Textures of eclogites and blueschists from Syros island, Greece: inferences for elastic anisotropy of subducted oceanic crust

Ruth Keppler (1), Jan H. Behrmann (2), Michael Stipp (3)

(1) Steinmann Institute, Poppelsdorfer Schloss, 53115 Bonn, Germany rkep@uni-bonn.de

(2) Department of Geodynamics, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany

(3) Institute of Geology, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria

Many blueschists and eclogites are inferred to have formed from oceanic basalts in subducted slabs. Knowledge of their elastic behaviour is essential for reconstructing the internal structure of subduction zones. The Cycladic Blueschist Unit, exposed on Syros Island (Greece), contains rocks belonging to an exhumed Tertiary subduction complex. They were possibly part of a subduction channel, a shear zone above the subducting slab in which exhumation is possible during subduction. Intense plastic deformation, forming crystallographic preferred orientations (CPO), accompanied blueschist and eclogite metamorphism. CPO of the constituent minerals in the collected samples was determined by time-of-flight neutron diffraction. Two samples are foliated fine-grained blueschists with strong CPO, rich in glaucophane, zoisite and phengite. Two coarser-grained eclogite samples rich in omphacite and clinozoisite, or glaucophane, have weaker CPO. Vp and Vs anisotropies were computed from the orientation distribution function and single-crystal elastic constants. All samples show velocity maxima parallel to the mineral lineation, and minima normal to the foliation, providing important constraints on orientations of seismic anisotropy in subduction channels. Vp anisotropies are up to three times higher (6.5-12%) in the blueschists than in the eclogites (3-4%), pointing to a potentially important lithological control of elastic anisotropy in subducted oceanic crust.

Plain Language Summary

Many blueschists and eclogites are inferred to have formed from oceanic basalts in subducted slabs. Knowledge of their elastic behaviour is essential for reconstructing the internal structure of subduction zones. The Cycladic Blueschist Unit, exposed on Syros Island (Greece), contains rocks belonging to an exhumed Tertiary subduction complex. They were possibly part of a subduction channel, a shear zone above the subducting slab in which exhumation is possible during subduction. Intense plastic deformation, forming crystallographic preferred orientations (CPO), accompanied blueschist and eclogite metamorphism. CPO of the constituent minerals in the collected samples was determined by time-of-flight neutron diffraction. Two samples are foliated fine-grained blueschists with strong CPO, rich in glaucophane, zoisite and phengite. Two coarser-grained eclogite samples rich in omphacite and clinozoisite, or glaucophane, have weaker CPO. Vp and Vs anisotropies were computed from the orientation distribution function and single-crystal elastic constants. All samples show velocity maxima parallel to the mineral lineation, and minima normal to the foliation, providing important constraints on orientations of seismic anisotropy in subduction channels. Vp

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/2017JB014181

anisotropies are up to three times higher (6.5-12%) in the blueschists than in the eclogites (3-4%), pointing to a potentially important lithological control of elastic anisotropy in subducted oceanic crust.

1. Introduction

Knowledge of key rock petrophysical properties is essential for reliable interpretation of seismic data. Most important is seismic velocity and its anisotropy, mainly controlled by the rock type, microstructure and the crystallographic preferred orientation (CPO) of the constituent mineral phases (e.g.: Ji. et al., 2003a; b). Despite decades of investigation, subduction zones, especially their acoustic properties at depth, are still a matter of debate (e.g. Helffrich and Stein, 1993; Essen et al. 2009; Audet et al. 2009). As velocity models from active and passive seismic surveys allow for progressively better spatial resolution, knowledge of elastic anisotropy of the constituent rocks becomes increasingly important.

Blueschists and eclogites are the subducted equivalents of basaltic oceanic crust (e.g. Ernst, 1988; Maruyama et al., 1996). Direct links between blueschist occurrence and active subduction have been successfully demonstrated (e.g. Maekawa et al., 1993; Fryer at al., 1999). Thus, the investigation of these rocks and the geometrical, tectonic and petrological reconstructions of fossil subduction complexes (e.g. Wakabayashi, 1999 Wakabayashi et al., 2015, and references therein) offer invaluable insights into fundamental processes of burial, deformation and exhumation as well as into the internal structure of subduction zones and/ or subduction channels (e.g. Behrmann and Ratschbacher 1989; Platt, 1993; Jolivet et al., 2003; Abalos et al., 2003; Malusa et al., 2011, Behr and Platt, 2013).

In seismic images the crust of some subducted oceanic slabs appears as a zone of lower seismic velocities compared to the surrounding mantle of the downgoing and overriding plates (up to 14% velocity difference to up to 150 km depth; e.g. Abers, 2005). This crust is preferentially composed of blueschists and/or eclogites, and is usually seismically anisotropic (e.g. Ji and Zhao, 1994; Ji et al., 1998; Kim et al., 2013). Knowledge of the orientation and magnitude of this anisotropy is, therefore, essential for the correct construction of seismic velocity models and an improved structural interpretation of subducted slabs. One approach is to investigate the anisotropy of rocks by experimental techniques at elevated pressures (e.g. Christensen, 1965; 1966; Christensen and Fountain, 1975; Kern, 1978; 1993; Fountain et al., 1994; Mauler et al., 2000; Ullemeyer et al., 2006; 2010; Kern et al., 2008), or by the recalculation of the elastic velocity using rock texture and single crystal elastic data (e.g. Bascou et al., 2001; Ji et al., 2003; Abalos et al., 2011; Keppler et al., 2015). The major issue we address in this study is how anisotropy is expected to vary between blueschistgrade and eclogite-grade subducted oceanic crust, and how it would compare with the surrounding mantle rocks. This is important, as blueschists and eclogites occupy different fields in pressuretemperature space and, therefore, reflect depth of subduction. Our study object is the Cycladic Blueschist Unit (Aegean Sea, Greece). Especially on the island of Syros high-pressure rocks of oceanic origin are well studied and coherently exposed, including blueschists and eclogites.

2. Geological Setting, Syros Island

The Cycladic Blueschist unit (Fig. 1A,C), arguably one of the best-exposed fossil subduction complexes in the world (e.g., Le Pichon and Angelier, 1979; Gautier et al., 1993; Gautier and Brun, 1994; Ring and Layer, 2003; Ring and Glodny, 2010; Jolivet et al., 2013; Roche et al., 2016), has one of its most extensive occurrences on Syros Island Greece (e.g. Keiter et al., 2004). Former oceanic crust of probable Cretaceous age (Keiter et al., 2011) was subducted within the Mesohellenic Subduction System on a pressure-dominated prograde pressure-temperature path (PT-path; Fig. 1B), and rapidly exhumed thereafter. The Cycladic Blueschist Unit comprises a wide range of blueschists and eclogites with variable fabrics and compositions. The eclogites and especially the blueschists in the areas chosen for sampling (Fig. 1C) are very fresh and known for their low degree of retrogression and overprinting. This offers an ideal background for a systematic study of microstructure, CPO and petrophysical properties of subducted rocks. The metamorphic and structural record allows in principle to decipher processes of burial, high-pressure deformation and exhumation.

The Cycladic Blueschist Unit forms part of the Attic-Cycladic Crystalline Complex, which can be traced from southeast of Euboea island eastwards to Ikaria and Samos islands, and continues into the western part of the Anatolian Menderes Complex (e.g. Jacobshagen, 1986). From bottom to top there are four major tectonic units: (I) a Basement Unit, consisting of pre-Alpine granites, paragneisses and orthogneisses (Ios, Sikinos; van der Maar, 1980), and medium to high-grade metamorphics to migmatites on the central Cyclades (Naxos and Paros; Andriessen et al., 1987; Jacobshagen, 1986 and references therein); (II) the high-pressure/low-temperature Cycladic Blueschist Unit (mainly Syros, Sifnos, Tinos); (III) the Intermediate Unit, made up of metapelites, marbles and metabasites, and present on most of the Cycladic islands (Jansen and Schuiling, 1976; Dürr et al., 1978; Schliestedt et al., 1987); (IV) the uppermost allochthonous Pelagonian Unit with ophiolitic remnants of the Vardar Ocean, located in the hanging wall of the metamorphic core complexes of the northern (Andros, Tinos, Mykonos) and central Cyclades (Naxos and Paros; Jolivet et al., 2013; Huet et al, 2009 and references therein).

Isotopic dating suggests a complex pre-Alpine origin of the basement unit with Variscan (305-295 Ma) and pre-Variscan (~500 Ma) ages (e.g. Henjes-Kunst et al., 1988). The Alpine history of the Cyclades comprises several tectonometamorphic events that have affected the Cycladic Blueschist Unit. Subduction-related Eocene (40-50 Ma) eclogite/blueschist facies metamorphism is well documented (Fig. 1B; e.g. Schmädicke and Will, 2003; Tomaschek et al., 2003; Ring and Layer, 2003). The early exhumation path is characterized by depressurization and cooling (Parra et al., 2002), thus part of the rocks escaped retrogression, especially on Syros Island. However, an Oligo-Miocene (25-16 Ma) Barrovian-type greenschist facies metamorphic overprint is observed in many locations (e.g. Jansen & Schuiling, 1976; Altherr et al., 1982; Henjes-Kunst et al. 1988; Andriessen et al., 1987; Vandenberg and Lister, 1996; Bröcker and Enders, 1999; Huet et al., 2009). The youngest tectonometamorphic history is dominated by extension, caused by the southward retreat of the subducting African slab (e.g. Le Pichon and Angelier, 1979).

Most of Syros is made up of rocks belonging to the Cyclades Blueschist Unit (Fig. 1C), locally called Ermoupoli unit. It mostly dips moderately N to NE (e.g. Rosenbaum et al., 2002; Keiter et al., 2004; 2011) and consists of a strongly tectonized association of gneisses, schists, marbles, serpentinites and metabasites. Most of these are eclogite- to blueschist grade metamorphosed and only locally overprinted by later greenschist grade metamorphism. In the SW part of Syros, around Mavra Vounakia (Fig. 1C) this overprint is more intense, and this led us to avoid sampling there. The schists and marbles are thought of having originated from flysch sediments, whereas the metabasites and serpentinites probably have been part of an ophiolitic mélange (e.g. Dixon and Ridley, 1987; Keiter et al, 2011). Two of these samples (SY1: 37°29'56.86''N/24°53'42.47''E, SY2: 37°29'57.16"N/24°53'35.23"E, SY4) come from the east-west trending blueschist-eclogite belt in the north of the island, near Kambos, near the beaches of Lia and Grammata. Another sample (SY4: 37°24'35.64"N/24°52'32.06"E) is from the bluschist and eclogite occurrence three kilometers north of Finikas in the western part of the island, and the fourth sample (SY5: 37°25'03.18"N/24°57'17.95"E) comes from the southern end of the large blueschist occurrence near the eastern coast south of Ermoupoli (Fig. 1C). These three sampling areas form the largest coherent outcrops of metabasite and sepentinite units on Syros.

3. Methods

CPO measurements were performed at the neutron time-of-flight (TOF) texture diffractometer SKAT at the Frank Laboratory of Neutron Physics (Joint Institute for Nuclear Research in, Dubna, Russia; Keppler et al., 2014; Ullemeyer et al., 1998). Due to the high penetration capability of neutrons in matter and the large beam cross section of the SKAT instrument, measurements of large-volume samples of up to 65 cm³ are possible, without the need for sample preparation. This allows for good grain statistics even if the investigated samples are coarse-grained. 'Rietveld Texture Analysis' (RTA) was applied for the CPO calculation using the MAUD software (Von Dreele, 1997; Matthies et al. 1997; Lutterotti et al., 1997; Wenk et al., 2010). Low R_{wp} values (5.7-12.4%) were achieved in the RTA for all samples (Von Dreele, 1997). Since RTA requires knowledge of the constituting minerals present in the sample, mineral assemblages and chemical compositions were obtained at the Steinmann-Institute Bonn using a JEOL-JXA-8900 microprobe.

The orientation distribution function (ODF) of each phase, which describes the orientation of the crystal lattice planes related to an external reference frame is finally used to model the elastic properties of the samples applying Christoffel's equation:

$< C_{ijkl} > n_j n_i - \rho V^2 \delta_{ij} = 0$

where V is the velocity implying P-waves (Vp) and shear waves (Vs1, Vs2), $\langle C_{ijkl} \rangle n_j n_i$ the acoustic tensor, C_{ijkl} being the single-crystal stiffness coefficient and n the plane wave propagation direction, ρ is the density and δ_{ijk} is the Kronecker delta. The bulk seismic properties are calculated as weighted averages of the elastic properties of the constituent mineral phases using the ODF and the corresponding single crystal elastic constants. The latter were taken from the literature (omphacite: Bhagat et al., 1992; garnet: Babuska et al., 1978; glaucophane: Bezacier et al., 2010; muscovite: Vaughan and Guggenheim, 1986; quartz: Heyliger et al., 2003; albite: Brown et al., 2006; epidote/zoisite/clinozoisite: Aleksandrov et al., 1974).. The Voigt–Reuss–Hill approximation was used

for the calculations because it gives the closest agreement between CPO derived and laboratorymeasured seismic velocities (Seront et al., 1989).

4. Microstructure and compostion

The investigated blueschists contain glaucophane (50-60%), clinozoisite (~30%), phengite (5-10%) and minor amounts of garnet, albite and titanite. Since the fraction of retrograde phases is small, this mineral assemblage can be assigned close to peak metamorphic conditions of the PT-path. The blueschists are fine-grained and show a pronounced shape preferred orientation (SPO) of glaucophane and clinozoisite defining the foliation and lineation. Phengite and titanite are also aligned in the foliation, and few sub-idiomorphic albite grains with a random orientation are found within the matrix (Fig. 2A, 3A and 3B). Pressure shadows of garnet mostly contain phengite, could indicate retrograde phengite growth (Fig. 3B; see Table 2A for phengite composition). Inclusions in garnet, which are glaucophane, quartz, rutile and white mica, form a foliation, oblique to the matrix foliation. The glaucophane is rich in Fe and relatively poor in Mg (see Table 1). Lowest Na contents are found in the grain centers, visible as lighter spots in Fig. 3A., arguing for prograde glaucophane growth. Garnets are zoned with increasing almandine and decreasing spessartine contents from core to rim also indicating prograde growth (Fig. 3B). Epidote is composed relatively homogenously and has a high clinozoisite component.

