
Distributed Pipe-and-Filter
Architectures with TeeTime

Master’s Thesis

Florian Echternkamp

May 21, 2017

Kiel University

Department of Computer Science

Software Engineering Group

Advised by: Prof. Dr. Wilhelm Hasselbring

M.Sc. Christian Wulf

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel, 21. Mai 2017

iii

Abstract

The Pipe-and-Filter architectural style provides easily exploitable parallelism of each filter
stage. A single computer limits the parallel execution by its amount of CPU cores. To further
exploit the parallelism the Pipe-and-Filter architecture can be executed distributively on
multiple computer nodes.

In this thesis, we present an approach to implementing a distributed Pipe-and-Filter ar-
chitecture with the TeeTime framework. Our implementation provides efficient distributed
communication, which uses TCP, UDP, or is encrypted via SSL over TCP. Also, we provide
an automatic remote deployment and remote execution, as well as fault handling. We
successfully evaluate the feasibility and performance improvements of our implementation.
In our example applications, we gain performance improvements of approximately 40%.
Furthermore, we present a working DSL for distributed configurations to simplify the
usage of distributed Pipe-and-Filter architectures.

Our implementation is part of the TeeTime framework, which is available in a version
with and a version without our extension. We provide the DSL as an Eclipse plug-in.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1

1.2.1 G1: Evaluation of Java Frameworks for Distributed Application De-
velopment . 1

1.2.2 G2: Implementation of a Distributed Pipe-and-Filter Architecture . . 2
1.2.3 G3 (optional): Adding Support for Distributed Pipes in the TeeTime

DSL . 2
1.2.4 G4: Evaluation of Our Approach . 2

1.3 Document Structure . 3

2 Foundations and Technologies 5
2.1 The Pipe-and-Filter Architectural Style . 5
2.2 The Pipe-and-Filter Framework TeeTime . 5
2.3 Distributed Systems . 5
2.4 Communication Patterns for Distributed Systems 6

2.4.1 Message Passing . 6
2.4.2 Remote Procedure Calls . 6
2.4.3 Distributed Shared Memory . 6

2.5 Fault Tolerance Design Patterns . 7
2.5.1 Architectural Patterns . 7
2.5.2 Detection Patterns . 8
2.5.3 Error Recovery Patterns . 10

2.6 Transport Protocols . 11
2.7 The Actor Model . 11
2.8 The Akka Toolkit . 12
2.9 Domain-specific Language . 12

3 Evaluation of Java Frameworks for Distributed Application Development 13
3.1 Evaluation Criteria . 13

3.1.1 Build Infrastructure Criteria . 13
3.1.2 Feature Criteria . 14

3.2 Frameworks . 16
3.2.1 Akka . 16
3.2.2 Apache Hadoop . 16
3.2.3 Apache River . 17

vii

Contents

3.2.4 Apache Spark . 18
3.2.5 Apache Storm . 18
3.2.6 Apache ZooKeeper . 19
3.2.7 Atomix (+ Copycat + Catalyst) . 19
3.2.8 Axon Framework . 20
3.2.9 Hystrix . 20
3.2.10 JGroups . 21
3.2.11 JPPF . 21
3.2.12 Orbit . 22
3.2.13 Quasar . 22

3.3 Framework Overview and Conclusion . 23

4 Implementation of a Distributed Pipe-and-Filter Architecture 27
4.1 Implementation of Distributed Communication 28

4.1.1 Distributed Pipe . 28
4.1.2 Auto-Discovery of the Receiver . 29
4.1.3 Handling the TeeTime Terminating Signal 31
4.1.4 Message Serialization . 31

4.2 Implementation of a Single Configuration for a Distributed Execution 32
4.3 Implementation of Remote Deployment and Remote Execution 34
4.4 Implementation of Fault Tolerance . 35

5 Extending the TeeTime Domain-specific Language 37

6 Evaluation 41
6.1 Goals . 41
6.2 Common Experimental Setup . 42

6.2.1 Stages . 42
6.2.2 TeeTime Configurations . 43
6.2.3 Test Applications . 46

6.3 Feasibility of Remote Deployment, Remote Execution and Distributed Com-
munication . 47
6.3.1 Methodology . 48
6.3.2 Results & Discussion . 48
6.3.3 Threats to Validity . 52

6.4 Feasibility of Fault Tolerance . 53
6.4.1 Methodology . 53
6.4.2 Results & Discussion . 55
6.4.3 Threats to Validity . 58

6.5 Performance . 58
6.5.1 Methodology . 58
6.5.2 Results & Discussion . 59

viii

Contents

6.5.3 Threats to Validity . 62
6.6 Support of Distributed Configurations in the TeeTime DSL 64

6.6.1 Methodology . 64
6.6.2 Results & Discussion . 64
6.6.3 Threads to Validity . 64

7 Related Work 65

8 Conclusions and Future Work 67
8.1 Conclusions . 67
8.2 Future Work . 68

A Distributed Communication Test Results 71

B Project Overview 75
B.1 TeeTime . 75
B.2 TeeTime-Distributed-Test . 75
B.3 Teetime-Distributed-Dsl . 76

Bibliography 77

ix

Chapter 1

Introduction

1.1 Motivation

Pipe-and-Filter architectures are used for stepwise processing of data streams. Each pro-
cessing step is represented by a filter module, which is connected to other filters via
pipes. Due to their Filter-based modularization, Pipe-and-Filter architectures are suitable
for parallelization. To optimize the performance, each filter can be executed in parallel.
However, the parallelization on a single system is limited by the number of processor cores.
When more filters than cores are used, the filters must share the cores and thus could
not be executed parallel. Typical personal computer systems use between 2 and 4 Cores.
To provide parallelization of filter quantity above the amount of these cores distributed
computing can be utilized. The filters are distributed to multiple computers, named nodes,
which communicate via a network. Consequently, it is important that the network overhead
stays lower than the performance improvement of the parallel execution of the filters to
gain overall performance enhancements.

A distributed Pipe-and-Filter architecture yields further benefits concerning data locality,
which is necessary for processing Big Data with multiple sources. Instead of accessing the
sources via the network the data is directly handled by filters on or nearby the nodes of
data origin and can be joined later, due to the distributed architecture.

Distributed Pipe-and-Filter architectures are not supported by the Pipe-and-Filter Java
Framework TeeTime [Wulf et al. 2014; 2016], which is developed at the Kiel University. The
goal of this Master’s Thesis is to extend TeeTime to support distributed Pipe-and-Filter
architectures. The focus is on providing a feasible approach to implementing a distributed
Pipe-and-Filter architecture with efficient distributed communication.

1.2 Goals

1.2.1 G1: Evaluation of Java Frameworks for Distributed Application
Development

The first goal is to use an existing Java framework for distributed application development
to implement the distributed Pipe-and-Filter architecture in TeeTime. Therefore we evaluate

1

1. Introduction

suitable Java frameworks. The following subgoals describe the main features the framework
shall provide.

G1.1: Providing Efficient Distributed Communication

Currently, filters in TeeTime can be only connected by local pipes on the same node. Filters
should get connected via the network with a minimal network communication overhead.
Java objects need to be serialized for network transportation. The framework should provide
distributed communication with efficient serialization and data transmission. Depending
on whether it is more important to obtain high throughput or to ensure that no data get
lost, the user should be able to choose between reliable TCP and faster, non-blocking UDP
transmission.

G1.2: Providing Fault Tolerance

During execution, the application should be able to detect and log node and network
failures. After a failure occurs, all nodes should be terminated.

G1.3: Providing Remote Deployment

The configuration parts should be automatically deployed to the nodes based on a single
distributed TeeTime configuration.

G1.4 (optional): Providing Encrypted Data Transmission

Network traffic might be observable for other users. We supply optional encryption to
protect the data transmission.

1.2.2 G2: Implementation of a Distributed Pipe-and-Filter Architecture

We implement the subgoals G1.1 up to G1.4 in TeeTime either based on the framework
evaluated in G1 or by a custom solution. A single TeeTime configuration for all nodes is
the basis for the distributed execution of the Pipe-and-Filter architecture.

1.2.3 G3 (optional): Adding Support for Distributed Pipes in the Tee-
Time DSL

TeeTime already provides a Domain-Specific Language (DSL) to define a configuration
with pipes and filters. We extend this DSL to support distributed configurations.

1.2.4 G4: Evaluation of Our Approach

We evaluate the feasibility and performance of G2.

2

1.3. Document Structure

G4.1: Feasibility

The application is able to communicate (optionally encrypted) via the network. When a
fault occurs, the application should detect and handle it.

G4.2: Performance

We test the performance of the implemented distributed Pipe-and-Filter architecture against
a non-distributed Pipe-and-Filter application by performing performance tests on self-
developed sample applications. We test TCP and UDP, and also measure the security
overhead for the encryption.

1.3 Document Structure

We explain the required foundations and technologies, which we used for the implementa-
tion, in Chapter 2. Subsequently, we describe our evaluation of potential Java frameworks
for the implementation in Chapter 3. Afterward we explain our developed approach of a
distributed Pipe-and-Filter architecture in Chapter 4 and our approach for the extension
of the TeeTime DSL in Chapter 5. Then we evaluate our implementation in Chapter 6.
After that, we compare our approach to related work in Chapter 7. Finally, we present the
conclusions and future work in Chapter 8.

3

Chapter 2

Foundations and Technologies

2.1 The Pipe-and-Filter Architectural Style

The Pipe-and-Filter architectural style [Sommerville 2012; Otero 2012; Frank Buschmann
2007] is a basic structure for data flow systems. The software is decomposed into data
processing components named filters and one-directional data transferring components
called pipes. The software is composed by connecting the filters via the pipes to a pipeline.
Each filter incrementally processes the data stream. The incremental processing enables
concurrent processing of the filters and thus a distributed Pipe-and-Filter architecture.

2.2 The Pipe-and-Filter Framework TeeTime

TeeTime [Wulf et al. 2014; 2016; 2017] is a Pipe-and-Filter framework for Java. It implements
the generalized Tee-and-Join-Pipeline design pattern [Wulf et al. 2014], which allows filters
(called stages in TeeTime) to be connected to more than one input and output pipe via input
and output ports. The framework supports a fully type-safe environment through typed
ports. TeeTime will be extended to implement distributed Pipe-and-Filter architectures.

2.3 Distributed Systems

Coulouris et. al. describes a distributed system as a system in which

software components located at networked computers communicate and coor-
dinate their actions only by passing messages.

Distributed systems can provide higher performance than a single system by sharing
concurrent resources. Though additional sources of failures accrue. The network can fail
and affect the data transmission, or a node can fail and harm the associated data processing
steps. Those faults must be detected and handled appropriately [George F. Coulouris and
Blair 2011].

5

2. Foundations and Technologies

2.4 Communication Patterns for Distributed Systems

The following communication patterns are quoted from the book Message Passing, Remote
Procedure Calls and Distributed Shared Memory as Communication Paradigms for Distributed
Systems by J. Silcock et. al. [Silcock and Gościński 1995].

2.4.1 Message Passing

Message passing is the basis of most interprocess communication in distributed
systems. It is at the lowest level of abstraction and requires the application
programmer to be able to identify the destination process, the message, the
source process and the data types expected from these processes [Silcock and
Gościński 1995, Chapter 2].

There are multiple variants of message passing available, e.g.:

Blocking/non-blocking The sender and receiver methods can be either executed blocking or
non-blocking.

Buffered/unbuffered messages Messages can be sent directly to the receiving process, which
must be running before the messages are sent to be able to receive them. Alternatively,
the message can be directed to a message buffer, where the messages are saved until
the receiving process is ready to receive them.

Reliable/Unreliable send Unreliable send once sends the message and does not consider
it any longer. Reliable send requires an acknowledgment message and automatically
retransmits a failed message.

2.4.2 Remote Procedure Calls

Message passing leaves the programmer with the burden of the explicit control
of the movement of data. Remote procedure calls (RPC) relieves this burden by
increasing the level of abstraction and providing semantics similar to a local
procedure call [Silcock and Gościński 1995, Chapter 3].

2.4.3 Distributed Shared Memory

Distributed shared memory is memory which, although distributed over a
network of autonomous computers, gives the appearance of being centralized.
The memory is accessed through virtual addresses, thus processes are able to
communicate by reading and modifying data which are directly addressable.
[..] The operating system has to send messages between machines with requests
for memory not available locally and to make replicated memory consistent
[Silcock and Gościński 1995, Chapter 4].

6

2.5. Fault Tolerance Design Patterns

2.5 Fault Tolerance Design Patterns

The following fault tolerance patterns are for the most part cited from the book Patterns
for Fault Tolerant Software by Robert Hammer [Hanmer 2013]. The patterns are grouped by
Architectural Patterns (Section 2.5.1), Detection Patterns (Section 2.5.2) and Error Recovery
Patterns (Section 2.5.3).

2.5.1 Architectural Patterns

Redundancy

Provide redundant capabilities that support quick activation to enable error
processing to continue in parallel with normal execution [Hanmer 2013, Chapter
4.3].

There are multiple redundancy variants:

Active/Active provide for each unit a whole redundant one, which are both active and load
sharing.

Active/Standby also provide a redundant unit for each unit, but which is idle as long as the
primary unit is performing well.

N+M Redundancy provides only M redundant standby units, with M<N.

Minimize Human Interaction

Design the system in a way that it is able to process and resolve errors automat-
ically, before they become failures. This speeds error recovery and reduces the
risk of procedural errors contributing to system unavailability [Hanmer 2013,
Chapter 4.5].

Someone in Charge

All fault tolerant related activities have some component of the system (’some-
one’) that is clearly in charge and that has the ability to determine correct
completion and the responsibility to take action if it does not complete correctly.
If a failure occurs, this component will be sure that the new failure doesn’t stop
the system [Hanmer 2013, Chapter 4.8].

Fault Observer

Report all errors to the fault observer. The fault observer will ensure that
all interested parties receive information about the errors that are occurring
[Hanmer 2013, Chapter 4.10].

7

2. Foundations and Technologies

The system does not stop when errors are detected; it automatically corrects them. With the
fault observer, users will know what faults and errors have been detected and processed.

2.5.2 Detection Patterns

System Monitor

Create a Monitor to study system behavior or the behavior of specific parts
of the system to make sure that they continue operating correctly. When the
watched components stop, the monitor should report the occurrence to the
Fault observer and initiate corrective action [Hanmer 2013, Chapter 5.4].

Heartbeat

The System monitor should see a periodic heartbeat from the monitored task,
see Figure 2.1. If the monitored task does not supply a heartbeat response
within the required time then recovery action should be taken [Hanmer 2013,
Chapter 5.5].

MonitorMonitor MonitoredMonitored

Are you okay?

Yes!

Are you okay?

Yes!

Figure 2.1. Regularly scheduled heartbeats (based on [Hanmer 2013, Chapter 5.5])

Acknowledgment

Send an acknowledgment for all requests, see Figure 2.2. All requests should
require a reply to acknowledge receipt and to indicate that the monitored

8

2.5. Fault Tolerance Design Patterns

system is alive and able to adhere to the protocol. If the acknowledgment reply
is not received then a failure should be reported to the Fault observer and error
processing should be initiated [Hanmer 2013, Chapter 5.6].

MonitorMonitor MonitoredMonitored

Request

Message Received.
I am still okay.

Figure 2.2. Requests are acknowledged (based on [Hanmer 2013, Chapter 5.6])

Watchdog

Add in the capability for the monitor to observe the monitored task’s activities,
much as a Watchdog tends the flock. This Watchdog can be either a hardware
or a software component depending on the system requirements, but in either
case it will watch visible effects of the monitored task. The monitored task will
not be modified, see Figure 2.3. The Watchdog should take some actions to get
the monitored task back into the flock if it strays too far from expected and
desired behavior [Hanmer 2013, Chapter 5.7].

Realistic Thresholds

Set the messaging latency based upon the worst case communications time
combined with the time required to process one Heartbeat message. Set the
detection latency based upon the criticality of the functionality. Make it a
multiple of the messaging latency. Use a smaller multiple for extremely critical
or unique tasks, larger for redundant tasks. Set the latencies so that the monitor
will be informed in a timely enough manner to meet the availability requirement,
and yet is the maximum possible so that false triggers don’t occur [Hanmer
2013, Chapter 5.8].

9

2. Foundations and Technologies

ClientClient ClientClient

WatchdogWatchdog

Figure 2.3. A Watchdog interposes itself on message traffic (based on [Hanmer 2013, Chapter 5.7])

2.5.3 Error Recovery Patterns

Error Handler

Separate error processing code in special handling blocks for easier maintenance
and to facilitate new handlers being added in the future [Hanmer 2013, Chapter
6.3].

Resume execution

Restart Resume execution by restarting the program from the beginning [Hanmer 2013,
Chapter 6.4].

Rollback Resume normal execution by moving to a state in the execution path but before
the error occurred [Hanmer 2013, Chapter 6.5].

Roll-Forward Resume normal execution by advancing to a future state that would have
been reached if the error had not occurred [Hanmer 2013, Chapter 6.6].

