
Eye Tracking Based Experiments
in ExplorViz

Master’s Thesis

Maria-Anna Kandsorra

May 20, 2017

Kiel University

Department of Computer Science

Software Engineering Group

Advised by: Prof. Dr. Wilhelm Hasselbring
M.Sc. Christian Zirkelbach

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.

Kiel, 20. Mai 2017

iii

Abstract

Software was never more complex then today. To improve program comprehension, several
visualization tools and techniques are researched. The web-based tool ExplorViz helps
developers to achieve an understanding of large software landscapes more easily than
looking at source code. The communication of the landscape is visualized with live traces
[Fittkau et al. 2013].

To improve a software development process and product, according to [Basili et al.
1986], are experiments necessary. Further, they help to understand, evaluate and control the
process and product. Thus, the improvement to conduct experiments will help to improve a
product. And in modern society and technology, it was never easier or cheaper than today
to track the user’s gaze. And to understand and enhance human computer interaction is
an asset to be pursued.

In this thesis we present an approach to improve the optional ExplorViz experiment
mode, which can create and manage questionnaires to conduct interactive experiments in
ExplorViz. The approach improves the usability and enhances the experiment mode with
the feature of eye tracking and recording the screen during an experiment. Further, we
evaluate the approach with an experiment and confirm its functionality. The eye tracking
data results do not display immediate correlations, but the data is versatile and useful.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1

1.2.1 G1: Determine Experiment Management Systems Requirements . . . 2
1.2.2 G2: Concept and Implementation of Experiment Mode with Eye

Tracking . 2
1.2.3 G3: Evaluation of the Experiment Mode with Eye Tracking 2

1.3 Document Structure . 2

2 Foundations and Technologies 3
2.1 ExplorViz . 3
2.2 Eclipse . 6
2.3 Google Web Toolkit (GWT) . 6
2.4 CanJS . 6
2.5 Eye tracking . 7
2.6 Qt . 8
2.7 JPetStore . 8
2.8 Project WebRTC . 8

3 Approach 9
3.1 Requirements for Experiment Management Systems 10
3.2 ExplorViz’ Experiment Mode . 10
3.3 Questionnaire Concept . 11

3.3.1 Questiontypes . 11
3.3.2 Format for Saving Questions and Answers 12
3.3.3 Management and Display . 13

3.4 Concept of the Experiment Mode with Eye Tracking 15
3.4.1 Questionnaire Requirements . 16
3.4.2 Eye Tracking . 17
3.4.3 Screen Recording . 18

4 Implementation of Questionnaire Extension 21
4.1 JSON File . 22
4.2 Model . 23
4.3 ExplorViz server . 23
4.4 Client . 23

vii

Contents

4.4.1 ExperimentToolsPage . 24
4.4.2 Option Question-Interface . 27
4.4.3 Display during Experiment . 30

5 Implementation of Eye Tracking Extension 33
5.1 JSON File . 34
5.2 Server . 35

5.2.1 Eye Tracking Data . 35
5.2.2 Screen Recording Data . 35

5.3 Client . 35
5.3.1 ExperimentToolsPage . 36
5.3.2 Experiment . 40

6 Evaluation 47
6.1 Experiment Design . 47

6.1.1 Research Questions and Hypotheses . 47
6.1.2 Empirical Methods . 48
6.1.3 Tasks . 48

6.2 Operation . 51
6.2.1 Experimental Set-up . 51
6.2.2 Create Input . 51
6.2.3 Tutorial . 51
6.2.4 Questionnaire . 51
6.2.5 Pilot Study . 51
6.2.6 Procedure . 52

6.3 Data Collection . 52
6.3.1 Timing and Tracking Information . 52
6.3.2 Correctness Information . 53

6.4 Results . 53
6.5 Discussion . 55

6.5.1 Correctness of Tasks . 55
6.5.2 Eye Tracking Data . 56
6.5.3 Postquestions . 60

6.6 Threads to Validity . 61
6.6.1 Internal Validity . 61
6.6.2 External Validity . 63

6.7 Lessons Learned and Challenges Occurred . 63
6.8 Summary . 64

7 Related Work 65

viii

Contents

8 Conclusions and Future Work 67
8.1 Conclusions . 67
8.2 Future Work . 67

Bibliography 69

Appendix A: Install Instructions 71

Appendix B: Informed Consent 73

Appendix C: Raw Experiment Results 74

ix

List of Figures

2.1 Landscape Perspective . 3
2.2 Application Perspective . 4
2.3 Experiment Interface, Screenshot of ExplorViz website 5

3.1 ExplorViz Concept . 9
3.2 Experiment Mode Questionnaires . 12
3.3 Input Interface for Questionnaire Questions 13
3.4 Display of Prequestions . 14
3.5 Display of Postquestions . 15
3.6 Schematic Example of Eye Tracking Data during Experiment 16
3.7 Options for Administrator . 17

4.1 ExplorViz Implementation . 21
4.2 Experiment Overview RootPanel . 24
4.3 Integration of CanJS . 28
4.4 Extract of Question-Interface Page . 29

5.1 ExplorViz Implementation . 33
5.2 Screenshot of a Results Modal . 37
5.3 Screenshot of a Replay Modal . 37
5.4 Simple Modal before first normal Questions during Experiment 41
5.5 Security Modal when starting Screen Recording 42
5.6 Communication on Participants Computer . 44

6.1 Correctness of Tasks . 56
6.2 Information on the Participants Gazes . 57
6.3 Duration of Experiment Participation . 58
6.4 Participants Individual Correctness Information 59
6.5 Assessed Average Difficulty of Tasks . 61

xi

List of Tables

6.1 Description of the Task for the Experiment . 49
6.2 Correctness Results of Participants . 53
6.3 Information Ratio of Eye Tracking Data . 54
6.4 Postquestions Mean and Standard Deviation 55

1 Postquestions Mean and Standard Deviation 72

xiii

Listings

2.1 Questions in TXT Format . 5
2.2 Extract of an Experiment in JSON Format . 6
4.1 Extract of an Experiment in JSON Format . 22
4.2 Extract of ExperimentToolsPage method render 25
4.3 Extract of ExperimentToolsPage’s method showExperimentList 26
4.4 Extract of ExperimentToolsPage method togglePreAndPostquestions 27
5.1 Extract of an experiment JSON file . 34
5.2 Extract of an eye tracking data file . 38
5.3 Extract of exp_eyeTracking Javascript file . 39
5.4 Extract of eyeApi.js . 43
5.5 Extract of eyejsonprotocollserializer.cpp . 45
1 Command to Transform webm to mp4 . 71

xv

Chapter 1

Introduction

1.1 Motivation

In modern society and technology, to understand and enhance human computer interaction
is an asset to be pursued. Considering that eye tracking for usability purposes was already
used in the 1950s [Jacob and Karn 2003], it was never easier or cheaper than today to track
the user’s gaze.
Software was never more complex then today. To improve program comprehension, several
visualization tools and techniques are researched. The web-based tool ExplorViz helps
developers to achieve an understanding of large software landscapes more easily than
looking at source code. The communication of the landscape is visualized with live
traces [Fittkau et al. 2013]. The ExplorViz interface is interactive and allows the user to
switch between two perspective levels. The landscape level shows components and their
communication on different abstraction levels. On application level, ExplorViz shows a
single application as an interactive 3D city model with their communications.
To improve a software development process and product, according to [Basili et al. 1986],
experiments are conducted. Further, they would help to understand, evaluate and control
the process and product. Thus, the improvement to conduct experiments will help us to
improve a product. Tools exist for managing electronic questionnaires and automating the
collection of their data, analyzing and visualizing them. An optional part of the ExplorViz
tool is also an experiment mode, to create and manage interactive questionnaires to perform
surveys in ExplorViz.
In this work, we want to extent the current experiment mode of ExplorViz to integrate eye
tracking. The experiment mode was recently enhanced for more usability and we want to
further improve it for more usability.

1.2 Goals

The main goal of this master’s thesis is to enhance the ExplorViz’ tool experiment mode
with an eye tracking and a screen recording feature. We want to evaluate our approach
and detect with empirical methods whether the eye tracking feature is a reasonable
improvement for experiments with ExplorViz interactive interface. To determine this, we
split our goal to three subgoals. In the following sections, we will describe them.

1

1. Introduction

1.2.1 G1: Determine Experiment Management Systems Requirements

Our first subgoal is to do a literature research for experiment management systems and
their requirements. ExplorViz’ system for managing experiments was implemented by
[Finke 2014]. We want to compare the identified requirements and develop an approach to
improve the experiment mode accordingly.

1.2.2 G2: Concept and Implementation of Experiment Mode with Eye
Tracking

To enhance the possibilities for experiments, we want to develop an approach to enhance
the ExplorViz experiment mode with eye tracking. Including identified requirements
for experiment management systems, we will produce a concept which integrates with
ExplorViz and implement it.

1.2.3 G3: Evaluation of the Experiment Mode with Eye Tracking

To test the implemented feature for functionality with real users, a small pilot study will be
conducted. Afterwards, an experiment with the eye tracking and screen recording feature
will be performed. With the results of the experiment, we will determine, whether the eye
tracking and screen recording is a meaningful improvement to the experiment mode of
ExplorViz.

1.3 Document Structure

This document contains the following topics. Chapter 2 describes important technologies
and foundations for this thesis. Chapter 3 contains the description of our concept for
improving the experiment mode and how the goals of the thesis can be achieved. Chapter 4
presents the changes we make to implement the approach for the experiment mode to
achieve identified requirements. And Chapter 5 contains information about the imple-
mentation of the part of the approach to enhance the experiment mode with eye tracking
and screen recording. In Chapter 6 we evaluate the changes and our approach with an
experiment, also testing the functionality of the implementations and presenting the results.
In Chapter 7 we present other approaches which are similar to our approach. And in
Chapter 8 we will summarize our findings and results, and conclude this thesis.

2

Chapter 2

Foundations and Technologies

2.1 ExplorViz

Figure 2.1. Landscape Perspective on ExplorViz Websitea

ahttp://samoa.informatik.uni-kiel.de:8181/

ExplorViz is a web-based tool for visualizing large software landscapes [Fittkau et al. 2013].
To improve the understanding of developers for software, communication of components
and their behavior are visualized in real-time based on monitoring traces. ExplorViz
presents the software in two perspectives, a landscape and an application view. The
software landscape view is shown in Figure 2.1, presenting components in boxes and their
communication, portrayed as lines, in a flow-based layout. The boxes contain smaller boxes,
a more detailed abstraction, showing their communication as well. The user can interact
with them and change abstraction levels of the boxes. There is also a time-shift panel, for
example to check the communication of some components at a specific time. The landscape
view displays executed instances of a self-contained system, which can interact with other
systems. The other perspective is shown in Figure 2.2 and displays the application level. Its
components and classes and their communication are presented based on the city metaphor

3

2. Foundations and Technologies

[Wettel et al. 2011]. The user can interact with the components and change their abstraction
level, as well as get information about the amount of communication between components.
The application view represents an abstraction of the source code of the software system.

Figure 2.2. Application Perspective on ExplorViz Websitea

ahttp://samoa.informatik.uni-kiel.de:8181/

In [Fittkau et al. 2016] it was scientifically proven that ExplorViz increases the correctness
in contrast to another software visualization tool, ExTraVis [Cornelissen et al. 2007]. In
comparison to ExTraVis [Cornelissen et al. 2007] it was observed by [Fittkau et al. 2016]
that ExplorViz increases significantly the correct answers of participants. [Fittkau et al.
2016] used controlled experiments for this comparison as well as for different visualization
variations of ExplorViz like virtual reality.

ExplorViz is implemented with GWT, Google Web Toolkit, and consists of three main
parts. One is the model, containing information about classes that are important for the
other two parts, the server and the client. The server holds all information and serves
for the client side, giving requested information. The client side interacts through a
website with user, displaying the interactive interface from Figure 2.1 and Figure 2.2. These
aforementioned experiments were conducted in ExplorViz with an experiment mode by
[Finke 2014] to test for usability and can also be used to evaluate new implemented features.
Plain text files have to be in a specific folder on the server to be uploaded as experiments. An
example can be seen in Listing 2.1. The text files can be edited via the website, are written in
a custom syntax, and must be saved as ‘questions.txt’. Statistical questions are also possible
in the beginning of an experiment, to determine what kind of experience participants
might have for example with programming languages or ExplorViz. Statistical questions
afterwards can be for example their assessment of the questionnaire. The experiment mode
was extended during the summer semester 2016 in the scope of a masterproject. They

4

2.1. ExplorViz

Figure 2.3. Experiment Interface, Screenshot of ExplorViz website

created a webinterface, shown in Figure 2.3. Users logged in with administrator access can
create and manage new experiments. Questionnaires for specific experiments can also be
created in the webinterface, with different groups in experiments and each having their
own questionnaire. The experiment, its attributes and related questionnaires are saved as
files in a JSON representation on the server. An example can be seen in Listing 2.2.

Listing 2.1. Questions in TXT Format

1 --Dialog 1 before questions, do not remove this line

2 Text: Now that you have passed the tutorial, the questionnaire will begin. Please

give a few information about your person. Those will only be used to analyze

the results of the experiment.

3 Number: Age

4 Placeholder: Years

5 Min: 16

6 Max: 75

7 Combobox: Gender

8 Choices: Male, Female, other

9 Tooltip:

10 Combobox: Highest completed degree

11 Choices: None, Bachelor, Master, Diploma, PhD, none of the above

12 Tooltip:

5

2. Foundations and Technologies

Listing 2.2. Extract of an Experiment in JSON Format

1 {

2 "questionnaires": [{

3 "questionnareID": "quest1475325290274",

4 "questions": [{

5 "expApplication": "",

6 "answers": [

7 {

8 "answerText": "Antwort 1",

9 "checkboxChecked": false

10 },

2.2 Eclipse

Eclipse is an open source community, offering IDEs (integrated development environment)
for different requirements. The tools can be extended with plugins and eclipse encourages
teamwork and new plugins and projects. The most popular IDE is for Java developers
but there are tools and plugins for nearly all programming languages. Following the
instructions for developing with ExplorViz, we will use Eclipse IDE for Java and DSL
Developers.

2.3 Google Web Toolkit (GWT)

GWT is used to optimize and build browser-based applications [GWT]. The developer
does not need specific knowledge about the browser, XMLHttpRequest or JavaScript
because Java is compiled to them, but there is also the possibility to write source code
in native JavaScript. It is not only Java, but there is also the possibility to write code in
Xtend, a modernized Java. Xtend allows for example type inference and is translated to
Java. A drawback of GWT is its self-contained system, which makes it complicated to
integrate other frameworks to it. When interacting with JavaScript objects, there must
always be native JavaScript functions be implemented, which act as facilitator. ExplorViz
is implemented with GWT and we will use the framework to extend the features of the
experiment mode.