The eclogites are coarse-grained. They contain omphacite (35-45%, Table 2a and 2b), clinozoisite (0-35%), glaucophane (0-20%), phengite (5-20%), garnet (5-10%), quartz (0-15%) and minor amounts of titanite. Sample SY2 shows randomly oriented omphacite with locally interspersed glaucophane (Fig. 2C), indicating local blueschist grade overprinting. Where the fabric is dominated by glaucophane, an SPO is more pronounced (Fig. 2E). The other eclogite sample (SY4) exhibits a strong SPO (Fig. 2D) defining a pronounced foliation and lineation made up by omphacite and glaucophane. Some larger glaucophane grains have been completely replaced by smaller ones presumably indicative of dynamic recrystallization. Phengite commonly has a relatively weak preferred orientation (Fig. 2C), pointing to late stage formation after development of the glaucophane foliation (Fig. 2F). Pressure shadows around garnet contain quartz and phengite (Figs. 2D and 2F). Inclusions in garnets are quartz, white mica and glaucophane. They form a weakly defined foliation fabric oblique to the matrix foliation (Figs. 2D and 2F).

Amphibole in the eclogites is either ferro-eckermannit or ferro-glaucophane (Fig. 2C and Table 2A). The omphacite composition is relatively homogenous within grains (see Fig. 3C for location of microprobe measurements and Table 2B for grain composition), but varies from sample to sample (compare grain compositions in Table 2B and Table 3; see Fig 3D for location of measurements). Omphacite is low in Mg and Ca, and high in Na and Fe. Garnets in the eclogites exhibit a higher almandine component than in the blueschists, but also show increasing almandine and decreasing spessartine contents from core to rim indicating prograde growth (Fig. 3E). White mica in the eclogites is also phengitic (Table 2A) and epidote contains a high clinozoisite component (Table 3).

5. Crystallographic preferred orientation (CPO)

The blueschists show distinct CPO of glaucophane, clinozoisite, and phengite. The [001] axis of glaucophane is either distributed within the foliation plane (Fig. 4; SY1) or forms a point maximum parallel to the mineral lineation (Fig. 4; SY5). Accordingly, [100] forms a maximum normal to the foliation or girdle structures perpendicular to the lineation, representing SL-type and LS-type CPO, respectively. The clinozoisite texture corresponds to that of glaucophane, displaying either S–types with an alignment of [010] in the foliation and a [001] point maximum normal to the foliation, or L-types with an alignment of [010] in lineation direction and [001] girdle structures perpendicular to the lineation. For this interpretation it needs to be taken into account that due to the crystal shape clinozoisite [010] coincides with the glaucophane [001] axis and that clinozoisite [001] coincides with the glaucophane [001] axis and that clinozoisite [001] coincides with the glaucophane [001] axis and that clinozoisite [001] coincides with the glaucophane [001] axis and that clinozoisite [001] coincides with the glaucophane [001] axis and that clinozoisite [001] coincides with the glaucophane [001] axis and that clinozoisite [001] coincides with the glaucophane [001] axis and that clinozoisite [001] coincides with the glaucophane [001] axis and that clinozoisite [001] coincides with the glaucophane [001] axis and that clinozoisite [001] coincides with the glaucophane [001] axis and that clinozoisite [001] coincides with the glaucophane [001] axis and that clinozoisite [001] coincides with the glaucophane [001] axis and that clinozoisite [001] coincides with the glaucophane [100] axis. Albite in the blueschists shows a random orientation (not displayed here). Phengite, if present, exhibits a weak alignment of the basal plane parallel to the foliation (Fig. 4). The CPO of all constituent mineral phases has almost orthorhombic symmetry, with the foliation and the plane normal to the lineation being mirror planes.

The eclogites show a distinct CPO of omphacite, glaucophane, clinozoisite and phengite. The [001] axis of omphacite is aligned parallel to the mineral lineation, and the [010] pole figure displays a maximum normal to the foliation with some small rotation around the lineation direction in some samples (Fig. 4; SY2 and SY4). The omphacite CPO is more pronounced in sample SY4 (Fig. 4), an observation that corresponds well to what can be seen as shape preferred orientations in the scanning electron (Fig. 3C, 3D) and optical micrographs (Fig. 2C – 2F). Like for the blueschists, the clinozoisite CPO is geometrically compatible, here with that of omphacite. [010] of clinozoisite is parallel to the mineral lineation, comparable to [001] of omphacite, and [001] of clinozoisite forms a maximum normal to the foliation comparable to [010] of omphacite (Fig. 4; SY4). Glaucophane, when present in substantial amounts (Fig. 4; SY2), depicts an SL-type with weaker alignment of [001] in lineation direction than [001] of omphacite. [010] forms a point maximum normal to the foliation similar in topology and intensity to that of the blueschists (Fig. 4). Quartz CPO is weak and garnet displays a random orientation (not displayed here). Like for the blueschists, the CPO of the eclogite constituent mineral phases has the same type of symmetry.

6. Elastic properties

Calculated P-wave velocity (Vp) anisotropy of the blueschists is high, ranging from 6.5% to 12.1% (Table 4). Resulting elastic moduli are given in Table 5. Depending on whether there is a foliation-dominated or a lineation-dominated fabric of glaucophane, maximum Vp is distributed in the foliation (Fig. 5; SY1) or parallel to the lineation direction (Fig. 5; SY5). The lowest Vp is found normal or nearly normal to the foliation. S-wave velocity (Vs) anisotropies are lower, ranging between 0.8 and 7.0%, but still display clear patterns. The foliation-dominated blueschist SY1 has highest Vs1 distributed in the foliation plane, and the maxima for Vs2 are found at the periphery of the pole figure, half way between the foliation normal and the lineation (Fig. 5; SY1). In sample SY5, Vs1 forms two maxima in the foliation plane at angles of about 45° to the lineation. Vs2 maxima are at the periphery of the pole figure between the foliation normal and the lineation (Fig. 5; SY5). Minima

of S-wave velocity distributions are also distinct. In samples SY1 and SY5 lowest Vs1 velocity is oriented normal or nearly normal to the foliation. Lowest Vs2 in sample SY1 is located near the lineation, with a secondary minimum normal to the foliation. In blueschist sample SY5 Vs2 displays two minima in a girdle perpendicular to the lineation. In sample SY5, the anisotropy of Vs2 is slightly higher than that of Vs1. In contrast, in sample SY1, the anisotropy of Vs1 is well above the one of Vs2 (7.0 versus 2.4%). Vp/Vs ratios of the blueschist samples were calculated using the mean Vp and Vs velocities, and vary between 1.71 and 1.76 (Table 4).

With values of 3.3% and 3.7% the Vp anisotropy of the eclogites (Table 4) is lower by a factor of two to three than that in the blueschists. Resulting elastic moduli are given in Table 5. Both eclogite samples show highest Vp in the lineation direction and lowest Vp normal to the foliation (Fig. 5 SY2 and SY4). Vs anisotropy lies between 0.8% and 2%. Two maxima of Vs1 occur in the foliation plane at about 45° to the lineation, and Vs1 minima are aligned with the foliation normal (Fig. 5, SY2 and SY4). For Vs2, maxima are at the periphery of the pole figure between the foliation normal and the lineation. Vs2 minima form a girdle distribution in sample SY2. In sample SY4 one minimum is parallel to the foliation normal, and a secondary minimum aligned with the lineation and smeared out along the foliation plane (Fig. 5, SY2 and SY4). The Vp/Vs ratio of the eclogite samples, calculated using the mean Vp and Vs velocities, is 1.69 to 1.70 (Table 4).

7. Discussion

The question whether mineralogical composition of subducted oceanic crust is capable of defining or modifying the seismic image of subduction zones will be the starting point of this discussion. There are two major methods for seismic investigation. In seismic tomography large rock volumes can be investigated and data on seismic velocities and anisotropies are usefull to compare subducted oceanic crust with the surrounding mantle peridotites. In reflection seismology, smaller scales, like the tectonic setting of a subduction channel are considered. Recent numerical simulations of seismic wave propagation modeled a detailed subduction channel structure with mafic blocks in a serpentinite matrix (Friedrich et al., 2014).

Generally speaking blueschists have a stability field with a lower pressure bound of about 5-6 kbar, (e.g. Bousquet et al., 2008) in a regime of low geothermal gradients. This translates to a depth in a subducted slab of about 15-18 km. Beyond a pressure of about 10 kbar, i.e. a depth of about 30 km, conversion of blueschist to eclogite is expected to occur, principally involving breakdown of glaucophane and paragonite (e.g. Winter, 2001) on the prograde path of metamorphism, a process that can be documented on Syros (e.g. Okrusch et al., 1978; Schliestedt, 1986; Rosenbaum et al., 2002; Schmädicke and Will, 2003). The persistence of prograde glaucophane (Fig. 3A) in the eclogites (Figs. 2C, 2D) indicates that this breakdown did probably not proceed completely, until peak pressures of around 20 kbar were attained (see Fig. 1C, and Jolivet and Brun, 2010).

Several recent numerical studies have been proposing tectonic overpressure as a major component influencing metamorphic conditions, which would indicate that many previous studiesassuming lithostatic pressures might not be correct (e.g. Burg and Gerya, 2005; Mancktelow, 2008; Angel et al., 2015; Gerya, 2015). The main factor influencing tectonic overpressure in these models is the rheology dependent heterogeneity in deforming rock units. The extent of the influence of tectonic overpressure suggested in these models, however, is not widely accepted among metamorphic

petrologists. Klonowska et al. (2017) for example showed that in the Seve Nappe of the Scandinavian Caledonides both, strong eclogites, peridotites and the surrounding weak gneissic matrix yield evidence for ultra-high pressure conditions. According to the previously mentioned numerical models, on the other hand, this rheology contrast should have led to enormous tectonic overpressure and/or underpressure, which have not been detected. Before this and other inconsistencies between petrological data and tectonic overpressure models have not been clarified, we prefer adhere to the classical concept assuming only lithostatic pressures in the present study. As this assumption does not affect our data, the presented results could be (re-)interpreted at any later point of time.

There might be some uncertainty regarding the depth and extent of the transition zone from blueschists to eclogites, a general picture can be drawn regarding the seismic characteristics of subducted oceanic crust depending on depth. Below a depth of 15 km, subducted oceanic crust would be highly anisotropic (6-12 %) because of the presence of prograde blueschists with strong CPO. Comparably strong seismic anisotropies have been documented in blueschists from elsewhere before (Bezacier et al., 2010; Ha et al., 2016) and seem to be a widespread characteristic of such metamorphic belts. Blueschists making up subducted oceanic crust can also be identified by average shear wave velocities below about 4.5 km/s, and variable shear wave splitting depending on the intensity of deformation and, thus, seismic anisotropy (see Table 4).

Our observations and data regarding compositional and textural changes suggest that anisotropy in subducted oceanic crust would start vanishing below about 30 km due to progressive eclogitization, mainly because eclogites have much lower seismic anisotropy (1.5-3 % texture-induced contribution). This is an observation that has also been reported by studies from other subduction complexes (e.g. Mauler et al., 2000; Keppler et al., 2015). Velocity, and Vp/Vs signature of the Syros samples is also very similar to that of other eclogites (e.g. Keppler et al., 2015). Apparently, Vp/Vs can be changed to higher values by retrograde transformation of eclogites to amphibolites (e.g. Gao et al., 2001; Keppler et al., 2015), probably owing to the growth of lower-pressure hornblende, but this is not an issue in the samples of this study. Moreover, this is a process unlikely to occur in subducted oceanic crust at great depth, but may, of course, alter the seismic signature of ophiolite complexes as they are exhumed and tectonically emplaced at higher levels in the crust.

Following a discussion of Keppler et al. (2015) the Vp/Vs values of the blueschists and eclogites are lower than those of peridotites of the lithospheric mantle of a downgoing slab in global earth models (e.g. Kennett et al., 1995) and experimental work (e.g., Christensen, 1966, 2004; Kern, 1993; Ullemeyer et al., 2010). In a tomographic study of subducting slabs off Northern Honshu Zhang et al. (2004) concluded that the downgoing peridotite slab has Vp/Vs ratios of 1.80–1.85 at depths between 60 and 85 km, and is overlain by a zone of lower Vp/Vs ratios (1.70–1.80). This zone was interpreted to reflect subducted metagabbros of the oceanic crust that are transformed to blueschists and eclogites at depth. Our results corroborate this interpretation, and add the notion that blueschists may be visible in seismic velocity models on grounds of their pronounced anisotropy.

An interesting aspect lies in the observation that both, the eclogite and the blueschist samples show variations in fabric topology, indicating different strain histories that the samples experienced while being subducted (see e.g. discussion by Keppler et al., 2016). In the SL-type blueschist sample

highest Vp is distributed within the foliation plane. The pattern is determined by the glaucophane CPO, showing a distribution of [001] within the foliation plane, which is the crystal axis closest to highest Vp in glaucophane single crystals. The LS-type blueschist produces highest Vp in the lineation direction, which is in line with an alignment of glaucophane [001] parallel to the lineation of this sample. A similar pattern for Vp is observed in the eclogite samples. For these, omphacite [001], the vector closest to highest Vp in omphacite single crystals, is aligned parallel to the lineation, yielding maximum Vp in the same direction. Garnet shows a random CPO, but due to its high Vp and Vs generally increases the average velocities of the samples. White mica can strongly influence the elastic anisotropy of rocks, even with low volume percentages (Mainprice and Ildefonse, 2009). However, because of its weak CPO it is a minor contributor to anisotropy in the studied samples. Based on the small sample set, however, we cannot demonstrate that strain variations are characteristic for the entire deformation path (e.g., Abalos 1997; Abalos et al., 2011; Keppler et al., 2016), i.e. whether texture evolution followed a distinct spatial or temporal pattern (e.g., Kurz, 2005).

In the calculation of the elastic properties minor errors may be introduced by compositional differences of the minerals in our samples relative to those of the single crystal data used for modelling. Our measurements show that there are not only grain-to-grain differences in mineral chemistry within a sample but also within individual grains (Tables 1-3). Volume percentages were determined by 'Rietveld Refinement', which is not as exact as powder diffraction. However, these minor errors in mineral volume fractions produced using 'Rietveld Refinement' do not effect calculated elastic anisotropies. Further errors could have been caused by the fact that the single crystal elastic tensors are taken from measurements under ambient conditions. Some influence of pressure and temperature can be expected beyond pressures of 10 kbar. Comparison of modelled and experimentally measured data frequently shows higher values for the measured elastic anisotropies (e.g., Kern et al., 2008; Keppler et al., 2015). The velocity patterns (i.e. location of minima and maxima), however, usually are similar in measured and modelled results. Also, inaccuracy in the CPO determination is a possible error source for the calculation of the elastic anisotropy. On the other hand Keppler et al. (2014) demonstrated that even for polyphase rock samples TOF texture analysis, using RTA, leads to reliable CPO results with only minor differences in texture strength. In this study the influence of incompletely closed microcracks on the elastic anisotropy (e.g. Ullemeyer et al., 2011) was not considered. When considering material behaviour at subduction zone depth, however, it is more likely that microcracks in the subduction slab are generally closed. Elastic properties calculated from CPO could, therefore, approximate the elastic properies of crack-closed rocks at depth.

