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Starting from the classical Stommel (1961) two-box
model for the North Atlantic meridional overturning
circulation, Timmermann and Lohmann (2000, hereafter
TL) consider the dynamics of the following system of
equations:

d
y 5 2|1 2 y |y 1 m 1 ye (1)0dt

d e s
e 5 2 1 j, (2)

dt t t

where y represents the scaled salinity difference between
the two boxes, m0 is the scaled salinity forcing, j is a
white noise process, and e is an Ornstein–Uhlenbeck
(red noise) process with variance s2/2t and autocor-
relation e-folding time t. Timmermann and Lohmann
associate e with fluctuations of the temperature differ-
ence between the two boxes around the mean value
(which is 1 in the scaled variables). The representation
of variability in the temperature gradient by a red noise
process is motivated by the findings of Lohmann and
Schneider (1999) that in the Stommel model tempera-
ture differences vary on a much shorter timescale than
salinity differences. As t → 0, e becomes Gaussian
white noise, and the probability density function (PDF)
of y satisfies a one-dimensional Fokker–Planck equation
(FPE) from which the stationary PDF (i.e., the PDF
describing the system after the initial transients have
died off ) may be evaluated analytically. Because e is
multiplied by y in Eq. (1), the t → 0 limit must be taken
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carefully. In technical jargon, Eq. (1) converges to a
Stratonovich stochastic differential equation as t → 0;
a brief review of stochastic calculus and the Fokker–
Planck equation is given in Penland (1996), and a more
comprehensive discussion appears in Gardiner (1997).
For t ± 0, the PDF of y alone is no longer described
by an FPE. One can, however, write down a FPE for
the joint PDF of y and e. Unfortunately, the stationary
version of this FPE is a partial differential equation in
two variables that cannot be solved analytically. In this
note, we comment on two aspects of TL: first, the der-
ivation and interpretation of Eqs. (1) and (2), and sec-
ond, the validity of the approximation used in TL to
obtain analytic forms for the stationary PDF of y for t
± 0.

We first comment on the derivation and interpretation
of Eqs. (1) and (2). The original system of equations in
TL describes the dynamics of the salinity gradient, DS,
when the temperature gradient DT is described as red
noise fluctuations DT9 around a mean value DT0:

d c
DS 5 2 |aDT 1 aDT9 2 bDS |DS0dt* V

S01 (P 2 E ) (3)
h

d 1 S
DT9 5 2 DT9 1 j, (4)

dt* t* t*

where t* is the dimensional time, V is the box volume,
c is the proportionality constant between the density
gradient and the meridional flux, a and b are respec-
tively the thermal and haline expansion coefficients, S0

is a reference salinity, h is the box depth, P 2 E is the
salinity forcing, t* is the temperature fluctuation relax-
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FIG. 1. Stationary PDF of y from numerical integration (thick line) and from the UCNA approximation (thin line) for
s 5 0.3.

ation timescale, S is a noise strength, and j is Gaussian
white noise. Timmermann and Lohmann argue that Eqs.
(1) and (2) follow from (3) and (4) under a suitable
rescaling of variables. However, in Eq. (3) the process
DT9 appears only inside the absolute value sign, while
in Eq. (1) the process appears outside the absolute value
sign. In fact, Eq. (1) does not follow from (3). Fur-
thermore, it can be shown that for (3) the stationary
PDF of DS in the limit that DT9 becomes a white noise
process is a delta function at DS 5 0 (P. Imkeller 2000,
personal communication), which is not physically rea-
sonable. For t ± 0, Eqs. (3) and (4) define a meaningful
stochastic differential equation. However, as this system
must be solved numerically, no advantage has been
gained in representing DT as a red noise process; the
analysis of the stochastically forced original Stommel
model is no more complicated.