Return to Reference Point Resume execution by returning to a specific known state. That
place might not have been in the execution path that led to the error, but it is known to
be safe [Hanmer 2013, Chapter 6.7].

Failover

Recover by switching to a redundant unit, see Figure 2.4 [Hanmer 2013, Chapter
6.9].

10

2.6. Transport Protocols

A B

Active

Latent Fault

A B

Active

Active Fault

A B

Error
Recovery

Error

Active

Fault Activates

Failover

Figure 2.4. Failover to a redundant unit (based on [Hanmer 2013, Chapter 6.8])

Checkpoint

Save state periodically. Build in the capability to restore the system to the
same state that was saved, without having to recreate the entire execution from
startup to the point of the saved state [Hanmer 2013, Chapter 6.10].

Remote Storage

Store the saved checkpoints in a centrally accessible location. This enables a
new processor to access the saved checkpoint which minimizes the period of
unavailability [Hanmer 2013, Chapter 6.12].

2.6 Transport Protocols

The two most common transport protocols are the Transmission Control Protocol (TCP)
and the User Datagram Protocol (UDP). TCP is connection-based and needs a handshake
to set up a connection. Furthermore, every message sent is acknowledged by the receiver.
If an error occurs, the packages will be resent. Also, TCP preserves the order of the data
packages. In contrast to TCP, UDP is a connectionless protocol. Therefore no handshake
to establish the connection nor acknowledgments by the receiver is required. Erroneous
packaged are ignored. TCP is more reliable, due to the package recovery. UDP is faster
because no connection must be set up nor every package must be acknowledged.

2.7 The Actor Model

The Actor Model [Agha 1985] is a model for concurrent computation. The system is
separated in concurrent units named actors and is based on the message passing com-
munication pattern described in Section 2.4.1. Each actor can send and receive messages
asynchronously to respectively from other actors. An actor stores received messages in a

11

2. Foundations and Technologies

message inbox until it processes them following the FIFO-principle. Furthermore, an actor
can change its behavior for the next messages it receives. Besides actors can create new
actors.

2.8 The Akka Toolkit

Akka [Gupta 2012; Roestenburg et al. 2015] is a toolkit that implements the actor model.
Actors are created inside an ActorSystem. The actor system is a container that manages the
actors. It provides general configuration settings which apply to all actors of the system.
To provide fault tolerance, an actor is the supervisor of its child actors. An actor can
also become a supervisor of another actor by executing the watch method with the actor
reference of the actor to be supervised as a parameter. Akka uses a Let It Crash fault
tolerance model. Actors fail fast and are recovered by their supervisors. An actor system
always has a root actor, which is the root supervisor of all actors created by the user.

The Akka toolkit contains the Akka Remote library. Akka Remote provides location
transparency of actors, consequently a message can be sent to a remote actor by calling the
tell method of its actor reference. Actor references are used the same for local and remote
actors. Akka uses reliable buffered message passing. Furthermore Akka Remote supports
the remote creation of actors on remote systems.

On top of Akka Remote, the Akka Cluster library provides cluster functionalities.
At least one node must be defined as a seed node, which is an entry point to join the
cluster. The seed nodes must be known to each actor system. In the cluster, an actor can
subscribe to the cluster member events. If subscribed the actor is informed of events, such
as actor systems joining or leaving the cluster. The cluster detects faults, e.g. a node become
unreachable.

We use Akka for the implementation of the distributed Pipe-and-Filter architecture into
TeeTime as we explain in Chapter 4.

2.9 Domain-specific Language

A domain-specific language (DSL) is a limited formal language specialized for a specific
application domain [Fowler 2010]. A DSL provides a grammar to only solve problems in its
domain, thus is simpler to learn than a general purpose language and helps to focus on the
problem. Furthermore, a DSL can contribute to lower code redundancy by auto-generating
boilerplate code and thus improve the code readability.

12

Chapter 3

Evaluation of Java Frameworks for
Distributed Application Development

In this chapter, we evaluate the most suitable Java framework for distributed applications
as the base for the distributed TeeTime implementation. For this purpose, we elaborated
criteria the framework should comply to shown in Table 3.1. Each framework is reviewed
based on these criteria.

3.1 Evaluation Criteria

We grouped the criteria into two categories, Build Infrastructure and Features. The Build
Infrastructure category contains metadata about the framework and the Features category
explicit functionalities.

3.1.1 Build Infrastructure Criteria

License represents the license under which the framework is provided. This license must be
compatible with TeeTime’s Apache 2 License so that the usage is faultless in legal terms.

Open Source frameworks provide the opportunity to extend and customize them if
necessary. This may be the case when the framework lacks in some minor requirements,
and a customization would be more suitable than another framework.

JDK Version defines the minimum required Java Development Kit (JDK) version to
develop and run the application with the framework. The current major release is version
8. Currently, TeeTime supports Java down to version 6. This could be relevant if TeeTime
should be used with legacy libraries with JDK dependencies which won’t work with the
current Java version. The usage of a framework with a higher JDK could restrict the usage
of TeeTime. In fact, older Java versions are not supported anymore since April 2015 for
version 7 and February 2013 for version 61. Therefore this criterion only has an insignificant
impact on the evaluation.

Latest activity indicates if the framework is still under maintenance, which is important
concerning the possibility of bugs getting fixed. Moreover the implementation of necessary
modifications due to possible changes in future JDK versions.

1http://www.oracle.com/technetwork/java/eol-135779.html

13

http://www.oracle.com/technetwork/java/eol-135779.html

3. Evaluation of Java Frameworks for Distributed Application Development

Table 3.1. Evaluation criteria

Criteria Value Range Requirements

Build Infrastructure

License License name Apache 2.0 compatible

Open Source yes/no yes

Minimum JDK Version Version number Version 6

Latest activity Date newer than July 2016

Latest release Date (Version number) newer than July 2016

Features

Communication Pattern Message Passing, RPC,
DSM (opt. Protocol Name)

Message Passing

Transport Protocol TCP, UDP TCP and UDP

Fault Tolerance Description of supported
fault tolerance features

Supervisor

Remote Deployment yes/no yes

Custom Serializer yes/no yes

Encryption yes/no yes

Latest release represents the most recent stable release version and release date of the
framework. Newer beta versions received no consideration. The date shows the actuality of
the development. Older dates perhaps indicate a longer period for bugs getting fixed.

3.1.2 Feature Criteria

Communication Patterns

Communication Patterns describes which of the three communication patterns Message
Passing, Remote Procedure Calls (RPC) and Distributed Shared Memory (DSM) explained in
Section 2.4 are covered by the framework. The usage of the distributed communication by
TeeTime is limited to unidirectional data transmission between the nodes.

In this scenario, DSM has an unnecessary overhead. Instead of sending the data directly
between the nodes it is accessed via its virtual address. The sender node has the data in
memory, while the receiver node has not. Therefore the receiver node has to request the
data from the sender which then gets replicated to the receiver’s memory. Furthermore,
the data occupies the local memory of the sender node although it is no longer needed.

RPC requests normally respond with the return type of the method call. The unidirec-

14

3.1. Evaluation Criteria

tional data transmission results in void as a return type for all calls. Thus the abstractions
made by RPC does not provide advantages towards message passing. Potentially the RPC
abstractions decrease the optimization potential of the data transmission, concerning the
Transport Protocol (Section 3.1.2) and the Custom Serializer (Section 3.1.2).

Therefore Message Passing is most suitable. This criterion supports Goal 1.1 (Sec-
tion 1.2.1).

Transport Protocol

Transport Protocol defines which underlying protocol can be used for distributed commu-
nication. Possible protocols are TCP or UDP which is further explained in Section 2.6.
The option to choose between TCP and UDP enables additional optimizations regarding
reliability provided by TCP and speed enhancements provided by UDP.

This criterion supports Goal 1.1 (Section 1.2.1).

Fault Tolerance

Fault Tolerance contains the fault tolerance features the framework provide. Possible fault
tolerance design patterns are described in Section 2.5.

This criterion supports Goal 1.2 (Section 1.2.1).

Remote Deployment

Remote Deployment indicates if the framework supports the automatic deployment of
components to remote nodes. In this way, only a universal receiver must be deployed to
the nodes without code related to the concrete Pipe-and-Filter architecture.

This criterion supports Goal 1.3 (Section 1.2.1).

Custom Serializer

Custom Serializer describes whether the usage of a custom serializer is possible. A custom
serializer might be used to enhance the serializing speed depending on the performance of
the existing serializer in the framework.

This criterion supports Goal 1.1 (Section 1.2.1).

Encryption

Encryption defines whether the framework supports the encryption of the data. Encryption
is important because the nodes communicate via a possible insecure network, e.g. the
Internet.

This criterion supports Goal 1.4 (Section 1.2.1).

15

3. Evaluation of Java Frameworks for Distributed Application Development

3.2 Frameworks

In this section, we present 13 Java frameworks in alphabetical order which have relations
to distributed communication or fault tolerance. In Section 3.3 a tabular overview of the
frameworks is provided. The evaluation is at the level of December 10, 2016.

For comparison, the TeeTime framework is licensed under the Apache 2 license and
is open source. The minimum JDK requirement is version 6. The latest activity was on
November 22, 2016, and the latest non-snapshot version 2.1 was released on February 22,
2016.

3.2.1 Akka

The Akka framework is based on the Actor model explained in Section 2.7. Akka itself is
described in Section 2.8. The project website is available at http://akka.io.

Build Infrastructure Criteria Akka is licensed under the Apache 2 license and is open
source. The minimum JDK required is version 8. Akka is last edited on December 9, 2016,
and the latest version 2.4.14 was released on November 22, 2016. Thus it is up-to-date.

Due to the same license as TeeTime, the usage of Akka in TeeTime is permitted under
copyright law. The minimum JDK version restricts the development to the newest JDK 8.
Overall Akka fulfills the general criteria.

Feature criteria Akka’s communication including the distributed part is based on message
passing. The framework provides configuration options to either use TCP or UDP as the
desired transport protocol. Moreover Akka provides several fault tolerance functionalities.
Each actor is a supervisor of its child actors. As a supervisor, the actor can resume, restart or
stop the child actors. Heartbeats are used to detect a failure. The detection is based on the
Phi Accrual Failure Detector [Hayashibara et al. 2004]. Additionally, Akka provides message
delivery reliability. Moreover, Akka supports remote deployment, custom serializer, and
encryption of the communication. The remote deployment does not support remote class
file loading, thus the class files must be available at the nodes. In conclusion Akka satisfies
all feature criteria, with limitations regarding the remote deployment.

3.2.2 Apache Hadoop

Apache Hadoop provides distributed processing of large data sets in a cluster by MapRe-
duce. The project consists of the modules Hadoop Distributed File System for data man-
agement, Hadoop YARN for job scheduling and cluster resource management and Hadoop
MapReduce for data processing. The project website is available at http://hadoop.apache.org.

16

http://akka.io
http://hadoop.apache.org

3.2. Frameworks

Build Infrastructure Criteria Hadoop is licensed under the Apache 2 license and is open
source. The minimum JDK required is version 7. Hadoop is last edited on December 10,
2016, and the latest version 2.7.3 was released on August 25, 2016. Thus it is in the required
date range.

Due to the same license as TeeTime, the usage of Hadoop in TeeTime is permitted under
copyright law. The minimum JDK version restricts the development to JDK 7 and above.
Overall Hadoop fulfills the general criteria.

Feature criteria Apache Hadoop’s distributed communication is based on RPC and the
distributed shared memory HDFS (Hadoop Distributed File System). TCP is used, and
there is no option to change the transport protocol to UDP. Hadoop provides a Health
Monitor which uses Heartbeats to detect failures. Failed tasks can be reexecuted due
to the master/worker architecture. The master is a single point of failure and does not
provide fault tolerance. Hadoop neither provides remote deployment, nor custom serializer.
Encryption is provided by HDFS.

With MapReduce Hadoop provides its own data processing architecture, thus is not
suitable for TeeTime as a base. Additionally, the communication via the HDFS adds
unnecessary overhead to the desired distributed TeeTime architecture. HDFS always write
and reads via the HDFS instead of directly sending messages between the nodes. Overall
Hadoop does not meet the feature criteria.

3.2.3 Apache River

Apache River is an implementation of a service orientated architecture which communicates
via RPC. River helps to construct distributed systems consisting of services. The project
website is available at https://river.apache.org.

Build Infrastructure Criteria River is licensed under the Apache 2 license and is open
source. The minimum JDK required is version 6. River is last edited on December 10,
2016, and the latest version 2.2.3 was released on February 21, 2016, thus is not inside the
required date range. River has a huge release cycle (the previous version was released in
2013).

Due to the same license as TeeTime, the usage of River in TeeTime is permitted under
copyright law. The minimum JDK version 6 add no restrictions to TeeTime. Overall River
does not meet the general criteria due to the latest release date and the general release
cycle.

Feature criteria River provides the communication protocol JERI which is based on RPC.
TCP is used, and there is no option to change the transport protocol to UDP. Fault tolerance
functionalities are not available. River provides remote deployment, but no custom serializer.

17

https://river.apache.org

3. Evaluation of Java Frameworks for Distributed Application Development

The communication can be encrypted via plain-SSL or HTTPS. Overall River does not meet
the feature criteria, especially the lack of fault tolerance.

3.2.4 Apache Spark

Apache Spark is a cluster computing framework. It is based on the resilient distributed
dataset (RDD) data structure, which is a read-only multiset of data items. Spark is an
improvement over MapReduce to support in-memory processing with RDD instead of
using HDFS for data sharing. Spark includes a Spark Streaming component which processes
mini-batches of data. The project website is available at http://spark.apache.org.

Build Infrastructure Criteria Spark is licensed under the Apache 2 license and is open
source. The minimum JDK required is version 7. Spark is last edited on December 10, 2016,
and the latest version 2.0.2 was released on November 14, 2016. Thus it is up-to-date.

Due to the same license as TeeTime, the usage of Spark in TeeTime is permitted under
copyright law. The minimum JDK version restricts the development to JDK 7 and above.
Overall Spark fulfills the general criteria.

Feature criteria Spark uses Remote Procedure Calls for distributed communication. There
is no information about the transport protocol. To provide fault tolerance, the remote storage
(RDD) prevents data loss through data replication. Checkpoints are used, and data is stored
to provide zero-data-loss. Data record processing can be guaranteed. Additionally, nodes
can be recovered from failures. Spark supports manual remote deployment via the CLI tool
spark-submit, a custom serializer, and encryption.

Same as MapReduce Spark provides its own data processing architecture, therefore does
not fit in well with TeeTime. Although most of the criteria are fulfilled, a programmatic
remote deployment is desired and not one via a CLI tool. Thus Spark does not meet the
general criteria.

3.2.5 Apache Storm

Apache Storm is a real-time stream processing framework. The project website is available
at http://storm.apache.org.

Build Infrastructure Criteria Storm is licensed under the Apache 2 license and is open
source. The minimum JDK required is version 7. Storm is last edited on December 8, 2016,
and the latest version 1.0.2 was released on August 10, 2016, thus it is in the required date
range.

Due to the same license as TeeTime, the usage of Storm in TeeTime is permitted under
copyright law. The minimum JDK version restricts the development to JDK 7 and above.
Overall Storm fulfills the general criteria.

18

http://spark.apache.org
http://storm.apache.org

3.2. Frameworks

Feature criteria Storm uses an own protocol for communication, named Thrift. Thrift
provides both RPC and message passing. There is no information about the transport
protocol available. Storm provides a supervisor, which uses heartbeats to detect node
failures. The worker can be restarted, or the task can be reassigned to other nodes. Message
processing is guaranteed. Storm provides remote deployment, but neither the option to use
a custom serializer nor encryption.

Same as MapReduce and Spark Storm already has its own data processing architecture;
thus an integration of TeeTime does not seem advisable. Hence Storm does not meet the
feature criteria.

3.2.6 Apache ZooKeeper

Apache ZooKeeper is a coordination server which provides features for configuration,
synchronization, leader election and notification in distributed systems. The project website
is available at https://zookeeper.apache.org.

Build Infrastructure Criteria ZooKeeper is licensed under the Apache 2 license and
is open source. The minimum JDK required is version 7. ZooKeeper is last edited on
December 3, 2016, and the latest version 3.4.9 was released on September 3, 2016, thus is in
the date range. Due to the same license as TeeTime, the usage of ZooKeeper in TeeTime is
permitted under copyright law. The minimum JDK version restricts the development to
JDK 7 and above. Overall ZooKeeper fulfills the general criteria.

Feature criteria ZooKeeper as a coordination server does not provide one of the desired
features but supports the previously presented Apache frameworks.

ZooKeeper can only be used together with one of these Apache frameworks. The feature
criteria are thus not reviewed in detail. ZooKeeper meets the general criteria and therefore
is possible to use with the other frameworks.

3.2.7 Atomix (+ Copycat + Catalyst)

Atomix is a software stack for distributed systems. It consists of Atomix as a coordination
framework, Copycat as a state machine replication framework and Catalyst as an I/O &
binary serialization framework. The project website is available at http://atomix.io.

