0.32  

13   4.88 
0.21      5.65 

0.12 

14 3.70 
0.98 

2.95 
0.81  5.49 

0.13 
5.71 
0.10 

5.40 
0.15 

5.69 
0.06 

5.37 
0.10  

15   5.05 
0.07      5.71 

0.21 

16 3.42 
0.51 

4.34 
0.21  5.41 

0.07 
5.51 
0.08 

5.34 
0.13 

5.48 
0.02 

5.22 
0.24  

18 1.76 
0.57 

4.10 
0.57  5.53 

0.21 
5.72 
0.10 

5.71 
0.11 

5.68 
0.02 

5.51 
0.12  

20 7.92 
0.63 

6.84 
0.76  6.01 

0.04 
6.32 
0.11 

5.80 
0.18 

6.26 
0.13 

6.20 
0.15  

          
mean 

sd 
3.57 
1.39 

3.83 
1.18 

4.69 
0.47 

5.50 
0.46 

5.66 
0.53 

5.43 
0.60 

5.44 
0.49 

5.30 
0.71 

5.61 
0.47 
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Table 5: Chlorophyll-a specific nitrogen fixation measurements of Trichodesmium IMS-101 
(mol N fixed mol Chl-a-1 h-1) grown at different light intensities.  Photosynthetic 
active radiation (PAR) is indicated in µmol quanta m-2 s-1 as the mid-day peak light 
intensity during a natural solar cycle.  The L:D cycle experiment yielded no reliable 
chlorophyll-a measurements and thus the respective data were excluded.  Bold 
numbers denote mean values and non bold numbers are standard deviations.   

 
 

 
 
    PAR 
 
day 
 

 
15 

 
50 

 
180 

 
300 

 
600 

 
900 

 
1100 

        

4 1.85 
0.11 

1.72 
0.70 

1.69 
0.01 

2.60 
0.45 

3.00 
0.31 

3.09 
0.31 

3.31 
1.05 

6 1.35 
0.31 

1.02 
0.05 

0.33 
0.04 

2.04 
0.20 

3.38 
0.29 

4.43 
1.44 

3.02 
1.92 

8 1.37 
0.27 

1.38 
0.30 

1.39 
0.13 

2.35 
0.45 

2.31 
0.15 

2.85 
0.08 

4.17 
0.62 

10 1.62 
0.15 

1.78 
0.33 

1.44 
0.27 

2.42 
0.39 

3.27 
0.12 

2.94 
0.56 

2.58 
0.19 

11        

12 0.74 
0.08 

1.17 
0.16 

1.73 
0.09 

2.34 
0.27 

3.70 
0.21 

2.79 
0.20 

4.45 
0.14 

13        

14 1.01 
1.12 

0.83 
0.09 

0.87 
0.48 

1.75 
0.08 

1.97 
0.22 

1.75 
0.29 

2.31 
0.61 

15        

16 1.31 
0.50 

0.94 
0.09 

0.80 
0.13 

1.96 
0.00 

2.09 
0.46 

1.01 
0.05 

0.81 
0.12 

18 2.90 
0.43 

1.72 
0.27 

0.53 
0.05 

1.59 
0.30 

1.84 
0.62 

0.75 
0.33 

1.57 
0.23 

20 2.35 
0.10 

1.64 
0.10 

0.61 
0.06 

1.15 
0.14 

0.52 
0.02 

0.64 
0.02 

0.95 
0.16 
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Table 6: Carbon specific nitrogen fixation measurements of Trichodesmium IMS-101 (mmol 
N fixed mol C-1 h-1) grown at different light intensities.  Photosynthetic active 
radiation (PAR) is indicated in µmol quanta m-2 s-1 as the mid-day peak light 
intensity during a natural solar cycle.  The light intensities 75 and 1350 µmol quanta 
m-2s-1 were converted from the L:D cycle experiment as described in the text.  Bold 
numbers denote mean values and non bold numbers are standard deviations.   

