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Many blueschists and eclogites are inferred to have formed from oceanic basalts in subducted slabs. 

Knowledge of their elastic behaviour is essential for reconstructing the internal structure of 

subduction zones. The Cycladic Blueschist Unit, exposed on Syros Island (Greece), contains rocks 

belonging to an exhumed Tertiary subduction complex. They were possibly part of a subduction 

channel, a shear zone above the subducting slab in which exhumation is possible during subduction. 

Intense plastic deformation, forming crystallographic preferred orientations (CPO), accompanied 

blueschist and eclogite metamorphism. CPO of the constituent minerals in the collected samples was 

determined by time-of-flight neutron diffraction. Two samples are foliated fine-grained blueschists 

with strong CPO, rich in glaucophane, zoisite and phengite. Two coarser-grained eclogite samples 

rich in omphacite and clinozoisite, or glaucophane, have weaker CPO. Vp and Vs anisotropies were 

computed from the orientation distribution function and single-crystal elastic constants. All samples 

show velocity maxima parallel to the mineral lineation, and minima normal to the foliation, 

providing important constraints on orientations of seismic anisotropy in subduction channels. Vp 

anisotropies are up to three times higher (6.5-12%) in the blueschists than in the eclogites (3-4%), 

pointing to a potentially important lithological control of elastic anisotropy in subducted oceanic 

crust.  

 

Plain Language Summary 

 

Many blueschists and eclogites are inferred to have formed from oceanic basalts in subducted slabs. 

Knowledge of their elastic behaviour is essential for reconstructing the internal structure of 

subduction zones. The Cycladic Blueschist Unit, exposed on Syros Island (Greece), contains rocks 

belonging to an exhumed Tertiary subduction complex. They were possibly part of a subduction 

channel, a shear zone above the subducting slab in which exhumation is possible during subduction. 

Intense plastic deformation, forming crystallographic preferred orientations (CPO), accompanied 

blueschist and eclogite metamorphism. CPO of the constituent minerals in the collected samples was 

determined by time-of-flight neutron diffraction. Two samples are foliated fine-grained blueschists 

with strong CPO, rich in glaucophane, zoisite and phengite. Two coarser-grained eclogite samples 

rich in omphacite and clinozoisite, or glaucophane, have weaker CPO. Vp and Vs anisotropies were 

computed from the orientation distribution function and single-crystal elastic constants. All samples 

show velocity maxima parallel to the mineral lineation, and minima normal to the foliation, 

providing important constraints on orientations of seismic anisotropy in subduction channels. Vp 
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anisotropies are up to three times higher (6.5-12%) in the blueschists than in the eclogites (3-4%), 

pointing to a potentially important lithological control of elastic anisotropy in subducted oceanic 

crust. 

 

 

1. Introduction 

 

Knowledge of key rock petrophysical properties is essential for reliable interpretation of seismic 

data. Most important is seismic velocity and its anisotropy, mainly controlled by the rock type, 

microstructure and the crystallographic preferred orientation (CPO) of the constituent mineral 

phases (e.g.: Ji. et al., 2003a; b). Despite decades of investigation, subduction zones, especially their 

acoustic properties at depth, are still a matter of debate (e.g. Helffrich and Stein, 1993; Essen et al. 

2009; Audet et al. 2009). As velocity models from active and passive seismic surveys allow for 

progressively better spatial resolution, knowledge of elastic anisotropy of the constituent rocks 

becomes increasingly important.  

 

Blueschists and eclogites are the subducted equivalents of basaltic oceanic crust (e.g. Ernst, 1988; 

Maruyama et al., 1996). Direct links between blueschist occurrence and active subduction have been 

successfully demonstrated (e.g. Maekawa et al., 1993; Fryer at al., 1999). Thus, the investigation of 

these rocks and the geometrical, tectonic and petrological reconstructions of fossil subduction 

complexes (e.g. Wakabayashi, 1999 Wakabayashi et al., 2015, and references therein) offer 

invaluable insights into fundamental processes of burial, deformation and exhumation as well as into 

the internal structure of subduction zones and/ or subduction channels (e.g. Behrmann and 

Ratschbacher 1989; Platt, 1993; Jolivet et al., 2003; Abalos et al., 2003; Malusa et al., 2011, Behr and 

Platt, 2013). 

 

In seismic images the crust of some subducted oceanic slabs appears as a zone of lower seismic 

velocities compared to the surrounding mantle of the downgoing and overriding plates (up to 14% 

velocity difference to up to 150 km depth; e.g. Abers, 2005). This crust is preferentially composed of 

blueschists and/or eclogites, and is usually seismically anisotropic (e.g. Ji and Zhao, 1994; Ji et al., 

1998; Kim et al., 2013). Knowledge of the orientation and magnitude of this anisotropy is, therefore, 

essential for the correct construction of seismic velocity models and an improved structural 

interpretation of subducted slabs. One approach is to investigate the anisotropy of rocks by 

experimental techniques at elevated pressures (e.g. Christensen, 1965; 1966; Christensen and 

Fountain, 1975; Kern, 1978; 1993; Fountain et al., 1994; Mauler et al., 2000; Ullemeyer et al., 2006; 

2010; Kern et al., 2008), or by the recalculation of the elastic velocity using rock texture and single 

crystal elastic data (e.g. Bascou et al., 2001; Ji et al., 2003; Abalos et al., 2011; Keppler et al., 2015). 

The major issue we address in this study is how anisotropy is expected to vary between blueschist-

grade and eclogite-grade subducted oceanic crust, and how it would compare with the surrounding 

mantle rocks. This is important, as blueschists and eclogites occupy different fields in pressure-

temperature space and, therefore, reflect depth of subduction. Our study object is the Cycladic 

Blueschist Unit (Aegean Sea, Greece). Especially on the island of Syros high-pressure rocks of oceanic 

origin are well studied and coherently exposed, including blueschists and eclogites.  
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2. Geological Setting, Syros Island 
 

The Cycladic Blueschist unit (Fig. 1A,C), arguably one of the best-exposed fossil subduction 

complexes in the world (e.g., Le Pichon and Angelier, 1979; Gautier et al., 1993; Gautier and Brun, 

1994; Ring and Layer, 2003; Ring and Glodny, 2010; Jolivet et al., 2013; Roche et al., 2016), has one 

of its most extensive occurrences on Syros Island Greece (e.g. Keiter et al., 2004). Former oceanic 

crust of probable Cretaceous age (Keiter et al., 2011) was subducted within the Mesohellenic 

Subduction System on a pressure-dominated prograde pressure-temperature path (PT-path; Fig. 1B), 

and rapidly exhumed thereafter. The Cycladic Blueschist Unit comprises a wide range of blueschists 

and eclogites with variable fabrics and compositions. The eclogites and especially the blueschists in 

the areas chosen for sampling (Fig. 1C) are very fresh and known for their low degree of 

retrogression and overprinting. This offers an ideal background for a systematic study of 

microstructure, CPO and petrophysical properties of subducted rocks. The metamorphic and 

structural record allows in principle to decipher processes of burial, high-pressure deformation and 

exhumation. 