Ac

8. Conclusions

Knowledge of the elastic properties of subducted oceanic crust is important for seismic investigations on active subduction zones. In this study we examined exhumed slices of blueschists and eclogites, which were subducted as part of the Hellenic subduction system and are now exposed on the island of Syros. Based on neutron texture measurements and modelling of the elastic anisotropies of the paleo-subduction zone rocks and their constituting minerals we can conclude:

- 1. Blueschists show larger elastic anisotropy than eclogites due to a higher single crystal elastic anisotropy of glaucophane. Accordingly, eclogites will exhibit larger elastic anisotropies if glaucophane is present.
- 2. The contrasting seismic properties (e.g. much higher elastic anisotropy in the blueschists compared to the eclogites) might permit the distinction between blueschists, eclogites, and possibly glaucophane-bearing eclogites in seismic imaging of subduction zones.
- 3. As blueschists generally occur at shallower depths than eclogites, our data imply a depth dependence of seismic anisotropy in a subducted oceanic crustal slab. In any quantification of this depth dependence, however, it needs to be considered that there is a depth range where eclogite and blueschist stabilities might overlap.

ACKNOWLEDGEMENTS:

We kindly thank Tatiana Ivankina and Benito Abalos for their constructive and very helpful comments. We are also grateful to the late Klaus Ullemeyer for his help performing the texture measurements. Michael Marks and Lisa Vielstaedter are thanked for providing insights on Syros eclogites and blueschists during discussions in the field. Funding by the German Federal Ministry of Education and Research (BMBF) is gratefully acknowledged. We also would like to thank the Frank Laboratory of Neutron Physics (FLNP) at Dubna (Russia) for support in the texture measurements. All time-of-flight spectra used for the calculations can be found on https://unibonn.sciebo.de/index.php/s/mSboAvg8hdwvNZw.

AC

REFERENCES

Ábalos, B., 1997. Omphacite fabric variation in the Cabo Ortegal eclogite (NW Spain): Relationships with strain symmetry during high-pressure deformation. Journal of Structural Geology, 19, 621-637.

Ábalos, B., Fountain, D.M., Gil Ibarguchi, J.I. and Puelles, P., 2011. Eclogite as a seismic marker in subduction channels: Seismic velocities, anisotropy, and petrofabric of Cabo Ortegal eclogite tectonite (Spain). Geological Society of America Bulletin, 123, 439-456.

Abalos, B., Puelles, P., Gil Ibarguchi, J.I., 2003. Structural assemblage of high-pressure mantle and crustal rocks in a subduction channel (Cabo Ortegal, NW Spain). Tectonics 22 (2), 1006, doi: 10.1029/2002TC001405.

Abers, G.A., 2005. Seismic low-velocity layer at the top of subducting slabs: observations, predictions, and systematics. Physics of the Earth and Planetary Interiors, 149, 7–29.

Aleksandrov, K.S., Alchikov, U.V., Belikov, B.P., Zaslavski, B.I., and Krupny, A.I., 1974. Elastic wave velocities in minerals at atmospheric pressure and increasing precision of elastic constants by means of EVM. Izvestija Academy of Science USSR, Geological Series, 10, 15-24.

Altherr, R., Kreuzer, H., Wendt, I., Lenz, H., Wagner, G.A., Keller, J., Harre, W. and Hohndorf, A., 1982. A late Oligocene/early Miocene high temperature belt in the Attic-Cycladic crystalline complex (SE Pelagonian, Greece): Geologisches Jahrbuch, 23, 97–164.

Andriessen, P. A. M., Banga, G. and Hebeda, E.H., 1987. Isotopic age study of pre-Alpine rocks in the basal units on Naxos, Sikinos and Ios, Greek Cyclades, Geologie van de Mijnbouw, 66, 3–14.

Audet, P., Bostock, M.G., Christensen, N.I. and Peacock, S.M., 2009. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature, 457, 76-78.

Babuska, V., Fiala, J., Kumazawa, M., Ohno, I., and Sumino, Y., 1978. Elastic properties of garnet solidsolution series. Physics of the Earth and Planetary Interiors, 16, 157–176.

Bascoua, J., Barruol, G., Vauchez, A., Mainprice, D. and Egydio-Silva, M., 2001. EBSD-measured latticepreferred orientations and seismic properties of eclogites. Tectonophysics, 342, 61–80.

Behr, W.M., Platt, J.P., 2013. Rheological evolution of a Mediterranean subduction complex. Journal of Structural Geology, 54, 136-155.

Behrmann, J.H., Ratschbacher, L., 1989. Archimedes revisited. A structural test of eclogite emplacement models in the Austrian Alps. Terra Nova, 1, 242-252.

Bezacier L., Reynard B., Bass J.D., Wang J., Mainprice D., 2010. Elasticity of glaucophane, seismic velocities and anisotropy of the subducted oceanic crust. Tectonophysics 494, 201-210.

Bhagat, S.S., Bass, J.D., and Smyth, J.R., 1992. Single-crystal elastic properties of omphacite-C2/C by Brillouin spectroscopy. Journal of Geophysical Research–Solid Earth, 97, 6843–6848.

Bousquet, R., El Mamoun, R., Saddiqi, O., Goffé, B., Möller, A., and Madi, A., 2008. Mélanges and ophiolites during the Pan-African orogeny: the case of the Bou-Azzer ophiolite suite (Morocco) Geological Society, London, Special Publications, 297, 233-247, doi:10.1144/SP297.11

Bröcker, M. and Enders, M., 1999. U–Pb zircon geochronology of unusual eclogite-facies rocks from Syros and Tinos (Cyclades, Greece). Geological Magazine, 136(2), 111–118.

Brown, J. M., Abramson, E. H. and Angel, R. J., 2006. Triclinic elastic constants for low albite. Physics and Chemistry of Minerals, 33, 4, 256-265.

Burg, J.-P. and Gerya, T., 2005. Viscous heating and thermal doming in orogenic metamorphism: numerical modeling and geological implications. Journal of Metamorphic Geology, 23, 75–95.

Christensen, N.I., 1965. Compressional wave velocities in metamorphic rocks at pressures to 10 kilobars. Journal of Geophysical Research 70(24), 6147-6164.

Christensen, N.I., 1966. Elasticity of ultrabasic rocks. Journal of Geophysical Research, 71, 5921–5931.

Christensen, N.I., 2004. Serpentinites, Peridotites, and Seismology. International Geology Review 46 (9), 795-816.

Christensen, N.I. and Fountain, D.M., 1975: Constitution of the lower continental crust based on experimental studies of seismic velocities in granulite. Geological Society of America Bulletin 86(2), 227-236.

Dixon, J.E., Ridley, J., 1987. Syros. In: Helgeson, H.C., (Ed.), Chemical Transport in Metasomatic Processes, Reidel Publishing Company, Dordrecht, 489–501.

Dürr, S., Seidel, E., Kreuzer, H. and Harre, W., 1978. Témoins d'un métamorphisme d'âge crétacé supérieur dans l'Egéide: Datations radiométriques de minéraux provenant de l'île de Nikouria (Cyclades, Grèce), Bulletin Géologique de la Société Francaise, 20, 209–213.

Essen, K., Braatz, M., Ceranna, L., Friederich W. and Meier, T., 2009. Numerical modelling of seismic wave propagation along the plate contact of the Hellenic Subduction Zone—the influence of a deep subduction channel. Geophysical Journal International 179, 1737–1756.

Ernst, W.G., 1988. Tectonic history of subduction zones inferred from retrograde blueschist *P*-*T* paths. Geology, 27, 103-106.

Fountain, D.M., Boundy, T.M., Austrheim, H., and Rey, P., 1994. Eclogite-facies shear zones—Deep crustal reflectors? Tectonophysics, 232, 411–424.

Friederich, W., Lambrecht, L., Stöckhert, B., Wassmann, S. and Moos, C., 2014. Seismic visibility of a deep subduction channel – insights from numerical simulation of high-frequency seismic waves emitted from intermediate depth earthquakes. Solid Earth, 5, 141–159.

Fryer, P., Wheat, C.G., Mottl, M.J. 1999. Mariana blueschist mud volcanism: Implications for conditions within the subduction zone. Geology, 16, 1081-1084.

Gao, S., Kern, H., Jin, Z., Popp, T., Jin, S., Zhang, H., and Zhang, B., 2001. Poisson's ratio of eclogite: the role of retrogression. Earth Planet. Sci. Lett. 102, 523–531.

Gautier, P. and Brun, J.-P., 1994. Crustal-scale geometry and kinematics of late-orogenic extension

in the central Aegean (C&lades and Ewia Island). Tectonophysics 238, 399-424.

Gautier, P., Brun, J.-P. and Jolivet, L., 1993. Structure and kinematics of Upper Cenozoic extensional detachment on Naxos and Paros (Cyclades Islands, Greece). Tectonics, 12, 5, 1180 -1194.

Ha, Y., Jung, H. and Raymond L.A., 2016. Deformation fabrics of blueschist facies phengite-rich, epidote-glaucophane schists from Ring Mountain, California and implications for seismic anisotropy in subduction zone. Abstract, AGU Fall Meeting, T31E-2955

Helffrich, G., Stein, S., 1993. Study of the structure of the slab-mantle interface using reflected and converted seismic waves. Geophys. J.Int. 115, 14–4072.

Henjes-Kunst, F., Altherr, R., Kreuzer, H. and Hansen, B.T., 1988. Disturbed U-Th-Pb systematics of young zircons and uranothorites: The case of the Miocene Aegean granitoids (Greece): Chemical Geology, 73, 125–145.

Heyliger, P., Ledbetter, H., Kim, S., 2003. Elastic constants of natural quartz. Journal of the Acoustical Society of America, 114, 644-650.

Huet, B., Labrousse, L., and Jolivet, L., 2009. Thrust or detachment? Exhumation processes in the Aegean: Insight from a field study on Ios (Cyclades, Greece): Tectonics, 28, TC3007, doi: 10.1029 /2008TC002397.

Jacobshagen, V., 1986. Geologie von Griechenland. Gebrüder Bornträger, Berlin 363 pp.

Jansen, J.B.H. and Schuiling, R.D., 1976. Metamorphism on Naxos: Petrology and geothermal gradients: American Journal of Science, 276, 1225–1253.

Ji, S., Saruwatari, K., Mainprice, D., Wirth, R., Xu, Z. and Xia B., 2003. Microstructures, petrofabrics and seismic properties of ultra high-pressure eclogites from Sulu region, China: implications for rheology of subducted continental crust and origin of mantle reflections. Tectonophysics, 370, 49–76.

Ji, S. and Zhao, P., 1994: Layered rheological structure of subducting oceanic lithosphere. Earth Planet. Sci. Lett., 124: 75-94.

Ji, S., Wang, Z. and Saruwatari, K., 1998: Plasticity of eclogite: implications for rheology and seismic reflectivity of the subducting slab. LITHOPROBE Report nº 64: 86-91.

Jolivet, L., Faccenna, C., Goffé, B., Burov, E., Agard, P., 2003. Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. American Journal of Science, 303, 353–409.

Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Denele, Y., Brun, J.P., Philippon, M., Paul, A., Salaun, G., Karabulut, H., Piromallo, C., Monie, P., Gueydan, F., Okay, A., Oberhansli, R., Pourteau, A., Augier, R., Gadenne, L. and Driussi, O., 2013. Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics, 597, 1-33.

Keiter, M., Ballhaus, C. and Tomaschek, F., 2011. A new geological map of the Island of Syros (Aegean Sea, Greece): implications for lithostratigraphy and structural history of the Cycladic

blueschist unit. Geological Society of America Special Paper, 481, 43 pp.

Keiter, M., Piepjohn, K., Ballhaus, C., Lagos, M. and Bode, M, 2004. Structural development of highpressure metamorphic rocks on Syros island (Cyclades, Greece). Journal of Structural Geology, 26, 8, 1433 -1445

Kennett, B.L.N., Engdahl, E.R. and Buland, R., 1995. Constraints on seismic velocities in the Earth from travel times. Geophys. J. Int. 122, 108–124.

Keppler, R., Stipp, M., Behrmann, J.H., Ullemeyer, K. & Heidelbach, F., 2016. Deformation inside a paleosubduction channel – Insights from microstructures and crystallographic preferred orientations of eclogites and metasediments from the Tauern Window, Austria. Journal of Structural Geology, 82, 60-79.

Keppler, R., Ullemeyer, K., Behrmann, J.H. & Stipp, M., 2014. Potential of full pattern fit methods for the texture analysis of geological materials: implications from texture measurments at the recently upgraded neutron time-of-flight diffractometer SKAT. Journal of Applied Crystallography, 47, 1520-1535.

Keppler, R., Ullemeyer, K., Behrmann, J.H., Stipp, M., Kurzawski, R. & Lokajíček, T., 2015. Crystallographic preferred orientations of exhumed subduction channel rocks from the Eclogite Zone of the Tauern Window (Eastern Alps, Austia), and implications on rock elastic anisotropies at great depths. Tectonophysics, 647, 89-104.

Kern, H., 1978. The effect of high temperature and high confining pressure on compressional wave velocities in quartz-bearing and quartz-free igneous and metamorphic rocks. Tectonophysics, 44, 185-203.

Kern, H., 1993. P- and S-wave anisotropy and shear-wave splitting at pressure and temperature in possible mantle rocks and their relation to the rock fabric. Physics of the Earth and Planetary Interiors 78, 245-256.

Kern, H., Ivankina, T.I., Nikitin, A.N., Lokajíček, T., Pros, Z., 2008. The effect of oriented microcracks and crystallographic and shape preferred orientation on bulk elastic anisotropy of a foliated biotite gneiss from Outokumpu. Tectonophysics, 457, 143–149.

Kim, D., Katayama, I., MIchibayashi. K. and Tsujimori. T., 2013. Deformation fabrics of natural blueschists and implications for seismic anisotropy in subducting oceanic crust. Physics of the Earth and Planetary Interiors 222, 8–21.

Klonowska, I., Janak, M., Majka, J., Petrík, I., Froitzheim, N. Gee, D.G. and Sasinkova, V., 2017. Journal of Metamorphic Petrology. doi:10.1111/jmg.12244

Kurz, W., 2005. Constriction during exhumation: Evidence from eclogite microstructures. Geology, 33, 1, 37-40.