2.4 CanJS

CanJS is a JavaScript framework and can be used with alternative DOM libraries [CanJS].
The used elements are implemented as components which reduces dependencies and

6

2.5. Eye tracking

produces more independent code. Components changed through interaction of the user
can trigger rerendering parts of the interface without loading the whole page. Using
templates, the amount of code is reduced and often readability is improved, instead of
injecting html elements with JQuery. A part of the webinterface for managing questions of
ExplorViz is already coded with CanJS. Its integration is done over GWT’s native JavaScript
functions, which acts among other things as facilitator between CanJS and GWT. We will
extend the functionality of this implementation with the possibility of managing statistical
questions, questions the user can be asked before and after the questions the experiment
revolves.

2.5 Eye tracking

The first time eye tracking was used for testing usability was in 1950 [Jacob and Karn
2003]. Installing software and hardware for tracking the users eye got easier in modern
times. They can be used for researching Human Computer Interaction as well as for private
people, for instance for physically handicapped.
There exist different terms in the context of eye tracking, which we will define as [Sharafi
et al. 2015] did. A stimulus is an object on the interface, that a user can see. If users look at
a stimulus for more than 200ms, they fixate on a point of the stimulus and it is called a
fixation. A saccade is a line of fast eye movements, staying on one point at maximum for
40-50ms. A scan-path is a line of fixations and saccades in a chronological order. A stimulus
counts as visited, when it was fixated at least once by a user. These terms will be important
for evaluating the eye tracking data, when the experiments with ExplorViz are performed.
A common method in the industry is to generate a heat map [Sharif et al. 2016], which
shows in a picture with colours which areas were visited and depending on which colour,
how often the user fixated these areas. The heat map is only helpful if the interface
stays fixed for the duration of the eye tracking. Interactive interfaces have to be analysed
seperately, an interactive area that was often fixated holds no information on what stimuli
exactly the user was looking at. In our case, this means we will have to look at each users
entire eye tracking data since ExplorViz interface is interactive.
There is a Tobii EyeX eye tracker1 available which we will use. Its SDK gives us the
eye tracking data we need and currently runs only on the operating system Microsoft
Windows2. This restricts our extension of the ExplorViz experiment mode with eye tracking
to the operating system Windows. Tobii is a swedish company, which started in 2001 as
startup by three people. Today it is one of the biggest companies for producing eye tracking
hardware and depending on the model, its respective software. Some small limitations we
want to mention here, are the areas the user gazes at. Eye trackers are not as exact as one
might naively think, this especially applies to the outer edges of the display.

1http://www.tobii.com/
2https://www.microsoft.com/de-de/windows

7

2. Foundations and Technologies

2.6 Qt

We are building upon another students work and he implemented a local server which
handles the communication with the SDK of the eye tracking device. The source code runs
in Qt, a cross-platform framework for software development. The programming language
is C++. The executable communication server is available in the git repository3 of this
thesis.

2.7 JPetStore

The JPetStore 64 is a full web application built on top of MyBatis 3, Spring 4 and Stripes. It
is a sample application, used to demonstrate how a web application with some classes can
be build5. We use it as sample application for a monitoring with ExplorViz and use the
created traces for the experiment for evaluating our work.

2.8 Project WebRTC

As mentioned before, we are building on top of another students work. It uses a project
called ‘WebRTC-Experiment’ by Muaz Khan [WebRTC-Experiment] to record the content
of the screen. Currently, there exists a Chrome-Extension called Screen Capturing6, which
can record the screen in cooperation with JavaScript-files and can also be saved as a local
download afterwards. At the same time, the gaze of the user is recorded and saved as a
local download afterwards as well. Loading these two downloads, they can be played at
the same time with the gaze of the user on top of the video of the recorded screen, showing
where the user gazed during the recording. Upon this Chrome-Extension, Javascript and
HTML files we will base the eye tracking feature for the experiment mode in ExplorViz.
Due to the chrome extension, our implementation will be restricted to the chrome browser.

3https://build.se.informatik.uni-kiel.de/thesis/maria-anna-kandsorra-msc/tree/master/MSC-
Abgabe/LocalServerForEyeTracking/bin

4https://github.com/mybatis/jpetstore-6
5http://www.mybatis.org/jpetstore-6/
6https://chrome.google.com/webstore/detail/screen-capturing/ajhifddimkapgcifgcodmmfdlknahffk

8

Chapter 3

Approach

As shown in Figure 3.1, the ExplorViz project consists of three components. The server
side, a client side and a model. The client and server use classes from the model, and
they communicate with each other only through asynchronous remote procedure calls
(RPC). The asynchronous RPC is a feature of GWT to make it easy to exchange Java objects
between the server and the client. Our approach is going to modify parts in all three
components.

Figure 3.1. ExplorViz Concept

This chapter is about which requirements we want to fulfill with our approach and a
detailed description what our approach entails. We will first take a look at requirements
for experiment management systems that other scientists identified. Afterwards we will
summarize what our approach is about and where we integrate it. Then we will develop
our approach for the extension of ExplorViz.

9

3. Approach

3.1 Requirements for Experiment Management Systems

In an analysis in [Ioannidis et al. 1997], they determined three important requirements for
experiment management systems. One is a uniform interface for scientists. The second is
that users should not have to handle data management issues more than they need to. It
should be made as simple as possible. And the last requirement is for the user to not notice
the complexity of the software underneath.

[Jakobovits et al. 2000] identified even more requirements for experiment management
systems. They referred to seven requirements. These requirements are originally listed with
the context of experiments in the medical domain, but we can relate them to our context.

1. System Integration: The experiment management system should be applicable in many
environments.

2. Data Integration: The input of the data should be the same for the user without restric-
tions on format or form.

3. Workflow Support: The system should keep track on who has done what on the
experiments.

4. Remote Collaboration Facilities: Different parties should be able to work with the
experiments and get their results.

5. Advanced Data Type Management: The experiment management system should be able
to handle specific formats and types needed in the domain, as well their integrated
conversion if needed.

6. Intelligent Navigation: The navigation in the experiment management system should be
intuitive and constant.

7. Adaptive User Interface: Depending on the user rights, users are shown different
interfaces and restrictions to access data.

3.2 ExplorViz’ Experiment Mode

As mentioned in the motivation, we want to extend ExplorViz’ experiment mode. ExplorViz
was implemented in GWT and the code part with the experiment mode was implemented
by [Finke 2014]. We will refer to it as legacy system. Of that legacy system a part of the
input process for experiments was changed due to a masterproject by students in SS16. We
will use the term present implementation to make it easier to refer to it.

The present experiment mode consists of a management interface for the experiments,
which can only be accessed by a logged in user with an administrator role. And there
exists a special interface with questions, if a user is logged in as a specific participant of an
experiment, fulfilling the seventh requirement of [Jakobovits et al. 2000]. An administrator

10

3.3. Questionnaire Concept

also manages the user for an experiment. An experiment in ExplorViz’ experiment mode in
the present implementation can be a set of different questionnaires with questions. During a
participation in the experiment, statistical questions are asked before and after the questions
inside the questionnaire. These statistical questions can contain for example questions
about the participants knowledge in a specific domain or the users age. The statistical
questions after the main questions can be for example about whether the questions were
easy or difficult. We want to improve the usability of this part, since the input of the data
for statistical questions differs to the input of the normal questions. This contradicts the
second requirement of [Jakobovits et al. 2000] and we will modify it so it is satisfied.

The details will be described in the later sections. Our approach should take the
mentioned requirements in the last section into account for improving the present imple-
mentation and extending the experiment mode with eye tracking.

3.3 Questionnaire Concept

First we need to define what our future questionnaire for the ExplorViz’ experiment mode
should entail. There are currently the normal questions, usually why the questionnaire is
done. And there are statistical questions before and after the main questions. We will refer
to the questions before the main part as prequestions and to the questions after the main
part as postquestions, also referring to them as questionstyles.

3.3.1 Questiontypes

In the present implementation, the normal questions offer two possible types to choose
from. One is the free text type and the other is the multiple choice type. In case of the free
text type, the answer of the user is put in as a text. A question with the multiple choice
type gives the participant, depending on the amount of possible right answers, some text
input possibilities.

The legacy system offers for the statistical questions seven possibilities for types. There
is the type of number, email and input, which are nearly self exploratory. With type number,
the user must put in a number, with type email, it must put in an email and with type
input, the user must put in some kind of text, limited to a specific length. There is also
the type binary, which lets the user choose between two possibilities. The type comment
shows a bigger area for text input to the user and expects text as input and the type choice
is like the type multiple choice mentioned before. There are differences in their display,
but often types could be used for the same kind of statistical questions. For example
could type binary be replaced by type choice, if we input just two choices. Our approach
assembles all types together to just three types of pre- and postquestions. They are free
text, multiple choice and number range. Free text and multiple choice comply with the
types of the normal questions in the present implementation, mentioned before and lap
over with the legacy types of comment and choice. They also replace binary and input. The

11

3. Approach

Figure 3.2. Experiment Mode Questionnaires

new type number range complies with the legacy type number. The type email was not
adopted, because usually experiments and studies are done anonymously and in case that
a questionnaire creator really needs the email of a user, he could let the user put it in a free
text type question.

3.3.2 Format for Saving Questions and Answers

The present implementation saves the questionnaire and normal questions as part of an
experiment inside a JSON file on the server. An experiment can have more than one
questionnaire, see figure X, and questionnaires have questions and other attributes. The
legacy system saved normal questions and saves statistical questions in text files with a
self-made line by line format. We want a consistent format for the pre- and postquestions.
So we choose to add prequestions and postquestions as attributes to a questionnaire and
save them as well inside the JSON file like the present implementation. In Figure 3.2 we
can see the questionstyles on both communication sides colored in green.

The answers are currently saved in a CSV file after every submission of the answer.
Together with the answers for the normal questions are the taken time in milliseconds, the
time when the question was started and ended in milliseconds and the id of the user. The
answers for statistical questions are split in pre- and postquestions. Each have one line with
all answers and the userId of the participant. This is needed to interpret the data with R.

12

3.3. Questionnaire Concept

Figure 3.3. Input Interface for Questionnaire Questions

3.3.3 Management and Display

For our defined questionnaire, there a two points really important in this context. One is,
how to create, delete, and manage the questionnaire from an administrators view. And the
second point is, how a participant experiences doing the questionnaire. The legacy system
of course supports these points, as well as the present implementation. In the present
implementation the usability of the first point for normal questions was increased.

The present implementation entails a webinterface for the administrator, to modify,
load and create new experiments. There is a possibility to drag and drop experiment-
and landscapefiles into the webinterface, to upload and save them. There is also a user
management, for creating, deleting and printing users out. Continuing on, to modify,
delete and add questions to the questionnaire, another interface was implemented. In the
legacy code base, textfiles had to be edited inside a basic interface, with a specific line by
line format. In the present implementation a new site is opened and next to a landscape,
a slideable interface gives the administrator the option to modify questions. To have a
consistent and intuitive design, an interface for the pre- and postquestions should be as
close to the mentioned slider as possible and add buttons to switch between the question
styles, see Figure 3.3. We do this also for conforming to the requirement of [Ioannidis et al.

13

3. Approach

Figure 3.4. Display of Prequestions

1997]. Further, the person creating the questionnaire should be able to either turn on or off
the option of pre- and postquestions. If during the input process, pre- or postquestions
were not added, they will of course not be displayed and be skipped. They would also
be skipped, if there were any pre- or postquestions created but the option was turned off.
Like that, the possibility of only prequestions or only postquestions would be possible.
The present implementation changed the process to save and load the main questions as
attributes of the questionnaire. We will update this process for the pre- and postquestions
as well.

Now to the before mentioned second point, how a participant experiences the question-
naire. This part was not changed from a participants view in the present implementation.
It is still the same from the legacy system. At first all statistical prequestions are divided
into two modals, which are shown after each other. Then the main part with the normal
questions starts, where each question has their own modal. The statistical questions after-
wards are again shown in two modals. We want to change that and display all prequestions
at once inside one modal and do the same with all postquestions, see Figure 3.4 and
Figure 3.5. The user has the possibility to overview all prequestions at the beginning and
there is no confusion about when the normal questions start. Also, this way the user can
intuitively differentiate between the prequestions and the normal questions, that there

14

3.4. Concept of the Experiment Mode with Eye Tracking

Figure 3.5. Display of Postquestions

lays more importance to the normal questions than to the prequestions. The same goes
afterwards to the postquestions. The user might be impatient to finish the questionnaire
after he answered many normal questions. When all postquestions are shown at once, the
user is able to overview them and can guess, that the questionnaire is finished afterwards.
We make it more transparent for users to see how many questions are left to answer.

3.4 Concept of the Experiment Mode with Eye Tracking

To have the eye tracking data of the eye tracker alone, is not very useful. We know when
and where on the display the user gazed, but we do not know what was displayed, for
example see Figure 3.6. So a recording of the time the eyes are tracked is needed. The
following section will be about the requirements for the questionnaire and then the eye
tracking part. Afterwards we will talk about how we will record the screen during the time
we track the users eyes.

15

3. Approach

Figure 3.6. Schematic Example of Eye Tracking Data during Experiment

3.4.1 Questionnaire Requirements

As an administrator creating and managing questionnaires, it should be possible to turn
these two options on and off individually, because one might not have an eye tracker but
still want to record the screen of a user during the participation of an experiment. The other
way is not possible, because only the eye tracking data without the recording of the screen
would not be useful. The default should be off for both, because they are special options
which need specific hardware and software and someone who only wants to create a
questionnaire would not want a special option turned on. As mentioned, these options can
be turned on or off for every questionnaire, and the other questionnaires of the experiment
are left untouched. A mockup desgin is shwon in Figure 3.7 . It should be possible to play
the recording after a user participated in an experiment. The administrator should be able to
select a users recording. This can be achieved through a modal showing information about
all users of the questionnaire. These information should be about whether a user finished
the questionnaire, if there exists any eye tracking data, or screen recording. Also, there
should be a possibility for downloading the users information after ending a questionnaire.
From this modal, the administrator should be able to select a user and watch his screen
recording. Before and during the playing of the recording, the watcher should also be able

16

3.4. Concept of the Experiment Mode with Eye Tracking

Figure 3.7. Options for Administrator

to turn the displaying of the eye tracking data on or off in the recording. So they can watch,
where the user gazed during the recording.

3.4.2 Eye Tracking

To track the eyes, we should take four points into account. What is the eye tracking data,
how do we get the eye tracking data, what do we do with the eye tracking data and what
about calibration of the eye tracker.

Eye Tracking Data Format

What the eye tracking data consists of, is dictated by the SDK of the eye tracker, but we
need the x and y position of the point on the display where the user gazed and when
the eye tracker recorded that. Also, for the sake of displaying afterwards where the user
gazed during the recording, we need to save the width and height of the screen where the
recording took place. This can be handled by the common format JSON.

17

3. Approach

Get Eye Tracking Data

To get the eye tracking data, we need an eye tracker and communicate with it during the
participation of the questionnaire. In our case, we restrict it to the normal questions, where
the participant interacts with the ExplorViz interface. So before starting the main part,
we have to start the communication with the hardware and end it after the last normal
question is answered. We need a SDK for the eye tracker and its software, in our case we
will use an external server which communicates with the hardware and then sends the eye
tracking data to the questionnaire website. This will limit the first requirement, System
Integration, of [Jakobovits et al. 2000].