 
 

 
 
    PAR 
 
day 
 

 
15 

 
50 

 
75 
L:D 
50 

 
180 

 
300 

 
600 

 
900 

 
1100 

 
1350 
L:D 
900 

          

4 0.75 
0.05 

0.39 
0.27 

0.10 
0.02 

0.40 
0.00 

0.39 
0.02 

0.47 
0.04 

0.46 
0.02 

0.57 
0.19 

0.31 
0.04 

6 0.19 
0.12 

0.14 
0.03 

0.11 
0.03 

0.10 
0.06 

0.53 
0.14 

0.58 
0.02 

0.76 
0.11 

0.49 
0.32 

0.20 
0.06 

8 0.36 
0.01 

0.59 
0.12 

0.08 
0.00 

0.30 
0.02 

0.34 
0.01 

0.25 
0.02 

0.40 
0.01 

0.53 
0.00 

0.48 
0.34 

10 0.19 
0.06 

0.25 
0.07 

0.13 
0.01 

0.28 
0.05 

0.38 
0.08 

0.39 
0.08 

0.45 
0.13 

0.46 
0.03 

0.39 
0.04 

11   0.33 
0.03      0.42 

0.14 

12 0.55 
0.24 

0.42 
0.02  0.42 

0.02 
0.49 
0.03 

0.56 
0.04 

0.48 
0.10 

0.59 
0.01  

13   0.27 
0.06      0.29 

0.10 

14 0.46 
0.00 

0.38 
0.02  0.30 

0.04 
0.36 
0.01 

0.27 
0.04 

0.24 
0.04 

0.31 
0.06  

15   0.23 
0.04      0.15 

0.03 

16 0.17 
0.05 

0.27 
0.04  0.21 

0.05 
0.26 
0.05 

0.37 
0.02 

0.17 
0.02 

0.12 
0.02  

18 0.34 
0.02 

0.45 
0.05  0.10 

0.02 
0.22 
0.01 

0.21 
0.00 

0.10 
0.05 

0.17 
0.02  

20 0.46 
0.08 

0.61 
0.04  0.16 

0.02 
0.21 
0.04 

0.09 
0.03 

0.10 
0.02 

0.12 
0.03  
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SYNTHESIS AND PERSPECTIVE FUTURE WORK 
 
 
The review of published literature (chapter I) and laboratory results produced within this 

project (chapters III + IV) demonstrate that abundance and thus nitrogen and carbon fixation 

by Trichodesmium is co-limited by iron and phosphorus next to the controlling factors light 

and temperature.  The effect of iron on Trichodesmium succession needs to be considered if 

iron fertilization experiments are proposed in sub-tropical oligotrophic waters.  The results 

summarized here are further to be considered for policy making with respect to climate 

mitigation strategies. 

 
 
Chapter II provides a set of equations and tables to be used in the determination of Bunsen 

coefficients for ethylene, a parameter that is required for assessing nitrogen fixation based 

on the acetylene reduction assay (ARA).  This gas solubility coefficient is temperature and 

salinity dependent, but despite the increasing interest in marine nitrogen fixation, information 

thereon was lacking in the published literature.  The potential impact of these newly 

calculated Bunsen coefficients was tested for nitrogen fixation scenarios at different 

temperatures and salinities.  The results stress the importance of using accurate gas 

solubility coefficients in nitrogen fixation assays.  The ethylene gas solubility coefficients and 

additional information provided improve a uniform application of the ARA to measure 

nitrogen fixation in a wide range of habitats and therefore are of potential interest for both 

limnologists and oceanographers working on nitrogen fixation.  

 
 
Methodological considerations to assess nitrogen fixation pathways using the Acetylene 

Reduction Assay and 15N stable isotope analysis  

 

While the ARA measures the nitrogenase enzyme activity and thus a total substrate turnover 

regardless of product losses from the cell, the 15N stable isotope analysis detects the 

incorporation of nitrogen into cellular material.  Thus, a parallel application of ARA and 15N 

stable isotope analysis allows to investigate the ratio of gross and net nitrogen fixation and 

gives insight in the ratio of particulate fixed nitrogen and cellular release of newly fixed 

nitrogen compounds.  During the 15N stable isotope analysis the dinitrogen in solution is 

enriched with 15N2 gas.  The 15N2 incorporated into cells via nitrogen fixation can be detected 

using mass spectrometry.  A comparison of both methods on the same organism under 

identical environmental conditions is generally used to yield a conversion factor of moles 

ethylene produced to moles 15N2 incorporated into cells.  This conversion factor is generally 
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used to calculate the amount of nitrogen fixed based on the amount of ethylene detected 

(see also chapter 1).   