Le Pichon, X. and Angelier, J., 1979. The Hellenic Arc and Trench System: A Key tot he Neotectonic Evolution of the Eastern Mediterranean. Tectonophysics, 60, 1-42.

Lutterotti, L., Matthies, S., Wenk, H.-R., Schultz, A. J., and Richardson, J. W., 1997. Combined texture

and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. Journal of Applied Physics 81, 594–600.

Maekawa, H., Shozu, I M., Ishll, T., Fryer, P., Pearce, J.A., 1993. Blueschist metamorphism in an active subduction zone. Nature, 364, 520-523.

Mainprice, D., and Ildefonse, B., 2009. Seismic Anisotropy of Subduction Zone Minerals–Contribution of Hydrous Phases. In: S. Lallemand and F. Funiciello (eds.), Subduction Zone Geodynamics, Springer-Verlag Berlin Heidelberg, 63-84.

Malusá, M.G., Faccenna, C., Garzanti, E., Polino, R., 2011. Divergence in subduction zones and exhumation of high pressure rocks (Eocene Western Alps). Earth and Planetary Science Letters, 310, 21-32.

Mancktelow, N.S., 2008. Tectonic pressure: theoretical concepts and modelled examples. Lithos, 103, 149–177.

Maruyama, S., Liou, J.G., Terabayashi, M. 1996. Blueschists and eclogites of the world and their exhumation. International Geology Review, 38, 485–594.

Matthies, S., Lutterotti, L. and Wenk, H.-R., 1997. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. Journal of Applied Crystallography, 28, 254-266.

Mauler, A., Burlini, L., Kunze, K., Philippot, P., and Burg, J.-P., 2000. P-wave anisotropy in eclogites and relationship to the omphacite crystallographic fabric. Phys. Chem. Earth 15, 119–126.

Okrusch, M., Seidel, E., Kreuzer, H., Harre, W., 1978. Jurassic age of metamorphism at the base of the Brecovica peridotite (Yugoslavia). Earth and Planetary Science Letters, 39, 291–297.

Parra, T., Vidal, O. and Jolivet, L., 2002. Relation between the intensity of deformation and retrogression in blueschist metapelites of Tinos Island (Greece) evidenced by chlorite–mica local equilibria. Lithos 63, 41-66.

Platt, J.P., 1993. Exhumation of high-pressure rocks: a review of concept and processes. Terra Nova 5, 119–133.

Ring, U., Glodny, J., Will, T. and Thomson, S., 2010. The Hellenic Subduction System: High-Pressure Metamorphism, Exhumation, Normal Faulting, and Large-Scale Extension. Annual Reviews of Earth and Planetary Science, 38, 45-76.

Ring, U. and Layer, P.W., 2003. High-pressure metamorphism in the Aegean, eastern Mediterranean: Underplating and exhumation from the Late Cretaceous until the Miocene to Recent above the retreating Hellenic subduction zone. Tectonics, 22, 3, doi:10.1029/2001TC001350.

Ring, U., Thomson S.N. and Bröcker, M., 2003. Fast extension but little exhumation: the Vari detachment in the Cyclades, Greece. Geological Magazine, 140, 3, 245-252.

Roche, V., Laurent, V., Cardello, G.L., Jolivet, L. and Scaillet, S., 2016. Anatomy of the Cycladic

Blueschist Unit on Sifnos Island (Cyclades, Greece). Journal of geodynamics, 97, 62 -87.

Rosenbaum G, Avigad D, Sanchez-Gomez M (2002) Coaxial flattening at deep levels of orogenic belts: evidence from blueschists and eclogites on Syros and Sifnos (Cyclades, Greece). Journal of Structural Geology, 24, 1451–1462.

Schliestedt, M., Altherr, R. and Mattews, A., 1987. Evolution of the Cycladic crystalline complex: Petrology, isotope geochemistry and geochronology, in Chemical Transport in Metasomatic Processes, edited by H. C. Helgerson, pp. 389–428, D. Reidel, Dordrecht, Netherlands.

Schmädicke, E. and Will, T.M. 2003. Pressure-temperature evolution of blueschist facies rocks from Sifnos, Greece, and implications for the exhumation of high-pressure rocks in the central Aegean. Journal of Metamorphic Geology, 21, 799-811.

Seront, B., Mainprice, D., Christensen, N.I., 1989. The complete seismic properties of an anorthosite: comparison between LPO and laboratory measurements. EOS 70, 460–461.

Tomaschek, F., Kennedy, A., Villa, I.M., Lagos, M., Ballhaus, C., 2003. Zircons from Syros, Cyclades, Greece—recrystallization and mobilisation during high-pressure metamorphism. Journal of Petrology, 44, 1977–2002.

Trotet, F., Jolivet, L. and Vidal, O., 2001a. Tectono-metamorphic evolution of Syros and Sifnos islands (Cyclades, Greece). Tectonophysics, 338, 179–206.

Trotet, F., Vidal, O., Jolivet, L., 2001b. Exhumation of Syros and Sifnos metamorphic rocks (Cyclades, Greece). New constraints on the P-T paths. European Journal of Mineralogy, 13, 901–920.

Ullemeyer, K., Leiss, B., Stipp, M., 2010. Textures and Microstructures in Peridotites from the Finero Complex (Ivrea Zone, Alps) and their Influence on the Elastic Rock Properties. Solid State Phenomena 160, 183-188.

Ullemeyer, K., Nikolayev, D.I., Christensen, N.I., Behrmann, J.H., 2011. Evaluation of intrinsic velocity– pressure trends from low-pressure P-wave velocity measurements in rocks containing microcracks. Geophys. J. Int. 185, 1312–1320.

Ullemeyer, K., Siegesmund, S., Rasolofosaon, P.N.J., Behrmann, J.H., 2006. Experimental and texturederived P-wave anisotropy of principal rocks from the TRANSALP traverse: an aid for the interpretation of seismic field data. Tectonophysics, 414, 97-116.

Ullemeyer, K., Spalthoff, P., Heinitz, J., Isakov, N. N., Nikitin, A. N., Weber, K., 1998. The SKAT texture diffractometer at the pulsed reactor IBR-2 at Dubna: Experimental layout and first measurements. Nuclear Instruments and Methods of Physical Research, 412, 80–88.

Vandenberg, L. C., and Lister, G.S., 1996. Structural analysis of basement tectonics from the Aegean metamorphic core complex of los, Cyclades, Greece. Journal of Structural Geology, 18, 1437–1454.

van der Maar, P., 1980. The geology and petrology of Ios, Cyclades, Greece, Ann. Geol. Pays Helleniques, 30, 206–224.

Vaughan, M.T, Guggenheim, S., 1986. Elasticity of muscovite and its relationship to crystal structure. Journal of Geophysical Research 91, 4657–4664.

Von Dreele, R.B., 1997. Quantitative texture analysis by Rietveld refinement. Journal of Applied Crystallography, 30, 577-587.

Wakabayashi, J. 1999. Subduction and the rock record: Concepts developed in the Franciscan Complex, California, in Moores EM, Sloan D, Stout DL (eds), Classic Cordilleran Concepts: A View from California: Boulder, Colorado, Geological Society of America Special Paper, 338, 123-133.

Wakabayashi, J., Tsujimori, T., Ogawa, Y., Shervais, J., 2015. Convergent plate margin processes and their rock record. International Geology Review, 57 (5-8), v-ix, DOI: 10.1080/00206814.2015.1026415 Wenk, H.-R., Lutterotti, L. and Vogel, S. C., 2010. Rietveld texture analysis from TOF neutron diffraction data. Powder Diffraction 25, 3, 283-296.

Wenk, H.-R., Lutterotti, L. and Vogel, S. C., 2010. Rietveld texture analysis from TOF neutron diffraction data. Powder Diffraction 25, 3, 283-296.

Winter, J.D., 2001. An introduction to igneous and metamorphic petrology. Prentice Hall, New Jersey, 687 pp.

Zhang, H., Thurber, C.H., Shelly, D., Ide, S., Beroza, G.C. and Hasegawa, A., 2004. High resolution subducting-slab structure beneath northern Honshu, Japan, revealed by double-difference tomography. Geology 42, 361–364. http://dx.doi.org/10.1130/G20261.2.

Accepted

Table 1: Microprobe measurements of glaucophane in blueschist sample SY1. See Fig. 3A for location of measurements.

Sy1_gl_	line	

SiC 2	58.158	57.466	56.294	54.942	52.82	57.289	57.787	57.82	58.212	57.972	57.791
TiC 2	0.019	0.034	0.111	0.069	0.157	0.045	0.016	0.05	0.069	0.079	0.074
Al2 O3	<u>2</u> 11.319	11.432	11.619	11.015	9.591	11.412	11.334	11.366	11.425	11.492	11.307
Cr2	0	0.031	0.008	0.01	0	0.013	0.013	0.023	0.045	0.028	0
Fe O	9.537	9.868	9.853	10.784	11.213	10.011	9.399	9.296	9.756	10.233	9.466
Mı O	n 0	0.043	0.086	0.038	0.081	0.059	0.005	0.032	0.021	0.086	0.07
Mį O	g 10.628	10.505	10.446	11.178	12.625	10.414	10.699	10.299	10.493	10.417	10.628
Ca O	0.815	1.154	2.253	3.83	6.882	1.261	0.888	0.597	0.76	0.99	0.972
Na 2C	7.096	6.987	6.407	5.456	3.93	6.949	7.293	7.414	7.086	6.839	7.26
К2 О	0.004	0.017	0.075	0.1	0.213	0.017	0.015	0.01	0.013	0.012	0.009
su m	97.576	97.537	97.152	97.422	97.512	97.47	97.449	96.907	97.88	98.148	97.577

ci	7.93084	7.86893	7.78851	7.62293	7.42275	7.86200	7.90933	7.96040	7.91729	7.87035	7.90898
21	0.06015	0 12106	44770	40084	44777	79280	75001	27497	0 09366	0 12064	9059
AL	96213	83774	55224	53916	55223	20714	24999	72503	40612	43895	0.09101
	1.74990	1.71376	1.68300	1.42401	1.01115	1.70767	1.73753	1.80454	1.74855	1.70901	1.73262
AI	40421	48479	03339	17901	74191	80927	56292	61907	86809	/1105	61895
Fe(i	0.20053	0.21056	0.10485	0.31368	0.35181	0.19703	0.15019	0.06545	0.22303	0.31141	0.13033
ii)	4365	48794	75851	95254	06668	43899	27657	40387	98076	12786	71526
	0.00194	0.00350	0.01155	0.00720	0.01659	0.00464	0.00164	0.00517	0.00705	0.00806	0.00761
Ti	87459	1673	06751	04342	42726	47957	7107	74847	83846	66838	70075
		0.00335	0.00087	0.00109		0.00141	0.00140	0.00250	0.00483	0.00300	
Cr	0	59185	5039	68889	0	04266	66894	33968	86229	52389	0
Fe(i	0.88695	0.91932	1.03503	0.93743	0.96581	0.95176	0.92551	1.00472	0.88649	0.85025	0.95291
i)	41526	75411	55996	56422	38663	14358	61301	44578	08356	71807	72179
		0.00498	0.01007	0.00446	0.00964	0.00685	0.00057	0.00373	0.00241	0.00988	0.00811
Mn	0	66857	69642	51913	0298	72974	95871	11755	89249	81094	33008
	2.16065	2.14449	2.15460	2.31210	2.64498	2.13061	2.18312	2.11386	2.12759	2.10835	2.16838
Mg	86944	84545	38032	05279	34772	3562	20915	32559	47436	43982	91316
	0.11906	0.16929	0.33394	0.56929	1.03610	0.18539	0.13021	0.08805	0.11073	0.14399	0.14251
Ca	6414	04778	55291	63806	38467	55226	01514	48342	88143	02832	11951
	1.87599	1.85482	1.71852	1.46757	1.07069	1.84881	1.93519	1.97887	1.86841	1.80001	1.92621
Na	51036	90708	39717	54533	94927	2613	40512	28186	71876	87282	94628

	0.00069	0.00296	0.01323	0.01769	0.03818	0.00297	0.00261	0.00175	0.00225	0.00207	0.00157
К	57909	93592	61842	81042	17051	59126	88477	61676	53644	80995	11307
то	14.9957	15.0270	15.0657	15.0545	15.1449	15.0371	15.0680	15.0686	14.9814	14.9460	15.0703
TAL	573085	889079	05685	699381	850445	840483	230502	838205	113664	871109	017886

Acc

Table 2: Microprobe data of (A) amphibole and white mica; (B) omphacite in eclogite sample SY2. See Fig. 3C for location of measurements.