An alternate interpretation of (1) is as follows. We
consider a generalization of the Stommel (1961) model:

d c
DS 5 2 |aDT 2 bDS | 1 h DS1 2dt* V

S01 (P 2 E ) (5)
h

d c FoaDT 5 2 |aDT 2 bDS | 1 h DT 1 , (6)1 2dt* V Cp

where Cp is the oceanic heat capacity. The freshwater
forcing P 2 E is an unspecified function of DT, and
the atmosphere–ocean heat flux Foa has the net effect
of relaxing DT to some value DT0. The quantity h in
Eqs. (5) and (6) is a parameterization of the eddy trans-
port of temperature and salinity between the boxes; this
eddy mixing may be associated with transport due to,
for example, the wind-driven gyres or quasigeostrophic
eddies. The process h is not constrained to be positive,
so eddy transport between the boxes may be upgradient
(see, e.g., Nakamura and Chao 2000). A similar term
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FIG. 2. As in Fig. 1 but for s 5 1.

appears in response to fluctuations in mechanical forcing
in the model of the thermally and wind-driven ocean
circulation introduced by Maas (1994). In general, h
should have a nonzero mean value, so the eddy transport
is on average downgradient. The goal here, however, is
to describe a meaningful interpretation of the model
analyzed in TL in which h is of mean zero.

As in Cessi (1994), we assume that the timescale on
which DT is relaxed to DT0 by the thermal forcing Foa

is sufficiently small, relative to the timescales of salinity
dynamics, that DT . DT0. Further, we model h as a
red noise (Ornstein–Uhlenbeck) process with autocor-
relation e-folding timescale t* and variance S2/2t*.
Then we obtain the system

d c
DS 5 2 |aDT 2 bDS |DS 1 hDS0dt* V

S01 (P 2 E ) (7)
h

d h S
h 5 2 1 j(t*), (8)

dt* t* t*

where j(t*) is a white noise process. Defining the non-
dimensional quantities

caDT0t 5 t* (9)
V

b
y 5 DS (10)

aDT0

V
e 5 h, (11)

caDT0

Eqs. (7) and (8) reduce to (1) and (2) where

bVS0m 5 (P 2 E ) (12)
2ch(aDT )0

caDT0t 5 t* (13)
V

1/2V
s 5 S. (14)1 2caDT0

In the above, we have used the fact that for a white
noise process,

1/2t
j(t*) 5 j(t) (15)1 2t*
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under a rescaling of time, which follows from the fact
that the white noise must be delta-correlated in both the
dimensional and nondimensional variables.

Thus, a meaningful physical interpretation can be
made of Eqs. (1) and (2), but this interpretation differs
from that of TL.

For t ± 0, the stationary FPE of the system (1)–(2)
does not yield an analytic solution. To circumvent this

problem, TL employ an approximation due to Jung and
Hänggi (1987), known as the ‘‘Unified Coloured Noise
Approximation’’ (UCNA), to reduce the system (1)–(2)
to an approximate one-dimensional system, whose as-
sociated stationary Fokker–Planck equation admits an
analytic solution. Timmermann and Lohmann calculate
the following UCNA expression for the stationary PDF
of y:

2
m 2 1 m m0 0 021p (y, t) 5 N y 1 1 t 2 y exp 2 t 21 1 y 1 2 lny 1 y 2 , 0 , y # 1s 1 2) 1 2) 5 1 2 6[ ]y s 2 y y (16)

2
m 2 1 m m0 0 021p (y, t) 5 N y 1 1 t 1 y exp 2 t 1 2 y 1 1 lny 2 y 2 , y . 1,s 2 2) 1 2) 5 1 2 6[ ]y s 2 y y

where N1, N2 are appropriate normalizations. Figures 6
and 7 of TL plot ps as a function of y for different values
of t and s. For small values of t, the results resemble
those of the white noise limit. For increasing t, ps given
by (16) displays qualitatively different behavior. In par-
ticular, nodes and new extrema appear in the PDF. These
results are interpreted as ‘‘noise-induced transitions,’’
and the analogy of quantum-mechanical tunneling is
used to describe the passage of the system across the
node of the PDF. We now comment on the validity of
the UCNA in the analysis of TL.