Build Infrastructure Criteria Atomix, Copycat, and Catalyst are licensed under the
Apache 2 license and are open source. The minimum JDK required is version 8. Atomix is
last edited on November 3, 2016. The latest version 1.0.0 RC9 was released on June 23, 2016.
Thus it is not in the required date range. Since the release, only one bug has been fixed.

Due to the same license as TeeTime, the usage of Atomix in TeeTime is permitted under
copyright law. The minimum JDK version restricts the development to the newest JDK 8.

19

https://zookeeper.apache.org
http://atomix.io

3. Evaluation of Java Frameworks for Distributed Application Development

Since Atomix latest release is not in the required date range, it does not meet the general
criteria.

Feature criteria Atomix uses message passing for distributed communication. TCP is
used as the transport protocol without the support for UDP. Atomix fault tolerance is based
on the architectural pattern someone in charge. Atomix uses a leader election algorithm
which will be performed when no leader is available, in the case of a leader failure or a
network partition. Heartbeats are used to detect node failures. Passive nodes which already
contains state copies of other nodes or reserve nodes can be provided for failover. Atomix
does not support remote deployment. The option to use a custom serializer and to enable
encryption is available.

The general architecture Atomix provide would suit well with TeeTime, but due to the
lack of UDP support and remote deployment, Atomix does not meet the feature criteria.

3.2.8 Axon Framework

Axon Framework is based on the Command Query Responsibility Segregation (CQRS)
architectural pattern which separates commands to update information and queries to read
information. Furthermore, Axon builds upon JGroups (Section 3.2.10). The project website
is available at http://www.axonframework.org.

Build Infrastructure Criteria Axon is licensed under the Apache 2 license and is open
source. The minimum JDK required is version 6. Axon is last edited on December 9, 2016,
and the latest version 2.4.5 was released on July 25, 2016, thus is in the date range.

Due to the same license as TeeTime, the usage of Axon in TeeTime is permitted under
copyright law. The minimum JDK version 6 add no restrictions to TeeTime. Overall Axon
fulfills the general criteria.

Feature criteria Axon is based on JGroups, therefore uses the same message passing
for distributed communication. Both TCP and UDP can be configured via the JGroups
configuration. There are no fault tolerance features mentioned. We assume that only the
fault tolerance features of JGroups are provided. Remote deployments are not available. A
custom serializer can be used. Encryption is not mentioned but may be configured via the
JGroups configuration.

Overall Axon does not meet the feature criteria.

3.2.9 Hystrix

Hystrix is a fault tolerance library. The project website is available at https://github.com/

Netflix/Hystrix.

20

http://www.axonframework.org
https://github.com/Netflix/ Hystrix
https://github.com/Netflix/ Hystrix

3.2. Frameworks

Build Infrastructure Criteria Hystrix is licensed under the Apache 2 license and is open
source. The minimum JDK required is version 8. Hystrix is last edited on December 6, 2016,
and the latest version 1.5.8 was released on November 10, 2016, thus is up-to-date.

Due to the same license as TeeTime, the usage of Hystrix in TeeTime is permitted under
copyright law. The minimum JDK version restricts the development to the newest JDK 8.
Overall Hystrix fulfills the general criteria.

Feature criteria Hystrix is specialized on fault tolerance. Thus none of the other criteria
are fulfilled. Hystrix provides mechanisms to prevent servers from overload. It follows the
fail fast and rapid recovery paradigm. If possible, it provides fallback to a previous state
and graceful degradation, which is the ability to maintain limited functionality in case of a
failure.

Since only fault tolerance is provided, Hystrix does not meet the feature criteria. It may
be used to extend other frameworks.

3.2.10 JGroups

JGroups is a framework for reliable group communication and membership management.
The project website is available at http://jgroups.org.

Build Infrastructure Criteria JGroups is licensed under the Apache 2 license and is open
source. The minimum JDK required is version 7. JGroups is last edited on December 7,
2016, and the latest version 3.6.11 was released on September 19, 2016. Thus it is in the
required date range.

Due to the same license as TeeTime, the usage of JGroups in TeeTime is permitted under
copyright law. The minimum JDK version restricts the development to JDK 7 and above.
Overall JGroups fulfills the general criteria.

Feature criteria JGroups utilize message passing for distributed communication. TCP
and UDP as transport protocols are configurable. Fault detection is implemented with
detection of crashed nodes via heartbeats, removal of crashed nodes from the cluster and
removal notifications for the other nodes. A supervisor can be used by implementing own
rules. Neither remote deployment nor a custom serializer option is provided. Encryption
can be configured.

Overall JGroups does not meet the feature criteria.

3.2.11 JPPF

JPPF is the abbreviation for Java Parallel Processing Framework. JPPF is based on a
master/worker architecture. The project website is available at http://www.jppf.org.

21

http://jgroups.org
http://www.jppf.org

3. Evaluation of Java Frameworks for Distributed Application Development

Build Infrastructure Criteria JPPF is licensed under the Apache 2 license and is open
source. The minimum JDK required is version 7. JPPF is last edited on December 7, 2016,
and the latest version 5.2.3 was released on November 27, 2016, thus is up-to-date.

Due to the same license as TeeTime, the usage of JPPF in TeeTime is permitted under
copyright law.The minimum JDK version restricts the development to JDK 7 and above.
Overall JPPF fulfills the general criteria.

Feature criteria JPPF’s distributed communication is based on message passing. Only
TCP can be used as the transport protocol. JPPF provides failover by recovering submitted
jobs. A persistent store is used as a remote storage to save state information. Remote
deployment, the option for using a custom serializer and the option to use encryption are
available.

JPPF is missing the support of UDP as a transport protocol option. JPPF uses a master/-
worker architecture by distributing tasks to nodes. These nodes do not communicate with
each other. Therefore this architecture is not suitable for TeeTime. JPPF provide P2P of the
master nodes. Nonetheless, the worker nodes only communicate with the master. Thus no
full P2P architecture can be provided.

3.2.12 Orbit

Orbit is based on JGroups (Section 3.2.10) and implements the Actor model (see in Sec-
tion 2.7) on top of it. The project website is available at https://github.com/orbit/orbit/wiki.

Build Infrastructure Criteria Orbit is licensed under the BSD 3-Clause license and is
open source. The minimum JDK required is version 8. Orbit is last edited on November 14,
2016, and the latest version 0.9.12 was released on November 14, 2016, thus is up-to-date.

The license differs from TeeTime. The BSD 3-Clause is compatible with Apache 2. The
minimum JDK version restricts the development to the newest JDK 8. Overall Orbit fulfills
the general criteria.

Feature criteria Orbit implements the actor model, and the communication is based
on JGroups. Therefore it also provides the option to use TCP or UDP. Fault tolerance
functionalities are not mentioned. Same as JGroups neither remote deployment nor a
custom serializer is supported. Encryption is not mentioned but may be used via the
underlying JGroups configuration.

Overall Orbit does not meet the feature criteria.

3.2.13 Quasar

Quasar is based on JGroups and implements the Actor model (see in Section 2.7) on top of
it. The project website is available at http://www.paralleluniverse.co/quasar.

22

https://github.com/orbit/ orbit/wiki
http://www.paralleluniverse. co/quasar

3.3. Framework Overview and Conclusion

Build Infrastructure Criteria Quasar is licensed both under the Eclipse Public License
v1.0 and the GPL 3.0 license and is open source. The minimum JDK required is version 7.
Quasar is last edited on December 10, 2016, and the latest version 0.7.7 was released on
December 2, 2016, thus is up-to-date.

The license differs from TeeTime. The GPL 3.0 license is incompatible with Apache 2
and prohibits the use in Apache 2 software. The alternative Eclipse Public License v1.0
could be utilized when labeled appropriately. The minimum JDK version restricts the
development to JDK 7 and above. Overall Quasar fulfills the general criteria. In the case
Quasar is used we must pay attention to the referencing of the Eclipse Public License.

Feature criteria Similar to Orbit Quasar implements the actor model as well. Quasars
distributed communication is also based on JGroups message passing. TCP and UDP are
configurable. No fault tolerance features are described. Same as JGroups neither remote
deployment nor a custom serializer is supported. Encryption is not mentioned but may be
used via the underlying JGroups configuration.

Overall Quasar does not meet the feature criteria.

3.3 Framework Overview and Conclusion

From all 13 examined frameworks only Akka fulfills every criterion. Since no other frame-
work fulfills the criteria, no more profound comparison is necessary. Thus, we decide to
use Akka as a basis for further developments.

Some features the frameworks provide might be missing. These features may not be
documented or could not be detected during the research. Consequently, the presented
information are to be understood as a minimum quantity of features the frameworks
provide.

23

3. Evaluation of Java Frameworks for Distributed Application Development
Table

3.2.Evaluation
O

verview
of

Java
Fram

ew
orks:G

eneralC
riteria

Fram
ew

ork
U

R
L

License
O

pen
Source

JD
K

Latest
activity

Latest
R

elease
a

A
kka

h
t
t
p
:
/
/
a
k
k
a
.
i
o

A
pache

2
yes

8
09.12.2016

22.11.2016
(2.4.14)

A
pache

H
adoop

h
t
t
p
:
/
/
h
a
d
o
o
p
.
a
p
a
c
h
e
.
o
r
g

A
pache

2
yes

7
10.12.2016

25.08.2016
(2.7.3)

A
pache

R
iver

h
t
t
p
s
:
/
/
r
i
v
e
r
.
a
p
a
c
h
e
.
o
r
g

A
pache

2
yes

6
10.12.2016

21.02.2016
(2.2.3)

A
pache

Spark
h
t
t
p
:
/
/
s
p
a
r
k
.
a
p
a
c
h
e
.
o
r
g

A
pache

2
yes

7
10.12.2016

14.11.2016
(2.0.2)

A
pache

Storm
h
t
t
p
:
/
/
s
t
o
r
m
.
a
p
a
c
h
e
.
o
r
g

A
pache

2
yes

7
08.12.2016

10.08.2016
(1.0.2)

A
pache

Z
ooK

eeper
h
t
t
p
s
:
/
/
z
o
o
k
e
e
p
e
r
.
a
p
a
c
h
e
.
o
r
g

A
pache

2
yes

7
03.12.2016

03.09.2016
(3.4.9)

A
tom

ix
(+

C
opycat

+
C

atalyst)
h
t
t
p
:
/
/
a
t
o
m
i
x
.
i
o

A
pache

2
yes

8
03.11.2016

23.06.2016
(1.0.0

R
C

9)

A
xon

Fram
ew

ork
h
t
t
p
:
/
/
w
w
w
.
a
x
o
n
f
r
a
m
e
w
o
r
k
.
o
r
g

A
pache

2
yes

6
09.12.2016

25.07.2016
(2.4.5)

H
ystrix

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
N
e
t
f
l
i
x
/

H
y
s
t
r
i
x

A
pache

2
yes

8
06.12.2016

10.11.2016
(1.5.8)

JG
roups

h
t
t
p
:
/
/
j
g
r
o
u
p
s
.
o
r
g

A
pache

2
yes

7
07.12.2016

19.09.2016
(3.6.11)

JPPF
h
t
t
p
:
/
/
w
w
w
.
j
p
p
f
.
o
r
g

A
pache

2
yes

7
07.12.2016

27.11.2016
(5.2.3)

O
rbit

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
o
r
b
i
t
/
o
r
b
i
t
/

w
i
k
i

B
SD

3-C
lau

se
License

yes
8

14.11.2016
14.11.2016

(0.9.12)

Q
uasar

h
t
t
p
:
/
/
w
w
w
.
p
a
r
a
l
l
e
l
u
n
i
v
e
r
s
e
.
c
o
/

q
u
a
s
a
r

E
clipse

Public
L

icense
v1.0

/
G

PL
3.0

yes
7

10.12.2016
02.12.2016

(0.7.7)

alast
check

D
ecem

ber
10,2016

24

http://akka.io
http://hadoop.apache.org
https://river.apache.org
http://spark.apache.org
http://storm.apache.org
https://zookeeper.apache.org
http://atomix.io
http://www.axonframework.org
https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix
http://jgroups.org
http://www.jppf.org
https://github.com/orbit/orbit/wiki
https://github.com/orbit/orbit/wiki
http://www.paralleluniverse.co/quasar
http://www.paralleluniverse.co/quasar

3.3. Framework Overview and Conclusion
Ta

bl
e

3.
3.

Ev
al

ua
ti

on
O

ve
rv

ie
w

of
Ja

va
Fr

am
ew

or
ks

:F
ea

tu
re

C
ri

te
ri

a
(P

ar
t

1/
2)

Fr
am

ew
or

k
D

is
tr

ib
ut

ed
C

om
m

un
ic

at
io

n
Tr

an
sp

or
t

Pr
ot

oc
ol

Fa
ul

t
To

le
ra

nc
e

A
kk

a
M

es
sa

ge
pa

ss
in

g
TC

P,
U

D
P

Su
p

er
vi

so
r,

H
ea

rt
be

at
s

w
it

h
P

hi
A

cc
u

ra
lF

ai
lu

re
D

et
ec

to
r,

M
es

-
sa

ge
D

el
iv

er
y

R
el

ia
bi

lit
y

A
pa

ch
e

H
ad

oo
p

R
P

C
,

D
SM

(H
D

FS
)

TC
P

H
ea

lt
h

M
on

it
or

w
it

h
H

ea
rt

be
at

s,
Ta

sk
re

ex
ec

ut
io

n

A
pa

ch
e

R
iv

er
R

PC
(J

ER
I)

TC
P

-

A
pa

ch
e

Sp
ar

k
R

PC
N

o
in

fo
.

d
at

a
re

p
lic

at
io

n,
ch

ec
kp

oi
nt

s,
d

at
a

p
ro

ce
ss

in
g

gu
ar

an
te

e,
no

d
e

re
co

ve
ry

A
pa

ch
e

St
or

m
M

es
sa

ge
pa

ss
in

g,
R

PC
(T

hr
if

t)
N

o
in

fo
.

su
pe

rv
is

or
,h

ea
rt

be
at

s,
w

or
ke

r
re

st
ar

ta
nd

re
as

si
gn

m
en

t,
m

es
sa

ge
pr

oc
es

si
ng

gu
ar

an
te

e

A
pa

ch
e

Z
oo

K
ee

pe
r

N
ot

im
pl

em
en

te
d

N
o

in
fo

.
-

A
to

m
ix

(+
C

op
yc

at
+

C
at

al
ys

t)
M

es
sa

ge
pa

ss
in

g
TC

P
le

ad
er

el
ec

ti
on

,h
ea

rt
be

at
s,

fa
ilo

ve
r

(p
as

si
ve

an
d

re
se

rv
e

no
de

s)

A
xo

n
Fr

am
ew

or
k

M
es

sa
ge

pa
ss

in
g

TC
P,

U
D

P
-

H
ys

tr
ix

N
ot

im
pl

em
en

te
d

N
o

in
fo

.
fa

ul
t

de
te

ct
io

n,
ra

pi
d

re
co

ve
ry

,f
al

lb
ac

k,
gr

ac
ef

ul
de

gr
ad

at
io

n

JG
ro

up
s

M
es

sa
ge

pa
ss

in
g

TC
P,

U
D

P
H

ea
rb

ea
ts

,r
em

ov
al

of
cr

as
he

d
no

d
es

,r
em

ov
al

no
ti

fi
ca

ti
on

s,
su

-
pe

rv
is

or
(w

it
h

cu
st

om
ru

le
s)

JP
PF

M
es

sa
ge

pa
ss

in
g

TC
P

fa
ilo

ve
r,

re
co

ve
ry

,p
er

si
st

en
t

st
or

e
(r

em
ot

e
st

or
ag

e
fo

r
re

co
ve

ry
)

O
rb

it
M

es
sa

ge
pa

ss
in

g
TC

P,
U

D
P

-

Q
ua

sa
r

M
es

sa
ge

pa
ss

in
g

TC
P,

U
D

P
-

25

3. Evaluation of Java Frameworks for Distributed Application Development

Table
3.4.Evaluation

O
verview

of
Java

Fram
ew

orks:Feature
C

riteria
(Part

2/2)

Fram
ew

ork
R

em
ote

D
eploym

ent
C

ustom
Serializer

Encryption

A
kka

yes
(no

rem
ote

class
file

loading)
yes

yes

A
pache

H
adoop

yes
no

yes

A
pache

R
iver

yes
no

yes

A
pache

Spark
yes

(via
C

LI
tool)

yes
yes

A
pache

Storm
yes

no
no

A
pache

Z
ooK

eeper
no

no
no

A
tom

ix
(+

C
opycat

+
C

atalyst)
no

yes
yes

A
xon

Fram
ew

ork
no

yes
no

a

H
ystrix

no
no

no

JG
roups

no
no

yes

JPPF
yes

yes
yes

O
rbit

no
no

no
a

Q
uasar

no
no

no
a

am
aybe

via
underlying

JG
roups

configuration

26

Chapter 4

Implementation of a Distributed
Pipe-and-Filter Architecture

Based on the evaluation results in Chapter 3 the distributed Pipe-and-Filter architecture is
implemented by integrating the Akka framework into TeeTime.