 

The Cycladic Blueschist Unit forms part of the Attic-Cycladic Crystalline Complex, which can be 

traced from southeast of Euboea island eastwards to Ikaria and Samos islands, and continues into 

the western part of the Anatolian Menderes Complex (e.g. Jacobshagen, 1986). From bottom to top 

there are four major tectonic units: (I) a Basement Unit, consisting of pre-Alpine granites, 

paragneisses and orthogneisses (Ios, Sikinos; van der Maar, 1980), and medium to high-grade 

metamorphics to migmatites on the central Cyclades (Naxos and Paros; Andriessen et al., 1987; 

Jacobshagen, 1986 and references therein); (II) the high-pressure/low-temperature Cycladic 

Blueschist Unit (mainly Syros, Sifnos, Tinos); (III) the Intermediate Unit, made up of metapelites, 

marbles and metabasites, and present on most of the Cycladic islands (Jansen and Schuiling, 1976; 

Dürr et al., 1978; Schliestedt et al., 1987); (IV) the uppermost allochthonous Pelagonian Unit with 

ophiolitic remnants of the Vardar Ocean, located in the hanging wall of the metamorphic core 

complexes of the northern (Andros, Tinos, Mykonos) and central Cyclades (Naxos and Paros; Jolivet 

et al., 2013; Huet et al, 2009 and references therein).  

 

Isotopic dating suggests a complex pre-Alpine origin of the basement unit with Variscan (305-295 

Ma) and pre-Variscan (~500 Ma) ages (e.g. Henjes-Kunst et al., 1988). The Alpine history of the 

Cyclades comprises several tectonometamorphic events that have affected the Cycladic Blueschist 

Unit. Subduction-related Eocene (40-50 Ma) eclogite/blueschist facies metamorphism is well 

documented (Fig. 1B; e.g. Schmädicke and Will, 2003; Tomaschek et al., 2003; Ring and Layer, 2003). 

The early exhumation path is characterized by depressurization and cooling (Parra et al., 2002), thus 

part of the rocks escaped retrogression, especially on Syros Island. However, an Oligo-Miocene (25-

16 Ma) Barrovian-type greenschist facies metamorphic overprint is observed in many locations (e.g. 

Jansen & Schuiling, 1976; Altherr et al., 1982; Henjes-Kunst et al. 1988; Andriessen et al., 1987; 

Vandenberg and Lister, 1996; Bröcker and Enders, 1999; Huet et al., 2009). The youngest 

tectonometamorphic history is dominated by extension, caused by the southward retreat of the 

subducting African slab (e.g. Le Pichon and Angelier, 1979). 
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Most of Syros is made up of rocks belonging to the Cyclades Blueschist Unit (Fig. 1C), locally called 

Ermoupoli unit. It mostly dips moderately N to NE (e.g. Rosenbaum et al., 2002; Keiter et al., 2004; 

2011) and consists of a strongly tectonized association of gneisses, schists, marbles, serpentinites 

and metabasites. Most of these are eclogite- to blueschist grade metamorphosed and only locally 

overprinted by later greenschist grade metamorphism. In the SW part of Syros, around Mavra 

Vounakia (Fig. 1C) this overprint is more intense, and this led us to avoid sampling there. The schists 

and marbles are thought of having originated from flysch sediments, whereas the metabasites and 

serpentinites probably have been part of an ophiolitic mélange (e.g. Dixon and Ridley, 1987; Keiter 

et al, 2011). Two of these samples (SY1: 37°29’56.86’’N/24°53’42.47’’E, SY2: 

37°29’57.16’’N/24°53’35.23’’E, SY4)  come from the east-west trending blueschist-eclogite belt in 

the north of the island, near Kambos, near the beaches of Lia and Grammata. Another sample (SY4: 

37°24’35.64’’N/24°52’32.06’’E)  is from the bluschist and eclogite occurrence three kilometers north 

of Finikas in the western part of the island, and the fourth sample (SY5: 

37°25’03.18’’N/24°57’17.95’’E) comes from the southern end of the large blueschist occurrence near 

the eastern coast south of Ermoupoli (Fig. 1C). These three sampling areas form the largest coherent 

outcrops of metabasite and sepentinite units on Syros.   

 

3. Methods 

 

CPO measurements were performed at the neutron time-of-flight (TOF) texture diffractometer SKAT 

at the Frank Laboratory of Neutron Physics (Joint Institute for Nuclear Research in, Dubna, Russia; 

Keppler et al., 2014; Ullemeyer et al., 1998). Due to the high penetration capability of neutrons in 

matter and the large beam cross section of the SKAT instrument, measurements of large-volume 

samples of up to 65 cm3 are possible, without the need for sample preparation. This allows for good 

grain statistics even if the investigated samples are coarse-grained. ‘Rietveld Texture Analysis’ (RTA) 

was applied for the CPO calculation using the MAUD software (Von Dreele, 1997; Matthies et al. 

1997; Lutterotti et al., 1997; Wenk et al., 2010). Low Rwp values (5.7-12.4%) were achieved in the RTA 

for all samples (Von Dreele, 1997). Since RTA requires knowledge of the constituting minerals 

present in the sample, mineral assemblages and chemical compositions were obtained at the 

Steinmann-Institute Bonn using a JEOL-JXA-8900 microprobe.  

The orientation distribution function (ODF) of each phase, which describes the orientation of the 

crystal lattice planes related to an external reference frame is finally used to model the elastic 

properties of the samples applying Christoffel’s equation: 

 

<Cijkl>njni - V2ij= 0 

 

where V is the velocity implying P-waves (Vp) and shear waves (Vs1, Vs2), <Cijkl>njni the acoustic 

tensor, Cijkl being the single-crystal stiffness coefficient and n the plane wave propagation 

direction, is the density and ijk is the Kronecker delta. The bulk seismic properties are calculated 

as weighted averages of the elastic properties of the constituent mineral phases using the ODF and 

the corresponding single crystal elastic constants. The latter were taken from the literature 

(omphacite: Bhagat et al., 1992; garnet: Babuska et al., 1978; glaucophane: Bezacier et al., 2010; 

muscovite: Vaughan and Guggenheim, 1986; quartz: Heyliger et al., 2003; albite: Brown et al., 2006; 

epidote/zoisite/clinozoisite: Aleksandrov et al., 1974).. The Voigt–Reuss–Hill approximation was used 
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for the calculations because it gives the closest agreement between CPO derived and laboratory-

measured seismic velocities (Seront et al., 1989).  

 

4. Microstructure and compostion 
 

The investigated blueschists contain glaucophane (50-60%), clinozoisite (~30%), phengite (5-10%) 

and minor amounts of garnet,albite and titanite. Since the fraction of retrograde phases is small, this 

mineral assemblage can be assigned close to peak metamorphic conditions of the PT-path. The 

blueschists are fine-grained and show a pronounced shape preferred orientation (SPO) of 

glaucophane and clinozoisite defining the foliation and lineation. Phengite and titanite are also 

aligned in the foliation, and few sub-idiomorphic albite grains with a random orientation are found 

within the matrix (Fig. 2A, 3A and 3B). Pressure shadows of garnet mostly contain phengite, could 

indicate retrograde phengite growth (Fig. 3B; see Table 2A for phengite composition). Inclusions in 

garnet, which are glaucophane, quartz, rutile and white mica, form a foliation, oblique to the matrix 

foliation. The glaucophane is rich in Fe and relatively poor in Mg (see Table 1). Lowest Na contents 

are found in the grain centers, visible as lighter spots in Fig. 3A., arguing for prograde glaucophane 

growth. Garnets are zoned with increasing almandine and decreasing spessartine contents from core 

to rim also indicating prograde growth (Fig. 3B). Epidote is composed relatively homogenously and 

has a high clinozoisite component.  