 

The application of this method comparison to different marine systems can result in a wide 

range of conversion factors (4 – 20 : 1) (Gallon et al. 2002).  Even if subjected to blooms 

consisting of mainly one cyanobacterium (i.e. Trichodesmium sp.) this factor ranges from 1.9 

– 7.2 with considerable variation (Montoya et al. 1996).  The wide range of the conversion 

factor creates uncertainty about the precision of the nitrogen fixation measurements utilizing 

either of the two techniques (ARA or 15N stable isotope analysis) and possesses the 

challenge to investigate the origin of deviation in natural systems from the theoretical value 

of 4 : 1.   As the ARA measures the amount of acetylene (C2H2) reduced/ethylene (C2H4) 

produced, acetylene is added at saturating levels to the sample of interest, but still 

“competes” with dinitrogen gas for nitrogenase, which will reduce this substratum.   The ARA 

is a direct measurement of nitrogenase activity but relies on the assumption that acetylene, if 

added at saturating levels, will completely block the nitrogenase enzyme from reducing 

dinitrogen gas.  This assumption includes an error and therefore may cause false 

estimations of nitrogen fixation rates.  The amount of C2H2 required to block nitrogenase 

needs to be individually determined for each assay set up.   

 

Applying 15N stable isotope analysis the amount of particulate 15N detected theoretically 

represents an exact proportion of the amount of nitrogen fixed into the cells.  In addition to 

the enrichment factor (relative amount 15N2 added to the sample) which is a source of error, 

several sources of loss have to be considered.  Nitrogen fixing cells may release some of the 

newly fixed nitrogen into their environment. This can occur either “actively” as release of 

NH4
+ by nitrogen fixing cells of Trichodesmium into the surrounding seawater, which also 

serves as nutrition for adjacent non-N2 fixing cells (Mullholland and Capone 2001), or via 

leaching of various forms of DON and amino acids (Flynn and Gallon 1990, Glibert and 

Bronk 1994, Glibert and O'Neil 1999).  The proportion of nitrogen fixed and immediately 

released will therefore not be detected in the particulate matter via 15N stable isotope 

analysis.  Preliminary results (Breitbarth and Mills, unpublished) show an effect of 

temperature in the ratios of ethylene produced : 15N reduced in cultures of Trichodesmium.   

Trichodesmium was simultaneously incubated for ARA and 15N stable isotope analysis at a 

temperature range from 17 – 32°C and data indicate that at the optimum temperature for 

nitrogenase activity in Trichodesmium (27°C, Chapter III) the ratio of ethylene produced : 
15N2 incorporated was lowest  (~7-8, Fig 1).  Ratios increased with reduced temperatures to 

37 and at elevated temperatures to a maximum of 49.  While this study is preliminary and 

warrants the need for further investigation, the overall higher ratios than the theoretical value 
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of 4 indicate that a large proportion of the newly fixed nitrogen is released again as NH4 and 

DON by the cells. Temperature has an affect thereon and thus influences the conversion 

factor.   
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Figure 1:  15N2 stable isotope incorporation versus C2H2 reduction.  A direct comparison of 

nitrogen fixation measured using the Acetylene Reduction Assay and the 15N stable 
isotope method shows strong deviations from theoretical acetylene reduced

 
to 

nitrogen incorporated ratio of 3.  Two independent experiments yield lowest ratios in 
relatively close agreement of 7.1 and 8.2 respectively at the incubation temperature of 
27°C.  The 15N : acetylene ratio increases at temperatures lower and higher than 
27°C up to a maximum of 49 measured at 31°C.  The solid line indicates a proposed 
trend of the ratio with temperature. 