An overview of the architecture is shown in Figure 4.1. TeeTime components are
highlighted in teal and Akka components are highlighted in yellow. The architecture is
divided into a master client and multiple worker nodes. A master is a control unit whereas
the workers execute the TeeTime pipeline.

Node ...

Worker Actor

TeeTime Execution

Receiver Actor

Sender Actor

Node ...

Worker Actor

TeeTime Execution

Receiver Actor

Sender Actor

Client

Java Application

Distributed
Configuration

Master Actor

Client

Java Application

Distributed
Configuration

Master Actor

 Node n

Worker Actor

TeeTime Execution

Receiver Actor

 Node n

Worker Actor

TeeTime Execution

Receiver Actor

Node 1

Worker Actor

TeeTime Execution

Sender Actor

Elements / Signals

Elements / Signals

Control
Messages

Control
Messages

Control
Messages

Figure 4.1. Distributed Pipe-and-Filter Architecture Overview

27

4. Implementation of a Distributed Pipe-and-Filter Architecture

We describe the communication between the workers in Section 4.1. Afterwards we ex-
plain the distributed configuration in Section 4.2. Then we elucidate the remote deployment
and execution of the worker nodes in Section 4.3. Finally, we outline the fault tolerance of
the system in Section 4.4

4.1 Implementation of Distributed Communication

When splitting up a pipeline and deploying it to several nodes, some stages need to
communicate via the network. We can implement the network communication in various
locations in TeeTime, either in

� the stages (Figure 4.2a),

� the ports (Figure 4.2b), or

� the pipes (Figure 4.2c).

We avoid the direct communication through stages because the purpose of stages in
a Pipe-and-Filter architecture is data processing and not transportation. When a stage
should be used both in a non-distributed and distributed context the implementation of
communication inside the ports would be an obstacle. It would be necessary to override
the ports in one of these cases with either the distributed or non-distributed variant. To
provide universal usage of stages the distributed communication is implemented in a pipe,
named DistributedPipe, and is consequently stage independently.

4.1.1 Distributed Pipe

The DistributedPipe is based on the AbstractSynchedPipe in TeeTime and therefore pro-
vides two queues: one to store elements and one to store TeeTime signals. Instead of a
normal TeeTime configuration, a distributed configuration is used, which is explained in
more detail in Section 4.2. The DistributedPipe is only utilized to connect stages between
different nodes. Each worker runs a separate Java VM and is in most cases separated
via the network. Therefore a pipe can not consist of a single pipe instance. Instead, there
is a sender and receiver stub which together form the pipe. Each node instantiates the
DistributedPipe, thus it is once used as the sender and once as the receiver stub. Therefore
a sender actor is integrated into the sender stub. The sender actor gets notified, when a new
element or signal is added to the queue of the pipe, pulls it from the belonging queue and
sends it to the corresponding receiver actor. This receiver actor is integrated to the receiver
stub. When an element or signal is received by the actor, it is added to the queue and is
available for the stage this pipe is connected to. The addition of the actors is performed
during runtime and is shown in Figure 4.3.

28

4.1. Implementation of Distributed Communication

Node B

Stage

Node A

Stage Network Message

(a) Communication via stages: sender stage without output port and
receiver stage without input port

Node B

Stage

Node A

Stage

Network Message

(b) Communication via ports without a pipe

Node B

Stage

Node A

Stage

Network Message

(c) Communication via a pipe

Figure 4.2. Possible scenarios of distributed communication

4.1.2 Auto-Discovery of the Receiver

During configuration, an identifier for the receiver actor is automatically specified, which
is used by the sender actor to auto-discover the receiver in the cluster. Automatic discovery
of the target actor highly improves the reusability. In a previous approach, we hard-coded
the node IP addresses and ports into the configuration, which prevented the reuse of the
configuration on a divergent node cluster with different IP addresses. The auto-discovery
is shown in Figure 4.4.

Akka provides a Publish-Subscribe mediator. The mediator is accessible in the whole
cluster via its identifier without knowing the mediator’s exact location. Each receiver
actor registers to the mediator with the specified identifier of the actor. Meanwhile, the
corresponding sender actor requests the actor path via the mediator. The sender actor
repeats the request periodically until it receives an actor path. The path depends on the

29

4. Implementation of a Distributed Pipe-and-Filter Architecture

Figure 4.3. Adding sender and receiver actors to the distributed pipe

transport protocol specified for the pipe in the configuration, which is either TCP, UDP or
SSL over TCP. Encryption over UDP is not available because SSL builds upon TCP. The actor
reference is resolved via this path. This actor reference can now be used to communicate
directly with the receiver without using the bypass over the mediator.

We perform the auto discovery before the TeeTime execution starts. In a previous
approach, the TeeTime execution started after all actors were created. At this moment
the actor reference of the receiver was not resolved yet. When the preceding TeeTime
stages processed a high amount of elements before the actor path was received the actor
receives many notification messages for new signals and elements to be pulled. Therefore
the actor tries to send the elements, which is not possible until a receiver actor reference is
resolved. The ActorPathMessage is not processed until all previous notification messages
are processed. The worst case is that the first worker processes all elements and stores
them in the queue of the DistributedPipe before the receiver reference is resolved and the

30

4.1. Implementation of Distributed Communication

Node B

Worker Actor

TeeTime Execution

Receiver Actor

Node A

Worker Actor

TeeTime Execution

Sender Actor

Request Receiver Path

Mediator

Registers to Mediator

Figure 4.4. Auto-Discovery of the receiver

actor starts to transmit the elements. Tests showed that this leads to significantly higher
execution times and the queue consumes substantial more memory.

4.1.3 Handling the TeeTime Terminating Signal

When a producer stage in TeeTime finishes, it sends a terminating signal to the following
stages and sets its status to terminated. As soon as all stages of a node are set to terminated,
the Execution instance of the node terminates. It might be the case that the sender actor
still sends elements after the Execution terminated. Consequently, it would be too early to
terminate the whole worker directly after the Execution terminated. To guarantee that all
messages are sent to the receiver, the sender actor waits until the receiver actor processed
the terminating signal, after which the receiver answers with a ShutdownWorker signal. No
further elements will be sent to the receiving actor. It might be more beneficial to free the
resources allocated by this actor and provide them to the remaining stages of the node.
Therefore the receiver actor also terminates. After all actors of a node have terminated the
whole worker terminates. The worker notifies the master about its shutdown so that the
master does not handle the shutdown as a worker failure. If all workers have terminated,
the master sets its own status to terminated.

4.1.4 Message Serialization

When an actor sends a Java object to a remote actor via the network, the object must be
serialized by the sender and deserialized by the receiver. By default, Akka uses the standard
Java serialization. The Java serialization requires every object which should be serialized to
implement the java.io.Serializable interface. Otherwise, it denies the serialization. The

31

4. Implementation of a Distributed Pipe-and-Filter Architecture

constraint to implement the Serializable interface may be problematic when objects rely
on third party libraries which do not use the interface and couldn’t be modified, because
they are only available as binary class files. This constraint would prevent the conversion
from a non-distributed to a distributed Pipe-and-Filter architecture when using objects
without the Serializable interface.

We use the Kryo serializer1 to provide serialization for all objects. The official Akka
documentation recommends the Kryo serializer and discourages the use of the standard
Java serializer. Kryo is integrated via the Chill Akka extension2 provided by Twitter
as shown in Line 2 of Listing 4.1. Instead of implementing the Serializable interface
Kryo requires a serialization binding for the root object. Therefore we implemented a
TeeTimeDataMessage and a TeeTimeSignalMessage which wraps the actual elements and
signals and are bounded to Kryo as shown in Line 5 and 6 of Listing 4.1. The wrapper
classes improve the usability so that the users do not have to define bindings for all objects
they want to send to a remote actor. Kryo may also provide performance benefits compared
to the standard Java serializer. The evaluation of the serializer performance is not in the
scope of this thesis.

1 serializers {

2 kryo = "com.twitter.chill.akka.AkkaSerializer"

3 }

4 serialization-bindings {

5 "teetime.framework.distributed.message.TeeTimeDataMessage" = kryo

6 "teetime.framework.distributed.message.TeeTimeSignalMessage" = kryo

7 ...

8 }

Listing 4.1. Akka Configuration for Serialization

4.2 Implementation of a Single Configuration for a Distribut-
ed Execution

The entire distributed Pipe-and-Filter architecture is defined in a single distributed con-
figuration. Each worker executes its own TeeTime configuration which is automatically
generated from the distributed configuration. The single distributed configuration en-
hances the transparency compared to defining each of this configurations independently.
A single configuration provides a full overview of the whole architecture and in par-
ticular the connections between the nodes. Defining a distributed configuration is very
similar to a non-distributed configuration as shown in Listing 4.2. The differences are
highlighted in different colors. Instead of extending the Configuration class, we extend

1https://github.com/EsotericSoftware/kryo
2 https://github.com/twitter/chill

32

https://github.com/EsotericSoftware/kryo
https://github.com/twitter/chill

4.2. Implementation of a Single Configuration for a Distributed Execution

the AbstractDistributedConfiguration like shown in Line 1 highlighted in red. The stage
declarations are unchanged. An important addition is createNodeForStages shown in Line
9, 10 and 11 highlighted in teal. With this method a configuration is created for a worker
node and the stages are assigned. A stage can only be added to one node, otherwise a
IllegalArgumentException is thrown. As we mentioned in Section 4.1.2 the configuration
does not specify the IP address and ports of a node to improve reusability. In case a
node configuration relates to a specific server to provide for example data locality an
optional node identifier can be used to express the relation between a configuration and a
worker node. For instance the identifier Node1 is specified in Line 9 highlighted in purple
for the configuration. This configuration is only deployable to a worker which also has
the identifier Node1. We further explain the deployment in Section 4.3. Furthermore we
extend connectPorts with an optional TransportProtocol parameter to specify the transport
protocol for this connection. For example the TCP protocol is defined in Line 14. Additional
option values are TransportProtocol.UDP and TransportProtocol.SSL for the UDP and, re-
spectively, the SSL protocol. The source and target stage must be assigned to different nodes
to allow the TransportProtocol parameter. Otherwise a IllegalStateException occurs. The
TCP protocol is chosen by default when the TransportProtocol parameter is left out for a
connection between different nodes as shown in Line 15.

1 public class DistributedConfiguration extends AbstractDistributedConfiguration {

2 public DistributedConfiguration(){

3 RandomStringGeneratorStage stage1 = new RandomStringGeneratorStage(...);

4 CPULoadGeneratorStage stage2 = new CPULoadGeneratorStage(...);

5 CPULoadGeneratorStage stage3 = new CPULoadGeneratorStage(...);

6 CPULoadGeneratorStage stage4 = new CPULoadGeneratorStage(...);

7 EndStage stage5 = new EndStage();

8
9 createNodeForStages("Node1", stage1, stage2);

10 createNodeForStages(stage3);

11 createNodeForStages(stage4, stage5);

12
13 connectPorts(stage1.getOutputPort(), stage2.getInputPort());

14 connectPorts(stage2.getOutputPort(), stage3.getInputPort(),

TransportProtocol.TCP);

15 connectPorts(stage3.getOutputPort(), stage4.getInputPort());

16 connectPorts(stage4.getOutputPort(), stage5.getInputPort());

17 }

18 }

Listing 4.2. Distributed Configuration Example

To transform a non-distributed configuration to a distributed one it is sufficient to change
the superclass from Configuration to AbstractDistributedConfiguration and assign all

33

4. Implementation of a Distributed Pipe-and-Filter Architecture

stages to nodes via createNodeForStages.
Besides the procedure of executing the configuration changes. To run a Configuration

in a non-distributed scenario an Execution is used. This Execution can either be instantiated
and executed embedded in a Java program or executed as a standalone Java application. To
execute TeeTime in a distributed setting an AbstractDistributedConfiguration is created
embedded in a Java program instead of a normal Configuration as shown in Listing 4.3.
Currently it is not yet possible to execute the AbstractDistributedConfiguration as a
standalone application.

1 AbstractDistributedConfiguration config =

AbstractDistributedConfiguration.getConfig(configName, configArgs);

2 config.executeDistributed(host, port);

3 config.isTerminated();

Listing 4.3. Execution of a Distributed Configuration

The AbstractDistributedConfiguration provides a getConfig method to get a configuration
instance by name shown in Line 1. Alternatively a distributed configuration can be instan-
tiated directly via its constructor e.g. a new ExampleDistributedConfig(). To execute the
configuration executeDistributed() is called in Line 2. The host IP and port are passed to
create the master actor system listening on this host and port. The execution is non-blocking.
To check whether the execution is terminated the method isTerminated() can be called on
the configuration as shown in Line 3. Workers process the actual TeeTime pipeline. These
workers need to be executed as standalone applications on the nodes.

4.3 Implementation of Remote Deployment and Remote Ex-
ecution

The distributed Pipe-and-Filter architecture is divided between a master and some work-
ers. The master must be embedded in a Java program. For the workers, we provide a
RemoteSystem as part of TeeTime, which needs to be executed as a standalone Java appli-
cation on the nodes (the start command of the remote system is shown in Listing B.1).
The remote system must be deployed to each node manually. Akka does not support dis-
tributed class loading. Therefore the remote system requires access to the class files of the
application on each node as well so that the worker actor can instantiate the configuration
and the stages assigned to the node. Each worker runs a worker actor who handles the
control messages of the master. The deployment is shown in Figure 4.5. The single steps are
marked with numbers in a red circle. The worker actor automatically registers the worker
node to the master either as a generic node or a specific node if a node identifier is specified
(Step 1). The master then assigns a configuration to the worker depending on the identifier
or in the case of a generic node successively a configuration of the unspecified ones (Step
2). Thus the user has the choice between exactly specifying which configuration should be

34

4.4. Implementation of Fault Tolerance

Client

Java Application

Distributed
Configuration

Node ...

Worker Actor

TeeTime Execution

Receiver Actor

Sender Actor

Node ...

Worker Actor

TeeTime Execution

Receiver Actor

Sender Actor

 Node n

Worker Actor

TeeTime Execution

Receiver Actor

 Node n

Worker Actor

TeeTime Execution

Receiver Actor

Node 1

Worker Actor

TeeTime Execution

Sender Actor

2

Master
Actor

1

2

2

1

1

3 3 3

4

4

4

5

5

5

Figure 4.5. Remote deployment and remote execution

deployed on which worker or letting TeeTime automatically deploy configurations to free
workers. The workers only receive the configuration name and retrieve the configuration
from the local distributed configuration instance. Based on the assigned configuration
sender and receiver actors are created, and a TeeTime Execution is instantiated (Step 3).
When all sender actors received their corresponding receiver actor references as described
in Section 4.1.2 the worker actor notifies the master that the node is ready (Step 4). As soon
as all configurations are assigned to a worker node and all worker acknowledged that they
are ready a signal is sent to start the execution (Step 5).

4.4 Implementation of Fault Tolerance

To demonstrate the importance of providing fault tolerance we consider an example
distributed Pipe-and-Filter architecture without any explicit fault tolerance. In the case
of a node failure preceding nodes further on try to send elements to the crashed node.
TCP as a transport protocol guarantees message delivery by requiring an acknowledgment
(explained in Section 2.5.2) for every message. If no acknowledgment is received, the

35

4. Implementation of a Distributed Pipe-and-Filter Architecture

message is resent. When TCP is used the sender actor indefinitely retries to send the
elements. Thus no elements are discarded, and the queue fills up. The maximum queue
size is unlimited thus the queue may exceed the system memory when many elements
are processed. High memory consumption could affect the availability of the entire node
and furthermore influences other services provided by the node. Succeeding nodes remain
running without receiving new elements and consequently waste system resources. Human
interaction is required to recognize the failure and stop the system manually.

To prevent the described behavior, we provide fault tolerance in our distributed Pipe-
and-Filter architecture. The applied fault tolerance patterns are described in Section 2.5.
We minimize human interaction by putting the master node partially in charge of handling
failures in the system. The master is a fault observer and observes all worker nodes by
providing a system monitor which periodically sends heartbeats to the worker. To offer
realistic thresholds for the heartbeat timeouts, Akka uses a Phi Accrual Failure Detector
[Hayashibara et al. 2004]. This failure detector uses the historical arrival times of heartbeat
responses and examines its deviation instead of predefining a fixed timeout. When the
worker is still capable of sending messages after an exception occurred, it will forward
the exception message to the master. If a worker crashes, the master recognizes that the
worker becomes temporarily unreachable. After some time it will declare the worker as
permanently unavailable and administer the termination of the entire architecture. As
mentioned, the master is not fully in charge of the whole system. Each actor implements
a SupervisorStrategy as an error handler. Exceptions are forwarded to the master, but
afterward, the node terminates itself instead of waiting for a control message from the
master. In case the master crashes all worker nodes decide for itself that the master is
permanently unavailable and terminate themselves. The different fault handling procedures
are shown and evaluated in Section 6.4. Instead of putting only the master in charge of
the fault handling it is distributed to all nodes to guarantee a graceful termination of the
whole architecture. This is done because termination is the most reasonable conclusion.