 

The eclogites are coarse-grained. They contain omphacite (35-45%, Table 2a and 2b), clinozoisite (0-

35%), glaucophane (0-20%), phengite (5-20%), garnet (5-10%), quartz (0-15%) and minor amounts of 

titanite. Sample SY2 shows randomly oriented omphacite with locally interspersed glaucophane (Fig. 

2C), indicating local blueschist grade overprinting. Where the fabric is dominated by glaucophane, an 

SPO is more pronounced (Fig. 2E). The other eclogite sample (SY4) exhibits a strong SPO (Fig. 2D) 

defining a pronounced foliation and lineation made up by omphacite and glaucophane. Some larger 

glaucophane grains have been completely replaced by smaller ones presumably indicative of 

dynamic recrystallization. Phengite commonly has a relatively weak preferred orientation (Fig. 2C), 

pointing to late stage formation after development of the glaucophane foliation (Fig. 2F). Pressure 

shadows around garnet contain quartz and phengite (Figs. 2D and 2F). Inclusions in garnets are 

quartz, white mica and glaucophane. They form a weakly defined foliation fabric oblique to the 

matrix foliation (Figs. 2D and 2F). 

 

Amphibole in the eclogites is either ferro-eckermannit or ferro-glaucophane (Fig. 2C and Table 2A). 

The omphacite composition is relatively homogenous within grains (see Fig. 3C for location of 

microprobe measurements and Table 2B for grain composition), but varies from sample to sample 

(compare grain compositions in Table 2B and Table 3; see Fig 3D for location of measurements). 

Omphacite is low in Mg and Ca, and high in Na and Fe. Garnets in the eclogites exhibit a higher 

almandine component than in the blueschists, but also show increasing almandine and decreasing 

spessartine contents from core to rim indicating prograde growth (Fig. 3E). White mica in the 

eclogites is also phengitic (Table 2A) and epidote contains a high clinozoisite component (Table 3). 
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5. Crystallographic preferred orientation (CPO) 
 

The blueschists show distinct CPO of glaucophane, clinozoisite, and phengite. The [001] axis of 

glaucophane is either distributed within the foliation plane (Fig. 4; SY1) or forms a point maximum 

parallel to the mineral lineation (Fig. 4; SY5). Accordingly, [100] forms a maximum normal to the 

foliation or girdle structures perpendicular to the lineation, representing SL-type and LS-type CPO, 

respectively. The clinozoisite texture corresponds to that of glaucophane, displaying either S–types 

with an alignment of [010] in the foliation and a [001] point maximum normal to the foliation, or L-

types with an alignment of [010] in lineation direction and [001] girdle structures perpendicular to 

the lineation. For this interpretation it needs to be taken into account that due to the crystal shape 

clinozoisite [010] coincides with the glaucophane [001] axis and that clinozoisite [001] coincides with 

the glaucophane [100] axis. Albite in the blueschists shows a random orientation (not displayed 

here). Phengite, if present, exhibits a weak alignment of the basal plane parallel to the foliation (Fig. 

4). The CPO of all constituent mineral phases has almost orthorhombic symmetry, with the foliation 

and the plane normal to the lineation being mirror planes. 

  

The eclogites show a distinct CPO of omphacite, glaucophane, clinozoisite and phengite. The [001] 

axis of omphacite is aligned parallel to the mineral lineation, and the [010] pole figure displays a 

maximum normal to the foliation with some small rotation around the lineation direction in some 

samples (Fig. 4; SY2 and SY4). The omphacite CPO is more pronounced in sample SY4 (Fig. 4), an 

observation that corresponds well to what can be seen as shape preferred orientations in the 

scanning electron (Fig. 3C, 3D) and optical micrographs (Fig. 2C – 2F). Like for the blueschists, the 

clinozoisite CPO is geometrically compatible, here with that of omphacite. [010] of clinozoisite is 

parallel to the mineral lineation, comparable to [001] of omphacite, and [001] of clinozoisite forms a 

maximum normal to the foliation comparable to [010] of omphacite (Fig. 4; SY4). Glaucophane, 

when present in substantial amounts (Fig. 4; SY2), depicts an SL-type with weaker alignment of [001] 

in lineation direction than [001] of omphacite. Glaucophane [100] forms a point maximum normal to 

the foliation, just as omphacite [010] (Fig. 4). Phengite exhibits an alignment of its basal plane 

parallel to the foliation similar in topology and intensity to that of the blueschists (Fig. 4). Quartz CPO 

is weak and garnet displays a random orientation (not displayed here). Like for the blueschists, the 

CPO of the eclogite constituent mineral phases has the same type of symmetry.  

 

6. Elastic properties 
 

Calculated P-wave velocity (Vp) anisotropy of the blueschists is high, ranging from 6.5% to 12.1% 

(Table 4). Resulting elastic moduli are given in Table 5. Depending on whether there is a foliation-

dominated or a lineation-dominated fabric of glaucophane, maximum Vp is distributed in the 

foliation (Fig. 5; SY1) or parallel to the lineation direction (Fig. 5; SY5). The lowest Vp is found normal 

or nearly normal to the foliation. S-wave velocity (Vs) anisotropies are lower, ranging between 0.8 

and 7.0%, but still display clear patterns. The foliation-dominated blueschist SY1 has highest Vs1 

distributed in the foliation plane, and the maxima for Vs2 are found at the periphery of the pole 

figure, half way between the foliation normal and the lineation (Fig. 5; SY1). In sample SY5, Vs1 

forms two maxima in the foliation plane at angles of about 45° to the lineation. Vs2 maxima are at 

the periphery of the pole figure between the foliation normal and the lineation (Fig. 5; SY5). Minima 
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of S-wave velocity distributions are also distinct. In samples SY1 and SY5 lowest Vs1 velocity is 

oriented normal or nearly normal to the foliation. Lowest Vs2 in sample SY1 is located near the 

lineation, with a secondary minimum normal to the foliation. In blueschist sample SY5 Vs2 displays 

two minima in a girdle perpendicular to the lineation. In sample SY5, the anisotropy of Vs2 is slightly 

higher than that of Vs1. In contrast, in sample SY1, the anisotropy of Vs1 is well above the one of Vs2 

(7.0 versus 2.4%). Vp/Vs ratios of the blueschist samples were calculated using the mean Vp and Vs 

velocities, and vary between 1.71 and 1.76 (Table 4). 

 

With values of 3.3% and 3.7% the Vp anisotropy of the eclogites (Table 4) is lower by a factor of two 

to three than that in the blueschists. Resulting elastic moduli are given in Table 5. Both eclogite 

samples show highest Vp in the lineation direction and lowest Vp normal to the foliation (Fig. 5 SY2 

and SY4). Vs anisotropy lies between 0.8% and 2%. Two maxima of Vs1 occur in the foliation plane at 

about 45° to the lineation, and Vs1 minima are aligned with the foliation normal (Fig. 5, SY2 and 

SY4). For Vs2, maxima are at the periphery of the pole figure between the foliation normal and the 

lineation. Vs2 minima form a girdle distribution in sample SY2. In sample SY4 one minimum is 

parallel to the foliation normal, and a secondary minimum aligned with the lineation and smeared 

out along the foliation plane (Fig. 5, SY2 and SY4). The Vp/Vs ratio of the eclogite samples, calculated 

using the mean Vp and Vs velocities, is 1.69 to 1.70 (Table 4). 