Eye Tracking Data at the Client

At the clients side, we save it first in an array and save the array afterwards in a more
permanent form. In our case, we upload it to the server of ExplorViz where it is saved in
the mentioned format, JSON, as a file.

Calibration of Hardware

Usually, this has to be done for every participant. Depending on the SDK and eye tracker,
the calibration can be implemented by us before the participation in an experiment. Or, if
this is not possible with the SDK, the eye tracker offers software to do this. The calibration
should take place as close as possible to the actual recording, so it is as accurate as possible
but without disturbing the questionnaire flow. If we calibrate for instance directly after the
prequestions and before the main part, the normal questions, the pressure at first might be
high and the user might act and look differently as usual.

3.4.3 Screen Recording

The recording of the screen should take place as close as possible to the start and stop of
the recording of the eyes. Depending on the implementation, to start and stop in parallel
would be optimal, but in a one threaded browser, this is not possible. Further, the recording
should be in a common format and uploaded and saved on a server. The last mentioned
part is really important to make it possible to watch the video together with the eye tracking
data afterwards. To reuse already written code, we can use an open source library which
records the screen with the help of an extension in the browser, since the experiment is
done in a browser. But there are drawbacks. For security reasons, the browser needs the
explicit permission of the participant to record the screen, which interrupts the flow of
the experiment. Also, we have to mind memory restrictions of the browser because video
media is usually relatively big in contrast to text and images, which are more commonly
used in websites. Alternatively, we could use a desktop software, but in this case we have
to record the screen from the beginning until the end of the full experiment, which leaves
too much footage that we do not need. Another drawback is the software must be first

18

3.4. Concept of the Experiment Mode with Eye Tracking

downloaded and then be installed by the user, and further the recording must be uploaded
by the participant manually. We want to make it as simple as possible for participants, even
if we have to work with the mentioned drawbacks, so we decide for the recording of the
screen via a library.

19

Chapter 4

Implementation of Questionnaire
Extension

In section 3.3 we developed our approach to extend the questionnaire inside the experiment
mode of ExplorViz so it will conform more to the requirements of Experiment Management
Systems. We describe how we modified the current ExplorViz project at different parts to
add the questionstyles prequestion and postquestion to the Questionnaire.

Figure 4.1. ExplorViz Implementation

Figure 4.1 shows a more detailed overview of the components of the implementation
of ExplorViz and the classes that exist and we will implement. The names inside the
boxes comply with the package names of the project, except for the JSON files. The names
underneath the boxes, connected by lines, are classes we modify and in case of the Model

21

4. Implementation of Questionnaire Extension

part, create. The blue lines represent a communication between components or in case of
the JSON files the access of them. The package war is not in the source code but is the
static files of the website. In the following sections, we describe the illustrated and their
relationships in detail.

4.1 JSON File

Listing 4.1. Extract of an Experiment in JSON Format

1 {

2 "questionnaires": [{

3 "preAndPostquestions": true,

4 "questionnareID": "quest1493635916790",

5 "prequestions": [{

6 "expApplication": "",

7 "answers": [],

8 "workingTime": "",

9 "type": "freeText",

10 "questionText": "Prequestion One"

11 }],

12 "recordScreen": false,

13 "questions": [{

14 "expApplication": "",

15 "answers": [

16 {

17 "answerText": "Answer One",

18 "checkboxChecked": false

19 },

20 {

21 "answerText": "Answer Two",

22 "checkboxChecked": false

23 }

24],

25 "workingTime": "5",

26 "type": "freeText",

27 "expLandscape": "1467188123864-6247035",

28 "questionText": "Question One"

29 }],

As shown in Listing 4.1, the attribute questionnaire is extended by two additional lists
for questions. They are called prequestions and postquestions. Important is also the attribute

22

4.2. Model

preAndPostquestions inside every questionnaire. This determines the option whether pre-
and postquestions should be enabled during the input of the questions and during an
experiment.

4.2 Model

The model side of ExplorViz project is named shared and contains classes which are used on
the client and the server side of the project. This circumstance is based on the characteristics
of GWT, that the client side is implemented in Java. Before, in the legacy code, there was a
class named StatisticalQuestion. We replace this class with two other classes, the Prequestion
and the Postquestion. StatisticalQuestion assign a type to each question, for example number
and depending on this, the inserted HTML will change for the representation of the
question inside the questionnaire-modal during an experiment. Important attributes like
answers, the text of a question, and ids are part of the class as well.

Prequestion possesses these attributes as well, inheriting from already existing class
Question and we add the integer attributes min and max, for the new type number range
mentioned in the approach. We also add the functionality for inserting the correct HTML
for the representation of the new types mentioned in the approach, free text, multiple choice,
and number range.

4.3 ExplorViz server

On the server side of the architecture of ExplorViz, which is illustrated as server. As shown
in Figure 4.1, the interface JSONServiceImpl provides operations to handle experiment
files, which are stored in the JSON format. This means, we implement functions to access
the JSON files to modify the questionnaire attribute preAndPostquestions. There is no need
for a set-function of the list attributes prequestions and postquestions, because they get set
when an experiment as a whole gets saved or modified. In that case a JSON string is sent
as parameter and saved in the respective file as a whole, without modifying or filtering the
content, except validating it as JSON and match it to a prefabricated experiment schema.

4.4 Client

As seen in Figure 4.1 and mentioned before, ExplorViz project has a client side, called
visualization. In the following, we describe the relevant parts on the side of the client, which
need to be changed or developed.

23

4. Implementation of Questionnaire Extension

Figure 4.2. Experiment Overview RootPanel

4.4.1 ExperimentToolsPage

The class ExperimentToolsPage.xtend and its counterpart ExperimentToolsPageJS.java, see
Figure 4.1, create the administrator experiment overview page shown in a screenshot
in Figure 4.2. We want to modify this existing interface and add the option of pre- and
postquestions. Since that name is long, we name it Statistic Questions. Based on the mockup
as shown in Figure 3.6, we add a menu option Special Settings, add the menu option Statistic
Questions, and show with a glyphicon, a small picture of a black tick, whether the option
is enabled or disabled. In the following sections we will also explain some important
principles of the ExplorViz project implementation and its used features of GWT.

Add Option Statistic Questions

To add the two menu options Special Settings and Statistic Questions, we need to add
their HTML representation into their respective places. To describe where we add their
representation, we need to explain how the administrators overview is created. GWT
gives the developer the possibility to use Java to implement the web pages. One of the
classes to act as a HTML element, is RootPanel. When compiled to HTML and Javascript,
the RootPanel is the first container inside the body after a navigation bar, as shown in
Figure 4.2 with an indication where RootPanel is located. If we set the RootPanels view
with a string containing valid HTML, we set the content of the page. To do this, there

24

4.4. Client

is a big HTML string in class ExperimentToolsPage in method showExperimentList. During
the loading of the page, the ExperimentToolsPage first requests the experiments from
the ExplorViz server, see Listing 4.3. They are sent back as string, containing a JSON
string and given to the function showExperimentList which gets executed afterwards. The
communication between ExperimentToolsPage and the server is done via asynchronous
RPC. As mentioned before, this kind of communication is a feature of GWT to make it
easy to exchange Java objects. When the RPC returns, a callback is invoked. In this case,
the GenericFuncCallback is called and it invokes the function we pass on to it, as shown
in Listing 4.3, the function showExperimentList. The callback also needs the type of the
return-value by the server, to pass it on as parameter to the function, in Listing 4.3 it is the
common type of String.

Listing 4.2. Extract of ExperimentToolsPage method render

1 jsonService.getExperimentTitlesAndFilenames(

2 new GenericFuncCallback<String>([showExperimentList])

3)

With the information about the experiments as parameter, the HTML for the content
of the page is built and set inside the function showExperimentList. This string containing
HTML is the part we add the menu options. See Listing 4.4 with the specific code part
we add. Due to Xtend and the source code generation, we can generate the string. The
code extract in Listing 4.4 does not show it, but it is located inside two for-loops of code
generation. We see an indication first in line 13, where the expression «i.toString + j.toString»
is shown. The variables i and j are the counters of each for-loop. They indicate how many
experiments and questionnaires we went through, making the id of the link unique.

25

4. Implementation of Questionnaire Extension

Listing 4.3. Extract of ExperimentToolsPage’s method showExperimentList

1 ...

2 User

Management

3
4 <li class="dropdown-submenu">

5 Special

Settings

6 <ul class="dropdown-menu" >

7

Statistic Questions

8 «IF questionnaire.getBoolean("preAndPostquestions") == true»

9 <span class="glyphicon glyphicon-ok" title="Statistical

Questions is true">

10 «ENDIF»

11

12

13

ClickHandler

As shown in Listing 4.4, the tick glyphicon is displayed when the option preAndPostquestions
is true inside the respective questionnaire. We want to add functionality to this menu
option, to enable and disable the option Statistic Questions, the preAndPostquestion attribute
inside a saved questionnaire. Considering that, we need a clickHandler which on the
one hand sets the attribute to its contrary and shows a success modal after successfully
changing the attribute. And on the other hand toggles the display of the tick glyphicon.
The clickHandler gets assigned through the id of the button. At first we check whether
an experiment is running, and in that case do not let the user change anything. Then
we request the boolean value of the attribute preAndPostquestions in the questionnaire
the user clicked on. Afterwards, because of the asynchronous request to the ExplorViz
server, another function named togglePreAndPostquestions is called. As shown in Listing 4.5,
togglePreAndPostquestions toggles the boolean value and calls a function which starts the
process to let the glyphicon vanish or appear in the respective questionnaire option. And
togglePreAndPostquestions updates the value on the server as well as calls a function which
shows a modal which informs the user that the toggling of the option was successful.

26

4.4. Client

Listing 4.4. Extract of ExperimentToolsPage method togglePreAndPostquestions

1 def static togglePreAndPostquestions(String experimentFileName, String

questionnaireID, boolean serverPreAndPostquestions) {

2 //toggle and update preAndPostquestions

3 var preAndPostquestions = !serverPreAndPostquestions;

4 toggleGlyphicon(serverPreAndPostquestions, "expEditStatQuestionsSpan",

experimentFileName, questionnaireID);

5 jsonService.setQuestionnairePreAndPostquestions(experimentFileName,

questionnaireID, preAndPostquestions, new GenericFuncCallback<Void>([]))

;

6 ExperimentToolsPageJS::showSuccessMessage("Option Statistical Questions", "

The option for pre- and postquestions was set to " + preAndPostquestions

.toString() + ".")

7 }

Toggling the Glyphicon

We are now inside the function toggleGlyphicon, that we called in line 4 of Listing 4.5. To
toggle the tick glyphicon in the menu option, we need to know the id of the menu option.
But we only have the experiment name and the questionnaireId as context. We start with
requesting all experiments and their questionnaire, which we go through in the search
for the correct experiment name and then the correct questionnaireId. Then we call a
function which is implemented with native Javascript, named the same as our current
function: toggleGlyphicon. These kind of native Javascript functions exist in the ExplorViz
project quite often and are implemented inside a counterpart Java class, in this case called
ExperimentToolsPageJS.java. The functions are usually public, static, and because of the
native Javascript are they also tagged native, and are called JavaScript Native Interface1

(JSNI) methods. And here the native function toggleGlyphicon either removes or appends
the tick glyphicon with the help of JQuery. It is noteworthy that it is called native Javascript,
but that there are differences to normal Javascript. One of them is, that we need to add
$wnd to access Javascript instances of the page. Also, and this is a big advantage, we can
call Java methods and pass on variables as parameters.

4.4.2 Option Question-Interface

The administrator has more possibilities than just to change an option of a questionnaire.
An important part is to add questions. It was already mentioned that there exists an
interface to add, modify and delete questions of a questionnaire. But as mentioned before,
we added the pre- and postquestions to the questionnaire. And in the approach, we want

1http://www.gwtproject.org/doc/latest/DevGuideCodingBasicsJSNI.html

27

4. Implementation of Questionnaire Extension

 GWT

 ExplorViz.html
...war/css/*

 war/js/*

war/experiment/slider.js exp_slider_template.html

create Slider object

declaration of Slider constructor

Figure 4.3. Integration of CanJS

to add the possibility of managing them inside the already existing interface, for consistent
design. The interface was implemented with CanJS and we implement our approach there
as well.

The menu option Question-Interface, shown in the approach mockup Figure 3.7, is imple-
mented like the menu option before. As HTML added to the view in ExperimentToolsPage
and combined with a clickHandler. But this clickHandler changes to a page called Ex-
perimentSlider. This Xtend class implements specific methods and requests and transfers
respective questionnaire data to a Javascript object. In Javascript a function is an object at
the same time and the mentioned Javascript object is named Slider. As shown in Figure 4.3,
the connections here exists through the main HTML file, ExplorViz.html. It includes various
Javascript libraries and also the slider.js. The call and passing on of the data happens inside
the counterpart class of ExperimentSlider, ExperimentSliderJS.java, inside the blue GWT box
in Figure 4.3, illustrated with light blue. The Slider receives for parameters questionnaire
data but also functions, which are implemented in the class ExperimentSlider. As stated
before, we can invoke Java functions from inside the native JavaScript. Therefore, we create
functions inside the ExperimentSliderJS native JavaScript and pass them on as parameters

28

4.4. Client

Figure 4.4. Extract of Question-Interface Page

to the external JavaScript object Slider, as illustrated as light blue line in Figure 4.3. As a
result, the Slider outside of the GWT environment can use the functionality and context
variables of class ExperimentSlider inside GWT. The functions that are given as parameter
entail to save data on the ExplorViz server, get the last viewed landscape, to load a specific
landscape, and a function to get back to ExperimentToolsPage, the Experiment Overview
page.

CanJS interacts via components, which can be parts of each other. A component consists
of a template containing HTML, variables and events. And they are named via a tag. We
can access values inside the template with variables declared in the component. Also
noteworthy is, that if the variables are changed, a rerendering of the component gets
triggered.

To add functionality to make questions of the styles prequestions or postquestions, we
must give the Slider the information whether Statistic Questions are enabled or not. We

29

4. Implementation of Questionnaire Extension

do that with a boolean parameter called preAndPostQuestions. Inside the root components
template of Slider, we check for the value preAndPostQuestions and either disable or
enable a components with a group of buttons. As shown is an example screenshot in
Figure 4.4, the button series with Pre-, Questions, and Post- are disabled. When they are
disabled, the Slider shows only normal questions. When the option is enabled, it follows
that the buttons are enabled, except the one in which context the administrator is. That
button is disabled and the questions of that question style are shown. During a switch
of the questionstyle context, the data gets saved if it is valid. Modals pop up if questions
are not valid, and the invalid questions gets discarded if the modals are accepted. Due
to CanJS, we only need to change a variable inside the root component, and the Slider
gets updated. Important to note here is, that we also need to create a new component for
the input in case of the pre- or postquestiontype of Number Range. Therefore we add a
template and append the component at their respective places inside the code. Therefore
whenever the current questiontype Number Range is, to change the root components input
to the one of Number Range. The new component contains two number inputs, a minimum
and a maximum, to input a restriction for the range of numbers experiment participants
can input.