 

 
This pattern might be indicative for the physiological state of nitrogen fixing cells (Gallon et 

al., 2002).  15N stable isotope analysis in contrast to ARA more likely underestimates 

nitrogen fixation as it only detects the amount of 15N2 incorporated into the cells.  Thus, the 

observed ranges in the conversion ratios between the two methods skew estimations of 

gross nitrogen fixation based on 15N stable isotope analysis.  For further method 

improvement the following tasks require investigation in the future:   

 

1. the proportion and the chemical form of dinitrogen fixed that is released from diazotrophs  

2. environmental factors that influence this pattern (i.e. temperature, light, nutrients)  

3. differences of patterns in conversion factors of gross and net nitrogen fixation among 

species / different marine systems  

4. development of an algorithm specific to environmental factors (2) that allows to apply the 

correct conversion factor for the ARA, allowing the ARA to be applied as an efficient and 

economical method to estimate gross and net nitrogen fixation  
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As further improvement of the nitrogen fixation measurement techniques it is also particularly 

important to assess the role of newly discovered unicellular nitrogen fixers.  These 

diazotrophs might be very abundant, but the understanding of their impact on contemporary 

nitrogen cycles is still vague (Zehr et al. 2001; Montoya et al. 2004).  The potential future 

role of unicellular nitrogen fixers with respect to CO2 increase and global warming has not 

been addressed at this stage and proposes interesting and important research approaches. 

 

Chapter III predicts a future decline in the oceanic fixed nitrogen input by Trichodesmium 

that could significantly affect global nitrogen cycling.  Temperature dependent growth rates 

clearly elucidate ecologically feasible maxima and minima.  Trends in nitrogen fixation are 

based on the application of the ARA with a fixed conversion factor (3:1) of ethylene 

produced to nitrogen fixed.  The aforementioned preliminary results (Fig 1) indicate that 

detailed analysis of gross and net nitrogen fixation as a function of temperature are required 

to fully understand nitrogen fixation of Trichodesmium as a function of water temperature. 

 

 

Diazotrophic growth and climate change 

 

Sea surface temperature rise is one of the most predictable consequences of global change.  

In the ocean, temperature can affect phytoplankton growth directly by controlling 

physiological rates or indirectly through its influence on mixed layer depth, light and nutrient 

regimes. The direct effects of the increase in temperature are seldom considered in future 

scenarios concerning marine primary productivity and nitrogen fixation.  Chapter III 

demonstrates that the fundamental effect of temperature sets constraints on the potential 

future distribution, growth and gross nitrogen fixation rate of Trichodesmium.  Only within the 

limits of temperature tolerance, other factors such as nutrient regime or light, further 

constrain Trichodesmium.   

 

Thus, this approach is a contribution to an improved prediction on the effect of climate 

change on global biogeochemical cycles.  A decline of marine N2 fixation in the future will 

result in less new nitrogen available for phytoplankton primary production and thus 

consequently in reduced carbon export from the mixed layer.  A decrease in Trichodesmium 

carbon and nitrogen fixation therefore directly and indirectly reduces the draw-down of 

atmospheric CO2 into the oceans.  Predicting future concentrations of atmospheric CO2 and 

future CO2 sequestration by the ocean is of great interest and chapter III demonstrates the 

importance of incorporating elementary biological principles in the biological components of 
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predictive CO2 ocean uptake models, upon which indirect temperature effects can be 

studied.   

 
 
 
Light and diazotrophic growth 
 
 
Shallowing of mixed layer depth and increased stratification have been prognosed as an 

effect of atmosphere warming in the future (Houghton 2001).  Trichodesmium inhabits the 

surface layer of preferably stratified waters in tropical environments and thus must be well 

adapted to high light regimes (Carpenter et al. 1993; Capone et al. 1997).  To date, 

parameterization of light as a controlling factor for nitrogen fixation has been based on field 

observations, where factors other than light also affect Trichodesmium physiology.  Chapter 

IV presents data on light dependent diazotrophic growth from controlled laboratory 

experiments with implications for modeling approaches.  The comparison of a natural light 

cycle and a simple light:dark (L:D) set-up yielded that nitrogen fixation and growth of 

Trichodesmium depends on the total amount of energy (light quanta) supplied over the 

course of the day.  As L:D cycles supply more energy than natural light cycles with similar 

peak light intensities, nitrogen fixation in L:D experiments can be over-estimated if this is not 

taken into account.  Further, chapter IV includes a model describing nitrogen fixation by 

Trichodesmium as a function of light intensity and growth phase.  Based on this model, 

Trichodesmium POC biomass can be used to estimate the nitrogen input by Trichodesmium 

into the ocean.  Maximum nitrogen fixation rates by Trichodesmium are 350 nmol N fixed l-1 

h-1.  Patterns of nitrogen fixation and photosynthetic quantum use efficiency as a function of 

short-term shifts in light regimes indicate rapid but not complete light acclimation (Fig. 2 a+b) 