In fact, the desired fault tolerance behavior would be a recovery from the failed state
and resume the execution. The recovery could be either done by completely restart the
whole system or by rollback, roll-forward or return to a reference point. Except for the
restart, the state of the whole system must be recovered to a consistent state in these cases.
The state can be periodically saved at checkpoints to a remote storage. The periodic saving
is problematic in a Pipe-and-Filter architecture because the system has to persist the state
of each stage and the objects in the pipes all in the same moment. To guarantee that while
executing the stages concurrently the whole architecture must halt, store its state and
continue the execution. In a distributed scenario the halt must be synchronized between
the nodes before the state can be stored. The synchronization would lead to a massive
execution overhead. Thus only the complete system restart may be useful. Depending on
the error the failure may occur again caused by the same invalid data input. Therefore we
decide to shutdown the system in case of a failure and let the user choose if he wants to
restart the execution after checking the log files.

36

Chapter 5

Extending the TeeTime Domain-specific
Language

We implement the distributed communication through pipes as described in Section 4.1,
therefore the stages will be unaffected, and thus only the DSL for the configuration must
be extended. We implement the TeeTime DSL as an Eclipse plug-in based on the Xtext
framework1.

Zloch [Zloch 2016] presents a TeeTime Configuration DSL, which Tavares de Sousa
developed further. Listing 5.1 shows a simple example configuration based on the current
level of development. Line 1 and 2 defines the import statements. Afterward, Line 3
specifies the configuration constructor. In this example, no constructor parameters are
passed. Inside the constructor, Line 5 and 6 define the stage declarations and initializations.
The active statement declares the CollectorSink as active, which means it will be executed
in its own thread. Line 8 specifies the connection between the stages. The example DSL file
is located in the src folder in the package teetime.test. The generator adds the package to
the Java class depending on the package location of the DSL file.

1 import teetime.stage.InitialElementProducer

2 import teetime.stage.CollectorSink

3 Config(){

4 // stages

5 InitialElementProducer producer()

6 active CollectorSink consumer()

7 // connections

8 producer->consumer

9 }

Listing 5.1. TeeTime configuration DSL example

Listing 5.2 shows the generated Java source code. During generation, the class declaration
is added in Line 4. The stage declaration and instantiation are split as shown in Line 6 and
7, respectively, in Line 11 and 12. Line 14 specifies the connection, and Line 16 defines the
active declaration.

1https://www.eclipse.org/Xtext/

37

https://www.eclipse.org/Xtext/

5. Extending the TeeTime Domain-specific Language

1 package teetime.test;

2 import teetime.stage.CollectorSink;

3 import teetime.stage.InitialElementProducer;

4 public class Config extends Configuration {

5 // Stage instances

6 private final InitialElementProducer producer;

7 private final CollectorSink consumer;

8 // Constructor

9 public Config() {

10 // Stage initialization

11 producer = new InitialElementProducer();

12 consumer = new CollectorSink();

13 // Generated connections between all stages

14 connectPorts(producer.getDefaultOutputPort(),

consumer.getDefaultInputPort());

15 // Declarations of active stages

16 consumer.declareActive();

17 }

18 }

Listing 5.2. Generated TeeTime configuration from DSL example

As mentioned in Section 4.2 only small changes to the configuration are necessary
to transform it into a distributed configuration. The code does not specify its superclass.
Instead, the DSL differs from non-distributed and distributed configurations via the
file extension. A non-distributed configuration uses .config and a distributed one uses
.distributedconfig. Furthermore, we added the Node statement in Line 8 and 9 to assign
the stages to the nodes. In Line 8 the optional identifier Producer is specified. In the case of
multiple stages per node, the stages can be one after another separated by a blank. Also,
the transport protocol must be definable. It can be directly set on the connection arrow as
shown in Line 11.

1 import teetime.stage.InitialElementProducer

2 import teetime.stage.CollectorSink

3 Config(){

4 // stages

5 InitialElementProducer producer()

6 CollectorSink consumer()

7 // nodes

8 Node(Producer) producer

9 Node consumer

10 // connections

11 producer-TCP->consumer

38

12 }

Listing 5.3. TeeTime distributed configuration DSL example

Listing 5.4 shows the resulting source code generated by the DSL. Same as with the differ-
ences between a non-distributed and the distributed variant the corresponding DSL changes
are small. The similarities support the transformation of non-distributed configuration into
distributed ones written in the DSL.

1 import teetime.stage.CollectorSink;

2 import teetime.stage.InitialElementProducer;

3 public class Config extends AbstractDistributedConfiguration {

4 // Stage instances

5 private final InitialElementProducer producer;

6 private final CollectorSink consumer;

7 // Constructor

8 public Config() {

9 // Stage initialization

10 producer = new InitialElementProducer();

11 consumer = new CollectorSink();

12 // Node initialization

13 createNodeForStages("Producer", producer);

14 createNodeForStages(consumer);

15 // Generated connections between all stages

16 connectPorts(producer.getDefaultOutputPort(),

consumer.getDefaultInputPort(), TransportProtocol.TCP);

17 }

18 }

Listing 5.4. Generated distributed configuration

39

Chapter 6

Evaluation

In this chapter, we evaluate our implementation presented in Chapter 4 regarding feasibility
and performance. We explain our evaluation goals in Section 6.1. All experiments share
a common setup, which we describe in Section 6.2. We first present our results from the
feasibility evaluation of the remote deployment, remote execution, and communication in
Section 6.3. Afterward, we show our results from the fault handling tests in Section 6.4.
After that, we describe the performance tests results in Section 6.5. In Section 6.6 we
evaluate the extension of the DSL shown in Chapter 5.

6.1 Goals

The first purpose of the evaluation is to prove the feasibility of our approach to imple-
menting a distributed Pipe-and-Filter architecture with TeeTime. Especially we want to
evaluate the remote deployment, the remote execution, and the distributed communication.
Therefore we implement multiple distributed configurations variants for all three transport
protocols: TCP, UDP, and SSL over TCP as described in Section 6.2.2. The configurations
contain only a few stages to focus on the distributed communication. We evaluate both
socket communication as well as network communication separately by executing them
locally on the same node as well as distributed on three different nodes. Additionally, we
use the results to evaluate the communication overhead of network communication com-
pared to local socket communication and JVM internal communication of non-distributed
configurations.

The second goal is the feasibility of the fault tolerance. We generate different faults and
test whether the application detects these faults and terminates gracefully.

As our third goal, we compare the performance of distributed configurations with
their non-distributed variants to evaluate potential performance advantages. Therefore
we use bigger configurations which can utilize more threads than one single node of our
evaluation system can provide.

Finally we evaluate our DSL extension to support distributed configurations.

41

6. Evaluation

6.2 Common Experimental Setup

We perform our evaluation on the Cloud server of the Software Performance Engineering
Lab (SPEL) from the Software Engineering research group at the Kiel University. We use
three nodes of the eight Cloud nodes that the SPEL provides. Each node has the following
specifications:

CPU 2x Intel Xeon E5-2650 (2.8GHz, 8 cores)

RAM 128 GB

OS Ubuntu 14.04.5 LTS

Java Java JDK 1.8. Update 121 64 bit

The nodes are connected via a 12x Fully Switched 10GBase-T network.

6.2.1 Stages

All test configurations as described in Section 6.2.2 are based on the following three stages:

RandomStringGeneratorStage

The RandomStringGeneratorStage is a producer stage, thus it has no input port and one
output port. The stage constructor has two parameters: one for the string size and one
to specify how many strings should be generated. The string is created by repetitively
appending the char a until the string length equals the size defined by the string size
parameter. Internally, Java requires 2 bytes per char. The size of one serialized char depends
on the encoding and compression of the serializer. The stage generates a TestObject as
shown in Listing 6.1 which contains the generated string and an index counter.

1 package teetime.framework.distributed;

2 public class TestObject {

3 int i;

4 String j;

5 public TestObject(final int i, final String j) {

6 this.i = i;

7 this.j = j;

8 }

9 public int getInt() {

10 return i;

11 }

12 public String getString() {

13 return j;

14 }

42

6.2. Common Experimental Setup

15 }

Listing 6.1. TestObject class

CPULoadGeneratorStage

The CPULoadGeneratorStage has one input port and one output port. Rather than modifying
the elements it receives, this stage withholds the element, generates CPU load for a specified
amount of cycles and then forwards the element. A constructor parameter defines the
cycle count. Thus it is variable for each stage instance. To generate the CPU load we
use the consumeCPU method from the Blackhole benchmark provided by the JMH (Java
Microbenchmark Harness1) framework. One cycle equates to approximately 3 CPU clocks
depending on the processor architecture. The method ensures that the JVM cannot optimize
the execution and therefore provides consistent execution times for each element.

EndStage

The EndStage has one input port and no output port. The stage has a counter attribute,
which is incremented for every element received. When the stage receives an instance of
a TestObject element. it prints the current counter attribute value and the index counter
from the element to the console. Thus it is possible to verify whether the EndStage receives
the elements in the same order as the RandomStringGeneratorStage created them.

6.2.2 TeeTime Configurations

We use four different configurations in our evaluation. The configurations are customiz-
able. Thus we use each configuration in multiple setting variants. All configurations have
constructor parameters to define the string size in bytes and the number of strings the
RandomStringGeneratorStage produces. The distributed configurations have a further pa-
rameter to specify the transport protocol, which the DistributedPipe uses. A pipe may
connect stages running in the same thread, in different threads or on different workers.
Unsynchronized pipes connect stages running in the same thread, and synchronized pipes
connect stages running in different threads, and distributed pipes connect stages running
on different workers.

Non-Distributed Configuration

The NonDistributedConfiguration contains five stages as shown in Figure 6.1: One Random-

StringGeneratorStage, three CPULoadGeneratorStages and one EndStage. The stages are ex-
ecuted on one single node in three threads to use the same amount of threads as the
DistributedConfiguration. The cycle count of the RandomStringGeneratorStage is 3,000,000.

1http://openjdk.java.net/projects/code-tools/jmh/

43

6. Evaluation

Node A

Thread 1

Random String
Generator Stage

CPU Load
Generator Stage

Thread 2

CPU Load
Generator Stage

Unsynced
Pipe

Thread 3

CPU Load
Generator Stage

End Stage

Unsynced
Pipe

Synced Pipe Synced Pipe

Figure 6.1. Non-distributed configuration with a cycle count of 3,000,000

Node B Node CNode A

Thread 1

Random String
Generator Stage

CPU Load
Generator Stage

Thread 2

CPU Load
Generator Stage

Unsynced
Pipe

Thread 3

CPU Load
Generator Stage

End Stage

Unsynced
Pipe

Distributed
Pipe

with
TCP/UDP/

SSL

Distributed
Pipe

with
TCP/UDP/

SSL

Figure 6.2. Distributed configuration with a cycle count of 3,000,000

The cycle count results in approximately three milliseconds of full load on one core with
2.8 GHz per element. The purpose of the configuration is the comparison with the dis-
tributed variant DistributedConfiguration to evaluate the communication overhead of the
socket communication in Section 6.5.

Distributed Configuration

The DistributedConfiguration is very similar to the NonDistributedConfiguration and
contains the same stages and thread assignment as shown in Figure 6.2. The distributed
configuration requires three worker nodes for the execution instead of only one node such
as the NonDistributedConfiguration. Each worker allocates one thread. This configuration
is used to evaluate the remote deployment and remote execution of the configuration, as
well as evaluating the distributed communication between the sender and receiver actors
in Section 6.3. Furthermore, we use this configuration to evaluate the fault tolerance in
Section 6.4 and the communication overhead in Section 6.5.

Big Non-Distributed Configuration

The BigNonDistributedConfiguration contains 48 stages, namely one RandomStringGenerator-

Stage, 46 CPULoadGeneratorStages and one EndStage. These stages are connected with syn-
chronized pipes as shown in Figure 6.3. Each thread executes exactly one stage. The cycle
count of the RandomStringGeneratorStage is 30,000,000, which results in approximately 30
milliseconds of full load on one core with 2.8 GHz per element.

44

6.2. Common Experimental Setup

Big Distributed Configuration

The BigDistributedConfiguration is the distributed equivalent to the BigNonDistributed-

Configuration. The stages are connected locally with synchronized pipes and between
different nodes with distributed pipes as shown in Figure 6.4. The configuration requires
three worker nodes for the execution. Each worker allocates 16 stages. We evaluate potential
performance advantages with this configuration in Section 6.5.

Node A

Thread 48Thread 2Thread 1

Random String
Generator Stage

CPU Load
Generator Stage

Synced
Pipe

End Stage

Synced
Pipe

Thread 47

CPU Load
Generator Stage

Synced
Pipe

Synced
Pipe

...

Figure 6.3. Big Non-Distributed configuration with a cycle count of 30,000,000

Node A

Thread 2Thread 1

Random String
Generator Stage

CPU Load
Generator Stage

Synced
Pipe

Synced
Pipe

Thread 16

CPU Load
Generator Stage

Synced
Pipe

...

Node C

Thread 48Thread 33

CPU Load
Generator Stage

End Stage

Synced
Pipe

Thread 47

CPU Load
Generator Stage

Synced
Pipe

Synced
Pipe

...

Node B

Thread 32

CPU Load
Generator Stage

Synced
Pipe

Thread 17

CPU Load
Generator Stage

Synced
Pipe

...

Distributed
Pipe
with

TCP/UDP/
SSL

Distributed
Pipe
with

TCP/UDP/
SSL

Figure 6.4. Big Distributed configuration with a cycle count of 30,000,000

45

6. Evaluation

6.2.3 Test Applications

We use a Java application named Test to execute the DistributedConfiguration and the
BigDistributedConfiguration, as shown in Listing 6.2. To start the application, we need to
parse four arguments: the name of the configuration to instantiate, a list of configuration
constructor arguments, the host and the port of the master system. We extract the arguments
in Line 9 to Line 12. Then we resolve the configuration class by name and instantiate the
configuration with the constructor arguments in Line 13. Afterward, we execute the
configuration in Line 14. Every second, the application checks whether the configuration is
terminated. When the configuration terminates, the application terminates too.

1 package teetime.distributed.test;

2 import teetime.framework.distributed.AbstractDistributedConfiguration;

3 public class Test {

4 public static void main(String[] args) {

5 if (args.length != 4) {

6 System.out.println("Missing configuration arguments");

7 return;

8 }

9 String configName = args[0];

10 String[] configArgs = args[1].split(",");

11 String host = args[2];

12 int port = Integer.parseInt(args[3]);

13 AbstractDistributedConfiguration config =

AbstractDistributedConfiguration.getConfig(configName, configArgs);

14 config.executeDistributed(host, port);

15 while(!config.isTerminated()){

16 System.out.println("Still executing...");

17 try {

18 Thread.sleep(1000);

19 } catch (InterruptedException e) {

20 e.printStackTrace();

21 }

22 }

23 }

24 }

Listing 6.2. Test application

To execute the non-distributed configurations NonDistributedConfiguration and BigNon-

DistributedConfiguration we use the NonDistributedTest application shown in Listing 6.3.
Similar to the Test application we parse configuration arguments in Line 13 to 15, then we
instantiate the configuration in Line 19 or 23, depending on which of the two configurations
should be used. Afterward, we create an Execution in Line 26 and execute it in Line 27.

46

6.3. Feasibility of Remote Deployment, Remote Execution and Distributed Communication

1 package teetime.distributed.test;

2 import teetime.distributed.test.configuration.BigNonDistributedConfiguration;

3 import teetime.distributed.test.configuration.NonDistributedConfiguration;

4 import teetime.framework.Configuration;

5 import teetime.framework.Execution;

6
7 public class NonDistributedTest {

8 public static void main(String[] args) {

9 if (args.length != 3) {

10 System.out.println("Missing configuration arguments");

11 return;

12 }

13 String configName = args[0];

14 int size = Integer.parseInt(args[1]);

15 int iterations = Integer.parseInt(args[2]);

16 Configuration config;

17 switch(configName){

18 case "normal":

19 config = new NonDistributedConfiguration(size, iterations);

20 break;

21 case "big":

22 default:

23 config = new BigNonDistributedConfiguration(size, iterations);

24 break;

25 }

26 Execution<Configuration> execution = new Execution<Configuration>(config);

27 execution.executeBlocking();

28 }

29 }

Listing 6.3. Non-distributed test application

With this two applications and the RemoteSystem for the worker provided by TeeTime we
execute all tests described in Section 6.3, Section 6.4 and Section 6.5.

6.3 Feasibility of Remote Deployment, Remote Execution
and Distributed Communication

In this section, we evaluate the feasibility of the remote deployment of the configurations
from the master to the worker nodes, the remote execution of the configuration on each
worker and the distributed communication between the workers.