Inside the class ExperimentSliderJS exists also the implementation for a tour an admin-
istrator gets shown when he opens the Question-Interface page for the first time. The
Question-Interface page is manipulated by native functions to show small text modals on
specific elements inside the Slider. Since we added a button group, we update the tour
with some information.

4.4.3 Display during Experiment

With the sections before, we modified the possibilities for the questionnaire input and its
saving process. Hereafter, we describe the editing of the questionnaire display during an
experiment participation.

When a participant logs into ExplorViz, the web page recognizes him as such and
refers him first to the tutorial. The page class is called Experiment.xtend and there exists the
counterpart class ExperimentJS.java. The Experiment class handles mostly the tutorial, its
steps and the loading of its texts. When the tutorial is completed or if the participant clicks
on the navigation bar link Visualization, the class Questionnaire instead acts as Experiment,
also calling methods from ExperimentJS.java.

The class Questionnaire starts with requesting the questionnaire attribute preAndPostques-
tions, to determine whether the experiment process should start with the prequestions or
skip them and continue with the normal questions. The request happens, as mentioned
before, with an asynchronous RPC to the server. We request the experiment name and
the normal questions from the server and save them as attribute of class Questionnaire.
Afterwards we start a process to begin the experiment visually.

A modal that informs the participant that he takes part in an experiment gets injected
into the page, showing the name of the experiment. When the participant confirms, either all

30

4.4. Client

prequestions or the first normal question gets shown in the modal. In case of prequestions,
is the attribute preAndPostquestions of the class Questionnaire not false. We request the
prequestions from the server and create a form containing them in HTML. This form is
inserted into the modal. The form gets created with the help of the methods of Model
packageshared.experiment, remember Figure 4.1, class Prequestion. Depending on the type
of Prequestion, the HTML code elements get added to the form. When the participant
answered all prequestions and confirmed the modal, the first normal question gets injected
into the modal. After the confirmation and before the injecting of the questions, the answers
of the participant to the prequestions get saved. We can reuse the old function to save the
answers, since the format of the HTML form of the prequestions is the same as before.

The normal questions get shown one after the other, the time the participant takes
is tracked and also shown inside the modal. Also, the respective software landscape for
the question gets loaded. After each question, the answer is saved and the next questions
displayed. This was implemented by [Finke 2014], as mentioned before. We do not modify
anything here.

After the last normal question, the visualization of the software landscape is emptied
and checked whether preAndPostquestions for the Questionnaire is true. If it is false, the
question modal gets closed and the participant gets logged out and the user login is set to
done. If the postquestions are to be displayed, they are first requested from the server and
then put into a form, like the prequestions before. And after the input and confirmation in
the modal, the answers also get saved, the participant gets logged out and set to done.

31

Chapter 5

Implementation of Eye Tracking
Extension

In section 3.4 we modeled our approach to track the eyes of a participant during an
experiment. We explain here, what we modify in the ExplorViz project to implement our
approach.

Figure 5.1. ExplorViz Implementation

The Figure 5.1 shows us classes that we will edit for our implementation of the eye
tracking extension. In that extension, we want to add not only eye tracking, but also the
possibility to record the screen during the participation in an experiment. We also want to
make it possible to record the screen when there is no tracking of the eyes. We will modify
the experiment overview for the new options of eye tracking and recording of the screen.
And we will add these options to the questionnaire as attributes in the JSON files. We
are going to implement a new class called UploadFileServiceImpl.java on the server side, to

33

5. Implementation of Eye Tracking Extension

receive and save the big media files of the screen recordings. Like in Chapter 4, there are
static files in the war folder for the website. There is nothing to change inside the model
side, so we will skip this side in our explanation. We will start with the description of the
format of the JSON file, then the server side and what we change there, and it is followed
by a description of the client side.

5.1 JSON File

Listing 5.1. Extract of an experiment JSON file

1 "questionnaires": [{

2 ...

3 "recordScreen": false,

4 "questions": [{

5 "expApplication": "",

6 "answers": [

7 {

8 "answerText": "Answer One",

9 "checkboxChecked": false

10 },

11 {

12 "answerText": "Answer Two",

13 "checkboxChecked": false

14 }

15],

16 "workingTime": "5",

17 "type": "freeText",

18 "expLandscape": "1467188123864-6247035",

19 "questionText": "Question One"

20 }],

21 "questionnareTitle": "Questionnaire One",

22 "eyeTracking": false,

23 ...

Listing 5.1 shows a section of an example experiment JSON file. We add to a question-
naire the two attributes recordScreen and eyeTracking as boolean values. One could argue,
that if someone wants to track the eyes, they would want to do that in the whole experiment.
But we want to give the creator as much freedom as possible. And there exists a possibility
that an administrator would want to only track the eye during a specific questionnaire and
not in another one.

34

5.2. Server

5.2 Server

Like in the approach in section 3.4 specified with the new questionnaire attribute preAnd-
Postquestions, we add get- and set-functions to the JSONServiceImpl.java for each attribute,
eyeTracking and recordScreen.

5.2.1 Eye Tracking Data

During the participation of an experiment, as mentioned before, we want to track the eyes
and record the screen. These two processes generate data and we want to save the data
produced in these processes on the ExplorViz server. In terms of size is the data of the eye
tracking small. We can send it to the already existing server class JSONServiceImpl.java as
string and save it there locally like the JSON data of the experiments. We save it in a folder
called eyeTrackingData next to where the answers of the participants are saved. This function
is called uploadEyeTrackingData. As mentioned in the approach, we also want to give an
administrator the possibility to look at the data, look at the recording of the screen and at
the same time mark where the participant looked at that moment. Therefore we need to
offer a get-function for the eye tracking data. This function is called getEyeTrackingData.

5.2.2 Screen Recording Data

To get and set the screen recording data is more difficult due to the size of the data than
the eye tracking data. To upload the screen recording data, we will create a new class, the
UploadFileServiceImpl.java. The function takes the data from the request, which is a HTML
form element, parses for the file, and saves it locally, like the eye tracking data, in a folder
called screenRecords next to the answers of the participants. As mentioned before, the size
of the data by the screen recording is quite big and in the media format webm. More details
about the topic of the media format are given later, in section 5.3. So an alternative to
transferring the whole file back to the client, is to move a copy to the static files of the
website and answer the request with a link to that location. The functionality for this is
located inside the JSONServiceImpl.java. In summary, we copy the requested file to a specific
location of the static files and answer the request with that location. But we do not want
to have many copies of the same file on the server, we want to stay as small as possible.
Therefore, after copying the file to the specific location, we delete all other files that might
exists there. Since the requested file is in use, the server will not delete it.

5.3 Client

On the client side, we need to add the options eyeTracking and screenRecording to the
experiment overview page, to make an administrator able to change them. Then we need
to add functions to the current process of displaying an experiment during a participation.

35

5. Implementation of Eye Tracking Extension

We need to trigger the screen recording and the recording of the eye tracking data. We also
need to implement the mentioned external server to communicate with the hardware of the
eye tracker, to get the data, mentioned in the approach. And there is also the functionality
we want to implement, that an administrator can watch the results of the eye tracking and
screen recording together. For this, we need to add an option in the experiment overview
page, let the administrator choose between the participates that finished an experiment
and then display their recording of the screen and the eye tracking.

5.3.1 ExperimentToolsPage

We want to add the questionnaire attributes eyeTracking and screenRecording as options
to the experiment overview page, as well as the option Results, as shown in the mockup
in the approach in Figure 3.7. The menu option Results should open a modal with the
questionnaire participants and their state, if they are done or not with their participation.

Menu Options eyeTracking and screenRecording

Similar to section 4.4.1, we add HTML menu expressions to the string that gets injected
into a modal and then the RootPanel of the experiment overview page for both options.
And we add for each clickHandler, which opens a modal, informing the administrator that
the option was changed and invokes a request to the ExplorViz server to set the toggled
value of the attribute. We also reuse the function to toggle and display a tick glyphicon for
each option.

Menu Option Results

Analog to the section before, we add the menu option to the experiment overview page.
There is no need for a tick glyphicon, because this menu option is no attribute that gets
toggled. In this case the clickHandler requests a list of the participants. Then we create a
HTML table showing the participants, if they are done and if there is eye tracking data of
the participant on the server. As shown in Figure 5.2, these columns are indicated with a
tick glyphicon in case of this column being true. There are two more columns with their
value indicated by a disabled or enabled button. The columns are called Screen Recording
and declares whether there exists a file of the recording on the server. The last column
is a disabled button if the participant did not finish the experiment yet and downloads
the experiment and the participants answers and results, the eye tracking data and screen
recording, as a zip folder. Noteworthy is here, that we specifically request the server if there
are eye tracking data and screen recording saved on the server. In case of the eye tracking
data, a false positive is possible. If there is no eye tracking data during the participation,
for example there is no eye tracker or the communication fails, the experiment still saves
the empty eye tracking data on the server. The data is empty, but the JSON object is there.

36

5.3. Client

Figure 5.2. Screenshot of a Results Modal

Screen Recording Replay

The button of the column Screen Recording, if enabled, opens another modal, a videoplayer
with buttons underneath, as shown in Figure 5.3.

Figure 5.3. Screenshot of a Replay Modal

We control with the buttons both the videoplayer and the replay of the eye tracking data,
so we do not show the videoplayers native controls. We create the videoplayer, a canvas

37

5. Implementation of Eye Tracking Extension

and the buttons inside a string in the scope of the ExperimentToolsPage.xtend and inject it
into a modal. Like the slider.js in Section 4.4.2 and the Figure 4.3, there exists a JavaScript
file outside the scope of ExplorViz. The constructor startReplayModeJS gets invoked from
inside GWT after the modal is created. His parameters are the eye tracking data, after a
request, transferred by the server, and a link to the screen recording media file in the static
files of the website. The link gets set as source of the videoplayer.

As shown in Figure 5.3, the button to the left is the start button, showing a play
glyphicon, and changes to a pause button with pause glyphicon if clicked. The button on
the right controls the display of the eye tracking. Similar to the mockup Figure 3.6, we
draw a small translucent red circle on top of the video, onto a canvas. And with the right
button the canvas is displayed or hidden.

Listing 5.2. Extract of an eye tracking data file

1 {

2 "eyeData": [

3 [

4 0.9116856157779694,

5 0.16776859760284424,

6 1490864805552

7],

8 [

9 0.9194962084293365,

10 0.1583147794008255,

11 1490864805567

12],

13 [

14 0.9013174474239349,

15 0.1775306835770607,

16 1490864805582

17],

18 ...

19 [

20 0.09196797013282776,

21 0.6925255656242371,

22 1490866323934

23]

24],

25 "width": 1920,

26 "videostart": 1490864814760,

27 "height": 1200

28 }

38

5.3. Client

The small bar underneath the buttons controls the progress of the video and eye tracking
data. As mentioned before, we draw a red translucent circle with a function called draw,
which calls itself after a timeout. The draw function also sets the progress bar of the video
and manages the synchronization of the drawing of the eye tracking circle with the video
time. There a two important functionalities the progress bar has to master. One is the
display of the current time of the video and the eye tracking data. And the other is the
controlling of the progress. That way a user viewing the replay of a participation of an
experiment can fast-forward or go back to another point of the video. In the Listings 5.2,
the third number of the list item in eyeData shows the Unix Timestamp1 of the computer
where a participant took part in an experiment with an eye tracker. We can see, that the
eye tracking data entries do not happen in a regular time distance. But we can synchronize
it with the timestamps. We know the start point of the recording of the eye tracking data,
seen in the Listing 5.2 as attribute videostart, and the videoplayer has a time attribute of
the duration of the video. The videoplayer also has an attribute currentTime that we can
access. With these information, we can determine when the eye tracking circle is too far in
the future and reset it. After the reset, we go through the whole list until we get to a point
where the videotime and the timestamp of the eye tracking data correspond vaguely to
another. We make these eye tracking data resets when the timestamp and videotime are
more than 40 ms apart from each other.

Listing 5.3. Extract of exp_eyeTracking Javascript file

1 var videoTime = loadedReplay.videostart + (v.currentTime * 1000);

2 setTimeOfSeekBar();

3 if(currentGaze[2]-videoTime >= 40 && !userOutsideDisplay) {

4 gazeCopy = loadedReplay.eyeData.slice();

5 currentGaze = gazeCopy.shift();

6 console.log("eyeTracking reset " + i);

7 }

In Listing 5.3 we see an extract of the file exp_eyeTracking.js which is noted in Figure 5.1.
The variable videotime converts the current time of the video into a representation that
we can compare to the eye tracking data timestamp. As mentioned before, we check then
whether the video and the eye tracking data, in line 3 of Listing 5.3 represented as variable
currentGaze[], are more than 40 ms different from another. Specifically if the eye tracking
data is more than 40 ms further than the video. Depending on the gaps between the eye
tracking data entries, the reset happens quite often. We see in Listing 5.3, line 3, also a
variable called userOutsideDisplay. This is a boolean value which indicates whether two
eye tracking data entries differ in their timestamp of more than 210 ms. We defined then,
that this means, that the experiment participant looked away from the screen and the
eye tracker could not get any eye tracking data because of that. The value of 210 ms may

1http://www.unixtimestamp.com/

39

5. Implementation of Eye Tracking Extension

appear arbitrary, but we checked with example eye tracking data we created during the
development and in general transmits the eye tracker its data in intervals under 210 ms.
The small bar underneath the buttons controls the progress of the video and eye tracking
data.

5.3.2 Experiment

During a participation in an experiment, we need to start the tracking of the eye and
the recording of the screen, if the options are enabled. And after the participant finished
the experiment, we want to upload the eye tracking data and the screen recording to the
ExplorViz server.

Questionnaire

Similar to section 4.4.3, we modify the process during the beginning and at the end of
a participation of an experiment. We intervene in the starting process after the attribute
preAndPostquestions is requested from the server. We request for the attributes eyeTracking
and screenRecording from the server and set them as attributes of class Questionnaire.

The starting of the two options must then be done right before the first normal question
is injected into the question dialog. In the approach, Section 3.4.3, it was mentioned that
the flow of the experiment is interrupted by a window asking for permission to record
the screen when the screen recording is started. We want to inject an extra modal before
the first question, otherwise would the tracking of the time of the first question already
start and pressure the participant unnecessarily when he sees after confirming the security
modal, that he had lost time. This would also interfere with the data of the results, since
the participant is innocent of the time loss for the first question. As shown in Figure 5.4,
the content of the modal announces the begin of the normal questions.

After the confirmation, the first question starts. The screen recording starts after the
confirmation of the security modal. An example is shown in Figure 5.5. Before the modal
of Figure 5.4 is created and shown, invokes the class Questionnaire a native JavaScript
function in ExperimentJS, which calls similar to Section 4.4.2, a constructor function with
one function as parameter, called EyeTrackScreenRecordExperiment. The parameter function
saves the eye tracking data on the ExplorViz server. Other parameters are the boolean
values for eyeTracking and screenRecording, as well as the Id of the user and a name of the
questionnaire.