 

7. Discussion 
 

The question whether mineralogical composition of subducted oceanic crust is capable of defining or 

modifying the seismic image of subduction zones will be the starting point of this discussion. There 

are two major methods for seismic investigation. In seismic tomography large rock volumes can be 

investigated and data on seismic velocities and anisotropies are usefull to compare subducted 

oceanic crust with the surrounding mantle peridotites. In reflection seismology, smaller scales, like 

the tectonic setting of a subduction channel are considered. Recent numerical simulations of 

seismic wave propagation modeled a detailed subduction channel structure with mafic 

blocks in a serpentinite matrix (Friedrich et al., 2014). 

Generally speaking blueschists have a stability field with a lower pressure bound of about 5-6 kbar, 

(e.g. Bousquet et al., 2008) in a regime of low geothermal gradients. This translates to a depth in a 

subducted slab of about 15-18 km. Beyond a pressure of about 10 kbar, i.e. a depth of about 30 km, 

conversion of blueschist to eclogite is expected to occur, principally involving breakdown of 

glaucophane and paragonite (e.g. Winter, 2001) on the prograde path of metamorphism, a process 

that can be documented on Syros (e.g. Okrusch et al., 1978; Schliestedt, 1986; Rosenbaum et al., 

2002; Schmädicke and Will, 2003). The persistence of prograde glaucophane (Fig. 3A) in the eclogites 

(Figs. 2C, 2D) indicates that this breakdown did probably not proceed completely, until peak 

pressures of around 20 kbar were attained (see Fig. 1C, and Jolivet and Brun, 2010). 

Several recent numerical studies have been proposing tectonic overpressure as a major component 

influencing metamorphic conditions, which would indicate that many previous studiesassuming 

lithostatic pressures might not be correct (e.g. Burg and Gerya, 2005; Mancktelow, 2008; Angel et 

al., 2015; Gerya, 2015). The main factor influencing tectonic overpressure in these models is the 

rheology dependent heterogeneity in deforming rock units. The extent of the influence of tectonic 

overpressure suggested in these models, however, is not widely accepted among metamorphic 
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petrologists. Klonowska et al. (2017) for example showed that in the Seve Nappe of the Scandinavian 

Caledonides both, strong eclogites, peridotites and the surrounding weak gneissic matrix yield 

evidence for ultra-high pressure conditions. According to the previously mentioned numerical 

models, on the other hand, this rheology contrast should have led to enormous tectonic 

overpressure and/or underpressure, which have not been detected. Before this and other 

inconsistencies between petrological data and tectonic overpressure models have not been clarified, 

we prefer adhere to the classical concept assuming only lithostatic pressures in the present study. As 

this assumption does not affect our data, the presented results could be (re-)interpreted at any later 

point of time. 

There might be some uncertainty regarding the depth and extent of the transition zone from 

blueschists to eclogites, a general picture can be drawn regarding the seismic characteristics of 

subducted oceanic crust depending on depth. Below a depth of 15 km, subducted oceanic crust 

would be highly anisotropic (6-12 %) because of the presence of prograde blueschists with strong 

CPO. Comparably strong seismic anisotropies have been documented in blueschists from elsewhere 

before (Bezacier et al., 2010; Ha et al., 2016) and seem to be a widespread characteristic of such 

metamorphic belts. Blueschists making up subducted oceanic crust can also be identified by average 

shear wave velocities below about 4.5 km/s, and variable shear wave splitting depending on the 

intensity of deformation and, thus, seismic anisotropy (see Table 4).  

 

Our observations and data regarding compositional and textural changes suggest that anisotropy in 

subducted oceanic crust would start vanishing below about 30 km due to progressive eclogitization, 

mainly because eclogites have much lower seismic anisotropy (1.5-3 % texture-induced 

contribution). This is an observation that has also been reported by studies from other subduction 

complexes (e.g. Mauler et al., 2000; Keppler et al., 2015). Velocity, and Vp/Vs signature of the Syros 

samples is also very similar to that of other eclogites (e.g. Keppler et al., 2015). Apparently, Vp/Vs 

can be changed to higher values by retrograde transformation of eclogites to amphibolites (e.g. Gao 

et al., 2001; Keppler et al., 2015), probably owing to the growth of lower-pressure hornblende, but 

this is not an issue in the samples of this study. Moreover, this is a process unlikely to occur in 

subducted oceanic crust at great depth, but may, of course, alter the seismic signature of ophiolite 

complexes as they are exhumed and tectonically emplaced at higher levels in the crust.    

 

Following a discussion of Keppler et al. (2015) the Vp/Vs values of the blueschists and eclogites are 

lower than those of peridotites of the lithospheric mantle of a downgoing slab in global earth models 

(e.g. Kennett et al., 1995) and experimental work (e.g., Christensen, 1966, 2004; Kern, 1993; 

Ullemeyer et al., 2010). In a tomographic study of subducting slabs off Northern Honshu Zhang et al. 

(2004) concluded that the downgoing peridotite slab has Vp/Vs ratios of 1.80–1.85 at depths 

between 60 and 85 km, and is overlain by a zone of lower Vp/Vs ratios (1.70–1.80). This zone was 

interpreted to reflect subducted metagabbros of the oceanic crust that are transformed to 

blueschists and eclogites at depth. Our results corroborate this interpretation, and add the notion 

that blueschists may be visible in seismic velocity models on grounds of their pronounced 

anisotropy.  
 

An interesting aspect lies in the observation that both, the eclogite and the blueschist samples show 

variations in fabric topology, indicating different strain histories that the samples experienced while 

being subducted (see e.g. discussion by Keppler et al., 2016). In the SL-type blueschist sample 
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highest Vp is distributed within the foliation plane. The pattern is determined by the glaucophane 

CPO, showing a distribution of [001] within the foliation plane, which is the crystal axis closest to 

highest Vp in glaucophane single crystals. The LS-type blueschist produces highest Vp in the lineation 

direction, which is in line with an alignment of glaucophane [001] parallel to the lineation of this 

sample. A similar pattern for Vp is observed in the eclogite samples. For these, omphacite [001], the 

vector closest to highest Vp in omphacite single crystals, is aligned parallel to the lineation, yielding 

maximum Vp in the same direction. Garnet shows a random CPO, but due to its high Vp and Vs 

generally increases the average velocities of the samples. White mica can strongly influence the 

elastic anisotropy of rocks, even with low volume percentages (Mainprice and Ildefonse, 2009). 

However, because of its weak CPO it is a minor contributor to anisotropy in the studied samples. 

Based on the small sample set, however, we cannot demonstrate that strain variations are 

characteristic for the entire deformation path (e.g.,Abalos 1997; Abalos et al., 2011; Keppler et al., 

2016), i.e. whether texture evolution followed a distinct spatial or temporal pattern (e.g., Kurz, 

2005). 