47

6. Evaluation

Table 6.1. Configuration Variants

Test # Protocol String Size String Count Communication Type

1 TCP 1 5000 Local

2 TCP 1048576 5000 Local

3 TCP 1 5000 Distributed

4 TCP 1048576 5000 Distributed

5 UDP 1 5000 Local

6 UDP 1048576 5000 Local

7 UDP 1 5000 Distributed

8 UDP 1048576 5000 Distributed

9 SSL over TCP 1 5000 Local

10 SSL over TCP 1048576 5000 Local

11 SSL over TCP 1 5000 Distributed

12 SSL over TCP 1048576 5000 Distributed

6.3.1 Methodology

We use the DistributedConfiguration described in Section 6.2.2 with the setting variants
shown in Table 6.1. We test TCP, UDP and SSL in a local and a distributed setting with
5000 either small (a single char) or large (a string with 1,048,576 chars) objects. Each test
is executed 20 times to test whether race conditions occur and to reuse the results in
Section 6.5 for the communication overhead evaluation. In the local scenarios, we execute
the master and all workers on the cloud node 6 (nc06). In the distributed scenarios we
execute the master and Node A on cloud node 6 (nc06), Node B on cloud node 7 (nc07)
and Node C on cloud node 8 (nc08). The worker logs relevant execution steps, e.g. the
startup and termination of the worker system, the creation and termination of workers,
the control messages between the master and workers, and the elements and signals sent
between the workers. We use the log files to reconstruct the temporal sequence. Thus we
can evaluate whether all steps executed correctly and in the right order and explain the
output of the log reconstruction in Section 6.3.2.

6.3.2 Results & Discussion

An example run of the first test with the settings as listed in Section 6.2.2 is shown in
Table 6.2. Initially, we create the actor systems. We create a master actor on the master
node and a worker actor on each worker node. The order of the actor creation is irrelevant

48

6.3. Feasibility of Remote Deployment, Remote Execution and Distributed Communication

because the worker actors repeat trying to register to the master until they succeed. In this
example the actor creation sequence started with the master actor, followed by the worker
actor on worker 1, worker 3 and finally worker 2. Each worker registers to the master
and receives a deploy message. Based on the message the worker fetch their configuration
and instantiate the required sender and receiver actors. In this case worker 1 needed
five times to resolve the corresponding receiver for its sender actor until the resolution
is successful. The first four times between Line 11 and Line 16 are unsuccessful because
worker 2 registers its receiver not until Line 29. As soon as all workers resolved all receivers,
they notify the master that the senders are ready. After the last worker notifies the master
in Line 38 that all senders are ready, the master sends a start signal to the worker to initiate
the execution. All workers begin the execution of their configuration in Line 42. Thus the
remote deployment and the remote execution works.

Furthermore, the distributed communication performs correctly, as we will show in
the following. All signals and elements are transmitted from worker 1 to worker 2, which
finally send it to worker 3. When worker 2 receives the TerminatingSignal in Line 58 it
sends a poison pill to itself and notifies the corresponding sender to also shutdown. A
poison pill is a shutdown message provided by Akka. The message inbox of the actor uses
the FIFO principle. Thus the shutdown message is not processed until the actor processes
all messages in the inbox. Hence the poison pill ensures a graceful shutdown. The sender
also sends a poison pill to itself and starts the termination of the worker in Line 61. The
worker waits for the termination of the Execution in Line 62 and then sends a poison
pill to itself. The sender actor is the last running component in the pipeline on worker
1. Thus the execution of the node configuration was already terminated. If the pipeline
contains branches, some stages may execute further after all sender actors terminated.
Hence it is necessary to check if the execution is still running before terminating the worker
completely. After the worker terminates, the whole remote system shuts down. Whenever
the receiver actor on worker 3 receives the TerminatingSignal, it terminates itself. Since
there are no sender actors on worker 3, no more receiver and sender actors are running.
Thus the worker starts to terminate itself in Line 68. The stages following the receiver actor
still run. Therefore the execution terminates not until Line 74. Finally, the worker sends a
poison pill to itself, and the remote system shuts down.

Table 6.2. Example run of Test 1: TCP local with 5000 strings with a length of 1 char

LN Timestamp Master Worker 1 Worker 2 Worker 3

1 15:48:52,317 Worker sys. created

2 15:48:52,872 Worker sys. created

3 15:48:53,327 Worker sys. created

4 15:48:53,844 Master sys. created

5 15:48:53,848 Master actor created

49

6. Evaluation

6 15:49:02,951 Worker Actor created

7 15:49:03,417 Registered Node1

8 15:49:03,421 Deployed Node1

9 15:49:03,435 Deploy msg received

10 15:49:03,435 Fetched Node1 con-
fig

11 15:49:03,441 Receiver requested

12 15:49:03,458 Execution created

13 15:49:04,476 Receiver requested

14 15:49:05,496 Receiver requested

15 15:49:06,364 Created Worker Ac-
tor

16 15:49:06,516 Receiver requested

17 15:49:06,585 RegisteredNode3

18 15:49:06,585 Deployed Node3

19 15:49:06,599 Deploy msg received

20 15:49:06,600 Fetched Node3 con-
fig

21 15:49:06,604 Registered receiver

22 15:49:06,616 Execution created

23 15:49:06,624 Waiting for more
worker...

24 15:49:06,878 Created Worker Ac-
tor

25 15:49:07,102 Registered Node2

26 15:49:07,103 Deployed Node2

27 15:49:07,120 Deploy msg received

28 15:49:07,121 Fetched Node2 con-
fig

29 15:49:07,129 Receiver requested

30 15:49:07,129 Registered receiver

31 15:49:07,142 Receiver requested by
Node2

32 15:49:07,143 Execution created

33 15:49:07,163 Receiver ActorRef re-
solved

34 15:49:07,164 All sender ready

35 15:49:07,536 Receiver requested

50

6.3. Feasibility of Remote Deployment, Remote Execution and Distributed Communication

36 15:49:07,547 Receiver requested by
Node1

37 15:49:07,568 Receiver ActorRef re-
solved

38 15:49:07,568 All sender ready

39 15:49:07,571 Start signal to Node1

40 15:49:07,572 Start signal to Node2

41 15:49:07,572 Start signal to Node3

42 15:49:07,574 Execution started Execution started Execution started

43 15:49:07,574 Signal sent

44 15:49:07,590 Element sent

45 15:49:07,595 Received start signal

46 15:49:07,596 Signal sent

47 15:49:07,602 Element sent

48 15:49:07,603 Received element

49 15:49:07,605 Received element

50 15:49:07,628 Element sent Received start signal

51 15:49:07,632 Received element

52 15:49:07,640 Element sent

53 15:49:07,642 Received element

54

55 15:49:51,739 Element sent

56 15:49:51,739 Received element

57 15:49:51,740 Signal sent Element sent

58 15:49:51,743 Received Terminat-
ingSignal

59 15:49:51,744 Poison pill (Receiver)

60 15:49:51,747 Poison pill (Sender)

61 15:49:51,748 Terminate worker

62 15:49:51,749 Execution terminated Element sent

63 15:49:51,749 Poison pill (Worker) Received element

64 15:49:51,749 Signal sent

65 15:49:51,750 Worker Node1 ack
shutdown

66 15:49:51,752 Received Terminat-
ingSignal

67 15:49:51,753 Poison pill (Receiver)

51

6. Evaluation

68 15:49:51,754 Terminate worker

69 15:49:51,756 Poison pill (Sender)

70 15:49:51,757 Terminate worker

71 15:49:51,757 Execution terminated

72 15:49:51,757 Poison pill (Worker)

73 15:49:51,758 Worker Node2 ack
shutdown

74 15:49:53,488 Execution terminated

75 15:49:53,488 Poison pill (Worker)

76 15:49:53,489 Worker Node3 ack
shutdown

77 15:49:53,490 Poison pill

78 15:49:56,874 Shutdown system

79 15:49:56,876 Shutdown system

80 15:49:56,879 Shutdown system

81 15:49:56,881 Shutdown system

This example run shows the successful remote deployment and remote execution, a
working distributed communication between the worker and a clean shutdown of the
system after the execution completes. The distributed communication only starts when
the remote deployment and remote execution succeeded. Test 2 to 12 from Section 6.2.2
only differ from Test 1 in the distributed communication and string size. Thus we omit
the startup procedure, which Table 6.2 already presents and concentrate on the results of
the distributed communication for these tests. In Table 6.3 we show that the distributed
communication also works for large objects. All distributed communication experiments
succeeded. We show the remaining results for experiment 3 to 12 in the appendix in
Table A.1 to Table A.10 since they differ only in the timestamps and in a few cases in the
temporal order the receiver actor receives the starting signal and the sender actor sends the
first element.

6.3.3 Threats to Validity

We use strings to test the communication. These strings are embedded into a TestObject

to use a custom class which does not implement the Serializable interface. A TestObject

contains the string and an integer as an index counter. This object consists only of two
primitive attributes. More complex objects like for example an object with an object
reference cycle to itself (an instance A of an object O1, which contains an instance of object
O2 as an attribute, which has instance A of object O1 as an attribute) may be problematic.
It may be possible that Kryo can not serialize these objects. In this case, the distributed
communication would not work.

52

6.4. Feasibility of Fault Tolerance

The distributed communication is tested for socket communication on the same node
and between nodes in the same network. We did not evaluate the distributed communi-
cation across different local networks or the Internet because all nodes of the Software
Performance Engineering Lab are on the same network and are not accessible through the
Internet.

6.4 Feasibility of Fault Tolerance

In general, faults may occur either in the Java application or its environment. Inside the
application, the fault source is either in Akka or TeeTime. Faults which occur in the custom
code of the user are also covered by TeeTime because the code is executed inside the
TeeTime stages, thus are caught by TeeTime. Faults in the environment are crashes of
the JVM, or the whole Node, or the network. A network failure would lead to a network
partition. We evaluate these types of faults in this section. For the Akka and TeeTime faults,
we throw exceptions during the execution. To evaluate the death of a master or a worker
we kill the corresponding processes. Whether the node becomes unreachable due to a crash
or a network partition cannot be determined, such that the fault handling mechanism is
the same. In the case of a network partition, the nodes in each partition must handle the
fault independently because the master can only be part of one partition. Thus the other
partitions can not be controlled by the master anymore.

6.4.1 Methodology

We again use the DistributedConfiguration described in Section 6.2.2. The actors always
send the control messages over TCP. Thus the different transport protocol variants do not
have to be tested separately.

Table 6.3. Distributed communication of Test 2: TCP local, 5000 strings with a length of 1,048,576

Timestamp Worker 1 Worker 2 Worker 3

Startup

16:10:55,461 Signal sent

16:10:55,481 Element sent

16:10:55,482 Received signal

16:10:55,483 Signal sent

16:10:55,488 Received element

16:10:55,502 Received signal

16:10:55,504 Element sent

16:10:55,508 Received element

...

53

6. Evaluation

To examine the fault handling of TeeTime and Akka Exceptions, we configure the
DistributedConfiguration with 1000 strings with a size of 1 char. For the master and
worker death we use the same configuration but with 2000 strings to have enough time to
interrupt the execution manually. We execute each of the following tests once. We run the
master and worker 1 on cloud node 6 (nc06), worker 2 on cloud node 7 (nc07) and worker
3 on cloud node 8 (nc08).

TeeTime Exception

First, we test the handling of TeeTime exceptions. Therefore we enable the TeeTime excep-
tion test in the configuration. A TeeTime exception is thrown inside the RandomStringGenerator-

Stage after 500 strings were processed.

Akka Exception

After the TeeTime exception, we test the handling of Akka exceptions. Therefore we
enable the Akka exception test in the configuration. We replace the generated string in the
RandomStringGeneratorStage after 500 strings were processed with the string fail. When the
first sender actor recognize the fail string, it throws an IllegalStateException.

Master / Worker death

We test the handling of master and worker death manually. We execute the master and
each of the three workers with a shell script in the terminal, which waits for any key to be
pressed after executing the Java applications. If a key is pressed, the script kills the Java
application and saves the timestamp of the kill command to a log file. Thus we can test
both master and worker death independently by killing the corresponding Java application
in the terminal.

Network partition

We do not test the network partition separately because the master and worker death
handling tests already cover this scenario. A master death is similar to a network partition
where the workers are separated from the master because the workers cannot communicate
with the master in both cases and won’t receive any control messages. A worker death
is similar to a network partition where a worker is separated from the master and the
other workers because the master and the remaining workers cannot communicate with
the worker anymore. Thus it makes no difference for the fault detection if we stop the
network between the nodes or killing the application on the nodes.

54

6.4. Feasibility of Fault Tolerance

6.4.2 Results & Discussion

The TeeTime exception test is shown in Table 6.4. After 500 strings were processed, the
IllegalStateException is thrown on worker 1 in the RandomStringGeneratorStage. The
supervisor of the worker actor catches the exception in Line 1. The worker notifies the
master about the occurred error. After that, it starts its shutdown procedure. The master
receives the error message in Line 2. Meanwhile, the master logs the error message and
sends shutdown signals to the remaining workers. Each worker acknowledges the start
of its shutdown procedure and aborts its TeeTime execution. Shortly after the TeeTime
execution aborts, the workers shutdown their actor systems and terminate. After all workers
acknowledged the shutdown the master also terminates.

Table 6.4. TeeTime exception test run

LN Timestamp Master Worker 1 Worker 2 Worker 3

Distributed configuration running normally...

1 17:20:43,323 TeeTime crashed

2 17:20:43,343 Error on Worker

3 17:20:43,348 Send shutdown sig-
nal to worker 3

4 17:20:43,348 Send shutdown sig-
nal to worker 2

5 17:20:43,354 Worker 3 acknowl-
edged shutdown

6 17:20:43,355 Worker 2 acknowl-
edged shutdown

7 17:20:43,951 Execution aborted

8 17:20:44,362 Execution aborted

9 17:20:45,225 Shutdown Actor sys-
tem

10 17:20:45,230 Shutdown Actor sys-
tem

11 17:20:45,822 Shutdown Actor sys-
tem

12 17:20:46,234 Shutdown Actor sys-
tem

The Akka exception test is shown in Table 6.5. After 500 strings were processed the
RandomStringGeneratorStage generates the fail string which the sender actor recognize,
thus it throws an IllegalStateException. The supervisor of the worker actor catches the
exception in Line 1. The worker aborts the TeeTime execution in Line 2 and notifies the
master about the occurred error. The master receives the error message in Line 3. Just

55

6. Evaluation

like the TeeTime exception handling, the master sends shutdown signals to the remaining
workers, waits for the shutdown acknowledgments and terminates itself. After receiving
the shutdown signals, the workers abort the execution and terminate.

Table 6.5. Akka exception test run

LN Timestamp Master Worker 1 Worker 2 Worker 3

Distributed configuration running normally...

1 17:20:07,434 Actor crashed

2 17:20:07,441 Execution aborted

3 17:20:07,464 Error on Worker

4 17:20:07,471 Send shutdown sig-
nal to worker 3

5 17:20:07,471 Send shutdown sig-
nal to worker 2

6 17:20:07,482 Worker 2 acknowl-
edged shutdown

7 17:20:07,505 Worker 3 acknowl-
edged shutdown

8 17:20:08,076 Execution aborted

9 17:20:08,489 Execution aborted

10 17:20:09,587 Shutdown Actor sys-
tem

11 17:20:09,593 Shutdown Actor sys-
tem

12 17:20:10,186 Shutdown Actor sys-
tem

13 17:20:10,601 Shutdown Actor sys-
tem

We show the master death handling test in Table 6.6. We kill the master in Line 1. In
Line 2 worker 1 decides that the master node is permanently not available anymore, aborts
its TeeTime execution, and shuts down. In Line 5 also worker 3 decides that the master
node is not available anymore, also aborts its execution, and shuts down. The sender actor
of worker 2 is the supervisor of the receiver actor of worker 3. Due to the termination of
worker 3, the sender actor is notified and also starts its shutdown procedure. Note that
even without this notification, worker 2 would recognize that the master is not available
anymore, but this would require more time until its termination. The supervision of the
receiver helps to avoid sending messages to a remote actor who is no longer available.

Table 6.7 shows the worker death handling test. We kill Worker 1 in Line 1. The master

56

6.4. Feasibility of Fault Tolerance

decides approximately 16 seconds later that the worker is unreachable in Line 2. In the case
of a worker death, the master handles the error completely. It sends shutdown signals to
worker 2 and 3 and shuts down after receiving acknowledgments from both workers. The
workers abort the TeeTime execution and also terminate.

Table 6.6. Master death test run

LN Timestamp Master Worker 1 Worker 2 Worker 3

Distributed configuration running normally...