EyeTrackScreenRecordExperiment

We implement EyeTrackScreenRecordExperiment in the external exp_eyeTracking.js file. There
are different noteworthy aspects that the object takes care of. We start and stop the eye
tracking and the screen recording from there, as well as transfer data to the ExplorViz server.
And we establish a communication with the before mentioned external communications

40

5.3. Client

Figure 5.4. Simple Modal before first normal Questions during Experiment

server, which transfers the eye tracking data to us. To stop the recording and tracking, we
implement eventListener for the EyeTrackScreenRecordExperiment object, since we cannot
interact with the object from the GWT side after its construction. As mentioned before,
the recorded media files of the screen recording are relatively big. Because of that, we
need a process which ensures that the experiment is not finished and closed before the
media file is uploaded to the ExplorViz server. We will follow with our description of these
mentioned aspects the process during an experiment participation.

It was mentioned before, that we invoke the JavaScript constructor of EyeTrackScreen-
RecordExperiment from the GWT side and receive important parameters, like a function
to save the eye tracking data and boolean values for eyeTracking and screenRecording,
as well as information of the user and the questionnaire. The screen recording is started
first. In Figure 5.5, we see the security modal, mentioned before. As stated before, we use a
chrome extension called Screen Capturing to get access to the screen. And we use a library
called MediaStreamRecorder.js, which interacts with the chrome extension and captures the
screen for us. We construct the object mediaRecorder to use the functions of the library.
Noteworthy is here, that we overwrite its function ondataavailable, which gets invoked after
a set time. When the ondataavailable gets called, a part of the screen recording gets send to
the ExplorViz server. We transfer parts during the screen recording, because of memory

41

5. Implementation of Eye Tracking Extension

Figure 5.5. Security Modal when starting Screen Recording

restrictions of the browser. We will mention this later again, but if the recording takes too
long, the recording object, a so called blob, becomes very big and is deleted.

We start the eye tracking by calling the function startEyetracker, which we find in the
external JavaScript file eyeApi.js. This file was implemented by a student in the scope of his
bachelorthesis. A connection with a specific local port is established, the before stated exter-
nal communications server for communicating with the eye tracker. The communication is
translated into JavaScript events, to which we let EyeTrackScreenRecordExperiment listen. For
example, when new eye tracking data is received, did startEyetracker implement, that it gets
translated to an event called newGazeData, on which the document listens and saves the eye
tracking data inside the event. Listing 5.4 shows an extract from the startEyetracker function,
translating received data from the established connection to the external communication
server to an event.

42

5.3. Client

Listing 5.4. Extract of eyeApi.js

1 connection.onmessage = function (e) {

2 var resp = JSON.parse(e.data);

3 switch(resp.responseType){

4 case "trackerStatus":

5 if(trackerStatus != resp.status){

6 trackerStatus = resp.status;

7 $(document).trigger("trackerStatusChanged", trackerStatus);

8 }

9 break;

10 case "gazeData":

11 trackerStatus = resp.status;

12 $(document).trigger("newGazeData", {"x" : resp.calX, "y" : resp.

calY, "time" : resp.time});

13 break;

14 default:

15 console.log(’invalid request type: ’ + e.data);

16 }

17 }

As stated before, after EyeTrackScreenRecordExperiment is constructed, we cannot interact
with it via function calls. So we implement a function, which triggers an event called
stopExperiment. We implement in EyeTrackScreenRecordExperimentto let the document listen
to this event and react with stopping the screen recording and the eye tracking.

We mentioned before, that we want to implement a mechanism to stop a participant
from closing and finishing the experiment before the screen recording is uploaded. There-
fore, we create a JavaScript function, which waits for two triggers, before it gives an
okay, for the participant to close and finish the experiment. One from the GWT side,
after all questions, and if enabled postquestions, were answered. And the other is the
upload of the screen recording. We implement this function in exp_eyeTracking.js and call
it uploadAndQuestionnaireFinished. The function lets the document listen to specific events,
uploadFinishedSuccessful, uploadFinishedFailure in case of a failure during the upload of the
screen recording, and questionnaireFinished. When the participant has finished with the
questionnaire, but the upload is not done yet, a simple modal comes up and informs the
participant about it. When a failure happens during the upload and the participant ended
the experiment, the modal informs him about these circumstances as well. The participant
can leave without any modal, if the upload was finished in time.

43

5. Implementation of Eye Tracking Extension

Eye Tracker Communications Server

Browser

Figure 5.6. Communication on Participants Computer

External Communications Server

As shown in Figure 5.6, the external communications server communicates with the eye
tracker via a SDK and with the browser through a specific connection. The source code is
in C++ and was implemented by the bachelor student that also implement eyeApi.js. As
stated in the foundations, we use a tobii EyeX eye tracker, and include the TobiiGazeSdk-
CApi-4.1.0.806-Win64 as SDK for the tracker. When we started with our development of our
approach in November 2016, this SDK was already depreciated by tobii and not available
online anymore. Since tobii did not provide any other SDK during that timeframe, we used
the SDK the bachelor student used.

The communications server basically establishes a connection to the eye tracker with
the SDK, which starts a process that sends data from the eye tracker to the communications
server, when the eye tracker notices that it has eye tracking data. The communications
server receives this data and transforms it to JSON. Listing 5.5 shows an extract of the
transformation process. We can see the attributes of the eye tracking data. After the
transformation, the data gets transferred to the browser, due to sending it to the socket
and the browser listening to that socket.

44

5.3. Client

Listing 5.5. Extract of eyejsonprotocollserializer.cpp

1 void EyeJSONProtocollSerializer::serializeTrackingData(QSharedPointer<QPointF>

gaze, QSharedPointer<QDateTime> timestamp, QSharedPointer<QString> message)

2 {

3
4 QJsonObject json;

5 QJsonValue jResponseType("gazeData");

6 QJsonValue jX(gaze->rx());

7 QJsonValue jY(gaze->ry());

8 QJsonValue jTimestamp(timestamp->currentMSecsSinceEpoch());

9 json["responseType"] = jResponseType;

10 json["calX"] = jX;

11 json["calY"] = jY;

12 json["time"] = jTimestamp;

13 QJsonDocument doc(json);

14 *message = QString(doc.toJson());

15 }

Optional Local Improvements

We implemented a process to record the screen and we left the recording in its media
format, because the media object inside the browser scope is very big and we had problems
with memory restrictions. Our solution was to split the big media file into smaller parts,
and implement this idea. We create the parts during the recording and upload them to the
ExplorViz server. The problem left is, that during the implementation of the replay of the
screen recording, we expected only one media file. For future work, we could implement a
mechanism on the server side of ExplorViz to merge the media file parts together. Another
problem factor is, that even though we develop and debug on a localhost, the replay of the
screen recording still stutters sometimes. This seems to be the case, because the media files
are in the webm format. For future work, we could implement that the media files not only
get merged for one user, but also gets transformed in the more common mp4 format. But it
is also possible to install software and do it on the local computer.

45

Chapter 6

Evaluation

In this chapter we evaluate our implementation. We conduct an experiment for the sake
of testing the functionality of our implementation. We describe its design, its results and
discuss them. The goal of our evaluation is, to test the functionality of our implementation
and assess the complexity for analyzing the eye tracking data and screen recordings.

6.1 Experiment Design

An experiment needs to be developed first and our design decisions have to be documented.
Then we will describe and show our tasks, describe independent and dependent variables
influencing the experiment, the treatment during the experiment, and the participants.

6.1.1 Research Questions and Hypotheses

The experiment is based on three research questions, which we try to answer by conducting
the experiment.

1. What is the ratio between participants gazing not at the display, gazing at the question
modal, and the ExplorViz interactive interface?

2. Is there a correlation between correctness of answers and amount of gaze time on the
question modal versus on the interactive interface?

3. What does a participant mostly do (gaze and interaction with interface) when answering
a question incorrect?

Further, we define two hypotheses:

1. The ratio of gazing at the question modal, interface and not at the display differs between
participants.

2. The correctness of answers differs between participants that gaze more at the question
modal than the interface and vice versa.

And we specify accordingly two null hypotheses:

47

6. Evaluation

1. The ratio of gazing at the question modal, interface and not at the display does not
differ between participants.

2. The correctness of answers does not differ between participants that gaze more at the
question modal than the interface and vice versa.

6.1.2 Empirical Methods

The empirical method we use for trying to answer our research questions and proving
our hypotheses, we will use an experiment. Not only do experiments help us to evaluate,
according to [Basili et al. 1986], through gathering data but we can test the functionality
of our implementation. We will use tasks, that cover different features of the ExplorViz
interactive interface. And participants can vote afterwards the difficulty of the tasks. The
eyes are tracked during the questionnaire, as well as the screen.

6.1.3 Tasks

Our goal for the experiment is to find out whether our hypotheses are correct and to answer
our research questions, while taking into account that we want to test the functionality of
our implementations. To our knowledge there does not exist an experiment which checks
whether eye tracking is valuable for a non static interface. We develop the tasks with the
goal, that the participants have to use various methods and features of the ExplorViz tool.
The displayed software landscape is a monitored JPetStore instance, that we use because it
makes a slightly complex software landscape inside ExplorViz. The tasks are in a sequence
to build up in difficulty. They start with easy tasks. All tasks require at least two answers,
which are displayed as text input fields. The amount of answers the participants need to
give is displayed in the amount of text fields shown. They act like a hint for the correct
answers. Furthermore, we choose text input fields to make it impossible for participants to
guess a correct answer when there are given answers from which they just have to choose.

We want to introduce the participant with the first question. The participant has to
open some packages and gains an overview of the packages and classes. Through the
second and third tasks, gets the participants even more information about JPetStore, and
lets the participant search through the displayed components. For solving task T2, must
the participant understand, that not all communications with other class are shown when
parent packages are closed. The communications are summarized to one line then. And
this is important to understand, when searching for classes to improve. Task T3 concerns
following the communications line and using a specific tool of ExplorViz, the trace analyzer.
But it can also be correctly answered if the trace analyzer feature is not used and only
following a shortest possible path. The last task makes use of the communication summary
when a parent package is closed. But through clicking each communication in the context,
this solving is also possible and the participant needs find the correct column of an
information modal.

48

6.1. Experiment Design

As shown in Table 6.1, we assigned to each task an id, that we will use to refer to the
tasks. And we have assigned a score for each task. They are the points we give if the task
was solved fully correct. Our evaluation schema for the scores is the following. For tasks
T1.1 and T1.3 we grade one point only if the answers are correct. In task T1.2 it is possible
to get one point, when one answer is correct and two points of both are correct. The schema
for task T2, we grade one point for two correct answers of five. Furthermore, we grade two
points for three correct answers and three points if all five answers were correct. Task T3 is
graded only full two points if the path is correct and we grade one point for task T4 if one
of the answers is correct and two points if both answers are correct.

Table 6.1. Description of the Task for the Experiment

ID Description Score

Context: Gaining an overview of interface
T1.1 Take a look at the packages. There are two packages named ‘impl’.

Write their hierarchy in form ‘JPetStore.com.ibatis.xx’ down.
1

T1.2 Take a look at package com.ibatis.jpetstore. Which classes have
the lowest and highest amount of active instances. Ignore the
classes with 0 active instances. Write only the class name and
start with the class with the lowest.

2

T1.3 Take a look at the given data of the whole application. Between
which classes exists the most communication (requests)?

1

Context: Identifying refactor potential
T2 Take a look inside package com.ibatis.sqlmap.engine.mapping.

Which classes have high fan-in (at least 3 incoming communica-
tions) and almost no fan-out (at max. 1 outgoing communication)
with other classes?

3

Context:Following traces or communications
T3 Take a look at class ’CatalogBean’ in package

com.ibatis.jpetstore.presentation and class ’DaoImpl’ in-
side com.ibatis.dao.engine.impl. Name the classes which are
between a communication of ’CatalogBean’ and ’DaoImpl’. Start
with naming ’CatalogBean’ and write down the shortest possible
path. (Hint: you can use the traceanalyser.)

2

Context: Determining details
T4 Take a look at package com.ibatis.sqlmap.engine.mapping.statement

and the given traces. Which class has a communication with the
biggest average method duration. Write down the class and the
name of the method call, each in their own answer field.

2

49

6. Evaluation

Dependent and Independent Variables

The dependent variables in the experiment are the correctness of the answers and the time
spent on each task. And another is where the participant gazes on the screen during the
experiment. The independent variable is the tool ExplorViz that the participants use for
solving the tasks.

Treatment

All participants used ExplorViz to solve the program comprehension tasks after they
finished an integrated interactive tutorial. Before they started with the tutorial, they
completed a calibration of the eye tracker.

Personal Information

Before and after the tasks, we will ask the participants personal questions. The initial
questions demand statictistical information, like gender, age, and highest completed degree.
Also we request them to perform a self-assessment in regard to their experience with
the monitored application, JPetStore, and with the ExplorViz tool. The scale that they
could choose from for their experience of JPetStore ranged from ’None’, ’Beginner (saw
source code)’, ’Regular (implemented a feature)’, ’Advanced (implemented more than one
feature)’, to ’Expert (several years of experience)’. The options for the assessment of their
experience with ExplorViz ranges from ’None (never used it)’, ’Beginner (used it casually)’,
’Regular (familiar with some features)’, ’Advanced (familiar with most features)’, to ’Expert
(years of experience)’. We referred here to the 5-point approach of [Likert 1932].

After the questionnaire, the participants are questioned about their experiences during
solving of the tasks. They are asked about the pressure they perceived from the given
time, the tracking of the eye and the recording of the screen. And afterwards about their
view of the difficulty of the solved tasks. They could choose for all answers concerning the
difficulty of the tasks, on a scale from 1 (too easy) to 4 (too difficult), using a 4-point Likert
Scale [Likert 1932]. In case of the perceived pressure, the scale went from 1 (no pressure),
to 4 (high pressure) and is also a 4-point Likert Scale [Likert 1932].

Population

We asked students, PHD students and research assistants for their participation. We
informed the future participants, that we will provide them during the experiment with
cookies and chocolate bonbons. 20 persons participated.

Due to bugs and an accident where the eye tracker was moved by a participant, five
participants had to be eliminated because we did not have any screen recording or usable
eye tracking data as results for the participants.

50

6.2. Operation

6.2 Operation

The following sections explain how we executed our experiments.

6.2.1 Experimental Set-up

In this part, we describe relevant hardware and software we used for the experiment. The
computer we used, had a 24 inch monitor with a resolution of 1920 x 1200 pixels. The
operation system is a Microsoft Windows 10 64-bit version with an installed JDK(Java
Development Kit) in version 1.8. Further, as mentioned before, we installed an eye tracker,
the tobii EyeX Controller. And we installed the chrome browser, where we installed the
chrome extension Screen Capturing. And we need to start the communications server locally
on the computer. Further information on install instructions and versions of the installed
soft- and hardware are described in Appendix A.

6.2.2 Create Input

We created the execution trace based on a running instance of the JPetStore 6. The JPetStore
was instrumented to be monitored with ExplorViz. During the execution of the JPetStore
instance, the monitoring is done and we interacted with the JPetStore web application,
producing process chains, producing the execution trace that we used.