 

In the calculation of the elastic properties minor errors may be introduced by compositional 

differences of the minerals in our samples relative to those of the single crystal data used for 

modelling. Our measurements show that there are not only grain-to-grain differences in mineral 

chemistry within a sample but also within individual grains (Tables 1-3). Volume percentages were 

determined by ‘Rietveld Refinement’, which is not as exact as powder diffraction. However, these 

minor errors in mineral volume fractions produced using ‘Rietveld Refinement’ do not effect 

calculated elastic anisotropies. Further errors could have been caused by the fact that the single 

crystal elastic tensors are taken from measurements under ambient conditions. Some influence of 

pressure and temperature can be expected beyond pressures of 10 kbar. Comparison of modelled 

and experimentally measured data frequently shows higher values for the measured elastic 

anisotropies (e.g., Kern et al., 2008; Keppler et al., 2015). The velocity patterns (i.e. location of 

minima and maxima), however, usually are similar in measured and modelled results. Also, 

inaccuracy in the CPO determination is a possible error source for the calculation of the elastic 

anisotropy. On the other hand Keppler et al. (2014) demonstrated that even for polyphase rock 

samples TOF texture analysis, using RTA, leads to reliable CPO results with only minor differences in 

texture strength. In this study the influence of incompletely closed microcracks on the elastic 

anisotropy (e.g. Ullemeyer et al., 2011) was not considered. When considering material behaviour at 

subduction zone depth, however, it is more likely that microcracks in the subduction slab are 

generally closed. Elastic properties calculated from CPO could, therefore, approximate the elastic 

properies of crack-closed rocks at depth. 
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8. Conclusions 
 

Knowledge of the elastic properties of subducted oceanic crust is important for seismic 

investigations on active subduction zones. In this study we examined exhumed slices of blueschists 

and eclogites, which were subducted as part of the Hellenic subduction system and are now exposed 

on the island of Syros. Based on neutron texture measurements and modelling of the elastic 

anisotropies of the paleo-subduction zone rocks and their constituting minerals we can conclude: 

 

1. Blueschists show larger elastic anisotropy than eclogites due to a higher single crystal elastic 

anisotropy of glaucophane. Accordingly, eclogites will exhibit larger elastic anisotropies if 

glaucophane is present.  

2. The contrasting seismic properties (e.g. much higher elastic anisotropy in the blueschists 

compared to the eclogites) might permit the distinction between blueschists, eclogites, and 

possibly glaucophane-bearing eclogites in seismic imaging of subduction zones.  

3. As blueschists generally occur at shallower depths than eclogites, our data imply a depth 

dependence of seismic anisotropy in a subducted oceanic crustal slab. In any quantification 

of this depth dependence, however, it needs to be considered that there is a depth range 

where eclogite and blueschist stabilities might overlap. 
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Table 1: Microprobe measurements of glaucophane in blueschist sample SY1. See Fig. 3A for location 

of measurements. 

Sy1_gl_line 

SiO
2 58.158 57.466 56.294 54.942 52.82 57.289 57.787 57.82 58.212 57.972 57.791 

TiO
2 0.019 0.034 0.111 0.069 0.157 0.045 0.016 0.05 0.069 0.079 0.074 

Al2
O3 11.319 11.432 11.619 11.015 9.591 11.412 11.334 11.366 11.425 11.492 11.307 

Cr2
O3  0 0.031 0.008 0.01 0 0.013 0.013 0.023 0.045 0.028 0 

Fe
O 9.537 9.868 9.853 10.784 11.213 10.011 9.399 9.296 9.756 10.233 9.466 

Mn
O 0 0.043 0.086 0.038 0.081 0.059 0.005 0.032 0.021 0.086 0.07 

Mg
O 10.628 10.505 10.446 11.178 12.625 10.414 10.699 10.299 10.493 10.417 10.628 

Ca
O 0.815 1.154 2.253 3.83 6.882 1.261 0.888 0.597 0.76 0.99 0.972 

Na
2O 7.096 6.987 6.407 5.456 3.93 6.949 7.293 7.414 7.086 6.839 7.26 

K2
O 0.004 0.017 0.075 0.1 0.213 0.017 0.015 0.01 0.013 0.012 0.009 

su
m 97.576 97.537 97.152 97.422 97.512 97.47 97.449 96.907 97.88 98.148 97.577 

            

Si 
7.93084

03787 

7.86893
16226 

7.78851
44776 

7.62293
46084 

7.42275
44777 

7.86200
79286 

7.90933
75001 

7.96040
27497 

7.91729
59388 

7.87035
56105 

7.90898
9659 

Al 
0.06915

96213 

0.13106
83774 

0.21148
55224 

0.37706
53916 

0.57724
55223 

0.13799
20714 

0.09066
24999 

0.03959
72503 

0.08270
40612 

0.12964
43895 

0.09101
0341 

            

Al 
1.74990

40421 

1.71376
48479 

1.68300
03339 

1.42401
17901 

1.01115
74191 

1.70767
80927 

1.73753
56292 

1.80454
61907 

1.74855
86809 

1.70901
71105 

1.73262
61895 

Fe(i
ii) 

0.20053
4365 

0.21056
48794 

0.10485
75851 

0.31368
95254 

0.35181
06668 

0.19703
43899 

0.15019
27657 

0.06545
40387 

0.22303
98076 

0.31141
12786 

0.13033
71526 

Ti 
0.00194

87459 

0.00350
1673 

0.01155
06751 

0.00720
04342 

0.01659
42726 

0.00464
47957 

0.00164
7107 

0.00517
74847 

0.00705
83846 

0.00806
66838 

0.00761
70075 

Cr 0 

0.00335
59185 

0.00087
5039 

0.00109
68889 0 

0.00141
04266 

0.00140
66894 

0.00250
33968 

0.00483
86229 

0.00300
52389 0 

Fe(i
i) 

0.88695
41526 

0.91932
75411 

1.03503
55996 

0.93743
56422 

0.96581
38663 

0.95176
14358 

0.92551
61301 

1.00472
44578 

0.88649
08356 

0.85025
71807 

0.95291
72179 

Mn 0 

0.00498
66857 

0.01007
69642 

0.00446
51913 

0.00964
0298 

0.00685
72974 

0.00057
95871 

0.00373
11755 

0.00241
89249 

0.00988
81094 

0.00811
33008 

Mg 

2.16065
86944 

2.14449
84545 

2.15460
38032 

2.31210
05279 

2.64498
34772 

2.13061
3562 

2.18312
20915 

2.11386
32559 

2.12759
47436 

2.10835
43982 

2.16838
91316 

Ca 

0.11906
6414 

0.16929
04778 

0.33394
55291 

0.56929
63806 

1.03610
38467 

0.18539
55226 

0.13021
01514 

0.08805
48342 

0.11073
88143 

0.14399
02832 

0.14251
11951 

Na 

1.87599
51036 

1.85482
90708 

1.71852
39717 

1.46757
54533 

1.07069
94927 

1.84881
2613 

1.93519
40512 

1.97887
28186 

1.86841
71876 

1.80001
87282 

1.92621
94628 
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K 

0.00069
57909 

0.00296
93592 

0.01323
61842 

0.01769
81042 

0.03818
17051 

0.00297
59126 

0.00261
88477 

0.00175
61676 

0.00225
53644 

0.00207
80995 

0.00157
11307 

TO
TAL 

14.9957
573085 

15.0270
889079 

15.0657
05685 

15.0545
699381 

15.1449
850445 

15.0371
840483 

15.0680
230502 

15.0686
838205 

14.9814
113664 

14.9460
871109 

15.0703
017886 
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Table 2: Microprobe data of (A) amphibole and white mica; (B) omphacite in eclogite sample SY2. 

See Fig. 3C for location of measurements. 