(Chen et al. 1999).  The model does not reflect physiological differences between vertical 

migrating Trichodesmium and cells that remain at a fixed depth and may be limited in that 

respect. 
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Figure 2: Changes of photosynthetic quantum yield efficiency (Fv/Fm) (a) and carbon specific 

nitrogen fixation (b) as a function of day time (over the course of two days) as well as 

the response of Fv/Fm to shifts from low (LL = 50 µmol quanta m-2 s-1) to high light 

(HL = 900 µmol quanta m-2 s-1) and vice versa.  Cultures were shifted at 12:00.  

Fv/Fm values indicate rapid adjustment of the photosynthetic apparatus to changing 

light conditions.  Nitrogen fixation rates of cultures shifted from the high light to low 

light regime approach fixation rates of cultures maintained at low light after 24h.  In 

contrast cultures shifted from the low light to high light conditions still fix considerably 

less nitrogen after 24h compared to cultures grown under high light. 
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A conceptual model of nitrogen and carbon fixation in Trichodesmium: 

 

Trichodesmium differs from other diazotrophs by fixing nitrogen and carbon during the light 

period, whereas nitrogenase is not confined in oxygen protecting heterocystous cells.  This 

is a paradoxical paradigm since oxygen evolved during photosynthesis irreversibly blocks 

nitrogenase.  A spatial and temporal decoupling of these two processes was previously 

suggested (Berman-Frank et al. 2001).  Data presented here show that a temporal 

separation does not apply as carbon fixation is only reduced in favor of nitrogen fixation at 

sub-saturating light intensities (Fig 3).  This may be due to energy limitation of the 

photoreduction of O2 in photosystem I as a sufficient oxygen scavenging mechanism (Mehler 

Reaction).  The data shown provide new evidence that Trichodesmium is well adapted to the 

ambient high light conditions of sub-tropical waters and that diazotrophic growth occurs with 

temporally only slightly shifted successive nitrogen and carbon fixation, which can not be 

interpreted as the main oxygen mitigation strategy. 

 

Explanations for the enigma of daytime nitrogen and carbon fixation in this non-

heterocystous cyanobacterium has challenged researchers working on marine nitrogen 

fixation ever since Dugdale et al. (1961) reported this paradigm.  Berman-Frank et al. (2001) 

show a temporal segregation with nitrogen fixation peaking at midday and carbon fixation 

peaking in the morning and afternoon.  They further provide indication for spatial segregation 

of nitrogenase containing cells within the trichome using antibody staining (see also Lin et al. 

(1998)), and consider these patterns as the major mechanisms allowing for daytime 

diazotrophy in Trichodesmium.  Nevertheless, the authors also show the presence of the D1 

protein (PS II) and nitrogenase within the same cells and conclude a crucial importance of 

the Mehler Reaction as an oxygen mitigation mechanism, as indicated by high peroxide 

concentrations at the walls of the nitrogen fixing cells.   

 

Here nitrogen and carbon fixation as a function of light intensity were assessed using the 

same axenic Trichodesmium IMS-101 strain as Berman-Frank et al. (2001), but in contrast a 

natural light cycle (versus L:D light cycle) in order to better mimic natural light regimes was 

applied.  The findings of carbon and nitrogen fixation during the light period (Fig 3 a+b) 

follow the expression of photosynthesis (psbA) and nitrogen fixation (nifH) genes in part 

(Chen et al. 1999).  The psbA and nifH gene expression is phase shifted by approximately 

6h and the photon use efficiency (PUE) of nitrogenase is elevated in the morning in analogy 

with nifH gene expression.  Expression of psbA and nifH are completely down regulated at 

night (Chen et al. 1999) and carbon and nitrogen fixation are absent.  Whilst the 

photoreduction of oxygen in PS I is required during daytime, it remains enigmatic that the 
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expression of psaA peaks at night and how PS I operates in darkness (Chen et al. 1999).  