6.2.3 Tutorial

We introduced the participants to the tool ExplorViz with the guided and interactive
tutorial ExplorViz provides. The tutorial showed the functionality that the participants
would need to solve the tasks.

6.2.4 Questionnaire

We used the electronic questionnaire integrated in ExplorViz, which we extended in
this thesis. That way we have the answers in digital form, track the time and track the
participants eyes during their reading and answering of their tasks and the participant is
forced to enter answers into the given number of answer input fields.

6.2.5 Pilot Study

Before we performed our experiment, we asked two people to perform as participants
in a pilot study. We checked whether the assigned time to each task is reasonable, if the
tasks and tutorial texts are comprehensible and if there are any careless mistakes left in
the tutorial or tasks. We changed the tasks and tutorial according to their feedback and
added a task regarding the structure of packages in the software application view, see task

51

6. Evaluation

T1.1, and added hints to other tasks. Task T1.1 is added, to introduce the participants into
the software structure. The hints, one explicit and other implicit through bold letters, are
added to mark important parts of the question. It was indicated that they are otherwise
easily overlooked.

6.2.6 Procedure

The experiment took place at CAU Kiel with one computer. One participant could take
part in the experiment at a time. The participants were provided with cookies and choco-
late bonbons during their participation. They started with reading information about
the experiment, which is located in Appendix B. It describes that they can cancel their
participation anytime and that we use their data anonymously. Also why we are carrying
out an experiment and that their eyes are going to be tracked and the screen is going to
be recorded. We told them to tell us, when the security modal for the screen recording
appears, so we as the attendants are sure they clicked the right button. Then we start the
calibration of the eye tracker for the participant. The tobii EyeX Tracker we use provides
a calibration process and we use it for the participant. Afterwards we put the browser
in full-display mode (F11) before the participants log in and they start the tutorial. The
experiment’s questionnaire starts afterwards, first the prequestions, then the tasks from
Table 6.1 and the postquestions afterwards. The first task from Table 6.1 appears, shows up
a security modal asking permission to transmit the content of the screen to the ExplorViz
server, which the participant confirms under our supervision.

We assigned the first task 8 and the Second 7 minutes. For all other tasks are 10 minutes
designated.

6.3 Data Collection

We collected during the experiment the answers of the prequestions, the normal questions
and the postquestions. We also tracked the time participants needed for each task and
tracked their eye during solving of the normal questions. Additionally we recorded the
screen during the time the participant’s eyes were tracked.

6.3.1 Timing and Tracking Information

The tracking of the time that each participant takes, is done automatically by the electronic
questionnaire system of ExplorViz. The recording of the screen is done with the help of a
chrome extension, see Section 2.8, to see what the participants did during the experiment.
And we track the eyes of the participant with an eye tracker, which we use in connection
with the recorded screen to see where participants looked during the experiment. We will
use this data to discuss our hypotheses later in the section Discussion.

52

6.4. Results

6.3.2 Correctness Information

Each task has a specific amount of correct answers, which were displayed in the question-
naire with empty text input fields. The participants usually understood, that they needed
to fill all input fields with answers. The answers are often restricted with example formats
given in the question.

6.4 Results

In this section we describe the results we have from our experiment. After some bugs,
which we will mention later, and an oversight where the eye tracker was accidentally
moved, we had to eliminate five participants, because not all data from them was available.
Thus, we have results of 15 participants. We will start with presenting the prequestions,
then show the results of the tasks and afterwards of the postquestions.

Prequestions

The questionnaire starts with the prequestions, and asks the participants to assess their
experience with the application JPetStore and the tool ExplorViz from ’None’ to ’Expert’.
We mapped in an approach for results the numbers 1 to 5 to the assessments, with 1
representing ’None’ and 5 ’Expert’. The mean for the experience with JPetStore is 1,2667,
and the mean for ExplorViz is 1,8667. Four participants indicated that they have seen source
code of JPetStore, the others had no experience with it. In comparison, the majority of the
participants had no experience with the ExplorViz tool. Less then half of all participants
have used it casually or were familiar with some features. Two rated themselves as advanced
users, feeling they are familiar with most features of the ExplorViz tool.

Tasks Correctness

Table 6.2. Correctness Results of Participants

ID Mean SD Score

T1.1 0,8 0,4332 1
T1.2 1,2667 0,9501 2
T1.3 0,5333 0,5001 1
T2 1,6 0,8664 3
T3 1,8667 0,662 2
T4 1,0667 0,9356 2

In Table 6.2 we see the results concerning the correctness of the tasks, a mean and a
standard deviation for each task. We graded the answers of the tasks according to the

53

6. Evaluation

points we assigned the tasks. Noteworthy is here, that we gave in T3 task 4, 2 points for
3 correct answers of 5 and 1 point for 2 correct answers. 3 points are given only if 5 of 5
answers in T3 are correct, this happened only once. And in T4, task 5, we assigned only 2
points or 0. We assigned 2 points to the task, because of the difficulty and the answers is a
path of one correct answer, so we marked it either correct with full points or incorrect with
0 points. All individual results are documented in the Appendix C.

Eye Data Results

For analyzing the data, we developed a website with local JavaScript inside to compute our
results. It is located in the git repository1. We enter the data, the offset at the beginning
of the video and for each time the participant moved the question modal, a start and end
point in format <minutes,seconds> and the upper left and down right coordinates of the
new location of the question modal in format <x,y>. The x and y numbers are assessed
with another website (testCanvas.html) and opening the respective media file of the screen
recording to compare the locations of the question modal with a displayed line. The results
of all participants concerning the ratio where they looked is in Appendix C.

Table 6.3. Information Ratio of Eye Tracking Data

Category Mean SD

Question Modal 17,0679 8,0997
Interface 78,0356 20,0754
Non-Display 4,8965 4,137

The Table 6.3 shows in the first line the mean of the percent that the participants looked
at the question modal, during the solving of the tasks. The define the mean as the average
of all participants. And the results in Table 6.3 are measured in regard to percentage. We
computed the percentage value for each category, for each participant and then calculated
the mean and standard deviation. The category question modal represents, the amount
of time, in percentage, the participants looked at the question modal. Category Interface
represents the amount of time that participants looked at anything else on the display, thus
the interface of the ExplorViz tool. And Non-Display shows the amount of time, the eye
tracker could not track the eyes of the participant and thus means, they looked away from
the computer monitor, for example to the keyboard. We defined, that whenever the eye
tracker could not track the eyes for longer than 210ms, the participant looked not at the
display.

It is noteworthy, that the standard deviation of the Interface in very high.

54

6.5. Discussion

Table 6.4. Postquestions Mean and Standard Deviation

Category Mean SD

Pressure Time 1,733 0,7988
Pressure Eye Tracking 1,2 0,6399
Pressure Screen Recording 1,467 0,7988
Difficulty T1.1 1,933 0,4577
Difficulty T1.2 1,933 0,4577
Difficulty T1.3 2,333 0,8997
Difficulty T2 2,929 0,8287
Difficulty T3 2,429 0,9376
Difficulty T4 2,857 0,663

Postquestions

Table 1 shows the mean and the standard deviation of the assessment that all participants
gave for perceived pressures and difficulty of each task. The pressures are scaled from 1,
for no pressure, to 4, for high pressure. The pressure for time is nearly a little for the mean,
and the pressure for eye tracking is with a mean of 1,2 the most near to the assessment
choice of no pressure. The screen recording is in comparison slightly higher with a mean of
1,467, resulting in the assessment choice of a little if round up.

The lowest mean have tasks T1.1 and T1.2 with 1,933, which is nearest to assessment
choice appropriate. The highest mean with 2,929 is task T2, which is nearest assessment
choice a little difficult.

6.5 Discussion

In this section, we discuss our results that we presented before. We are interested whether
there is a correlation between correctness of a participant and their amount of time looking
at the question modal. In case of the results of the prequestions, the information about the
participants experience, would appear to correlate with the correctness concerning their
experience with ExplorViz, if it is higher than a ’Beginner’(1). The correctness is clearly
higher than average in case of our four participants where this applies.

6.5.1 Correctness of Tasks

Figure 6.1 shows, that the correctness decreases during the questionnaire. This implies, that
the first tasks were appropriately set to the beginning of the questionnaire. The first three
tasks were created to get a rough overview of the software. Many participants could not

1xxx/AnalyzeExperiment/getRatio.html

55

6. Evaluation

80,00%

63,33%

53,33% 53,33%

93,33%

53,33%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T1.1 T1.2 T1.3 T2 T3 T4

PA
R

TI
C

IP
A

N
TS

 C
O

R
R

EC
TN

ES
S

TASK IDS

CORRECTNESS OF TASKS:

Figure 6.1. Correctness of Tasks

name all answers for the task T2, because they did not open all linked packages, as hinted
in the question. The hint is, that the word classes was in bold letters, see table 6.1. This
might have been to difficult to detect, since the majority, as seen with the prequestions, are
novices with the ExplorViz tool. In comparison, the task T3 achieved the highest correctness
in our experiment with an average correctness of 93,33% and the following task, T4, has
very little correctness with 53,33%. With the exception of task T3, the correctness of the
tasks implies a correlation with the participants’ perceived difficulty.

6.5.2 Eye Tracking Data

56

6.5. Discussion

1
7

,0
7

%
1

4
,3

3
%

2
3

,1
4

%
2

5
,9

1
%

1
1

,9
1

%
6

,0
5

%

2
1

,5
2

%

1
4

,6
7

%

2
1

,2
8

%

8
,7

8
%

1
5

,3
1

%
1

6
,8

4
%

2
1

,4
7

%

5
,0

9
%

3
2

,1
3

%

1
7

,5
9

%

7
8

,0
4

%

7
7

,2
2

%

7
5

,6
7

%
7

1
,6

9
%

7
1

,3
7

%

8
9

,8
8

%

7
5

,8
8

%

7
8

,3
4

%

7
3

,5
9

%

8
5

,8
6

%

7
9

,8
2

%
7

4
,3

1
%

7
6

,9
8

%

9
4

,5
4

%

6
7

,5
7

%

7
7

,8
2

%

4
,9

0
%

8
,4

5
%

1
,1

9
%

2
,4

0
%

1
6

,7
1

%

4
,0

6
%

2
,6

0
%

7
,0

0
%

5
,1

3
%

5
,3

6
%

4
,8

7
%

8
,8

4
%

1
,5

5
%

0
,3

8
%

0
,3

0
%

4
,5

9
%

0
%

1
0

%

2
0

%

3
0

%

4
0

%

5
0

%

6
0

%

7
0

%

8
0

%

9
0

%

1
0

0
%

M
ea

n
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

PARTICIPATION TIME

P
A

R
TI

C
IP

A
N

TS

PA
R

T
IC

IP
A

N
T

S
G

A
Z

E
-R

A
T

IO
S:

Q
u

es
ti

o
n

 M
o

d
al

In
te

rf
ac

e
N

o
n

-D
is

p
la

y

Fi
gu

re
6.

2.
In

fo
rm

at
io

n
on

th
e

Pa
rt

ic
ip

an
ts

G
az

es

57

6. Evaluation

3
,9

3
,8

4
,7

5
,2

1
,5

1
,3

5
,2

2
,8

4
,1

2
,8

4
,1

4
,2

4
,1

0
,9

9
,1

4
,3

1
7

,5

2
0

,5

1
5

,3
1

4
,4

8
,9

1
9

,5

1
8

,5

1
5

,0
1

4
,1

2
7

,5

2
1

,3

1
8

,6

1
4

,8

1
6

,5

1
9

,1

1
9

,1

1
,0

2
,2

0
,2

0
,5

2
,1

0
,8

0
,6

1
,3

1
,0

1
,7

1
,3

2
,2

0
,3

0
,1

0
,1

1
,1

05

1
0

1
5

2
0

2
5

3
0

3
5

M
ea

n
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

Experiment Duration in Minutes

Pa
rt

ic
ip

an
ts

D
u

ra
ti

o
n

 o
f

Ex
p

er
im

en
t

Pa
rt

ic
ip

at
io

n

q
u

es
ti

o
n

M
o

d
al

M
S

in
te

rf
ac

eM
S

n
o

n
D

is
p

la
yM

S

Fi
gu

re
6.

3.
D

ur
at

io
n

of
Ex

pe
ri

m
en

t
Pa

rt
ic

ip
at

io
n

58

6.5. Discussion

0
,8

1
2

5
1

1
1

0

1
1

1
1

1
1

0

1

0

1
1

1
,3

1
2

5

2
2

2

0

0

2

0

2
2

2

1

2

0

2

0

0
,5

6
2

5

0
0

0

0

0

1

0

1
1

1

1

1

0

1

1

1
,6

8
7

5

0

1

2

0

2

3

2

1

2
2

2

2

1

2

2

1
,8

7
5

2

2

2

0

2

2

2

2

2
2

2

2

2

2

2

1

1

2

2

0

2

0

0

0

2
2

1

2

2

0

0

02468

1
0

1
2

M
ea

n
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

Achievable Points:

P
ar

ti
ci

p
an

ts

Pa
rt

ic
ip

an
ts

 R
es

u
lt

s:

T1
.1

T1
.2

T1
.3

T2
T3

T4

Fi
gu

re
6.

4.
Pa

rt
ic

ip
an

ts
In

di
vi

du
al

C
or

re
ct

ne
ss

In
fo

rm
at

io
n

59

6. Evaluation

As shown in Figure 6.2, the amount of time participants spent on looking at the interface,
the question modal, and not at the display, in relation to their respective time they took the
experiment, differs from each other. Figure 6.3 contains shows also the for the participants
the amount of time they looked at the question modal, the interface and not at the display.
Figure 6.3 displays the variables in minutes.

In Table 6.3 we can see that the standard deviation is especially high for the amount of
time looked at the interface. In the beginning of this chapter, we constructed the hypothesis,
that participants have different ratios concerning question modal, interface and non-display.
Our data concerning the ratio and the standard deviation imply, that they do differ, in case
of our small experiment.

In Figure 6.4 we see the participants individual points they got for each task. This rep-
resents their correctness individually. We can see in Figure 6.4, that there is one participant
that got 0 points. Participant number 4 has a relatively high amount of time, in which she
did not look at the display. This might be a correlation, but we do not have enough data
to make this assumption. Another participant that has a small correctness, is participant
number 13 with 5 points. The amount of time spent looking at the question modal is in
comparison to the mean of everyone, 17,07%, small with 5,09%. In comparison, participant
number 14 looked relatively often with 32,13% at the question modal. With his eight point,
it is slightly above average and one of the seventh best in regards to correctness. The other
participant that has the same amount of points, is participant number 2. We developed a
hypothesis, which implied that the gaze ratios of participants with the same correctness
are similar. The ratio of looking at the question modal is for participants number 2 and
number 14 both higher than average, but they differ 8,99% in their amount of time looked
at the question modal. This implies that that there might be no correlation between points
and amount of time spent looking at the question modal.