Sy2 amp line 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Si
O
2 

47.73
4 

50.90
9 

49.88
3 

47.55
9 

50.78
6 

50.59
9 

50.74
3 

50.66
7 

51.08
1 

50.8
91 

50.38
7 

50.75
3 

50.67
3 

50.72
5 

51.42
8 

49.92
3 50.62 

Ti
O
2 0.202 0.172 0.311 0.221 0.261 0.227 0.224 0.254 0.182 

0.22
7 0.245 0.166 0.232 0.264 0.214 0.243 0.243 

Al
2
O
3 

27.28
9 

28.51
2 

28.54
1 

27.56
1 

28.41
4 

28.77
3 

29.22
3 

28.54
9 28.66 

28.7
63 

28.64
3 

28.52
2 

28.77
5 

27.92
6 

28.64
3 

28.11
7 

28.34
7 

Cr
2
O
3  0 0 0 0 0 0.028 0.022 0 0.008 

0.01
5 0.013 0.01 0 0.036 0.005 0 0 

Fe
O 8.659 5.064 5.13 5.433 4.969 5.101 4.753 4.403 4.555 

4.43
8 5.362 4.869 4.639 4.963 4.878 5.438 5.006 

M
n
O 0.04 0 0 0 0.01 0 0.025 0 0.041 

0.01
5 0.03 0.01 0 0 0.046 0 0.086 

M
g
O 1.937 1.967 1.823 1.76 2.122 1.571 1.956 2.061 2.051 

1.97
8 1.903 1.965 2.004 2.056 1.995 1.809 2.02 

C
a
O 0.089 0 0.006 0.131 0 0 0.001 0 0.006 

0.00
7 0 0.03 0.008 0 0 0.01 0 

N
a
2
O 0.339 0.371 0.46 0.397 0.72 0.225 0.417 0.418 0.386 

0.45
5 0.379 0.371 0.522 0.451 0.417 0.38 0.509 

K
2
O 

10.38
7 

11.06
2 

10.79
3 

10.28
8 

10.83
5 

11.17
1 

11.09
8 

11.00
2 

10.89
9 

10.9
23 

11.10
7 

10.93
6 

10.95
6 

11.02
9 10.92 

10.67
4 

10.91
5 

su
m 

96.67
6 

98.05
7 

96.94
7 93.35 

98.11
7 

97.69
5 

98.46
2 

97.35
4 

97.86
9 

97.7
12 

98.06
9 

97.63
2 

97.80
9 97.45 

98.54
6 

96.59
4 

97.74
6 

                  

Si 

6.809
7159

221 

7.008
8737

536 

6.952
0964

847 

6.904
5698

838 

6.989
0836

639 

6.994
4179

148 

6.950
9645

33 

7.004
9302

583 

7.020
7238

17 

7.00
5802

263 

6.956
6442

172 

7.008
2576

167 

6.981
8033

63 

7.030
5954

952 

7.029
0846

03 

6.986
6414

114 

6.995
0255

704 

Al 

1.190
2840

779 

0.991
1262

464 

1.047
9035

153 

1.095
4301

162 

1.010
9163

361 

1.005
5820

852 

1.049
0354

67 

0.995
0697

417 

0.979
2761

83 

0.99
4197

737 

1.043
3557

828 

0.991
7423

833 

1.018
1966

37 

0.969
4045

048 

0.970
9153

97 

1.013
3585

886 

1.004
9744

296 

                  

Al 

3.397
6680

789 

3.634
9357

243 

3.639
8255

702 

3.620
0832

395 

3.597
3619

759 

3.681
7409

255 

3.668
5939

594 

3.656
5008

786 

3.662
9765

135 

3.67
2193
6806 

3.617
1160

458 

3.649
7581

821 

3.654
1647

005 

3.592
1081

327 

3.642
7673

883 

3.623
9591

324 

3.611
4354

538 

Fe
(ii
i) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Ti 

0.021
6742

662 

0.017
8104

128 

0.032
5998

411 

0.024
1317

077 

0.027
0152

261 

0.023
6008

35 

0.023
0785

659 

0.026
4121

777 

0.018
8141

999 

0.02
3503
6123 

0.025
4412

967 

0.017
2404

38 

0.024
0420

142 

0.027
5211

039 

0.021
9990

93 

0.025
5779

609 

0.025
2560

429 

Cr 0 0 0 0 0 

0.003
0599

377 

0.002
3825

198 0 

0.000
8692

754 

0.00
1632
4995 

0.001
4189

58 

0.001
0916

747 0 

0.003
9447

316 

0.000
5402

74 0 0 

Fe
(ii
) 

1.032
9327

74 

0.582
9757

9 

0.597
8383

121 

0.659
5485

53 

0.571
8055

67 

0.589
6144

506 

0.544
4273

051 

0.509
0148

614 

0.523
4967

997 

0.51
0866
4002 

0.619
0293

667 

0.562
2005

49 

0.534
4640

773 

0.575
1981

527 

0.557
4989

873 

0.636
3706

38 

0.578
4437

892 

M
n 

0.004
8328

12 0 0 0 

0.001
1655

072 0 

0.002
9003

318 0 

0.004
7724

907 

0.00
1748
8272 

0.003
5078

522 

0.001
1694

646 0 0 

0.005
3247

069 0 

0.010
0647

816 

M
g 

0.411
9605

837 

0.403
7224

581 

0.378
7693

014 

0.380
9267

408 

0.435
3579

59 

0.323
7506

93 

0.399
4502

167 

0.424
7970

528 

0.420
2551

425 

0.40
5945

803 

0.391
6922

308 

0.404
5160

631 

0.411
6362

295 

0.424
8328

041 

0.406
5059

561 

0.377
4254

861 

0.416
1437

849 

C
a 

0.013
6023

233 0 

0.000
8958

523 

0.020
3749

771 0 0 

0.000
1467

543 0 

0.000
8834

779 

0.00
1032
3735 0 

0.004
4380

431 

0.001
1808

722 0 0 

0.001
4993

04 0 

N
a 

0.093
7581

895 

0.099
0229

655 

0.124
2880

591 

0.111
7384

827 

0.192
0954

486 

0.060
2976

671 

0.110
7422

481 

0.112
0374

601 

0.102
8532

811 

0.12
1432

975 

0.101
4445

801 

0.099
3186

017 

0.139
4343

727 

0.121
1866

961 

0.110
4952

32 

0.103
1002

51 

0.136
3619

791 

K 

1.890
1676

01 

1.942
6579

605 

1.918
7324

495 

1.905
2145

421 

1.902
0159

892 

1.969
7482

013 

1.939
2003

02 

1.940
2571

067 

1.910
8129

137 

1.91
8084
9647 

1.956
0821

05 

1.926
2642

197 

1.925
5377

48 

1.949
9128

865 

1.903
8415

054 

1.905
4782

405 

1.923
9772

059 

T
O
T
A
L 

14.86
6596
6285 

14.68
1125
3113 

14.69
2949
3857 

14.72
2018

243 

14.72
6817
6729 

14.65
1812
7102 

14.69
0922
2031 

14.66
9019
5373 

14.64
5734
0945 

14.6
5644
1136 

14.71
5732
4353 

14.66
5997

236 

14.69
0460
0144 

14.69
4704
5076 

14.64
8973

143 

14.67
3411
0129 

14.70
1683
0375 

                  Glaucophane 

Mica 

 

m8  m9  m10  m11  m12  m14  m15  m16  m17  
  

m18 m19 m20 m21 m22 m23 

Si
O
2 

55.77
2 

55.34
6 

55.47
9 54.67 

54.84
9 

54.80
9 

55.97
4 

56.00
4 

56.15
8 

 

SiO2 

49.14
9 

51.08
1 

50.99
6 

49.46
2 

50.64
6 

51.16
5 

Ti
O
2 0.074 0.013 0 0.094 0.064 0.094 0.064 0.028 0.003 

 