Sy2 amp line

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Si O 2	47.73 4	50.90 9	49.88 3	47.55 9	50.78 6	50.59 9	50.74 3	50.66 7	51.08 1	50.8 91	50.38 7	50.75 3	50.67 3	50.72 5	51.42 8	49.92 3	50.62
Ti O 2	0.202	0.172	0.311	0.221	0.261	0.227	0.224	0.254	0.182	0.22	0.245	0.166	0.232	0.264	0.214	0.243	0.243
Al 2		5															
0 3	27.28 9	28.51 2	28.54 1	27.56 1	28.41 4	28.77 3	29.22 3	28.54 9	28.66	28.7 63	28.64 3	28.52 2	28.77 5	27.92 6	28.64 3	28.11 7	28.34 7
Cr 2 O 3	0	ο	0	0	0	0.028	0.022	0	0.008	0.01 5	0.013	0.01	0	0.036	0.005	0	0
Fe	8 659	5 064	5 13	5 4 3 3	4 969	5 101	4 753	4 403	4 555	4.43 8	5 362	4 869	4 639	4 963	4 878	5 4 3 8	5.006
M n O	0.04		0	0	0.01	0	0.025	<u>4.405</u> 0	0.041	0.01	0.03	0.01	1.035	505	0.046	0	0.086
M g O	1.937	1.967	1.823	1.76	2.122	1.571	1.956	2.061	2.051	1.97	1.903	1.965	2.004	2.056	1.995	1.809	2.02
C a O	0.089	ο	0.006	0.131	0	0	0.001	0	0.006	0.00 7	0	0.03	0.008	0	0	0.01	0
N a 2 0	0 339	0 371	0.46	0 397	0.72	0 225	0 417	0 418	0 386	0.45	0 379	0 371	0 522	0 451	0 417	0.38	0 509
K 2 0	10.38	11.06 2	10.79	10.28	10.83	11.17	11.09	11.00 2	10.89 9	10.9 23	11.10 7	10.93	10.95	11.02	10.92	10.67	10.91
su m	96.67 6	98.05 7	96.94 7	93.35	98.11 7	97.69 5	98.46 2	97.35 4	97.86 9	97.7 12	98.06 9	97.63 2	97.80 9	97.45	98.54 6	96.59 4	97.74 6
Si	6.809 7159 221	7.008 8737 536	6.952 0964 847	6.904 5698 838	6.989 0836 639	6.994 4179 148	6.950 9645 33	7.004 9302 583	7.020 7238 17	7.00 5802 263	6.956 6442 172	7.008 2576 167	6.981 8033 63	7.030 5954 952	7.029 0846 03	6.986 6414 114	6.995 0255 704
AI	1.190 2840 779	0.991 1262 464	1.047 9035 153	1.095 4301 162	1.010 9163 361	1.005 5820 852	1.049 0354 67	0.995 0697 417	0.979 2761 83	0.99 4197 737	1.043 3557 828	0.991 7423 833	1.018 1966 37	0.969 4045 048	0.970 9153 97	1.013 3585 886	1.004 9744 296
	3.397	3.634	3.639	3.620	3.597	3.681	3.668	3.656	3.662	3.67	3.617	3.649	3.654	3.592	3.642	3.623	3.611
AI	6680 789	9357 243	8255 702	0832 395	3619 759	7409 255	5939 594	5008 786	9765 135	2193 6806	1160 458	7581 821	1647 005	1081 327	7673 883	9591 324	4354 538
Fe (ii i)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

		0.021	0.017	0.032	0.024	0.027	0.023	0.023	0.026	0.018	0.02	0.025	0.017	0.024	0.027	0.021	0.025	0.025
		6742	8104	5998	1317	0152	6008	0785	4121	8141	3503	4412	2404	0420	5211	9990	5779	2560
Т	ï	662	128	411	077	261	35	659	777	999	6123	967	38	142	039	93	609	429
							0.003	0.002		0.000	0.00	0.001	0.001		0.003	0.000		
							0599	3825		8692	1632	4189	0916		9447	5402		
C	Cr	0	0	0	0	0	377	198	0	754	4995	58	747	0	316	74	0	0
F	e	1.032	0.582	0.597	0.659	0.571	0.589	0.544	0.509	0.523	0.51	0.619	0.562	0.534	0.575	0.557	0.636	0.578
(ii	9327	9757	8383	5485	8055	6144	4273	0148	4967	0866	0293	2005	4640	1981	4989	3706	4437
)		74	9	121	53	67	506	051	614	997	4002	667	49	773	527	873	38	892
		0.004				0.001		0.002		0.004	0.00	0.003	0.001			0.005		0.010
Ν	Λ	8328				1655		9003		7724	1748	5078	1694			3247		0647
_ n	ì	12	0	0	0	072	0	318	0	907	8272	522	646	0	0	069	0	816
		0.411	0.403	0.378	0.380	0.435	0.323	0.399	0.424	0.420	0.40	0.391	0.404	0.411	0.424	0.406	0.377	0.416
Ν	Λ.	9605	7224	7693	9267	3579	7506	4502	7970	2551	5945	6922	5160	6362	8328	5059	4254	1437
g	5	837	581	014	408	59	93	167	528	425	803	308	631	295	041	561	861	849
Γ		0.013		0.000	0.020			0.000		0.000	0.00		0.004	0.001			0.001	
C	2	6023		8958	3749			1467		8834	1032		4380	1808			4993	
a	1	233	0	523	771	0	0	543	0	779	3735	0	431	722	0	0	04	0
		0.093	0.099	0.124	0.111	0.192	0.060	0.110	0.112	0.102	0.12	0.101	0.099	0.139	0.121	0.110	0.103	0.136
N	J	7581	0229	2880	7384	0954	2976	7422	0374	8532	1432	4445	3186	4343	1866	4952	1002	3619
а		895	655	591	827	486	671	481	601	811	975	801	017	727	961	32	51	791
		1.890	1.942	1.918	1.905	1.902	1.969	1.939	1.940	1.910	1.91	1.956	1.926	1.925	1.949	1.903	1.905	1.923
		1676	6579	7324	2145	0159	7482	2003	2571	8129	8084	0821	2642	5377	9128	8415	4782	9772
K	(01	605	495	421	892	013	02	067	137	9647	05	197	48	865	054	405	059
Т	•																	
C)																	
Т	•	14.86	14.68	14.69	14.72	14.72	14.65	14.69	14.66	14.64	14.6	14.71	14.66	14.69	14.69	14.64	14.67	14.70
A	٨	6596	1125	2949	2018	6817	1812	0922	9019	5734	5644	5732	5997	0460	4704	8973	3411	1683
L	.	6285	3113	3857	243	6729	7102	2031	5373	0945	1136	4353	236	0144	5076	143	0129	0375
					-		-	-		-	-	-	-		-	-	-	1

Glaucophane Mica

-										
		m8	m9	m10	m11	m12	m14	m15	m16	m17
4	Si									
0	О	55.77	55.34	55.47		54.84	54.80	55.97	56.00	56.15
ź	2	2	6	9	54.67	9	9	4	4	8
-	Гі									
(О									
4	2	0.074	0.013	0	0.094	0.064	0.094	0.064	0.028	0.003
	41									
4	2									
0	О	10.20	10.32	10.22	10.70	10.35	10.67		10.57	10.37
	3	8	1	6	4	2	4	10.36	4	9
0	Cr									
4	2									
0	С									
	3	0.014	0	0	0	0	0	0	0	0
I	Fe	18.49	18.54	19.26	19.69	19.64	19.09	18.08	18.59	18.60
	C	5	7	2	7	9	6	3	8	2
I	М									
ľ	n									
(С	0.005	0	0.03	0.005	0	0	0.02	0	0

	m18	m19	m20	m21	m22	m23
SiO2	49.14 9	51.08 1	50.99 6	49.46 2	50.64 6	51.16 5
TiO2	0.236	0.266	0.189	0.264	0.238	0.193
Al2O 3	28.80 6	28.89 7	24.05 3	28.71 1	27.77 2	27.98 3
Cr2O 3	0	0.015	0	0.008	0	0.022
FeO	5.267	4.598	7.09	5.29	5.058	4.982
MnO	0.046	0.015	0	0	0.025	0.01

MgO	1 927	2 05	1 816	1 843	2 044	2 051
11120	1.527	2.05	1.010	1.045	2.044	2.031
CaO	0	0.015	0.567	0.077	0	0.003
Na2O	0.615	0.348	3.384	0.542	0.407	0.397
к20	10.66 9	10.55	8.779	9.748	10.90 7	11.03 2
	96.71	97.83	96.87	95.94	97.09	97.83
	5	5	4	5	7	8
	6.581	6.703	6.886	6.631	6.736	6.750
	0898	1518	0088	8994	4058	3087
Si	767	071	381	881	439	295
	0.023	0.026	0.019	0.026	0.023	0.019
.	7617	2472	1900	6166	8036	1465
11	424	885	635	463	302	/56
	4.546	4.469	3.828	4.537	4.354	4.351
A I	25438	/961	3885	6382	1/15	/12/
AI	550	059	1/0	099	940	491
	0.589	5255	0.800	0.593	0.562	0.549
Fe	907	62	69	241	046	78
	0.005	0 001			0.002	0 001
	2165	6670			8161	1173
Mn	06	54	0	0	893	504
	0.384	0.400	0.365	0.368	0.405	0.403
	5758	9504	4806	3059	2108	3048
Mg	215	001	876	402	92	491
		0.002	0.082	0.011		0.000
		1087	0231	0606		4240
Ca	0	876	495	056	0	273
	0.159	0.088	0.885	0.140	0.104	0.101
	6439	5305	8417	8834	9474	5396
Na	944	663	639	191	369	117
	1.822	1.765	1.512	1.667	1.850	1.856
v	2831	9611	11/4	2118	5355	5811
N	05/	322	14.27	934 12.07	14.04	14.02
	14.11 2840	13.90 7010	14.37 9286	13.9/	14.04 0446	14.03 3740
Sum	2040 0531	2948	9500 4534	3869	2021	6817
Juin	0001	, 77,		5505	2021	001/

Μ									
g									
0	5.927	6.02	5.003	5.204	5.466	5.251	5.706	5.157	5.268
C									
а									
0	0.385	0.522	0.206	1.033	0.983	0.774	0.288	0.173	0.148
N									
а									
2									
0	7.36	7.284	7.189	6.771	6.858	7.089	7.349	7.175	7.252
К									
2	0.024	0.027	0.04.6	0.000	0.052	0.070	0.025	0.00	
0	0.021	0.027	0.016	0.069	0.052	0.073	0.025	0.02	0
su	98.26		97.41	98.24	98.27		97.86	97.72	
m	1	98.08	1	7	3	97.86	9	9	97.81
	7.865	7.820	7.915	7.759	7.777	7.807	7.920	7.937	7.952
c :	9103	4118	0510	8424	7912	9664	0684	2407	6322
21	673	988	616	136	574	424	097	531	1
	0.134	0.179	0.084	0.240	0.222	0.192	0.079	0.062	0.047
A 1	0896	5881	9489	1575	2087	0335	9315	/592	3677
AI	527	012	564	004	420	570	905	409	9
_	1 562	1 5 2 0	1 624	1 550	1 507	1 500	1 6 4 7	1 702	1 601
	6043	1.559	2879	3658	7746	0885	6256	2505	1.004 7707
ΔI	859	36	371	962	158	004	165	206	052
F.a.	0 421	0 4 7 0	0 306	0 4 7 0	0 507	0 364	0 210	0 225	0 3 2 6
i e (ii	6808	4641	2860	8411	3493	5324	9096	8524	0.520
i)	973	437	86	435	574	619	586	092	681
.7	0.007	0.001		0.010	0.006	0.010	0.006	0 002	0 000
	8497	3815		0351	8258	0717	8110	9846	3195
Ti	597	882	0	426	92	696	557	981	306
	0.001								
	5610								
Cr	101	0	0	0	0	0	0	0	0
Fe	1.759	1.711	1.901	1.857	1.822	1.910	1.828	1.878	1.876
(ii	4928	9285	6059	9572	5178	2067	6097	1897	6650
)	495	663	85	953	75	67	138	704	398
	0.000		0.003	0.000			0.002		
М	5972		6248	6010			3966		
n	299	0	087	527	0	0	87	0	0
	1.246	1.268	1.064	1.101	1.155	1.115	1.203	1.089	1.112
М	2138	1328	0951	1994	5322	2005	6472	6136	1667
g	676	659	832	697	598	011	683	016	563
	0.058	0.079	0.031	0.157	0.149	0.118	0.043	0.026	0.022
С	1721	0197	4857	0818	3354	1269	6573	2674	4534
а	912	791	64	72	813	361	124	872	407
	2.012	1.995	1.988	1.863	1.885	1.957	2.015	1.971	1.990
Ν	4214	3618	3916	2236	3561	8498	9473	4272	9731
а	451	933	372	556	32	578	451	705	742

	C	0.003	0.004	0.002	0.012	0.009	0.013	0.004	0.003	
		7779	8664	9117	4928	4058	2653	5122	6156	
ļ	κ	925	938	501	618	907	263	34	761	0
-	Т									
0	0 _	F 07	15.07	15.02	15 02	15.04	15 00	15.00	15.00	15.04
		.5.07	15.07	15.02	15.03	15.04	15.08	15.06	15.00	2426
		4371 6288	9240 1661	1513	3894	5041	9242 1201	4110 8915	4337	5420 6149
Ľ		0200	1001	1515	5054	5041	1201	0515	4337	0145
	-									
		\neg								

Sy2_omp_line

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
ļ	S i O 2	55. 26 6	55. 55 5	55. 53 9	55. 37 3	55. 41 1	55. 62 3	55. 45 9	55. 49 9	55. 58 2	56. 00 2	55.3 75	55. 66 8	54.9 8	56. 03 6	56. 28 2	55. 53 4	56. 12 3	56. 05 7	56.2 29	55. 69 8	51. 31 4	56. 00 4	55.7 56
r	T i O 2	0.1 37	0.0 28	0.0 49	0.0 62	0.0 28	0.0 46	0	0.0 18	0	0.0 49	0.07 2	0.0 44	0.00 5	0.0 57	0.0 08	0.0 08	0.0 26	0.0 08	0	0.0 05	0.0 26	0.0 36	0
	A 1 2 3	11. 25 2	13. 53	13. 48 4	12. 78 6	12. 16 8	13. 17 9	13. 52 1	13. 99 7	13. 74 2	13. 85 2	12.6 62	13. 63 5	11.2 31	12. 84	14. 34 5	12. 55	13. 40 3	13. 47 1	12.7 82	12. 44 3	30. 50 7	14. 23 7	13.5 37
	F e O	15. 28 6	13. 65 3	13. 68 5	14. 15 9	14. 91 5	14. 20 9	14. 14 3	13. 29 5	13. 49 3	12. 84 9	14.4 12	13. 51 6	15.0 72	14. 13 8	12. 93	14. 47 4	13. 91 3	13. 98 8	14.6 68	14. 51	6.1 47	13. 22 9	13.8 09
	N N O	0.0 65	0.1 81	0.0 55	0.0 86	0.0 75	0.0 65	0.1 01	0.0 96	0.1 16	0.0 2	0.10 1	0.0 4	0	0.0 1	0.0 3	0.0 65	0.0 45	0.1 56	0.13 1	0.1 06	0.0 25	0.0 6	0.12 6
ì	g O	1.7 34	0.9 42	1.2 7	1.2 46	1.1 62	1.0 7	0.8 99	1.1 09	0.9 79	1.1 11	1.25 9	1.0 41	1.4	1.2 73	1.1 03	1.3 01	1.0 31	1.0 93	1.08 7	1.3 99	0.4 16	0.8 54	0.98 9
ľ	a O N	3.8 93	2.3 09	3.1 2	2.9 78	3.0 11	2.6 62	2.3 56	2.6 52	2.4 15	2.7 13	2.97 4	2.5 96	3.47 9	2.7 89	2.3 14	3.1 51	2.6 19	2.4 98	2.66	3.3 35	1.0 32	2.3 49	2.29 2
	a 2 0	11. 87 9	12. 94 2	12. 68 8	12. 70 6	12. 12	12. 82 4	12. 8	12. 55 8	12. 72 3	12. 62	12.4 63	12. 68 6	11.8 37	13. 00 7	13. 11	12. 13 8	12. 53 8	12. 75 3	12.5 7	12. 91 2	9.0 98	13. 02 2	13.0 15
	К 2 О	0.0 33	0.0 19	0.0 13	0.0 24	0.0 28	0.0 28	0.0 25	0	0.0 04	0.0 24	0.01 6	0.0 24	0	0.0 2	0.0 12	0	0.0 11	0.0 03	0.01 1	0.0 11	0.8 98	0.0 03	0
	r 2 0 3	0.0 4	0	0	0.0 24	0	0	0	0	0	0	0	0.0 43	0.00 6	0	0	0.0 34	0	0	0.00 3	0.0 18	0.0 21	0	0
	s u m	99. 58 5	99. 15 9	99. 90 3	99. 44 4	98. 91 8	99. 70 6	99. 30 4	99. 22 4	99. 05 4	99. 24	99.3 34	99. 29 3	98.0 1	10 0.1 7	10 0.1 34	99. 25 5	99. 70 9	10 0.0 27	100. 141	10 0.4 37	99. 48 4	99. 79 4	99.5 24
		2.0 49 32	2.0 43 97	2.0 31 60	2.0 41 20	2.0 56 86	2.0 41 85	2.0 41 14	2.0 34 93	2.0 43 15	2.0 47 09	2 04	2.0 42 34	2.06	2.0 47 64	2.0 39	2.0 49 87	2.0 51 30	2.0 45 35	2 05	2.0 39 85	1.7 80 60	2.0 39 46	2.04
	S i	93 7	97 98 9	64 17 9	32 7	58 49 1	58 39 6	37 12 3	97 45 3	97 53 2	44 29 4	2.04 4162 9361	14 16 6	2.06 5329 5241	44 43 9	01 72 29	34 5	88 28 9	84 55 5	2.05 5921 6956	90 71 9	47 18 4	32 81 1	2.04 4272 313
	T i	0.0 03 81	0.0 00 77	0.0 01 34	0.0 01 71	0.0 00 78	0.0 01 26	0	0.0 00 49	0	0.0 01 34	0.00 1998 561	0.0 01 21	0.00 0141 2335	0.0 01 56	0.0 00 21	0.0 00 22	0.0 00 71	0.0 00 21	0	0.0 00 13	0.0 00 67	0.0 00 98	0