6.5.3 Postquestions

In Figure 6.5 are the results transformed into percentages, showing of, how the participants
assessed the difficulty of each task. This assessment was filled in after they solved the tasks.
The percentage ranges from 0% as easy to 100% as very difficult. As shown in Figure 6.5, are
the tasks rated in general as not easy and mostly not too difficult. The difficulty increases
from the first to the last task, except for task T2, where the assessed difficulty is the highest.
In Figure 6.1 is shown, that the correctness was relatively small in task T2, therefore it
seems plausible to say that the task was difficult.

Task T3 correctness is according to Figure 6.1 with 93,33% even higher then the first
task T1.1 with 80%, which was supposed to be the easiest task. With a perceived difficulty,
third highest with 47,62% in Figure 6.5, the task T3 seems to be a difficult task which on
average still got solved correctly.

60

6.6. Threads to Validity

31,11% 31,11%

44,44%

64,29%

47,62%

61,90%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T1.1 T1.2 T1.3 T2 T3 T4

O
P

IN
IO

N
 F

R
O

M
 E

A
SY

 T
O

 D
IF

FI
C

U
LT

TASKS

Average Opinion of Tasks:

Figure 6.5. Assessed Average Difficulty of Tasks

6.6 Threads to Validity

This section addresses experiment conditions that might threaten the validity of or in-
fluenced our results of the experiment, (internal and external validity) [Shadish et al.
2002].

6.6.1 Internal Validity

Reasons threatening the internal validity occur from the experiment and are explained in
the following sections.

Participants

Our participants were not many and they had various degrees of expertise. Our results
and analysis could be different with more participants or when the participants had
more expertise with the ExplorViz interface or software in general. Another threat is their

61

6. Evaluation

motivation. We provided cookies and chocolate, and some were interested in the subject,
but this experiment provides no value to their professional life. The results could differ if
the participant’s motivation was higher.

The participants rated the average pressure they perceived in regard to the time for each
task as less than a little in average. The ratings for the eye tracking is no pressure, except
for three participants, who experience a little pressure. And the pressure concerning the
recording of the screen is in average no pressure, but some did feel a little pressure and one
experienced more pressure and rated it as maintainable. Therefore, if more or less pressure
would have been experienced, the results could have differed.

Another reason that might have influenced the participants, is that most of them have a
relationship with the attendant and creator of the experiment. This might influence the
participants to rate the tasks difficulty more as appropriate than difficult. If they did not
know the creator and attendant of the experiment, they might have rated more honestly.

A thread that concerning the participants is also, that their head movement and maybe
gestures with their hands might have influenced the results. Because of their movement or
hand gestures, the eye tracking data could be different and if they might not have moved,
the results might have been slightly different.

Tasks

A threat to our validity is that the tasks might have been too difficult. The assessment and
correctness of the tasks, Table 1 and Table 6.2 respectively, do show that task T2 and T4
were perceived as difficult and the incorrect answers imply this as well.

Tutorial

Another reason why participants might answer differently, is if the tutorial had a higher
quality. We noticed during our experiment, that the tutorial did explain all necessary
features and methods to solve the tasks, but that ExplorViz allows users to use several
shortcuts to get to the answers more efficiently. For one, the possibility to right click and
turn the perspective inside the application view was not mentioned in the tutorial. As
stated, the tasks were still possible to solve, but using the feature to turn the perspective
might have made solving them easier and even faster. And another thing is, that there exists
a button in the interface to open all packages, on every layer, at once in the application
view. That way we can view all classes at once and do not have to open every one of them,
one after the other. If this was mentioned in the tutorial, the least correct answered task T2
might have been solved successfully more often. As stated, it was possible to solve the task,
but without the button more classes had to be opened manually.

Some participants mentioned afterwards, that even though it was shown in the tutorial,
they forgot during the solving of the tasks how to open the trace analyzer feature. If the
tutorial would take that into account and improve the way it explains this feature, this
might positively influence the results.

62

6.7. Lessons Learned and Challenges Occurred

Miscellaneous

An influence on our results could be the different kinds of pressures the participants
experienced during the experiment. They could have felt pressure in regard to the time
they had for each task, the participants might have assessed the tasks differently because
the time limit was set too small or too big. And also, if the eye tracker were more precise,
our results might have differed concerning the looking ratio results. Another thread is that
our analyzing script for computing the results of the eye tracking data could be incorrect.

Some participants dragged the question modal to another place during the experiment.
We mentioned in Section 6.4 that we followed the question modal’s movement to compute
the correct ratio. We tried our best, but if some software would have tracked the absolute
correct coordinates, also during the movement, the results might have been more precise.

6.6.2 External Validity

According to [Shadish et al. 2002] experiment results can not always be generalized. For
one, the tasks we developed are dependent on the software landscape. The structure and
size changes between different systems and JPetStore, on which basis we created our traces,
is a sample software. So our results may not be applicable for other software systems.

Another reason why our results may not be applicable to generalization, is that the
participants in the majority did not know the ExplorViz interface beforehand. They used it
for the first time and we do not know if the results might be influenced if they would use
the ExplorViz interface more often and in a professional sense. To eliminate this assumption
we would need more experienced participants in another experiment.

Participants are situated in unusual circumstances during the experiment. In a way, the
employed tasks might not reflect real program comprehension tasks. They animate the
participants to use the features of the ExplorViz interface but might not be applicable to real
tasks that professionals would operate. So without further experiments with professionals
and validated tasks, our results might not be applicable to generalization.

6.7 Lessons Learned and Challenges Occurred

We experienced several challenges during the experiment. At first, some spelling mistakes
were not noticed during the pilot study inside the tutorial. They were not grave but
inconvenient. Also one participant moved the eye tracker after their calibration and because
the website is always in full screen, it was not noticed that the eye tracker could only rarely
track the eyes of the participant, resulting in unusable eye tracking data. Four participants
experienced a bug that was undiscovered within our implementation. When a participant
takes longer than expected, the communication between the ExplorViz client and the
related server happened to be disconnected and a failure occurs during the upload of the
screen recording. The problem handling should intercept there and download the screen

63

6. Evaluation

recording locally to the computer, but this command was implemented in a wrong scope,
so the screen recording is empty and is lost. This was repaired during the experiment.

Two out of three participants experienced a specific bug during their interaction with
the ExplorViz tool. This bug is replicable, if one uses the trace analyzer, the interface zooms
into the software application view and follows the trace that one chose. If we try to zoom
in or out for a time and than close the trace analyzer, the interface does not react anymore
to left or right click. This can be solved with a workaround, to switch to the landscape
view and then back into the application view. This bug lead to some confusion for the
participants.

Analyzing the eye tracking data was interesting but complex. There is no alternative to
the numbers we compute, so we do not know if there might be a miscalculation and our
results concerning the ratios might be incorrect. Also, identifying the coordinates for the
question modal as well as the points in time that they were moved, was time-consuming and
vague. This can be improved if the question modal could not be moved by the participants.

6.8 Summary

In summary, we have lots of data implying that the tasks T2 and T4 might have been too
difficult. The difficulty of the first three tasks are perceived to increase in order and task
T3 was perceived as difficult but the correctness was in comparison to the other tasks, the
highest. Thus we could task T1.1, T1.2, T1.3 and T3 as appropriate.

We found data implying one hypothesis of our experiment design, that the amount of
time looking at the question modal, the interface and not at the display, do differ from each
other from one participant to another. And the hypothesis that there exists a correlation
between the ratio of looking at the question modal and the correctness of the tasks, is
implied by the data to not be true.

With our experiment and its result we confirmed the functionality of a part of our
implementation. This part is the display during an experiment. During our evaluation and
analysis of the results of the experiment, we confirmed the functionality of the other part,
acting as an administrator.

64

Chapter 7

Related Work

There are several works with experiments in ExplorViz, like the master’s thesis [Finke 2014].
She presented an approach to conduct interactive integrated experiments in ExplorViz and
evaluated her approach with controlled experiments. In her experiments, she compared
ExplorViz with another visualization tool called EXTRAVIS. Our approach bases on her
work, and we do not compare ExplorViz with other tools in our thesis. Our goal is,
in comparison, to determine whether the feature of eye tracking and screen recording
enhances the experiment mode of ExplorViz.

In the work of [Fittkau et al. 2013], there were two controlled experiments conducted,
also with screen recording. The screen recording data was not used and existed to be
looked at when a participant answer is unusual. In comparison, we explicitly used the
screen recording for our analysis of the eye tracking data.

There are not many works which engage in eye tracking experiments with interactive
interfaces. One is the work [Kevic et al. 2015], where they conducted an exploratory study to
determine what developers explicitly do during a change task. They used very fine-granular
eye tracking data and they are automatically linked to the respective object, that they looked
at in the source code of the IDE. One of their findings is, that the eye tracking data contains
other facets than interaction data. In comparison, our experiment was conducted with the
subgoal to find correlations between the amount of time a participant looked at the question
modal, interface or non-display and the correctness of their answers to the experiment
tasks.

Another work is by [Pretorius et al. 2010]. The assumption that they have and prove
through their work, is that eye tracking for usability only makes sense, when they are
testing interfaces for non-experts. Their use of eye tracking in this context was, to determine
what kind of cognitive operations of participant happened. They conducted a study with
eye tracking and a usability testing observations, which was a variation of the thinking
aloud protocol. The results showed that participants had unnoticed usability problems,
which would not have been detected without eye tracking. They conclude, that experts
would notice the usability problems in the think aloud protocol and thus their assumption
is proven. In comparison, we did not use a think aloud protocol or any other usability
testing observations except the eye tracking and screen recording.

65

Chapter 8

Conclusions and Future Work

In the following, we will summarize this thesis and present ideas for future work.

8.1 Conclusions

In this thesis, we researched requirements for experiment management systems and
developed an approach for improving the usability of the ExplorViz experiment mode
and enhancing it with the features of tracking the eyes and recording the screen during
an experiment. We implemented our approach and conducted an experiment to evaluate
and test the functionality of our implementation. With the experiment, we confirmed the
functionality. We analyzed the experiments results and we found data, which implies
that the correctness of our developed tasks correlates with the amount of experience the
participant has with ExplorViz. There was also data we found, implying that the percentage
of the amount of time a participant looks at the question, the interactive interface, and
not at the display, differs between participants. Our experiment population was small
and we could not correlate any more eye tracking results. But the eye tracking data and
screen recording media files contain versatile information. Thus, we summarize that they
do enhance the experiment mode.

8.2 Future Work

During the development of our approach, we and others providing feedback, obtained
ideas which would improve the ExplorViz experiment mode. We will present them in the
following.

During the set-up of the our experiment, we modified the legacy interactive tutorial
of ExplorViz interface. The steps are saved in a configuration and for each step, there is a
modal with text displayed. For each modal exists one text file with the text for the modal
which is located in a specific folder on the ExplorViz server. Changing the steps and the
texts was tedious and complicated, because the order of the text files was set with their file
names. An idea would be to save the texts in a similar way to the experiments, as JSON file
on the server.

Then we mentioned the bug we experienced during the experiment, where the screen
recordings were lost. It is fixed, but now there are, as mentioned in Chapter 5, parts of the

67

8. Conclusions and Future Work

media file. An automated process where the media files gets merged together would be
very useful.

During our analysis of the experiment data, we noticed an important feature that
would be really useful. The possibility to export the experiment data or download it is
implemented. There exists also the option to upload a single experiment file. But there is no
possibility to upload experiment results. We might not always have access to the ExplorViz
server, especially when it might only be in temporary use, to conduct an experiment. Thus,
in our case it was not possible without a workaround to access the experiment data and
replay the video and eye tracking data in the browser.

In Chapter 6 we mentioned, that we used a script to compute results of the eye tracking
data. And that we used a vague method to enter the moment when and where the question
modals were moved. It would be very useful if the computing could be automated. The
results would be obtained easier and more precise. And there is potential in the eye tracking
data, for example if we would analyze the interface with a heatmap, determining where
participants looked at the most. And with a greater population including professional
users, the results might be more distinct.

68

Bibliography

[Basili et al. 1986] V. R. Basili, R. W. Selby, and D. H. Hutchens. Experimentation in
software engineering. IEEE Transactions on software engineering 7 (1986), pages 733–743.
(Cited on pages v, 1, and 48)

[CanJS]. Canjs. url: https://v2.canjs.com/index.html. (Cited on page 6)

[Cornelissen et al. 2007] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. Van Wijk,
and A. Van Deursen. Understanding execution traces using massive sequence and
circular bundle views. In: Program Comprehension, 2007. ICPC’07. 15th IEEE International
Conference on. IEEE. 2007, pages 49–58. (Cited on page 4)

[Finke 2014] S. Finke. Automatische Anleitung einer Versuchsperson während eines
kontrollierten Experiments in ExplorViz. Master’s thesis. Christian-Albrechts-Platz 4,
24118 Kiel, Germany: Christian-Albrechts-Universität zu Kiel, 2014. (Cited on pages 2,
4, 10, 31, and 65)

[Fittkau et al. 2013] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring. Live trace visualization
for comprehending large software landscapes: the explorviz approach. In: Software
Visualization (VISSOFT), 2013 First IEEE Working Conference on. IEEE. 2013, pages 1–4.
(Cited on pages v, 1, 3, and 65)

[Fittkau et al. 2016] F. Fittkau, A. Krause, and W. Hasselbring. Software landscape and
application visualization for system comprehension with explorviz. Information and
Software Technology (2016). (Cited on page 4)

[GWT]. Google web toolkit. url: http://www.gwtproject.org/. (Cited on page 6)

[Ioannidis et al. 1997] Y. E. Ioannidis, M. Livny, A. Ailamaki, A. Narayanan, and A. Therber.
Zoo: a desktop experiment management environment. ACM SIGMOD Record 26.2
(1997), pages 580–583. (Cited on pages 10 and 13)

[Jacob and Karn 2003] R. Jacob and K. S. Karn. Eye tracking in human-computer interaction
and usability research: ready to deliver the promises. Mind 2.3 (2003), page 4. (Cited on
pages 1 and 7)

[Jakobovits et al. 2000] R. Jakobovits, S. G. Soderland, R. K. Taira, and J. F. Brinkley.
Requirements of a web-based experiment management system. In: Proceedings of the
AMIA Symposium. American Medical Informatics Association. 2000, page 374. (Cited
on pages 10, 11, and 18)

69

https://v2.canjs.com/index.html
http://www.gwtproject.org/

Bibliography

[Kevic et al. 2015] K. Kevic, B. M. Walters, T. R. Shaffer, B. Sharif, D. C. Shepherd, and T.
Fritz. Tracing software developers’ eyes and interactions for change tasks. In: Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. ESEC/FSE 2015.
Bergamo, Italy: ACM, 2015, pages 202–213. url: http://doi.acm.org/10.1145/2786805.2786864.
(Cited on page 65)

[Likert 1932] R. Likert. A technique for the measurement of attitudes. Archives of psychology
(1932). (Cited on page 50)

[Pretorius et al. 2010] M. C. Pretorius, J. van Biljon, and E. de Kock. “Added value of eye
tracking in usability studies: expert and non-expert participants”. In: Human-Computer
Interaction. Springer, 2010, pages 110–121. (Cited on page 65)

[Shadish et al. 2002] W. R. Shadish, T. D. Cook, and D. T. Campbell. Experimental and
quasi-experimental designs for generalized causal inference. Wadsworth Cengage learning,
2002. (Cited on pages 61 and 63)

[Sharafi et al. 2015] Z. Sharafi, Z. Soh, and Y.-G. Guéhéneuc. A systematic literature review
on the usage of eye-tracking in software engineering. Information and Software Technology
67 (2015), pages 79–107. (Cited on page 7)

[Sharif et al. 2016] B. Sharif, T. Shaffer, J. Wise, and J. I. Maletic. Tracking developers’ eyes
in the ide. IEEE Softw. 33.3 (May 2016), pages 105–108. url: http://dx.doi.org/10.1109/MS.