TiO2 0.236 0.266 0.189 0.264 0.238 0.193 

Al
2
O
3 

10.20
8 

10.32
1 

10.22
6 

10.70
4 

10.35
2 

10.67
4 10.36 

10.57
4 

10.37
9 

 

Al2O
3 

28.80
6 

28.89
7 

24.05
3 

28.71
1 

27.77
2 

27.98
3 

Cr
2
O
3  0.014 0 0 0 0 0 0 0 0 

 

Cr2O
3  0 0.015 0 0.008 0 0.022 

Fe
O 

18.49
5 

18.54
7 

19.26
2 

19.69
7 

19.64
9 

19.09
6 

18.08
3 

18.59
8 

18.60
2 

 

FeO 5.267 4.598 7.09 5.29 5.058 4.982 

M
n
O 0.005 0 0.03 0.005 0 0 0.02 0 0 

 

MnO 0.046 0.015 0 0 0.025 0.01 
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M
g
O 5.927 6.02 5.003 5.204 5.466 5.251 5.706 5.157 5.268 

 

MgO 1.927 2.05 1.816 1.843 2.044 2.051 

C
a
O 0.385 0.522 0.206 1.033 0.983 0.774 0.288 0.173 0.148 

 

CaO 0 0.015 0.567 0.077 0 0.003 

N
a
2
O 7.36 7.284 7.189 6.771 6.858 7.089 7.349 7.175 7.252 

 

Na2O 0.615 0.348 3.384 0.542 0.407 0.397 

K
2
O 0.021 0.027 0.016 0.069 0.052 0.073 0.025 0.02 0 

 

K2O 

10.66
9 10.55 8.779 9.748 

10.90
7 

11.03
2 

su
m 

98.26
1 98.08 

97.41
1 

98.24
7 

98.27
3 97.86 

97.86
9 

97.72
9 97.81 

  

96.71
5 

97.83
5 

96.87
4 

95.94
5 

97.09
7 

97.83
8 

                  

Si 

7.865
9103

673 

7.820
4118

988 

7.915
0510

616 

7.759
8424

136 

7.777
7912

574 

7.807
9664

424 

7.920
0684

097 

7.937
2407

531 

7.952
6322

1 

 

Si 

6.581
0898

767 

6.703
1518

071 

6.886
0088

381 

6.631
8994

881 

6.736
4058

439 

6.750
3087

295 

Al 

0.134
0896

327 

0.179
5881

012 

0.084
9489

384 

0.240
1575

864 

0.222
2087

426 

0.192
0335

576 

0.079
9315

903 

0.062
7592

469 

0.047
3677

9 

 

Ti 

0.023
7617

424 

0.026
2472

885 

0.019
1900

635 

0.026
6166

463 

0.023
8036

302 

0.019
1465

756 

           

Al 

4.546
5438

356 

4.469
7961

039 

3.828
3885

178 

4.537
6382

699 

4.354
1715

948 

4.351
7127

491 

Al 

1.562
6043

859 

1.539
0928

36 

1.634
3879

371 

1.550
3658

962 

1.507
7746

158 

1.599
9885

004 

1.647
6256

165 

1.703
3595

206 

1.684
7797

052 

 

Fe 

0.589
7250

907 

0.504
5355

62 

0.800
5359

69 

0.593
0961

241 

0.562
5551

046 

0.549
6136

78 

Fe
(ii
i) 

0.421
6808

973 

0.479
4641

437 

0.396
2860

86 

0.479
8411

435 

0.507
3493

574 

0.364
5324

619 

0.310
9096

586 

0.325
8524

092 

0.326
0689

681 

 

Mn 

0.005
2165

06 

0.001
6670

54 0 0 

0.002
8161

893 

0.001
1173

504 

Ti 

0.007
8497

597 

0.001
3815

882 0 

0.010
0351

426 

0.006
8258

92 

0.010
0717

696 

0.006
8110

557 

0.002
9846

981 

0.000
3195

306 

 

Mg 

0.384
5758

215 

0.400
9504

001 

0.365
4806

876 

0.368
3059

402 

0.405
2108

92 

0.403
3048

491 

Cr 

0.001
5610

101 0 0 0 0 0 0 0 0 

 

Ca 0 

0.002
1087

876 

0.082
0231

495 

0.011
0606

056 0 

0.000
4240

273 

Fe
(ii
) 

1.759
4928

495 

1.711
9285

663 

1.901
6059

85 

1.857
9572

953 

1.822
5178

75 

1.910
2067

67 

1.828
6097

138 

1.878
1897

704 

1.876
6650

398 

 

Na 

0.159
6439

944 

0.088
5305

663 

0.885
8417

639 

0.140
8834

191 

0.104
9474

369 

0.101
5396

117 

M
n 

0.000
5972

299 0 

0.003
6248

087 

0.000
6010

527 0 0 

0.002
3966

87 0 0 

 

K 

1.822
2831

857 

1.765
9611

322 

1.512
1174

639 

1.667
2118

934 

1.850
5355

104 

1.856
5811

109 

M
g 

1.246
2138

676 

1.268
1328

659 

1.064
0951

832 

1.101
1994

697 

1.155
5322

598 

1.115
2005

011 

1.203
6472

683 

1.089
6136

016 

1.112
1667

563 

 

Sum 

14.11
2840
0531 

13.96
2948
7017 

14.37
9586
4534 

13.97
6712
3869 

14.04
0446
2021 

14.03
3748
6817 

C
a 

0.058
1721

912 

0.079
0197

791 

0.031
4857

64 

0.157
0818

72 

0.149
3354

813 

0.118
1269

361 

0.043
6573

124 

0.026
2674

872 

0.022
4534

407 

        

N
a 

2.012
4214

451 

1.995
3618

933 

1.988
3916

372 

1.863
2236

556 

1.885
3561

32 

1.957
8498

578 

2.015
9473

451 

1.971
4272

705 

1.990
9731

742 
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K 

0.003
7779

925 

0.004
8664

938 

0.002
9117

501 

0.012
4928

618 

0.009
4058

907 

0.013
2653

263 

0.004
5122

34 

0.003
6156

761 0 

        T
O
T
A
L 

15.07
4371
6288 

15.07
9248
1661 

15.02
2789
1513 

15.03
2798
3894 

15.04
4097
5041 

15.08
9242
1201 

15.06
4116
8915 

15.00
1310
4337 

15.01
3426
6149 
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Sy2_omp_line 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

S
i
O
2 

55.
26

6 

55.
55

5 

55.
53

9 

55.
37

3 

55.
41

1 

55.
62

3 

55.
45

9 

55.
49

9 

55.
58

2 

56.
00

2 

55.3
75 

55.
66

8 

54.9
8 

56.
03

6 

56.
28

2 

55.
53

4 

56.
12

3 

56.
05

7 

56.2
29 

55.
69

8 

51.
31

4 

56.
00

4 

55.7
56 

T
i
O
2 

0.1
37 

0.0
28 

0.0
49 

0.0
62 

0.0
28 

0.0
46 0 

0.0
18 0 

0.0
49 

0.07
2 

0.0
44 

0.00
5 

0.0
57 

0.0
08 

0.0
08 

0.0
26 

0.0
08 0 

0.0
05 

0.0
26 

0.0
36 0 

A
l
2
O
3 

11.
25

2 

13.
53 

13.
48

4 

12.
78

6 

12.
16
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Table 3: Microprobe data of clinozoisite and omphacite in eclogite sample SY4. See Fig. 3D for 

location of measurements. 