		99 32	46 30	77 85	85 51	15 39	97 30		62 74		68 32		38 31		61 93	79 33	20 45	45 73	94 89		76 93	84 03	57 85	
		0.4	0.5	4 0.5 91	0.5	9 0.5	8 0.5 70	0.5	0.6	0.5	4 0.5		0.5		5	8 0.6	4 0.5	0.5	0.5		0.5	1.2	0.6	
į,		80 95	80 76 81	40 07	56 86	40 78	25 40	57 78	94 60	43 36	90 84 57	0.55	64 84	0.49	53 05	58 62	40 04 40	44 08	36 82	0.55	15 66	47 80 41	11 12 58	0.58
l	٩	40 3	79 1	05 6	58 6	75 5	99 8	40 4	55 6	71 1	59 4	0959 1119	46 4	7299 8583	42 51	10 7	50 5	17 4	67 9	0884 1959	47 9	98 3	00 5	5039 0519
		0.4 73	0.4	0.4	0.4 36	0.4 62	0.4 36	0.4 35	0.4 07	0.4 14	0.3 92		0.4 14		0.4 31	0.3 91	0.4 46	0.4 25	0.4 26		0.4 44	0.1 78	0.4 02	
		96 79 13	03 42 53	18 59 06	43 89 28	95 24 52	15 14 63	25 74 78	62 22 57	74 37 28	74 15 22	0.44 4865	64 27 35	0.47 3433	99 48 30	69 95 29	74 57 02	22 04 16	77 43 93	0.44 8456	35 60 80	36 02 26	83 48 28	0.42 3362
•	2	5 0.0	7 0.0	02	2	0.0	0.0	7	2	1	9	9594	1 0.0	1399	2	6 0.0	01 0.0	10.0	4	4374	5 0.0	0 3	2	6281
		02 04	05 63	01 70	02 68	02 35	02 02	03 14	02 98	03 61	00 61		01 24		00 30	00 92	02 03	01 39	04 82		03 28	00 73	01 85	
ſ	М	12 86 8	98 91	38 95 5	48 80	78 16	07 97	81 95 2	10 98 8	13 10 0	91 60 2	0.00 3157 6347	28 57 8	0	94 75	04 73 7	19 86 2	29 68 0	06 20 2	0.00 4056 5445	77 98 2	47 00	04 90	0.00 3912 5187
	Ì	0.0 95	0.0 51	0.0 69	4 0.0 68	4 0.0 64	4 0.0 58	0.0 49	0.0 60	0.0 53	0.0 60	0347	0.0 56	0	4 0.0 69	, 0.0 59	0.0	0.0 56	0.0 59	5445	0.0 76	0.0 21	4 0.0 46	5187
		83 36	65 60	24 08	45 77	28 84	54 25	31 49	60 59	63 74	52 92	0.06	92 33	0.07	33 18	55 85	71 57	16 50	43 97	0.05	36 51	51 50	35 23	0.05
ا ٤	M B	77 5	85 9	46 2	96 4	91 2	41 4	23 8	22 8	31 5	82 2	9269 9105	67 1	8384 4255	75 8	35 7	52 85	25 8	35 2	9236 9759	84 2	37 5	58 9	4045 6264
Г																								
		0.1 54 65	0.0 91 01	0.1 22	0.1 17 60	0.1 19 74	0.1 04 68	0.0 92 89	0.1 04 17	0.0 95 10	0.1 06 24		0.1 02 03		0.1 09 18	0.0 89 81	0.1 24 60	0.1 02 55	0.0 97 64		0.1 30 85	0.0 38	0.0 91 64	
		0.1 54 65 29 67	0.0 91 01 21 38	0.1 22 26 94	0.1 17 60 73 21	0.1 19 74 09 37	0.1 04 68 89 00	0.0 92 89 63 72	0.1 04 17 45 98	0.0 95 10 58 45	0.1 06 24 44 00	0.11 7615	0.1 02 03 50 38	0.14 0010	0.1 09 18 37 11	0.0 89 81 24 71	0.1 24 60 60 08	0.1 02 55 28 15	0.0 97 64 58 81	0.10 4195	0.1 30 85 13 84	0.0 38 36 48	0.0 91 64 35 23	0.09 0029
(C A	0.1 54 65 29 67 6 0.8	0.0 91 01 21 38 4	0.1 22 26 94 71 0.8	0.1 17 60 73 21 7 0.9	0.1 19 74 09 37 5 0.8	0.1 04 68 89 00 4 0.9	0.0 92 89 63 72 2 0.9	0.1 04 17 45 98 4 0.8	0.0 95 10 58 45 2 0.9	0.1 06 24 44 00 9	0.11 7615 5256	0.1 02 03 50 38 6	0.14 0010 6158	0.1 09 18 37 11 7 0.9	0.0 89 81 24 71 4 0.9	0.1 24 60 60 08 8 0.8	0.1 02 55 28 15 7 0.8	0.0 97 64 58 81 8	0.10 4195 6925	0.1 30 85 13 84 1 0.9	0.0 38 36 48 29 0.6	0.0 91 64 35 23 7 0.9	0.09 0029 2578
(2	0.1 54 29 67 6 0.8 53 93 76	0.0 91 01 21 38 4 0.9 23 10 09	0.1 22 26 94 71 0.8 99 76 48	0.1 17 60 73 21 7 0.9 0.9 08 01	0.1 19 74 09 37 5 0.8 72 18 16	0.1 04 68 89 00 4 0.9 12 61 69	0.0 92 89 63 72 2 0.9 13 28 40	0.1 04 17 45 98 4 0.8 92 64 92	0.0 95 10 58 45 2 0.9 06 67 57	0.1 06 24 44 00 9 0.8 94 30 98	0.11 7615 5256	0.1 02 03 50 38 6 0.9 02 28	0.14 0010 6158	0.1 09 18 37 11 7 0.9 21 42 26	0.0 89 81 24 71 4 0.9 20 76 41	0.1 24 60 08 8 0.8 68 58 06	0.1 02 55 28 15 7 0.8 88 40 86	0.0 97 64 58 81 8 0.9 02 08	0.10 4195 6925	0.1 30 85 13 84 1 0.9 16 74 47	0.0 38 36 48 29 0.6 12 02 88	0.0 91 64 35 23 7 0.9 19 32 45	0.09 0029 2578
	C a N a	0.1 54 65 29 67 6 0.8 53 93 76 29 4	0.0 91 01 21 38 4 0.9 23 10 09 46 2	0.1 22 94 71 0.8 99 76 48 52 2	0.1 17 60 73 21 7 0.9 08 01 06 28 8	0.1 19 74 09 37 5 0.8 72 18 16 26 26 2	0.1 04 68 89 00 4 0.9 12 61 69 09 1	0.0 92 89 63 72 2 0.9 13 28 40 07 3	0.1 04 17 98 4 0.8 92 64 99 99 4	0.0 95 10 58 45 2 0.9 06 67 57 83 83	0.1 06 24 44 00 9 0.8 94 30 98 78 8	0.11 7615 5256 0.89 1905 2069	0.1 02 03 50 38 6 0.9 02 28 09 06	0.14 0010 6158 0.86 2026 4654	0.1 09 18 37 11 7 0.9 21 42 26 73 8	0.0 89 81 24 71 4 0.9 20 76 41 44 9	0.1 24 60 08 8 0.8 68 58 06 10 8	0.1 02 55 28 15 7 0.8 88 40 86 34 86	0.0 97 64 58 81 8 0.9 02 08 25 3	0.10 4195 6925 0.89 0996 1374	0.1 30 85 13 84 1 0.9 16 74 47 14 6	0.0 38 36 48 29 0.6 12 02 88 80 9	0.0 91 64 35 23 7 0.9 19 32 45 72 9	0.09 0029 2578 0.92 5093 5303
	C a N a	0.1 54 65 29 67 6 0.8 53 93 76 29 4 0.0 0.0	0.0 91 01 21 38 4 0.9 23 10 0.9 46 2 0.0 0.0	0.1 22 26 94 71 0.8 99 76 48 52 2 0.0 00	0.1 17 60 73 21 7 0.9 08 01 06 28 8 0.0 01	0.1 19 74 09 37 5 0.8 72 18 16 26 2 0.0	0.1 04 68 89 00 4 0.9 12 61 69 09 1 0.0 01	0.0 92 89 63 72 2 0.9 13 28 40 07 3 0.0 01	0.1 04 17 45 98 4 0.8 92 64 99 99 99 4	0.0 95 10 58 45 2 0.9 06 67 57 83 8 0.0 00	0.1 06 24 44 00 9 0.8 94 30 98 78 8 0.0 01	0.11 7615 5256 0.89 1905 2069	0.1 02 03 50 38 6 0.9 02 28 09 06 0.0 0.0	0.14 0010 6158 0.86 2026 4654	0.1 09 18 37 11 7 0.9 21 42 26 73 8 0.0 00	0.0 89 81 24 71 4 0.9 20 76 41 44 9 0.0 00	0.1 24 60 08 8 0.8 68 58 06 10 8	0.1 02 55 28 15 7 0.8 88 40 86 34 86 34 80 0.0 00	0.0 97 64 58 81 8 0.9 02 08 25 3 0.0 00	0.10 4195 6925 0.89 0996 1374	0.1 30 85 13 84 1 0.9 16 74 47 14 6 0.0 00	0.0 38 36 48 29 0.6 12 02 88 80 9 0.0 39	0.0 91 64 35 23 7 0.9 32 45 72 9 0.0 0.0	0.09 0029 2578 0.92 5093 5303
((((C A N A	0.1 54 65 29 67 6 0.8 53 93 76 29 4 0.0 01 56 08 99	0.0 91 21 38 4 0.9 23 10 09 46 2 0.0 00 89 16 94	0.1 22 26 94 71 0.8 99 76 48 52 2 0.0 00 60 65 88	0.1 17 60 73 21 7 0.9 08 01 06 28 8 0.0 01 12 85 16	0.1 19 74 09 37 5 0.8 72 18 16 26 2 0.0 01 32 57	0.1 04 68 89 00 4 0.9 12 61 69 09 1 0.0 01 31 11 05	0.0 92 89 63 72 2 0.9 13 28 40 07 3 0.0 01 17 36 82	0.1 04 17 45 98 4 0.8 92 64 99 99 99 4	0.0 95 10 58 45 2 0.9 06 67 57 83 8 0.0 00 18 75 58	0.1 06 24 44 00 9 0.8 94 30 98 78 8 0.0 01 11 90 63	0.11 7615 5256 0.89 1905 2069 0.00 0753	0.1 02 03 50 38 6 0.9 02 28 09 06 0.0 01 12 31 63	0.14 0010 6158 0.86 2026 4654	0.1 09 18 37 11 7 0.9 21 42 26 73 8 0.0 00 93 22 37	0.0 89 81 24 71 4 0.9 20 76 41 44 9 0.0 00 55 45 51	0.1 24 60 08 8 0.8 68 58 06 10 8	0.1 02 55 28 15 7 0.8 88 40 86 34 86 34 8 0.0 00 51 28 51	0.0 97 64 58 81 8 0.9 02 08 25 3 0.0 00 13 96 27	0.10 4195 6925 0.89 0996 1374 0.00 0513	0.1 30 85 13 84 1 0.9 16 74 47 14 6 0.0 00 51 38 80	0.0 38 36 48 29 0.6 12 02 88 80 9 0.0 39 74 81 57	0.0 91 64 35 23 7 0.9 19 32 45 72 9 0.0 00 13 93 56	0.09 0029 2578 0.92 5093 5303
	C a N a	0.1 54 65 29 67 6 0.8 53 93 76 29 4 0.0 01 56 08 99 3 0.0	0.0 91 01 21 38 4 0.9 23 10 09 46 2 0.0 00 89 16 94 5	0.1 22 94 71 0.8 99 76 48 52 2 0.0 00 60 65 88 1	0.1 17 60 73 21 7 0.9 08 01 06 28 8 0.0 01 12 85 16 7 0.0	0.1 19 74 09 37 5 0.8 72 18 16 26 2 0.0 01 32 57 97	0.1 04 68 89 00 4 0.9 12 61 69 09 1 0.0 01 31 11 05 7	0.0 92 89 63 72 2 0.9 13 28 40 07 3 0.0 07 3 0.0 01 17 36 82 4	0.1 04 17 45 98 4 0.8 92 64 99 99 4 0.8 99 99 0	0.0 95 10 58 45 2 0.9 06 67 57 83 8 0.0 00 18 75 58 7	0.1 06 24 44 00 9 0.8 94 30 98 78 8 0.0 01 11 90 63 2	0.11 7615 5256 0.89 1905 2069 0.00 0753 4089	0.1 02 03 50 38 6 0.9 02 28 09 06 01 12 31 63 5	0.14 0010 6158 0.86 2026 4654	0.1 09 18 37 11 7 0.9 21 42 26 73 8 0.0 00 93 22 37 2	0.0 89 81 24 71 4 0.9 20 76 41 44 9 0.0 00 55 45 51 2	0.1 24 60 08 8 0.8 68 58 06 10 8 06 10 8 00 0	0.1 02 55 28 15 7 0.8 88 40 86 34 8 6 34 8 0.0 00 51 28 51 8	0.0 97 64 58 81 8 0.9 02 08 25 3 0.0 00 13 96 27 1	0.10 4195 6925 0.89 0996 1374 0.00 0513 0361 8 67	0.1 30 85 13 84 1 0.9 16 74 47 14 6 0.0 00 51 38 80 7 0.0	0.0 38 36 48 29 0.6 12 02 88 80 9 0.0 39 74 81 57 6 0.0	0.0 91 64 35 23 7 0.9 32 45 72 9 0.0 00 13 93 56 5	0.09 0029 2578 0.92 5093 5303
	C a N a	0.1 54 65 29 67 6 0.8 53 93 76 29 4 0.0 01 56 08 99 3 0.0 01 17	0.0 91 01 21 38 4 0.9 23 10 09 46 2 0.0 00 89 16 94 5	0.1 22 26 94 71 0.8 99 76 48 52 2 0.0 00 60 65 88 1	0.1 17 60 73 21 7 0.9 08 01 06 28 8 0.0 01 12 85 16 7 0.0 00 69	0.1 19 74 09 37 5 0.8 72 18 16 26 2 0.0 01 32 57 97	0.1 04 68 89 00 4 0.9 12 61 69 09 1 0.0 01 31 11 05 7	0.0 92 89 63 72 2 0.9 13 28 40 07 3 0.0 01 17 36 82 4	0.1 04 17 45 98 4 0.8 92 64 99 99 4 0	0.0 95 10 58 45 2 0.9 06 67 57 83 8 0.0 00 18 75 58 7	0.1 06 24 44 00 9 0.8 94 30 98 78 8 0.0 01 11 90 63 2	0.11 7615 5256 0.89 1905 2069 0.00 0753 4089	0.1 02 03 50 38 6 0.9 02 28 09 06 0.0 01 12 31 63 5 0.0	0.14 0010 6158 0.86 2026 4654 0	0.1 09 18 37 11 7 0.9 21 42 26 73 8 0.0 00 93 22 37 2	0.0 89 81 24 71 4 0.9 20 76 41 44 9 0.0 00 55 45 51 2	0.1 24 60 08 8 08 58 06 10 8 06 10 8 00 0 0.0 00 99	0.1 02 55 28 15 7 0.8 88 40 86 34 8 0.0 00 51 28 51 8	0.0 97 64 58 81 8 0.9 02 08 25 3 0.0 00 13 96 27 1	0.10 4195 6925 0.89 0996 1374 0.00 0513 0361 8.67 1862 2184	0.1 30 85 13 84 1 0.9 16 74 47 14 6 0.0 00 51 38 80 7 0.0 00 51 38 80 7 0.0 00 51 38 80 7 0.9 13 13 13 13 13 13 13 13 13 13	0.0 38 36 48 29 0.6 12 02 88 80 9 0.0 39 74 81 57 6 0.0 00 57	0.0 91 64 35 23 7 0.9 19 32 45 72 9 0.0 00 13 93 56 5	0.09 0029 2578 0.92 5093 5303 0
		0.1 54 65 29 67 6 0.8 53 93 76 29 4 0.0 01 56 08 99 3 0.0 01 17 26 18 7	0.0 91 01 21 38 4 0.9 23 10 09 46 2 0.0 00 89 16 94 5	0.1 22 26 94 71 0.8 99 76 48 52 2 0.0 00 60 65 88 1	0.1 17 60 73 21 7 0.9 08 01 06 28 8 0.0 01 12 85 16 7 0.0 00 69 94 29	0.1 19 74 09 37 5 0.8 72 18 16 26 2 0.0 01 32 57 97	0.1 04 68 89 00 4 0.9 12 61 69 09 1 0.0 01 31 11 05 7	0.0 92 89 63 72 2 0.9 13 28 40 07 3 0.0 01 17 36 82 4 0.0	0.1 04 17 45 98 4 0.8 92 64 99 99 4 0 0	0.0 95 10 58 45 2 0.9 06 67 57 83 8 0.0 00 18 75 58 7	0.1 06 24 44 00 9 0.8 94 30 98 78 8 0.0 01 11 90 63 2	0.11 7615 5256 0.89 1905 2069 0.00 0753 4089	0.1 02 03 50 38 6 0.9 02 28 09 06 0.0 01 12 31 63 5 0.0 01 24 27	0.14 0010 6158 0.86 2026 4654 0 0 0.00 0178	0.1 09 18 37 11 7 0.9 21 42 26 73 8 0.0 00 93 22 37 2	0.0 89 81 24 71 4 0.9 20 76 41 44 9 0.0 055 45 51 2 0.0 00 55 45 51 2	0.1 24 60 08 8 08 58 06 10 8 58 06 10 8 0 0 0 0 0 0 0 0 0 0 99 21 84 6	0.1 02 55 28 15 7 0.8 88 40 86 34 8 0.0 00 51 28 51 8	0.0 97 64 58 81 8 0.9 02 08 25 3 0.0 00 13 96 27 1	0.10 4195 6925 0.89 0996 1374 0.00 0513 0361 8.67 1862 2184 7847 E- 005	0.1 30 85 13 84 1 0.9 16 74 47 14 6 0.0 00 51 38 80 7 0.0 00 51 38 80 7 0.0 00 51 38 80 7 0.0 00 51 38 80 74 47 6 0.0 51 38 80 74 47 6 0.0 51 38 80 74 47 6 0.0 51 38 80 74 47 74 6 0.0 51 38 80 74 47 6 0.0 51 38 80 71 47 74 6 0.0 51 38 80 70 6 70 70 70 70 70 70 70 70 70 70	0.0 38 36 48 29 0.6 12 02 88 80 9 0.0 39 74 81 57 6 0.0 00 57 60 97 3	0.0 91 64 35 23 7 0.9 19 32 45 72 9 0.0 00 13 93 56 5	0.09 0029 2578 0.92 5093 5303 0
		0.1 54 65 29 67 6 0.8 53 93 76 29 4 0.0 01 56 08 99 3 0.0 01 17 26 18 7 4.1 26	0.0 91 01 21 38 4 0.9 23 10 09 46 2 0.0 00 89 16 94 5 0 0 4.1 23	0.1 22 26 94 71 0.8 99 76 48 52 2 0.0 00 60 65 88 1 0 0 4.1 26	0.1 17 60 73 21 7 0.9 08 01 06 28 8 0.0 01 12 85 16 7 0.0 00 69 94 29 4 4.1 32	0.1 19 74 09 37 5 0.8 72 18 16 26 2 0.0 01 32 57 97 97 0 4.1	0.1 04 68 89 00 4 0.9 12 61 69 09 1 0.0 01 31 11 05 7 0 4.1 28	0.0 92 89 63 72 2 0.9 13 28 40 07 3 0.0 01 17 36 82 4 0 0 4.1 22	0.1 04 17 45 98 4 0.8 99 99 4 0 0 0 0 4.1 08	0.0 95 10 58 45 2 0.9 06 67 57 83 8 0.0 01 8 75 58 7 0 4.1 12	0.1 06 24 44 00 9 0.8 94 30 98 78 8 0.0 01 11 90 63 2 0 4.1 00 01 01 0 0 0 0 0 0 0 0 0 0 0 0 0	0.11 7615 5256 0.89 1905 2069 0.00 0753 4089 0 4.12 4688	0.1 02 03 50 38 6 0.9 02 28 09 02 28 09 06 0.0 01 12 31 63 5 0.0 01 24 72 4.1	0.14 0010 6158 0.86 2026 4654 4654 0 0 0178 189 4.11 6625	0.1 09 18 37 11 7 0.9 21 42 26 73 8 0.0 0 93 22 37 2 0 0 4.1 35	0.0 89 81 24 71 4 0.9 20 76 41 44 9 0.0 55 51 2 0 41 15 15 15 15 15 15 15 15 15 1	0.1 24 60 60 08 8 68 58 06 10 8 6 10 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1 02 55 28 15 7 0.8 88 40 86 34 8 0.0 00 51 28 51 8 51 8 0 0 0 4.1 03	0.0 97 64 58 81 8 0.9 02 08 25 3 0.0 00 13 96 27 1 0 0 4.1	0.10 4195 6925 0.89 0996 1374 0.00 0513 0361 8.67 1862 2184 7847 E- 005 4.11 4260	0.1 30 85 13 84 1 0.9 16 74 47 14 6 0.0 00 51 38 80 7 0.0 00 51 38 80 7 0.0 00 51 38 80 7 47 14 47 14 47 14 6 0.0 0 51 38 80 74 47 14 6 0.0 0 51 38 80 74 47 14 6 0.0 0 51 38 80 74 47 14 6 0.0 0 51 38 80 71 47 14 6 0.0 0 51 38 80 71 47 14 47 14 6 0.0 0 51 38 80 7 40 14 47 14 47 14 47 14 47 14 47 14 47 14 80 7 14 80 7 14 80 7 14 80 7 14 80 7 14 80 7 14 80 7 14 80 7 7 14 80 7 11 83 80 7 11 83 80 7 11 83 80 7 11 83 80 7 11 83 80 7 11 83 83 11 14 14 14 14 14 14 14 14 14	0.0 38 36 48 29 0.6 12 02 88 80 9 0.0 39 74 81 57 6 0.0 00 57 60 97 3 3.9 19	0.0 91 64 35 23 7 0.9 19 32 45 72 9 0.0 01 33 93 56 5 5 0 4.1 13	0.09 0029 2578 0.92 5093 5303 5303 0 0 4.12 5754