Another approach to determine an approximation of
the PDF associated with (1)–(2) is to integrate the equa-
tions numerically; the simplest algorithm is a forward
Euler discretization (Kloeden and Platen 1992). Denot-
ing the discrete time step by d so that

t 5 kd,k (17)

the forward Euler discretization of (1)–(2) is

y 5 y 1 d(2|1 2 y |y 1 m 1 y e ) (18)t t t t 0 t tk k21 k21 k21 k21 k21

e stk21e 5 e 2 d 1 Ïd W , (19)t t tk k21 k21t t

where W is a sequence of zero-mean, unit variancetk

Gaussian random variables. Equations (18) and (19)
were integrated for 150 000 time units, with a time step
d 5 0.05 for the parameter values t, s used in Figs. 6
and 7 of TL. Figures 1 and 2 display Gaussian kernel
density estimates of the PDFs obtained from the sim-
ulation, along with the UCNA approximations (16). The
numerical results are robust to reduction of the stepsize
d, and inspection of the time series indicates that the
record is long enough for estimation of the PDF from
the time series to be appropriate.

Comparing the numerical and UCNA results in Figs.
1 and 2, it is clear that for small values of t, the sta-
tionary PDFs produced by numerical integration and by

the UCNA are in close agreement. However, for t ;
O(1), there are marked differences. In particular, the
PDFs produced by numerical integration do not display
any nodes or new extrema. Instead, the result of raising
t for fixed s is seen to be a shift of the PDF toward
the right-hand peak. The differences between the nu-
merical and UCNA approximations occur because of a
breakdown of the validity of the UCNA for t of O(1).

By construction, the UCNA assumes a timescale sep-
aration between the processes y and e; it is only valid
when e varies much more rapidly than y. This implies
that the UCNA is a small t approximation, but how
small is ‘‘small?’’ Timmermann and Lohmann note that
the domain of validity of the UCNA is given by the
following pair of inequalities:

1 m0 21k(y, t) 5 2 Ït y 2 k t̃ ,1 2yÏt

0 , y # 1 (20)

1 m0 21k(y, t) 5 2 Ït 2y 2 k t̃ ,1 2yÏt

y . 1, (21)

where t̃ is a ‘‘characteristic timescale’’ of variability of
y. Defining a ‘‘typical’’ value of y, TL argue for the
global (in y) satisfaction of these conditions. In fact,
their validity must be considered locally in y. In par-
ticular, the UCNA certainly fails wherever k vanishes.
For 0 , y # 1, this occurs for

21 1
y 5 1 1 m (22)01 2!2t 2t

(a second root is discarded because it occurs for y , 0,
outside the domain of consideration). For t , 1/(1 2
m0), this root also falls outside of [0, 1]. However, for
t $ 1/(1 2 m0), k vanishes for y ∈ [0, 1], and the
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UCNA fails within the domain of interest. In particular,
it is clear from (16) that k vanishes at precisely the
values y where ps has a node. Thus, the emergence of
zeros in the PDF of y is an artifact of the breakdown
of the UCNA. In fact, the UCNA fails not just at the
points at the zeros of k, but in a surrounding neigh-
borhood, as is demonstrated by the differences between
the numerical and UCNA PDFs for t 5 0.8 , 1/(1 2
m0). For y . 1, k never vanishes, but because the overall
amplitude of the PDF is a function of its global structure,
at best only the shape of the PDF for y . 1 will agree
with that produced by the UCNA. Thus, for t of O(1),
the UCNA breaks down locally in y, with global con-
sequences for the structure of the PDF.

Calculating the stationary PDF of a system in a one-
dimensional potential subject to colored noise remains
an unsolved problem in physics. A number of different
approximations have been proposed, but they are valid
only in the limit of small or of very large t (Horsthemke
and Lefever 1984; Hänggi and Jung 1995). To obtain
the stationary PDFs of y in the case where its timescale
is of the same order of magnitude as e, at present we
must take recourse to numerical methods. We note that
an essential conclusion of TL is unchanged, namely that
increasing s populates the left-hand peak of the sta-
tionary PDF of y at the expense of the right-hand peak,
while increasing t has the opposite effect.

Overall the idea is supported that changing noise char-
acteristics might have a significant effect on the climatic
mean states and their stability; this point is discussed
in a more general framework in Palmer (2001). The
nonlinear paradigm of noise-induced transitions is con-
sistent with the findings recently reported by Aeberhardt
et al. (2000) using a stochastically forced model of in-
termediate complexity. It might be interesting to study

how the effect of noise-induced transitions of the THC
translates to other more complex models.
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