2016.84. (Cited on page 7)

[WebRTC-Experiment]. Webrtc-experiment project. Muak Khan. url: https://www.webrtc-

experiment.com/. (Cited on page 8)

[Wettel et al. 2011] R. Wettel, M. Lanza, and R. Robbes. Software systems as cities: a
controlled experiment. In: Proceedings of the 33rd International Conference on Software
Engineering. ACM. 2011, pages 551–560. (Cited on page 4)

70

http://doi.acm.org/10.1145/2786805.2786864
http://dx.doi.org/10.1109/MS.2016.84
http://dx.doi.org/10.1109/MS.2016.84
https://www.webrtc-experiment.com/
https://www.webrtc-experiment.com/

Appendix A: Install Instructions

The current state to carry out an experiment with eye tracking and screen recording on a
local computer, we have to go through the following different points.

� Download and install the Chrome Web Browser. We are restricted to this browser
because of the chrome extension that we need to record the screen. Install the chrome
extension Screen Capturing from Experiment WebRTC.

� Install the tobii EyeX Controller hardware and start it.

� Download the compiled version of the external communications server with all depen-
dencies. Execute it.

� Download, install and run the ExplorViz server1. Because of security restrictions of the
screen capturing, it does only record when the website uses either SSL or exists on
localhost.

� An Administrator creates an experiment and generates user. He sets the options eye
tracking and screen recording to true and starts the experiment.

� A participant logs into the ExplorViz website. Fills out questionnaire and finishes the
experiment.

� An Administrator can watch the screen recording and the movement of the participants
eyes.

When using the chrome extension, we have to be careful during the experiment. There
are problems during the recording of the screen if we use two displays. Afterwards, the
mouse is not correctly displayed in the recording.

As optional improvement for the screen recordings, we used the popular free software
ffmpeg2 and installed it on the computer. Then we use the command shown in Listing X
on the command line to convert a webm media file to a mp4 media file.

Listing 1. Command to Transform webm to mp4

1 ffmpeg -i userX.webm userX.mp4

1https://github.com/ExplorViz/Docs/wiki/Installing-and-configuring-software-for-developers
2http://ffmpeg.zeranoe.com/builds/

71

. Appendix A: Install Instructions

Table 1. Postquestions Mean and Standard Deviation

Concern Version

Google Chrome 58.0.3029.110 (64-bit)
Screen Capturing 3.4
Eye tracker model EyeX Controller
Eye tracker serial number EYEX2-030145638033
Firmware version 2.0.2-33638
Tobii EyeX Controller Core version 2.0.9
Tobii eyeX controller driver version 2.0.4
Tobii Service version 1.9.4.6493
Tobii EyeX Engine Version 1.9.4.6493
Tobii EyeX Config version 3.2.9.521
Tobii EyeX Interaction version 2.1.1.3125

72

. Appendix B: Informed Consent

Appendix B: Informed Consent

Informed Consent

Thank you very much for taking part in this experiment. You can stop

and cancel your participation anytime. Your data will be used

anonymously.

The goal of this experiment is to determine whether eye tracking

adds a value for studies with interactive interfaces, in particular

ExplorViz. ExplorViz is a web-based tool for visualizing large software

landscapes.

The study consists of three parts. In all three you will have to answer

questions. The first and third part are statistical questions about your

person and your experiences during the experiment. The second part

will take up most of the time and requires interacting with the

visualization interface of ExplorViz. During that time, your eyes will

be tracked and the screen will be recorded.

If you have any questions, ask your attendant anytime.

73

Appendix C: Raw Experiment Results

74

P
ar

ti
ci

p
an

t
U

s
e

rI
D

Q
u

e
st

io
n

 M
o

d
al

 %
In

te
rf

ac
e

%
N

o
n

-D
is

p
la

y
%

q
u

es
ti

o
n

M
o

d
al

 in

m
s

in
te

rf
ac

e
in

 m
s

1
7

1
4

,3
3

4
2

3
1

5
3

5
0

4
5

5
7

7
,2

1
5

6
3

7
5

0
3

3
7

6
8

,4
5

0
1

3
0

9
6

1
5

7
8

2
2

8
.2

1
1

1
.2

2
9

.3
2

7

2
8

2
3

,1
3

9
5

2
4

6
4

4
6

2
7

3
7

5
,6

6
9

8
2

3
7

9
7

0
6

5
8

1
,1

9
0

6
5

1
5

5
8

3
0

6
8

2
8

1
.1

7
6

9
1

9
.4

8
9

3
9

2
5

,9
1

2
9

1
0

0
9

8
8

4
6

2
7

1
,6

9
1

3
4

1
5

5
7

6
5

1
4

2
,3

9
5

7
4

8
3

4
3

5
0

2
4

3
1

2
.1

9
9

8
6

3
.7

3
8

4
1
0

1
1

,9
1

4
1

6
7

7
1

4
1

3
1

8
7

1
,3

7
2

1
7

4
8

5
9

2
2

8
7

1
6

,7
1

3
6

5
7

4
2

6
6

3
9

4
8

8
.9

0
9

5
3

2
.6

1
2

5
1
2

6
,0

5
3

7
0

3
5

2
9

2
4

2
9

8
9

,8
8

2
5

3
0

5
3

9
3

6
8

0
4

,0
6

3
7

6
5

9
3

1
3

8
9

0
7

9
.8

1
1

1
.1

6
8

.9
4

4

6
1
3

2
1

,5
1

7
1

5
2

6
4

1
6

5
7

9
7

5
,8

7
9

2
3

6
5

4
2

1
6

5
2

2
,6

0
3

6
1

0
8

1
6

1
7

6
8

3
1

4
.7

2
3

1
.1

0
9

.8
5

6

7
1
4

1
4

,6
6

6
1

9
1

9
7

9
2

2
9

5
7

8
,3

3
7

6
6

7
7

5
0

6
3

2
7

6
,9

9
6

1
4

0
2

7
0

1
3

7
7

1
6

8
.9

0
1

9
0

2
.1

6
4

8
1
5

2
1

,2
7

5
2

6
5

6
8

0
3

5
0

0
7

3
,5

9
0

8
5

2
2

6
0

8
8

7
6

5
,1

3
3

8
8

2
0

5
8

7
6

2
2

2
4

5
.0

4
0

8
4

5
.5

9
5

9
1
7

8
,7

8
0

7
0

3
7

0
2

4
1

3
1

8
5

,8
5

6
8

3
2

8
1

3
8

5
7

9
5

,3
6

2
4

6
3

4
8

3
7

2
9

0
1

6
8

.8
3

3
1

.6
5

0
.8

3
2

1
0

1
8

1
5

,3
0

8
9

2
2

1
2

4
8

0
6

6
7

9
,8

1
9

5
2

5
8

4
1

1
8

6
4

4
,8

7
1

5
5

2
0

3
4

0
0

6
9

2
4

4
.8

9
3

1
.2

7
6

.8
5

3

1
1

2
0

1
6

,8
4

4
8

3
8

7
2

7
6

9
1

9
7

4
,3

1
3

3
7

2
7

4
3

9
2

9
5

8
,8

4
1

7
8

8
5

2
8

3
7

8
6

2
5

3
.3

7
4

1
.1

1
7

.7
9

5

1
2

2
1

2
1

,4
7

0
3

2
8

2
3

1
2

9
5

4
7

6
,9

7
6

4
8

2
4

5
9

5
3

7
7

1
,5

5
3

1
8

9
3

0
9

1
6

6
8

2
4

7
.2

4
5

8
8

6
.4

3
5

1
3

2
2

5
,0

8
5

8
5

3
0

5
4

6
1

6
4

9
4

,5
3

8
4

5
0

5
4

9
9

7
3

8
0

,3
7

5
6

9
6

3
9

5
4

0
9

7
5

3
.4

0
4

9
9

2
.7

0
1

1
4

2
4

3
2

,1
2

6
3

2
4

7
0

0
8

6
6

3
6

7
,5

7
1

1
2

2
3

4
6

4
7

1
4

0
,3

0
2

5
5

2
9

5
2

6
6

2
1

5
4

4
.9

3
7

1
.1

4
6

.1
6

3

1
5

2
6

1
7

,5
8

9
0

3
9

1
5

7
4

3
1

8
7

7
,8

1
8

4
9

8
9

7
3

0
5

0
3

4
,5

9
2

4
6

1
8

6
9

5
1

7
9

2
5

8
.5

3
9

1
.1

4
3

.8
4

4

. Appendix C: Raw Experiment Results

75

n
o

n
D

is
p

la
y

in
 m

s

fu
llT

im
e

in

m
s

T1
.1

 S
co

re
T1

.2
 S

co
re

T1
.3

 S
co

re
T2

 S
co

re
T3

 S
co

re
 T

4
 S

co
re

Ex
p

er
ie

n
ce

JP
et

St
o

re
 (

1
-5

)

1
3

4
.5

3
2

1
.5

9
2

.0
7

0
1

2
0

0
2

1
2

1
4

.4
6

8
1

.2
1

5
.1

3
3

1
2

0
1

2
2

1

2
8

.8
6

4
1

.2
0

4
.8

0
1

1
2

0
2

2
2

2

1
2

4
.7

2
5

7
4

6
.2

4
6

0
0

0
0

0
0

1

4
9

.6
7

1
1

.2
9

8
.4

2
6

1
0

0
2

2
2

1

3
8

.0
8

2
1

.4
6

2
.6

6
1

1
2

1
3

2
0

1

8
0

.5
7

0
1

.1
5

1
.6

3
5

1
0

0
2

2
0

2

5
9

.1
3

0
1

.1
4

9
.7

6
5

1
2

1
1

2
0

1

1
0

3
.1

0
8

1
.9

2
2

.7
7

3
1

2
1

2
2

2
1

7
7

.9
2

9
1

.5
9

9
.6

7
5

1
2

1
2

2
2

1

1
3

2
.9

9
5

1
.5

0
4

.1
6

4
0

1
1

2
2

1
1

1
7

.8
8

6
1

.1
5

1
.5

6
6

1
2

1
2

2
2

2

3
.9

4
5

1
.0

5
0

.0
5

0
0

0
0

1
2

2
1

5
.1

3
2

1
.6

9
6

.2
3

2
1

2
1

2
2

0
1

6
7

.5
0

4
1

.4
6

9
.8

8
7

1
0

1
2

2
0

1

76

. Appendix C: Raw Experiment Results

Ex
p

er
ie

n
ce

Ex
p

lo
rV

iz
(1

-5
)

P
re

ss
u

re

ti
m

e
(1

-4
)

P
re

ss
u

re
 e

ye

tr
ac

ki
n

g
(1

-4
)

P
re

ss
u

re
 S

cr
ee

n

R
ec

o
rd

in
g

(1
-4

)

P
e

rf
o

rm
an

ce

Ex
p

lo
rV

iz
 (

1
-4

)
D

if
fi

cu
lt

y
T1

.1
D

if
fi

cu
lt

y
T1

.2

1
2

1
1

3
1

2

1
1

1
1

1
2

2

1
1

1
1

4
2

2

1
2

1
1

2
2

3

2
2

1
1

3
1

2

3
1

2
2

3
3

2

2
3

1
2

2
2

2

4
1

2
1

3
2

2

1
2

1
1

4
2

2

1
2

1
1

3
2

1

1
3

1
2

2
2

2

3
1

1
2

3
2

2

1
1

1
1

2
2

2

4
3

1
2

3
2

2

2
1

2
3

3
2

1

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.2.1 G1: Determine Experiment Management Systems Requirements
	1.2.2 G2: Concept and Implementation of Experiment Mode with Eye Tracking
	1.2.3 G3: Evaluation of the Experiment Mode with Eye Tracking

	1.3 Document Structure

	2 Foundations and Technologies
	2.1 ExplorViz
	2.2 Eclipse
	2.3 Google Web Toolkit (GWT)
	2.4 CanJS
	2.5 Eye tracking
	2.6 Qt
	2.7 JPetStore
	2.8 Project WebRTC

	3 Approach
	3.1 Requirements for Experiment Management Systems
	3.2 ExplorViz' Experiment Mode
	3.3 Questionnaire Concept
	3.3.1 Questiontypes
	3.3.2 Format for Saving Questions and Answers
	3.3.3 Management and Display

	3.4 Concept of the Experiment Mode with Eye Tracking
	3.4.1 Questionnaire Requirements
	3.4.2 Eye Tracking
	Eye Tracking Data Format
	Get Eye Tracking Data
	Eye Tracking Data at the Client
	Calibration of Hardware

	3.4.3 Screen Recording

	4 Implementation of Questionnaire Extension
	4.1 JSON File
	4.2 Model
	4.3 ExplorViz server
	4.4 Client
	4.4.1 ExperimentToolsPage
	Add Option Statistic Questions
	ClickHandler
	Toggling the Glyphicon

	4.4.2 Option Question-Interface
	4.4.3 Display during Experiment

	5 Implementation of Eye Tracking Extension
	5.1 JSON File
	5.2 Server
	5.2.1 Eye Tracking Data
	5.2.2 Screen Recording Data

	5.3 Client
	5.3.1 ExperimentToolsPage
	Menu Options eyeTracking and screenRecording
	Menu Option Results
	Screen Recording Replay

	5.3.2 Experiment
	Questionnaire
	EyeTrackScreenRecordExperiment
	External Communications Server
	Optional Local Improvements

	6 Evaluation
	6.1 Experiment Design
	6.1.1 Research Questions and Hypotheses
	6.1.2 Empirical Methods
	6.1.3 Tasks
	Dependent and Independent Variables
	Treatment
	Personal Information
	Population

	6.2 Operation
	6.2.1 Experimental Set-up
	6.2.2 Create Input
	6.2.3 Tutorial
	6.2.4 Questionnaire
	6.2.5 Pilot Study
	6.2.6 Procedure

	6.3 Data Collection
	6.3.1 Timing and Tracking Information
	6.3.2 Correctness Information

	6.4 Results
	Prequestions
	Tasks Correctness
	Eye Data Results
	Postquestions

	6.5 Discussion
	6.5.1 Correctness of Tasks
	6.5.2 Eye Tracking Data
	6.5.3 Postquestions

	6.6 Threads to Validity
	6.6.1 Internal Validity
	Participants
	Tasks
	Tutorial
	Miscellaneous

	6.6.2 External Validity

	6.7 Lessons Learned and Challenges Occurred
	6.8 Summary

	7 Related Work
	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	Bibliography
	Appendix A: Install Instructions
	Appendix B: Informed Consent
	Appendix C: Raw Experiment Results