	47 40 3	77 10 2	11 64	64 15 1	23 84 8	13 87 1	62 12 3	59 52	50 82 5	03 29 5		17 63 1		96 92 5	10 79 9	18 23 3	69 32 5	90 00 1		24 55 8	91 52 2	99 97 7	
Г																							
	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46
i C 2	56. 13 3	56. 61 5	56. 25 1	55. 69 4	56. 03 3	56. 01 9	54. 13 1	55. 56 5	56. 79 1	56. 31 7	56.1 11	56. 08	55.8 36	56. 76	57. 34 8	56. 08 4	55. 78 6	53. 28 8	56.5 7	54. 87 7	55. 88 7	55. 79	55.6 33
T i C 2	0.0	0.0 31	0.0 21	0.0 41	0.1 14	0.0 65	0.0 7	0	0.0 1	0.0 23	0.09 6	0.0 52	0.02 1	0	0.0 52	0.0 28	0.0 1	0.1 16	0.06 7	0.0 64	0.0 28	0.0 7	0.07
A I 2 3	13. 62 1	15. 06 3	14. 07 5	14. 59 9	13. 35 9	12. 23 6	10. 90 2	11. 28 8	15. 01 2	13. 70 6	13.4 79	13. 58 6	12.1 04	16. 74	15. 22 3	12. 91 6	14. 28 9	12. 23 8	11.3 07	10. 72 3	13. 54 4	13. 86 8	12.6 49
F e C	13. 82	12. 89 4	13. 27 7	13. 55 9	13. 99 9	14. 66 3	16. 17	15. 25 5	12. 28 5	13. 80 2	13.9 32	13. 95 6	14.5 5	11. 04 5	11. 39 1	13. 78 2	12. 80 4	15. 42 9	15.3 03	15. 87 7	13. 62 1	13. 19 1	14.5 07
N n C	0.1 56	0.1 01	0.0 81	0.1 16	0.0 45	0.0 35	0.1 26	0.0 75	0.1 06	0.0 76	0.15 1	0.0 35	0	0	0.0 4	0.0 2	0	0.2 31	0.10 6	0.0 86	0.0 86	0.0 96	0.04 5
R g C	1.0 39	0.8 33	0.8 98	1.1 08	1.0 97	1.3 77	1.8 04	1.6 36	0.7 79	0.8 69	1.08 5	1.0 54	1.32 8	0.5 04	0.8 14	0.9 98	0.8 81	1.7 28	1.62 9	1.6 82	1.0 79	1.0 14	1.09 2
C a C	2.4 09	1.9 14	2.2 55	2.7 64	2.7 47	3.4 26	4.4 48	3.7 4	1.6 21	2.2 03	2.70 7	2.4 19	3.17 6	1.2 36	1.6 56	2.2 59	2.3 09	6.0 17	3.74 4	4.1 27	2.4 85	2.5 89	2.57 5
N a 2 C	13. 22	13. 21 9	12. 83 7	12. 72	12. 58 5	12. 11 5	11. 06 2	12. 04 3	13. 46 1	12. 90 8	13.0 3	12. 89 8	12.4 2	13. 98 2	13. 22 8	12. 57 2	12. 72 9	10. 29 5	12.0 62	11. 79 9	12. 82 1	12. 53 5	12.3 28
К 2 С	0.0 09	0.0 1	0.0 13	0.0 5	0	0.0 03	0.0 18	0.0 09	0.0 03	0.0 16	0	0	0.00 2	0.0 24	0.0 12	0.0 05	0.0 18	0.0 05	0.01	0.0 05	0.0 1	0.0 18	0.02
C r 2 C 3	0.0	0	0.0	0.0 24	0.0	0	0	0.0	0.0	0.0	0.00 3	0	0	0	0	0.0	0.0	0.0	0.01	0.0	0	0	0.00
s u n	10 0.4 43	10 0.6 8	99. 74 8	10 0.6 75	10 0.0 11	99. 93 9	98. 73 1	99. 63 2	10 0.0 84	99. 92 3	100. 594	10 0.0 8	99.4 37	10 0.2 91	99. 76 4	98. 67 4	98. 85 7	99. 36 9	100. 811	99. 24 6	99. 56 1	99. 17 1	98.9 21
S	2.0 40 73 10 07 7	2.0 35 42 93 86 6	2.0 47 43 54 54	2.0 16 67 08 40 7	2.0 44 80 00 17 3	2.0 55 38 21 17 4	2.0 36 79 95 36 6	2.0 57 23 82 56 9	2.0 46 90 90 12 8	2.0 51 76 36 44 4	2.03 8828 9316	2.0 43 93 37 12 1	2.05 9189 1476	2.0 27 17 60 15 8	2.0 59 59 41 36 9	2.0 68 28 65 91 7	2.0 44 30 00 02 1	1.9 91 88 07 48 9	2.06 6216 9132	2.0 51 04 11 65 6	2.0 45 51 74 26 3	2.0 44 04 50 51 1	2.05 7234 5303
Т	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.00	0.0	0.00	0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.00