1 17:29:12,000 Master crashed

2 17:29:29,083 Master terminated

3 17:29:29,090 Execution aborted

4 17:29:30,090 Shutdown Actor sys-
tem

5 17:29:30,119 Master terminated

6 17:29:30,125 Execution aborted

7 17:29:30,223 Monitored worker 3
terminated

8 17:29:30,231 Execution aborted

9 17:29:31,105 Shutdown Actor sys-
tem

10 17:29:31,195 Shutdown Actor sys-
tem

Table 6.7. Worker death test run

LN Timestamp Master Worker 1 Worker 2 Worker 3

Distributed configuration running normally...

1 17:26:28,355 Node1 crashed

2 17:26:44,626 Worker 1 terminated unexpected

3 17:26:44,627 Send shutdown signal to worker 3

4 17:26:44,627 Send shutdown signal to worker 2

5 17:26:44,633 Worker 3 acknowledged shutdown

6 17:26:44,635 Worker 2 acknowledged shutdown

7 17:26:45,612 Shutdown Actor system

8 17:26:45,641 Execution
aborted

57

6. Evaluation

9 17:26:46,232 Execution
aborted

10 17:26:46,624 Shutdown
Actor system

11 17:26:47,214 Shutdown
Actor system

As shown in Table 6.4, Table 6.5, Table 6.6 and Table 6.7 the fault handling works as
desired: The application handles all faults correctly. In the case of Akka and TeeTime,
the worker can notify the master about the fault. When a node becomes unavailable the
system first waits for the node to become available again, before it decides that the node is
permanently unavailable. Thus the fault handling starts quicker for application internal
errors than that for unreachable nodes.

6.4.3 Threats to Validity

The unavailability of a node can be temporary, prohibiting an exact identification of a
node crash. Thus we can only use a timeout to determine if a node is unreachable. There
is a chance that a node is falsely marked as permanently unreachable and the system
terminates although the node is still available. The auto-downing after a given period is
maybe too rigid to avoid false fault recognition in case of network partitions. Moreover,
the fault handling in case of a network partition was not tested separately based on the
assumption that the node death handling is equivalent.

We only tested the fault tolerance after the cluster was built up. The start-up phase has
not been evaluated yet. Furthermore, no Akka exception handling has been tested inside
the master actor.

6.5 Performance

In this section, we evaluate the performance overhead of the distributed communication
and the potential reduction of the execution time.

6.5.1 Methodology

We use the DistributedConfiguration to test the communication overhead with the same
setting variants as in Section 6.3, reusing the logs generated by the previous test runs. For
comparison, we use the NonDistributedConfiguration executed 20 times with 5000 strings,
once with a size of 1 char and once with a size of 1,048,576 chars.

To evaluate potential performance advantages, we use the BigDistributedConfiguration

as described in Section 6.2.2. We execute the configuration with the setting variants
shown in Table 6.8, which are identical to the settings described in Table 6.1 used for the

58

6.5. Performance

Table 6.8. Configuration Variants

Test # Protocol String Size String Count Communication Type

1 TCP 1 5000 Local

2 TCP 1048576 5000 Local

3 TCP 1 5000 Distributed

4 TCP 1048576 5000 Distributed

5 UDP 1 5000 Local

6 UDP 1048576 5000 Local

7 UDP 1 5000 Distributed

8 UDP 1048576 5000 Distributed

9 SSL over TCP 1 5000 Local

10 SSL over TCP 1048576 5000 Local

11 SSL over TCP 1 5000 Distributed

12 SSL over TCP 1048576 5000 Distributed

DistributedConfiguration. Each variant is executed 20 times. For comparison, we use the
BigNonDistributedConfiguration executed 20 times with 5000 strings, once with a size of 1
char and once with a size of 1,048,576 chars.

We calculate the average execution time of each variant and the corresponding confi-
dence interval of 95% for both tests.

6.5.2 Results & Discussion

The average execution times for the DistributedConfiguration with small objects are shown
in Table 6.9 and visualized in Figure 6.5. The execution time for the non-distributed TeeTime
configuration is 00:39,958, determined with the NonDistributedConfiguration. The overhead
for local socket communication over TCP, UDP or SSL is approximately 4.5 seconds in this
scenario. The confidence interval is between �00:00,205 and �00:00,715, thus the execution
times over the socket are significantly higher, but there is no clear difference between TCP,
UDP or SSL. In the case of the distributed communication TCP, UDP and SSL the execution
times are about 3 seconds longer than the local socket communication and more than 7
seconds longer than the non-distributed variant. Considering the confidence interval TCP,
UDP, and SSL do not differ significantly.

The average execution times for the DistributedConfiguration with small objects are
shown in Table 6.10 and visualized in Figure 6.6. The execution time for the non-distributed
TeeTime configuration is 00:40,313 �00:00,306, hence the difference to the small objects

59

6. Evaluation

Table 6.9. Average execution times for the DistributedConfiguration with small objects

Protocol Local CI 95% Distributed CI 95%

Non-distributed 00:39,958 00:00,205

TCP 00:44,543 00:00,595 00:46,582 00:00,790

UDP 00:44,561 00:00,715 00:47,333 00:00,835

SSL over TCP 00:44,156 00:00,653 00:48,290 00:00,927

non-distributed tcp udp ssl

local 00:39,958 00:44,543 00:44,561 00:44,156

distributed 00:46,582 00:47,333 00:48,290

00:00,000

00:08,640

00:17,280

00:25,920

00:34,560

00:43,200

00:51,840

local distributed

Figure 6.5. DistributedConfiguration with small objects

with 00:39,958 �00:00,205 is not significant. The overhead of local communication is ap-
proximately 4 seconds with a confidence interval greater than �00:00,606 thus with no
clear difference to the small objects overhead. The overhead of the distributed communi-
cation is on average 7.5 seconds which does not significantly differ from the distributed
communication with small objects.

Thus the message size has no clear impact on the execution time for this pipeline
configuration. The influence of a slower network than the 1Gbit/s local network connection
remains to be evaluated. A connection between different networks, especially over the Inter-
net, may increase the impact of the message size. Though the distributed communication
clearly decreases the execution times compared to the non-distributed communication in
the scenario tested here.

To evaluate the performance advantages, we use the BigDistributedConfiguration. The
results of the average execution times for small objects are shown in Table 6.11 and

60

6.5. Performance

Table 6.10. Average execution times for the DistributedConfiguration with large objects

Protocol Local CI 95% Distributed CI 95%

Non-distributed 00:40,313 00:00,306

TCP 00:44,190 00:00,724 00:47,082 00:00,742

UDP 00:44,523 00:00,606 00:47,677 00:00,590

SSL over TCP 00:44,542 00:00,716 00:48,114 00:00,840

non-distributed tcp udp ssl

local 00:40,313 00:44,190 00:44,523 00:44,542

distributed 00:47,082 00:47,677 00:48,114

00:00,000

00:08,640

00:17,280

00:25,920

00:34,560

00:43,200

00:51,840

local distributed

Figure 6.6. DistributedConfiguration with large objects

visualized in Figure 6.7 and the results for large objects are shown in Table 6.12 and
visualized in Figure 6.8.

Equivalent to the DistributedConfiguration, the message size has no impact on the
execution times. Thus the results exhibit no significant difference between small and large
objects. Furthermore, the local communication with TCP, UDP, and SSL do not clearly differ
from the non-distributed communication. The higher CPU load per stage decreases the
impact of the distributed communication because the calculation on an element takes longer
than the network transmission of the element to the next stage. The CPU on the cloud node
provides 2x 8 cores and is thus able to execute the 16 stages per worker each in its own
thread when we execute the configuration in a distributed setting on different nodes. In the
local setting, 48 stages have to share the 16 threads. As a result, the parallelism increases in
the distributed variant, so we gain a reduction of the execution time by approximately 40%.
Additionally, the confidence interval is clearly smaller in the distributed setting, indicating

61

6. Evaluation

non-distributed tcp udp ssl

local 02:39,700 02:40,971 02:40,209 02:40,341

distributed 01:35,831 01:35,896 01:36,282

00:00,000

00:17,280

00:34,560

00:51,840

01:09,120

01:26,400

01:43,680

02:00,960

02:18,240

02:35,520

02:52,800

local distributed

Figure 6.7. BigDistributedConfiguration with small objects

Table 6.11. Average execution times for the BigDistributedConfiguration with small objects

Local CI 95% Distributed CI 95%

02:39,700 00:00,483

02:40,971 00:01,182 01:35,831 00:00,221

02:40,209 00:01,165 01:35,896 00:00,168

02:40,341 00:00,898 01:36,282 00:00,248

that the execution time is more stable. The reduced impact of the thread scheduling due
to fewer threads per worker node could be a reason for this behavior. The performance
advantage is limited with this linear pipeline configuration. An element has to be fully
processed by the first worker before the second worker can start to process this element,
which reduces the level of parallelism.

6.5.3 Threats to Validity

We use the logs to calculate the execution times. In the local setting, all worker run on the
same node and thus use the same system clock. In the case of the distributed setting, the
workers run on different nodes with different system times. We try to eliminate the time
differences by subtracting approximately 10-11 seconds for cloud node 7 and 6-7 seconds
for cloud node 8. We gain the time differences by executing SSH scripts on each worker to

62

6.5. Performance

non-distributed tcp udp ssl

local 02:39,480 02:39,462 02:40,609 02:40,752

distributed 01:35,943 01:35,948 01:36,307

00:00,000

00:17,280

00:34,560

00:51,840

01:09,120

01:26,400

01:43,680

02:00,960

02:18,240

02:35,520

02:52,800

local distributed

Figure 6.8. BigDistributedConfiguration with large objects

Table 6.12. Average execution times for the BigDistributedConfiguration with large objects

Local CI 95% Distributed CI 95%

02:39,480 00:00,463

02:39,462 00:00,959 01:35,943 00:00,233

02:40,609 00:01,386 01:35,948 00:00,250

02:40,752 00:00,803 01:36,307 00:00,183

get the system time of the other nodes multiple times. Due to the SSH connection build up,
the results vary by about one second.

The performance advantage of 40% applies to our specific configuration scenario. Differ-
ent configurations have a different level of parallelization capability. Thus the advantage can
result in a higher or lower reduction in the execution time. Furthermore, the environment
in which the configuration is executed, especially the speed of the network and the CPU
performance of the nodes, have a further impact on the application performance.

63

6. Evaluation

6.6 Support of Distributed Configurations in the TeeTime
DSL

6.6.1 Methodology

We execute the Distributed DSL project by running it as an Eclipse Application from inside
Eclipse. In the editor, we create a file named Example.distributedconfig, which contains
the code shown in Listing 5.3, and save it.

6.6.2 Results & Discussion

The DSL plug-in automatically generates the Java source on files with the .distributedconfig

file type on save. The output matches the code shown in Listing 5.4, thus the DSL works as
desired.

6.6.3 Threads to Validity

We evaluated the correctness of the DSL only for this single example. We did this by
comparing the desired output with the generated output. Therefore we assume that the
DSL provided by Zloch and de Sousa works correctly thus only the changes mentioned in
Chapter 5 were required. It may be possible that configurations exist, which the DSL can
not describe with the current grammar.

64

Chapter 7

Related Work

In this chapter, we compare our implementation approach of a distributed Pipe-and-Filter
architecture with related work.

We used the actor framework Akka to implement our distributed pipe in TeeTime. Akka
provides actors who can communicate both with local and remote actors transparently.
As a result, it would also be possible to build an actor based distributed Pipe-and-Filter
architecture completely with Akka. TeeTime stages can have multiple input and output
ports, hence can contain branches and loops. In contrast, actors only have one input port:
their mailboxes. An actor mailbox is untyped. Thus it can receive various messages from dif-
ferent actors. Actors can also send messages to each actor in the same cluster. Consequently,
an pipeline based on actors can have branches and loops. In contrast to the typed TeeTime
ports, an actor needs to check and type cast each message. Therefore message types which
cannot be handled by an actor are only detected at runtime [Wulf et al. 2017]. Faulty
connections are directly discoverable in TeeTime during the configuration, since pipes can
only connect ports of the same type. The type safety applies as well to the distributed pipe
based on the sender and receiver actors as described in Section 4.1.1, because the distributed
pipe guarantees that only ports of the same type are connected. Furthermore the objects
are wrapped into either a TeeTimeDataMessage or TeeTimeSignalMessage, which the receiver
actor has type checks for. Additionally, TeeTime provides with the configuration a central
component to build the architecture and as a result an overview of the entire architecture.
We are not aware of a central component like the TeeTime configuration provided by Akka
to connect actors to build the architecture.

FastFlow is a parallel processing framework for C++ which support the Pipe-and-Filter
architectural style. The main project does not support distributed pipelines. Aldinucci
et al. proposed a FastFlow extension to support distributed systems [Aldinucci et al.
2012]. Equivalent to TeeTime FastFlow uses message communication between the nodes
instead of shared memory or remote procedure calls. FastFlow only supports one input
and one output port per stage. As a further restriction, one stage can either have one
distributed input port or one distributed output port, but not both at the same time.
Thus FastFlow does not support nodes with only one stage. Furthermore, the support
for branches is very restricted by always distributing each element to each subsequent stage.

65

7. Related Work

Apache Spark Streaming as part of Apache Spark (Section 3.2.4) and Apache Storm
(Section 3.2.5) are two Pipe-and-Filter frameworks, which provide distributed computing.
Same as TeeTime Apache Storm uses Kryo for serialization. Spark uses a distributed
filesystem, for example, Hadoop Distributed File System (HDFS) instead of direct message
communication for the data. If Spark needs to serialize messages it also provides Kryo
as a serializer but uses the Java serialization as default. Both Spark and Storm focus on
streaming and lack the support for more than one input and output port per stage. Storm
uses a directed acyclic graph to define its topology. Thus loops are not possible.

66

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we introduced and implemented an approach to extend TeeTime to support
distributed Pipe-and-Filter architectures. After evaluating several Java frameworks for
distributed systems, we chose the Akka framework. Based on our architecture approach
we successfully implemented different example distributed Pipe-and-Filter architectures by
integrating Akka into TeeTime.

We provide a single configuration to specify the distributed architecture. Thus the user
has an overview of the entire architecture, especially of the connections between stages
running on different nodes. Hence the user does not need to handle multiple configurations
for a single architecture at the same time. Additionally, he can easily relocate stages between
worker nodes by simply changing the node assignment of the stage without switching
between configurations. The distributed configuration is very similar to the non-distributed
variant. Therefore users who are familiar with TeeTime will be able to transform existing
non-distributed configurations into distributed ones with low effort. It is enough to change
the base class of the configuration and to assign each stage to a node.

Furthermore, TeeTime generates configurations for each node from the distributed
configuration, automatically deploys them to the worker nodes and subsequently executes
them. The user can either specify the node a configuration should be deployed to or
let TeeTime automatically choose a node. Thus the user can assign stages to generic
node configurations without the need to exactly specify the particular worker nodes the
configurations should be executed on. Currently, the execution of the remote systems still
requires a manual deployment of the application’s JAR file in conjunction with the TeeTime
library, so that all required class files are available.

We implemented a distributed pipe to connect stages on different nodes. The distributed
communication relies on two Akka actors: one sender actor and one receiver actor. For
serialization, we use the Kryo serializer. Kryo is faster than the standard Java serializer
and is used by other Pipe-and-Filter frameworks like Apache Storm as well. As shown in
Section 6.3 the distributed communication works successfully.

Moreover, we provide basic fault tolerance capabilities. TeeTime can detect faults inside
the application and in its environment, e.g. network faults, as shown in Section 6.4. The
desired fault tolerance behavior would be to recover the system so that the execution can

67

8. Conclusions and Future Work

resume after a fault occurs. Fault recovery in Pipe-and-Filter architectures is complex due
to a lot of concurrent states which must be recovered at the same moment which is even
more difficult in a distributed scenario as explained in Section 4.4. Thus we provide a
graceful termination of the entire distributed system in case of a fault.

Our motivation for a distributed Pipe-and-Filter architecture were performance en-
hancements and data locality. In our distributed evaluation scenarios in Section 6.5 we
reduced the execution time by approximately 40% compared with the non-distributed
configuration. Thus we reached our goal. We proved the performance enhancements for our
specific evaluation scenarios, whereby we can not guarantee performance improvements in
general. Other scenarios may provide lower, higher, or no enhancements, or in the worst
case a performance decrease due to the network overhead depending on the underlying
architecture. Furthermore, we provide data locality on systems which support Java and
are accessible via the network. Thus the systems needs to be able to execute the TeeTime
remote system and able to join the actor cluster.

Finally, we also provide a DSL to simplify the declaration of distributed configurations.
Thus the user can avoid writing much boilerplate code. Consequently, he gets a simpler and
clearer overview of the Pipe-and-Filter architecture which he describes via the configuration.

Overall we reached all our goals and successfully evaluated our implementation.

8.2 Future Work

In this section, we present future work, especially implementation ideas to further improve
the distributed capabilities of TeeTime.

Compared with non-distributed Pipe-and-Filter architectures the distributed ones can
provide performance improvements and further capabilities through data locality, like
faster data access or data access at all. The use of the distributed configurations also has
limitations compared to the non-distributed variants, and it is not possible to transform
every non-distributed configurations to a distributed one. The access to stage attributes
after or during the execution is currently not possible. Consequently, non-distributed
configurations which need access to stage attributes cannot be converted to a distributed
configuration. Due to that, we want to enable the access to stage attributes and thus the
possibility to transform these configurations into distributed ones.