Even though psaA expression is lowest at the peak  

of nitrogen fixation, it is not absent.  One possible explanation is, that the oxygen production 

by nitrogen fixing cells indeed is less than that of carbon fixing cells and PSI activity implied 

by psaA expression together with respiration may be sufficient to allow for effective oxygen 

scavenging within these cells.  Nevertheless, as the presence of D1 in nitrogen fixing cells 

clearly implies oxygenic photosynthesis, it seems plausible that the photosynthetic reactions 

here solely serve as an energy provider (i.e. for carbohydrate synthesis and nitrogen 

fixation) and not for net carbon fixation as detected by 14C incorporation.  Carpenter and 

Price (1976) already showed by autoradiography that 14C incorporation is confined to the 

peripheral regions of trichomes.  Even though nitrogen and carbon fixation in Trichodesmium 

occur simultaneously, the phase shifted expression of photosynthesis and nitrogen fixation 

genes may be part of a regulatory mechanism that involve de-novo synthesis of nitrogenase 

each morning and eventual degradation by oxygen from photosynthesis in the afternoon 

(Colon-Lopez et al. 1997; Colon-Lopez and Sherman 1998; Chen et al. 1999).  Further 

supporting this, PSII independent carbon fixation has been demonstrated in diazotrophs and 

might also occur in Trichodesmium (Misra and Tuli 1993).  A potential temporal separation of 

photosynthetic oxygen production and carbon fixation in Trichodesmium requires 

investigation. 

 

Trichodesmium grown at light intensities 15 and 50 µmol quanta m-2 s-1 were characterized 

by low (< 5) POC:PON stoichiometry, while cells grown at higher light intensities (up to 1100 

µmol quanta m-2 s-1) possessed values greater 5.5 during exponential growth and 

approached near Redfield stoichiometry in the stationary phase (chapter IV).   Similar 

changes in elemental stoichiometry have been attributed to high biomass specific nitrogen 

fixation during exponential growth (Mulholland et al. 2001), which indicate carbon fixation 

rates that are low relative to nitrogen fixation during that period.  Similar to Berman-Frank et 

al. (2001), reduced carbon incorporation rates were also measured at midday in cultures 

receiving a peak light intensity of 50 µmol quanta m-2 s-1 (Fig 3b), but Trichodesmium does 

not show reduced carbon fixation rates if cultures received more light.  The results 

demonstrate that cultures receiving higher light intensities have no depression of carbon 

fixation rates at the peak of nitrogen fixation rates.  At high light intensities (> 900 µmol 

quanta m-2 s-1) though, carbon fixation rates may be reduced at midday due to 

photoinhibition, which is a typical diel pattern of photosynthetic organisms.  Further, carbon 

specific 14C incorporation is a function of light intensity (Fig 3b) while carbon specific nitrogen 

fixation rates do not differ significantly at different light intensities (Fig 3a).   Conclusively, a 
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specific nitrogen fixation rate must be achieved to maintain cellular metabolism and only if 

sufficient light energy is provided, net carbon uptake and cellular growth can increase (see 

growth rate in chapter IV).  Photosynthetic energy yield at low light intensities appears to be 

invested into carbon energy storage (glycogen), which is consumed for nitrogen fixation, and 

at a lesser extent into particulate carbon fixation.  Net-carbon uptake rate can not be 

interpreted as equivalent to photosynthetic activity.  Thus, if 14C incorporation is reduced, 

photosynthesis might well be running at high rates, providing the energy for carbohydrate 

synthesis and nitrogen fixation.  Contrarily, Berman-Frank et al. (2001) show indication for a 

decline of photosynthetic quantum yield efficiency (Fv/Fm) and increased non-cycling 

electron turnover times during the mid light period and argue that this implies reduced PS II 

activity.  Data presented here show a similar decrease of Fv/Fm (Fig 4) over the course of 

the light cycle.  Additionally, information on the relative quantum yield (or photon use 

efficiency, PUE) of net-carbon fixation (14C incorporation) and nitrogenase activity (acetylene 

reduction assay) is provided (Fig 5).  While nitrogen fixation quantum yield efficiency is 

higher between mid-morning and the peak of light intensity, carbon fixation quantum yield 

efficiency levels over the course of the day or slightly decreases during maximum light 

intensities.  As carbon specific nitrogen and carbon fixation increase from morning to mid-

day, but their specific quantum yield does not, it is apparent that after reaching a maximum 

possible quantum use the fixation rate levels or even decreases with further increasing light 