ĺ	i	00 71	00 83	00 57	01 11	03 12	01 79	01 98		00 27	00 63	2622 9328	01 42	0582 3504		01 40	00 77	00 27	03 26	1840 1265	01 79	00 77	01 92	1946 4019
		07 61	80 48	47 54	63 32	82 03	33 03	05 39		10 20	00 84		50 99			42 67	64 49	55 51	04 31		86 52	06 08	84 80	
-	_	7	9	5	6	2	2	1	0.4	5	5		8 0 5		07	5	0.5	4	3		0.4	1	7	
		83	0.6	0.0	23	0.5 74	0.5 29	0.4 83	0.4 92	37	0.5 88		0.5 83		0.7	0.8 44	0.5 61	0.0 17	0.5 39		0.4 72	0.5 84	0.5 98	
		70	38	87	11	64	19	53	62	78	59		66		72	43	45	21	21		40	32	91	
	^	28	33	02	04	04	04	03	39	28	12	0.57	77	0.52	52	46	51	50	21	0.48	62 25	52	22	0.55
1	A	22	00 77	93	10	50 5	28 5	12 8	97	90 3	96 9	7305 5634	50 9	0785	24 4	80 4	40 7	80 9	29 3	0697	25 2	3	90 5	1344 1976
		0.4	0.3	0.4	0.4	0.4	0.4	0.5		0.3	0.4		0.4		0.3	0.3	0.4	0.3	0.4		0.4	0.4	_	
		20	87	04	10	27	49	08	0.4	70	20		25		29	42	24	92	82		96	16	0.4	
		12	62	09	54	17	86	76	72	25	46	0.42	32	0.44	85	08	99	34	25	0.40	19	87	04	0.44
	F	73	81 83	46 29	18 36	62 80	60 37	28 70	27 90	33	80 42	0.42 3301	69 62	0.44 8691	11 05	05 43	82 41	50 91	28 95	0.46 7379	86 88	37 32	12 43	0.44 8571
	e	1	6	5	4	6	9	2	02	1	4	0993	1	7528	7	6	4	4	8	2886	3	5	08	9243
Γ			0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0		0.0				0.0		0.0		0.0	0.0	0.0	
		0.0	03	02	03	01	0.0	04	02	03	02		01			0.0	00		07		02	02	02	
		04 80	52	49 69	55 73	39 07	01	52	35 17	23 56	34 49	0.00	08			21	62 46		31 28	0.00	22	58	97 88	0.00
	Μ	32	79	14	23	79	75	40	07	65	85	4646	52			66	55		15	3278	07	12	18	1409
	n	02	8	8	3	3	87	1	4	6	4	741	8	0	0	4	4	0	8	9466	4	4	7	2972
		0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	
		29	44 63	48 71	59 79	59 66	75 30	17	90 27	41 84	47 18		57 25		26 82	43 57	54 85	48 11	96 27		93 69	58 86	0.0 55	
		89	61	62	75	65	23	09	83	78	72	0.05	54	0.07	85	17	54	85	08	0.08	73	14	37	0.06
	Μ	35	42	03	64	21	08	65	67	93	55	8759	11	2995	21	39	02	39	43	8680	12	50	18	0185
	g	5	6	3	3	3	1	9	8	9	/	7099	3	6774	2	8	1	9	6	4613	2 0.1	1	69	3912
		0.0	0.0 73	0.0 87	0.1	0.1	0.1 34	0.1 79	48	0.0	0.0 85		0.0 94		0.0	0.0 63	0.0 89	0.0 90	0.2 40		0.1 65	0.0	0.1	
		93	72	93	22	39	66	30	34	62	98		45		47	71	25	64	95		24	97	62	
	c	82	05	23	26	58	86	35	63	59	53	0.10	31	0.12	29	55	03	94	49	0.14	95	44	20	0.10
	C a	66 54	18	9	57	60 8	47 8	69 3	25 9	39	04 7	302	81	5482 8445	21 94	2	41 4	67 8	45 3	6503 3287	94 9	07 68	78 1	2011 8158
Ē	ŭ	0.9	0.9	0.9	0.8	0.8	0.8	0.8	0.8	0.9	,	502	0.9	0110	0.9	0.9	0.8	0.9	0.7	5207	0.8	0.9	0.8	0100
		31	21	05	92	90	61	06	64	40	0.9		11		68	20	98	04	46		54	09	90	
		73	33	81	91	33	73	91 05	39	56	11	0.01	32	0.00	08	98 25	81	29	02	0.05	91 62	72	33	0.00
	N	07	47 78	35	54	71 98	74 63	95 27	50 94	90 42	67 72	0.91 7849	96 67	0.88 7969	32 46	35 86	52 70	22	70 90	0.85 4089	62 07	18 38	30 22	0.88 3768
1	a	7	6	3	2	8	8	3	6	6	32	6121	3	1383	3	7	3	1	9	5172	7	7	5	026
Γ		0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0			9.40	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	
		00	00	00	02 20		00 14	00 86	00	0.0	00 74			8512	01	00 54	00	00 84	00		00 22	00 46	00 84	
		41 73	45 85	35	94		04	39	42 50	13	35			2493 3297	33	97	23 52	13	23 84	0.00	23 83	40 68	04 12	0.00
		67	99	76	34		06	40	44	79	61			E-	75	35	07	96	03	0465	76	75	31	0943
-	К	9	5	5	4	0	6	4	9	27	4	0	0	005	5	3	3	9	7	9065	3	8	7	388
		0.0		0.0	0.0	0.0			0.0	0.0	0.0	8.61					0.0	0.0	0.0		0.0			5 01
		0.0		15	68	92			61	0.0	0.0	1552					29	89	65		17			5.84 6907
		28		10	70	32			46	45	08	2377					15	81	01	0.00	72			5342
	C	74 17	-	25	41	12	_		77	59	64	E-			_		52	02	31	0375	88	0		284E
ļ	r c	1/	0	" 3 1 1	2	9 11	0	U	/	15	08	005	0	0	0	0	4	/	9	3859	3	0	0	-005
ŀ	د	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4. 1	4.12	4.1	4.1Z	4.1	4.0	4.0	4.0	4.1	4.11	4.⊥	4.⊥	4.1	4.10

n	32 1 35 28 31 8	05 45 98 15 1	01 53 56 62 6	17 23 71 53 9	08 53 53 26 9	09 16 83 00 3	23 34 65 01 7	27 93 77 97 3	03 59 81 30 7	09 39 14 07 3	8690 8922	18 47 21 43 3	1175 0745	05 04 96 82 9	77 55 09 13 4	99 29 72 99 2	98 03 57 58 5	07 41 03 04 6	5256 5584	38 26 84 29 4	16 64 37 19 2	00 15 77 50 1	7414 9724
	C																						
		,																					
	T D D																						

Table 3: Microprobe data of clinozoisite and omphacite in eclogite sample SY4. See Fig. 3D for location of measurements.

epidoteclinozoisite

omphacite

		sy4_m1 s	sy4_m2 s	sy4_m3
	SiO2	38.537	38.171	38.518
	TiO2	0.116	0.108	0.089
	Al2O3	25.372	25.529	25.606
	FeO	10.695	10.225	10.083
	MnO	0.172	0.107	0.07
	MgO	0.066	0.042	0.049
	CaO	23.176	23.152	23.265
	Na2O	0.04	0.024	0
	К2О	0	0	0.008
	Cr2O3	0.048	0.046	0.058
	sum	98.222	97.404	97.746
	Si	3.08	3.07	3.09
	Ti	0.01	0.01	0.01
i.	Al	2.39	2.42	2.42
	Fe	0.72	0.69	0.68
	Mn	0.01	0.01	0.00
	Mg	0.01	0.01	0.01
	Са	1.99	2.00	2.00
	Na	0.01	0.00	0.00
	К	0.00	0.00	0.00
	Cr	0.00	0.00	0.00
	Sum	8.21	8.21	8.19

sy4_m4	sy4_m5 s	sy4_m6 s	sy4_m7 :	sy4_m8 s	sy4_m9	sy4_m10
55.937	55.711	55.136	55.123	55.761	55.102	57.561
0.048	0.066	0.019	0.056	0.045	0.055	0.053
11.561	10.26	9.066	10.244	11.069	10.942	9.64
9.513	11.29	12.273	10.74	9.554	10.259	13.106
0.011	0.091	0.155	0.166	0.021	0.059	0.112
4.821	4.642	4.927	4.98	5.159	5.159	9.377
7.892	8.314	8.648	9.513	8.743	9.167	0.256
9.724	9.568	9.188	8.652	9.4	9.184	7.663
0.019	0.013	0	0	0	0	0.002
0.039	0.057	0.023	0.052	0.011	0.056	0.006
99.565	100.012	99.435	99.526	99.763	99.983	97.776
2.03	2.03	2.04	2.02	2.02	2.01	2.09
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.49	0.44	0.40	0.44	0.47	0.47	0.41
0.29	0.34	0.38	0.33	0.29	0.31	0.40
0.00	0.00	0.00	0.01	0.00	0.00	0.00
0.26	0.25	0.27	0.27	0.28	0.28	0.51
0.31	0.33	0.34	0.37	0.34	0.36	0.01
0.68	0.68	0.66	0.62	0.66	0.65	0.54
0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.06	4.08	4.09	4.06	4.07	4.08	3.97

Table 4: P- and S-wave velocities and anisotropies of samples SY1, SY2, SY4 and SY5. Iso is the VRH isotropic average.

Sample	Lithology	Vpiso (km/s)	min (km/s)	max (km/s)	Ap (%)	Vsiso (km/s)	Vs1 min (km/s)	Vs1 max (km/s)	Vs2 min (km/s)	Vs2 max (km/s)	Vp/Vs
Sy1	Blueschist	7.82	7.15	8.09	12.1	4.45	4.40	4.73	4.40	4.51	1.76
Sy2	Eclogite	7.89	7.76	8.06	3.7	4.64	4.62	4.70	4.60	4.64	1.70
Sy4	Eclogite	7.76	7.64	7.90	3.3	4.58	4.55	4.64	4.54	4.59	1.69
Sy5	Blueschist	7.43	7.24	7.72	6.5	4.35	4.34	4.43	4.28	4.37	1.71

Acce

C
+
Ð

	SY1	SY2	SY4	SY5
<i>C11C11</i>	65.1	64.7	61.2	59.5
<i>C12C12</i>	17.1	20.0	17.7	17.2
<i>C13C13</i>	20.5	19.5	18.7	17.9
<i>C14C14</i>	0.5	0.1	0.1	-0.2
<i>C15C15</i>	-0.1	-0.2	0.6	-0.4
C16C16	0.1	0.3	0.4	0.1
C22C22	51.3	63.3	58.5	52.6
C23C23	17.0	19.4	17.8	17.0
C24C24	0.7	0.3	-0.1	-0.4
C25C25	0.0	-0.1	-0.2	0.0
C26C26	0.0	0.2	0.1	0.1
C33C33	64.9	60.4	60.8	54.6
C34C34	1.3	0.3	-0.1	-0.4
C35C35	-0.1	-0.2	0.5	-0.2
C36C36	0.0	0.0	0.1	0.0
C44	19.5	21.2	20.7	18.4
C45	0.0	0.1	0.1	0.0
C46	0.0	-0.1	0.0	-0.1
C55	22.3	21.4	21.5	19.3
C56	0.4	0.1	0.1	-0.2
C66	19.4	22.0	20.7	18.9

Table 5: Tensor components of elastic moduli for the four samples studied.

<

Fig. 1: A: Overview map of the Cyclades (after Ring et al., 2003); B: Pressure-Temperature path of Syros (upper path) and Sifnos (lower path) from Jolivet and Brun (2010) based on the data from Trotet et al. (2001a; b), numbers indicate time of peak pressure metamorphism in Ma; C: Map of the major lithological units of Syros (from Keiter et al., 2004).

Fig. 2: Light-optical micrographs of the investigated blueschist (A, B) and eclogite (C-F) samples. (A) Well aligned Ph: phengite, Ti: titanite and Gln: glaucophane in the foliation of a blueschist; (B) phengite and glaucophane in pressure shadows of feldspar and garnet; (C) coarse-grained eclogite with randomly oriented amp: amphibole, phengite and omphacite; (D) quartz in pressure shadows of garnet, surrounded by a matrix of omphacite and glaucophane, well aligned in the foliation; (E) coarse and randomly oriented omphacite grains divided by a zone of small glaucophane grains well aligned in a microshear zone; (F) randomly aligned quartz and phengite in pressure shadows of garnet. Sections are perpendicular to the foliation and parallel to the lineation. A, B, F taken under crossed polarizers, C, D, E under plane-polarized light; Fps: feldspar, Gln: glaucophane, Grt: garnet, Omp: omphacite, Ph: phengite, Qz: quartz, Ti: titanite. All micrographs are taken from sections parallel to the lineation and perpendicular to the foliation.

Fig. 3: A; C and D: Backscatter electron (BSE) images of blueschist (A) and eclogites (C and D); Amp: amphibole, Cz: clinozoisite, Gln: glaucophane, Omp: omphacite, Ph: phengite, Qz: quartz, Ti: titanite. Sample numbers are given in the upper left of each image. (m1-m23): icroprobe measurement points and measurement profiles (Table 2A, B). B and E: Volume % of garnet components in blueschist sample SY1 (B) and eclogite sample SY2 (E); Alm: almandine, Prp: pyrope, Sps: spessartine, GAU: Grossular+Andradite+Uwanovite. All BSE images are taken from sections parallel to the lineation and perpendicular to the foliation.

Fig. 4: CPO data of the mineral phases that are important for the elastic anisotropy of the blueschist (SY1, SY5) and eclogite (SY2, SY4) samples. Pole figures are oriented according to foliation and mineral/stretching lineation of glaucophane and omphacite, respectively. The lineation (X-direction of the finite strain ellipsoid) is EW in the pole figure, the foliation normal (Z-direction of the finite strain ellipsoid) is oriented NS, and the Y-direction (perpendicular to X and Z) lies normal to the pole figure plane. Pole figures are lower hemisphere equal area projections on a 5x5° grid. Contour levels are multiples of a random distribution. Maxima are indicated at the lower right of each pole figure. Only significant pole figures are given. They illustrate the textural differences between samples. See text for pole figure description and discussion.

Fig. 5: Modelled P-wave and S-wave velocity distributions of the two blueschist (SY1, SY5) and the two eclogite (SY2, SY4) samples. Colored contour lines show velocities in km/s. Minimum and maximum velocity is given in the lower right corner of the pole figures, and orientation zones of maximum velocity are surrounded by grey or orange contour lines. A: elastic anisotropy. See text for discussion.