Currently, we focused our evaluation on the distributed communication with nodes
running on the same network. We want to evaluate whether the nodes can create and join
the cluster when they are executed on different networks, which the Internet connects.
Furthermore, we want to evaluate whether the distributed pipe is in working order when
used via the Internet and how the performance behaves in this scenario.

When the communication between the nodes relies on a potentially insecure network
like the Internet, we provide encryption for the distributed pipe. Thus the user can encrypt
data and signals transmitted over the pipe. The control sequences between the master
and the workers are currently sent over plain TCP and do not support encryption. Thus

68

8.2. Future Work

control messages can be intercepted and manipulated by an attacker. We want to provide
encryption also for the control messages to prevent these man-in-the-middle attacks.

Furthermore, the cluster does not require an authentication. Thus a new node can
simply join the cluster and send malicious messages to other cluster members. Besides
the encryption of the control messages, we also want to implement an authentication to
prevent this kind of attacks and consequently to improve the security.

TeeTime supports the direct execution of non-distributed configurations with the Tee-
Time library without embedding the configuration in a Java application. Currently, we
provide remote systems to execute the worker nodes. The user must embed the master node
into a Java application. Equivalent to the non-distributed configuration we want to provide
a master system as a counterpart to the remote system, which executes the distributed
configuration. In case the user utilizes the master application only to execute the distributed
configuration with no additional logic, he can instead use this master system. Thus the
user only has to implement its distributed configuration and can execute it through the
TeeTime library.

The automatic configuration deployment and execution still requires the manual start
of the master application and on each node the start of a remote system. Therefore the
TeeTime and configuration class files must be deployed to the nodes. We want to provide a
ssh script which can be configured with the name of the Pipe-and-Filter configuration and
a list of nodes, where to deploy the configurations. The scripts should copy the JAR files to
the nodes and execute them. Thus the entire distributed Pipe-and-Filter architecture could
be deployed and executed through this script.

69

Appendix A

Distributed Communication Test Results

Table A.1. Distributed communication of Test 3: TCP distributed, 5000 strings with a length of 1

Timestamp Worker 1 Worker 2 Worker 3

Startup

16:32:36,879 Signal sent

16:32:36,899 Element sent

16:32:38,047 Received signal

16:32:38,048 Signal sent

16:32:38,054 Received element

16:32:38,075 Element sent

16:32:38,698 Received signal

16:32:38,703 Received element

...

Table A.2. Distributed communication of Test 4: TCP distributed, 5000 strings with a length of
1,048,576

Timestamp Worker 1 Worker 2 Worker 3

Startup

16:55:34,091 Signal sent

16:55:34,114 Element sent

16:55:35,263 Received signal

16:55:35,264 Signal sent

16:55:35,273 Received element

16:55:35,292 Element sent

16:55:35,895 Received signal

16:55:35,907 Received element

...

71

A. Distributed Communication Test Results

Table A.3. Distributed communication of Test 5: UDP local, 5000 strings with a length of 1

Timestamp Worker 1 Worker 2 Worker 3

Startup

17:18:44,216 Signal sent

17:18:44,233 Element sent

17:18:44,240 Received signal

17:18:44,241 Signal sent

17:18:44,252 Received element

17:18:44,272 Element sent

17:18:44,280 Received signal

17:18:44,283 Received element

...

Table A.4. Distributed communication of Test 6: UDP local, 5000 strings with a length of 1,048,576

Timestamp Worker 1 Worker 2 Worker 3

Startup

17:40:22,478 Signal sent

17:40:22,499 Element sent

17:40:22,507 Received signal

17:40:22,508 Signal sent

17:40:22,514 Received element

17:40:22,531 Element sent

17:40:22,536 Received signal

17:40:22,539 Received element

...

Table A.5. Distributed communication of Test 7: UDP distributed, 5000 strings with a length of 1

Timestamp Worker 1 Worker 2 Worker 3

Startup

18:01:58,175 Signal sent

18:01:58,198 Element sent

18:01:59,373 Received signal

18:01:59,374 Signal sent

18:01:59,380 Received element

18:01:59,400 Element sent

18:02:00,012 Received signal

18:02:00,016 Received element

...

72

Table A.6. Distributed communication of Test 8: UDP distributed, 5000 strings with a length of
1,048,576

Timestamp Worker 1 Worker 2 Worker 3

Startup

18:25:20,293 Signal sent

18:25:20,317 Element sent

18:25:21,503 Received signal

18:25:21,505 Signal sent

18:25:21,516 Received element

18:25:21,544 Element sent

18:25:22,146 Received signal

18:25:22,150 Received element

...

Table A.7. Distributed communication of Test 9: SSL local, 5000 strings with a length of 1

Timestamp Worker 1 Worker 2 Worker 3

Startup

18:48:55,398 Signal sent

18:48:55,413 Element sent

18:48:55,414 Received signal

18:48:55,415 Signal sent

18:48:55,429 Received element

18:48:55,438 Received signal

18:48:55,444 Element sent

18:48:55,450 Received element

...

Table A.8. Distributed communication of Test 10: SSL local, 5000 strings with a length of 1,048,576

Timestamp Worker 1 Worker 2 Worker 3

Startup

19:33:11,706 Signal sent

19:33:11,718 Element sent

19:33:11,721 Received signal

19:33:11,724 Signal sent

19:33:11,759 Received element

19:33:11,759 Element sent

19:33:11,780 Received signal

19:33:11,784 Received element

...

73

A. Distributed Communication Test Results

Table A.9. Distributed communication of Test 11: SSL distributed, 5000 strings with a length of 1

Timestamp Worker 1 Worker 2 Worker 3

Startup

20:15:33,685 Signal sent

20:15:33,709 Element sent

20:15:34,923 Received signal

20:15:34,924 Signal sent

20:15:34,929 Received element

20:15:34,951 Element sent

20:15:35,529 Received signal

20:15:35,536 Received element

...

Table A.10. Distributed communication of Test 12: SSL distributed, 5000 strings with a length of
1,048,576

Timestamp Worker 1 Worker 2 Worker 3

Startup

20:39:50,105 Signal sent

20:39:50,130 Element sent

20:39:51,350 Received signal

20:39:51,352 Signal sent

20:39:51,357 Received element

20:39:51,375 Element sent

20:39:51,952 Received signal

20:39:51,955 Received element

...

74

Appendix B

Project Overview

Our implementation is splitted into

� the TeeTime project with the distributed branch,

� a test project with an example Pipe-and-Filter architecture and test scripts, and

� the DSL Eclipse plug-in project.

B.1 TeeTime

The distributed branch of the TeeTime project is available at gitlab@build.se.informatik.

uni-kiel.de:fec/teetime-distributed.git.
We extend the maven build, thus it additionally generates teetime-3.0-SNAPSHOT-

distributed.jar and a teetime-3.0-SNAPSHOT-distributed-jar-withdependencies.jar. Thus
the standard TeeTime JAR remains small if no distributed features should be used.

To build TeeTime the JDK 8.0 and Maven are required.

B.2 TeeTime-Distributed-Test

Our test project is available at gitlab@build.se.informatik.uni-kiel.de:fec/teetime-distributed-test.

git.
To build the test project right click the project in Eclipse’s package explorer and select

Export. Then select Runnable JAR file. Select Extract required libraries into generated

JAR and click on Finish.
To start the remote system use the following command:

1 java -cp <ProjectJarWithTeeTimeDependency>

teetime.framework.distributed.RemoteSystem config=<configName>

config-args=<arg1,...,argN> seed-host=<IP> seed-port=<PORT> host=<IP>

identifier=<NODE_ID> tcp=<PORT> udp=<PORT> ssl=<PORT>

ssl-config=<PATH_TO_SSLCONF>

Listing B.1. Command to start the remote system

75

gitlab@build.se.informatik.uni-kiel.de:fec/teetime-distributed.git
gitlab@build.se.informatik.uni-kiel.de:fec/teetime-distributed.git
gitlab@build.se.informatik.uni-kiel.de:fec/teetime-distributed-test.git
gitlab@build.se.informatik.uni-kiel.de:fec/teetime-distributed-test.git

B. Project Overview

Mandatory arguments are

� the name of the configuration the remote system should instantiate,

� the seed host and seed port to join the master,

� the host to bind the remote system to an IP address it listens on, and

� the port of the TCP protocol

The arguments

� configargs,

� identifier,

� udp,

� ssl, and

� ssl-config

are optional. When ssl is used the ssl-config is required. An example ssl-config is available
in the resources folder. Inside the ssl.conf the key-store and trust-store paths must be
modified. The path must be absolute. Akka cannot handle relative paths. The node.keystore

and node.truststore inside the resources folder can be used.
The scripts folder contains the scripts we used to execute the evaluation tests.

B.3 Teetime-Distributed-Dsl

The DSL plug-in project is available at gitlab@build.se.informatik.uni-kiel.de:fec/teetime-distributed-dsl.
git. To test the plug-in simply run the sub-project dsl.DistributedConfig as an Eclipse
application from inside Eclipse.

76

gitlab@build.se.informatik.uni-kiel.de:fec/teetime-distributed-dsl.git
gitlab@build.se.informatik.uni-kiel.de:fec/teetime-distributed-dsl.git

Bibliography

[Agha 1985] G. A. Agha. Actors: a model of concurrent computation in distributed systems.
Technical report. DTIC Document, 1985. (Cited on page 11)

[Aldinucci et al. 2012] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati.
Targeting distributed systems in fastflow. In: European Conference on Parallel Processing.
Springer. 2012, pages 47–56. (Cited on page 65)

[Fowler 2010] M. Fowler. Domain-specific languages. Pearson Education, 2010. (Cited on
page 12)

[Frank Buschmann 2007] D. C. S. Frank Buschmann Kevlin Henney. Pattern-oriented
software architecture, volume 4, a pattern language for distributed computing. In: John
Wiley & Sons, Apr. 4, 2007, pages 200–201. (Cited on page 5)

[George F. Coulouris and Blair 2011] T. K. George F. Coulouris Jean Dollimore and G. Blair.
Distributed systems. In: Financial Times Prent., Aug. 11, 2011. Chapter 1, page 2. (Cited
on page 5)

[Gupta 2012] M. Gupta. Akka essentials. Packt Publishing Ltd, 2012. (Cited on page 12)

[Hanmer 2013] R. Hanmer. Patterns for fault tolerant software. Wiley Software Patterns Series.
Wiley, 2013. (Cited on pages 7–11)

[Hayashibara et al. 2004] N. Hayashibara, X. Defago, R. Yared, and T. Katayama. The/spl
phi/accrual failure detector. In: Reliable Distributed Systems, 2004. Proceedings of the 23rd
IEEE International Symposium on. IEEE. 2004, pages 66–78. (Cited on pages 16 and 36)

[Otero 2012] C. E. Otero. Software engineering design: theory and practice. In: AUERBACH
PUBN, June 11, 2012, pages 116–119. (Cited on page 5)

[Roestenburg et al. 2015] R. Roestenburg, R. Bakker, and R. Williams. Akka in action.
Manning Publications Co., 2015. (Cited on page 12)

[Silcock and Gościński 1995] J. Silcock and A. Gościński. Message passing, remote procedure
calls and distributed shared memory as communication paradigms for distributed systems.
Deakin University, School of Computing and Mathematics, 1995. (Cited on page 6)

[Sommerville 2012] I. Sommerville. Software engineering. In: Pearson Studium, Mar. 1,
2012. Chapter 6.3.4, pages 200–201. (Cited on page 5)

[Wulf et al. 2014] C. Wulf, N. C. Ehmke, and W. Hasselbring. Toward a generic and
concurrency-aware pipes & filters framework (2014). (Cited on pages 1 and 5)

[Wulf et al. 2017] C. Wulf, W. Hasselbring, and J. Ohlemacher. Parallel and generic pipe-
and-filter architectures with teetime. In: International Conference on Software Architecture
(ICSA) 2017. Apr. 2017. url: http://eprints.uni-kiel.de/37563/. (Cited on pages 5 and 65)

77

http://eprints.uni-kiel.de/37563/

Bibliography

[Wulf et al. 2016] C. Wulf, C. C. Wiechmann, and W. Hasselbring. Increasing the throughput
of pipe-and-filter architectures by integrating the task farm parallelization pattern. In:
Proceedings of the 2016 19th International ACM SIGSOFT Symposium on Component-Based
Software Engineering (CBSE 2016). IEEE, Apr. 2016, pages 13–22. (Cited on pages 1 and
5)

[Zloch 2016] M. Zloch. Development of a domain-specific language for pipe-and-filter
configuration builders. Feb. 2016. (Cited on page 37)

78

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.2.1 G1: Evaluation of Java Frameworks for Distributed Application Development
	G1.1: Providing Efficient Distributed Communication
	G1.2: Providing Fault Tolerance
	G1.3: Providing Remote Deployment
	G1.4 (optional): Providing Encrypted Data Transmission

	1.2.2 G2: Implementation of a Distributed Pipe-and-Filter Architecture
	1.2.3 G3 (optional): Adding Support for Distributed Pipes in the TeeTime DSL
	1.2.4 G4: Evaluation of Our Approach
	G4.1: Feasibility
	G4.2: Performance

	1.3 Document Structure

	2 Foundations and Technologies
	2.1 The Pipe-and-Filter Architectural Style
	2.2 The Pipe-and-Filter Framework TeeTime
	2.3 Distributed Systems
	2.4 Communication Patterns for Distributed Systems
	2.4.1 Message Passing
	2.4.2 Remote Procedure Calls
	2.4.3 Distributed Shared Memory

	2.5 Fault Tolerance Design Patterns
	2.5.1 Architectural Patterns
	Redundancy
	Minimize Human Interaction
	Someone in Charge
	Fault Observer

	2.5.2 Detection Patterns
	System Monitor
	Heartbeat
	Acknowledgment
	Watchdog
	Realistic Thresholds

	2.5.3 Error Recovery Patterns
	Error Handler
	Resume execution
	Failover
	Checkpoint
	Remote Storage

	2.6 Transport Protocols
	2.7 The Actor Model
	2.8 The Akka Toolkit
	2.9 Domain-specific Language

	3 Evaluation of Java Frameworks for Distributed Application Development
	3.1 Evaluation Criteria
	3.1.1 Build Infrastructure Criteria
	3.1.2 Feature Criteria
	Communication Patterns
	Transport Protocol
	Fault Tolerance
	Remote Deployment
	Custom Serializer
	Encryption

	3.2 Frameworks
	3.2.1 Akka
	3.2.2 Apache Hadoop
	3.2.3 Apache River
	3.2.4 Apache Spark
	3.2.5 Apache Storm
	3.2.6 Apache ZooKeeper
	3.2.7 Atomix (+ Copycat + Catalyst)
	3.2.8 Axon Framework
	3.2.9 Hystrix
	3.2.10 JGroups
	3.2.11 JPPF
	3.2.12 Orbit
	3.2.13 Quasar

	3.3 Framework Overview and Conclusion

	4 Implementation of a Distributed Pipe-and-Filter Architecture
	4.1 Implementation of Distributed Communication
	4.1.1 Distributed Pipe
	4.1.2 Auto-Discovery of the Receiver
	4.1.3 Handling the TeeTime Terminating Signal
	4.1.4 Message Serialization

	4.2 Implementation of a Single Configuration for a Distributed Execution
	4.3 Implementation of Remote Deployment and Remote Execution
	4.4 Implementation of Fault Tolerance

	5 Extending the TeeTime Domain-specific Language
	6 Evaluation
	6.1 Goals
	6.2 Common Experimental Setup
	6.2.1 Stages
	RandomStringGeneratorStage
	CPULoadGeneratorStage
	EndStage

	6.2.2 TeeTime Configurations
	Non-Distributed Configuration
	Distributed Configuration
	Big Non-Distributed Configuration
	Big Distributed Configuration

	6.2.3 Test Applications

	6.3 Feasibility of Remote Deployment, Remote Execution and Distributed Communication
	6.3.1 Methodology
	6.3.2 Results & Discussion
	6.3.3 Threats to Validity

	6.4 Feasibility of Fault Tolerance
	6.4.1 Methodology
	TeeTime Exception
	Akka Exception
	Master / Worker death
	Network partition

	6.4.2 Results & Discussion
	6.4.3 Threats to Validity

	6.5 Performance
	6.5.1 Methodology
	6.5.2 Results & Discussion
	6.5.3 Threats to Validity

	6.6 Support of Distributed Configurations in the TeeTime DSL
	6.6.1 Methodology
	6.6.2 Results & Discussion
	6.6.3 Threads to Validity

	7 Related Work
	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	A Distributed Communication Test Results
	B Project Overview
	B.1 TeeTime
	B.2 TeeTime-Distributed-Test
	B.3 Teetime-Distributed-Dsl

	Bibliography