intensities resulting in decreases PUE and Fv/Fm.  I.e. if a more than sufficient amount of 

light energy is provided, harvesting systems can afford to run less efficient.  Therefore the 

decrease in photosynthetic quantum yield efficiency can not be interpreted as indicative for 

reduced photosynthetic activity either.  Berman-Frank et al. (2001) base the reduced Fv/Fm 

measured in field samples on decreased electron transport rates downward of PS II (shown 

as increasing turn over rates), but unfortunately do not provide information on the light 

regime.  Markedly, the 180 µmol quanta m-2 s-1 treatment showed the highest PUE for 

nitrogen and carbon fixation.  The specific growth rate does not increase further at light 

levels greater 180 µmol quanta m-2 s-1 (chapter IV), which infers that this light intensity 

represents or is close to the light compensation point for elementally balanced diazotrophic 

growth that yields close to Redfield cellular stoichiometry.  The decrease on photosynthetic 

oxygen evolution, reported by Berman-Frank et al. (2001), likely reflects efficient oxygen 

scavenging by the Mehler Reaction and not decreased photosynthetic activity.  

Nevertheless, likewise to nitrogen fixation pathways (as described above), to completely 

understand carbon fixation pathways in Trichodesmium, measurements of gross and net 

carbon fixation, including DOC exudation, are required.   
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In conclusion, the proposed mechanism of temporal segregation of nitrogen and carbon 

fixation only applies to low light intensities and are due to energy limitation.  Reduced carbon 

fixation at high light intensities might be due to photoinhibition.  Net carbon fixation is not 

directly indicative for photosynthetic oxygen evolution and co-occurs with nitrogenase activity 

during the day if sufficient light energy is available to run both energetically demanding 

processes (Fig 2B).  Therefore, the strategy how Trichodesmium manages nitrogen fixation 

during oxygen evolution appears to be on the cellular level to a large extent. Nitrogenase is 

confined to specific areas within the trichome which have been termed diazocytes (Lin et al. 

1998; Berman-Frank et al. 2001).  These diazocytes also show a cellular differentiation on 

the molecular level in that hetR, the gene for heterocyst formation, is expressed.  A similar 

pattern is found in Symploca, another non-heterocystous Osciallatorian that is closely related 

to Trichodesmium and also fixes carbon and nitrogen simultaneously (Fredriksson et al. 

1998; Janson et al. 1998).  Oxygen is rapidly transported out of these cells by respiration 

and the Mehler Reaction (Kana 1991; Kana 1993; Berman-Frank et al. 2001).   High 

respiratory activity might also provide additional energy (ATP) for nitrogen fixation as 

suggested for Cyanothece (Colon-Lopez et al. 1997) and photosynthetic oxygen production 

may be temporally separated from carbon fixation as found in Plectonema (Misra and Tuli 

1993).  Cellular membrane permeability increases with temperature and due to the necessity 

to reduce cellular O2 levels it has been proposed that non-heterocystous cyanobacteria such 

as Trichodesmium are better adapted to warm waters than heterocystous cyanobacteria 

(Staal et al. 2003).  The patterns of energy budgeting and cellular pO2 control summarized 

here provide Trichodesmium with a unique adaptive advantage in high light, high 

temperature environments of tropical and subtropical oligotrophic oceans and partially 

explain their ecophysiological success as an important marine nitrogen fixer. 
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Figure 3: POC normalized nitrogen fixation (Acetylene Reduction Assay, a) and carbon fixation 

(14C incorporation, b) as a function of daytime in Trichodesmium grown at different 
light intensities.  Carbon and nitrogen fixation incubations took place simultaneously 
on exponentially growing cultures.  Error bars denote standard deviations. 
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daytime and light intensity.  Measurements were performed at the same and from th
same cultures as nitrogen and carbon fixation measurements shown in figure 3. 
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Figure 5: The relative quantum yield of net-carbon fixation (14C incorporation, a) and 

nitrogenase activity (acetylene reduction assay, b) in Trichodesmium grown at 
different light intensities.  Carbon and nitrogen fixation incubations took place 
simultaneously on exponentially growing cultures.  The values on the 2nd y-axis apply 
to the results from the 50 µmol quanta m-2 s-1 treatment of the carbon fixation 
measurements (a).   
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