epidote-
clinozoisite 

    omphacite       

 

sy4_m1  sy4_m2  sy4_m3  
 

sy4_m4  sy4_m5  sy4_m6  sy4_m7  sy4_m8  sy4_m9  sy4_m10 

SiO2 38.537 38.171 38.518 

 

55.937 55.711 55.136 55.123 55.761 55.102 57.561 

TiO2 0.116 0.108 0.089 

 

0.048 0.066 0.019 0.056 0.045 0.055 0.053 

Al2O3 25.372 25.529 25.606 

 

11.561 10.26 9.066 10.244 11.069 10.942 9.64 

FeO 10.695 10.225 10.083 

 

9.513 11.29 12.273 10.74 9.554 10.259 13.106 

MnO 0.172 0.107 0.07 

 

0.011 0.091 0.155 0.166 0.021 0.059 0.112 

MgO 0.066 0.042 0.049 

 

4.821 4.642 4.927 4.98 5.159 5.159 9.377 

CaO 23.176 23.152 23.265 

 

7.892 8.314 8.648 9.513 8.743 9.167 0.256 

Na2O 0.04 0.024 0 

 

9.724 9.568 9.188 8.652 9.4 9.184 7.663 

K2O 0 0 0.008 

 

0.019 0.013 0 0 0 0 0.002 

Cr2O3  0.048 0.046 0.058 

 

0.039 0.057 0.023 0.052 0.011 0.056 0.006 

sum 98.222 97.404 97.746 

 

99.565 100.012 99.435 99.526 99.763 99.983 97.776 

            Si 3.08 3.07 3.09 

 

2.03 2.03 2.04 2.02 2.02 2.01 2.09 

Ti 0.01 0.01 0.01 

 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Al 2.39 2.42 2.42 

 

0.49 0.44 0.40 0.44 0.47 0.47 0.41 

Fe 0.72 0.69 0.68 

 

0.29 0.34 0.38 0.33 0.29 0.31 0.40 

Mn 0.01 0.01 0.00 

 

0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Mg 0.01 0.01 0.01 

 

0.26 0.25 0.27 0.27 0.28 0.28 0.51 

Ca 1.99 2.00 2.00 

 

0.31 0.33 0.34 0.37 0.34 0.36 0.01 

Na 0.01 0.00 0.00 

 

0.68 0.68 0.66 0.62 0.66 0.65 0.54 

K 0.00 0.00 0.00 

 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cr 0.00 0.00 0.00 

 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sum 8.21 8.21 8.19 

 

4.06 4.08 4.09 4.06 4.07 4.08 3.97 
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Table 4: P- and S-wave velocities and anisotropies of samples SY1, SY2, SY4 and SY5. Iso is the VRH 

isotropic average. 

Sample Lithology Vpiso 
(km/s) 

min 
(km/s) 

max 
(km/s) 

Ap (%) Vsiso 
(km/s) 

Vs1 min 
(km/s) 

Vs1 max 
(km/s) 

Vs2 min 
(km/s) 

Vs2 max 
(km/s) 

Vp/Vs 

Sy1 Blueschist 7.82 7.15 8.09 12.1 4.45 4.40 4.73 4.40 4.51 1.76 

Sy2 Eclogite 7.89 7.76 8.06 3.7 4.64 4.62 4.70 4.60 4.64 1.70 

Sy4 Eclogite 7.76 7.64 7.90 3.3 4.58 4.55 4.64 4.54 4.59 1.69 

Sy5 Blueschist 7.43 7.24 7.72 6.5 4.35 4.34 4.43 4.28 4.37 1.71 
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Table 5: Tensor components of elastic moduli for the four samples studied. 

 

SY1 SY2 SY4 SY5 

C11C11 65.1 64.7 61.2 59.5 

C12C12 17.1 20.0 17.7 17.2 

C13C13 20.5 19.5 18.7 17.9 

C14C14 0.5 0.1 0.1 -0.2 

C15C15 -0.1 -0.2 0.6 -0.4 

C16C16 0.1 0.3 0.4 0.1 

C22C22 51.3 63.3 58.5 52.6 

C23C23 17.0 19.4 17.8 17.0 

C24C24 0.7 0.3 -0.1 -0.4 

C25C25 0.0 -0.1 -0.2 0.0 

C26C26 0.0 0.2 0.1 0.1 

C33C33 64.9 60.4 60.8 54.6 

C34C34 1.3 0.3 -0.1 -0.4 

C35C35 -0.1 -0.2 0.5 -0.2 

C36C36 0.0 0.0 0.1 0.0 

C44 19.5 21.2 20.7 18.4 

C45 0.0 0.1 0.1 0.0 

C46 0.0 -0.1 0.0 -0.1 

C55 22.3 21.4 21.5 19.3 

C56 0.4 0.1 0.1 -0.2 

C66 19.4 22.0 20.7 18.9 
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Fig. 1: A: Overview map of the Cyclades (after Ring et al., 2003); B: Pressure-Temperature path of 

Syros (upper path) and Sifnos (lower path) from Jolivet and Brun (2010) based on the data from 

Trotet et al. (2001a; b), numbers indicate time of peak pressure metamorphism in Ma; C: Map of the 

major lithological units of Syros (from Keiter et al., 2004). 
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Fig. 2: Light-optical micrographs of the investigated blueschist (A, B) and eclogite (C-F) samples. (A)  

Well aligned Ph: phengite, Ti: titanite and Gln: glaucophane in the foliation of a blueschist; (B) 

phengite and glaucophane in pressure shadows of feldspar and garnet; (C) coarse-grained eclogite 

with randomly oriented amp: amphibole, phengite and omphacite; (D) quartz in pressure shadows of 

garnet, surrounded by a matrix of omphacite and glaucophane, well aligned in the foliation; (E) 

coarse and randomly oriented omphacite grains divided by a zone of small glaucophane grains well 

aligned in a microshear zone; (F) randomly aligned quartz and phengite in pressure shadows of 

garnet. Sections are perpendicular to the foliation and parallel to the lineation. A, B, F taken under 

crossed polarizers, C, D, E under plane-polarized light; Fps: feldspar, Gln: glaucophane, Grt: garnet, 

Omp: omphacite, Ph: phengite, Qz: quartz, Ti: titanite. All micrographs are taken from sections 

parallel to the lineation and perpendicular to the foliation. 
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Fig. 3: A; C and D: Backscatter electron (BSE) images of blueschist (A) and eclogites (C and D); Amp: 

amphibole, Cz: clinozoisite, Gln: glaucophane, Omp: omphacite, Ph: phengite, Qz: quartz, Ti: titanite. 

Sample numbers are given in the upper left of each image. (m1-m23): icroprobe measurement 

points and measurement profiles (Table 2A, B). B and E: Volume % of garnet components in 

blueschist sample SY1 (B) and eclogite sample SY2 (E); Alm: almandine, Prp: pyrope, Sps: spessartine, 

GAU: Grossular+Andradite+Uwanovite. All BSE images are taken from sections parallel to the 

lineation and perpendicular to the foliation. 
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Fig. 4: CPO data of the mineral phases that are important for the elastic anisotropy of the blueschist 

(SY1, SY5) and eclogite (SY2, SY4) samples. Pole figures are oriented according to foliation and 

mineral/stretching lineation of glaucophane and omphacite, respectively. The lineation (X-direction 

of the finite strain ellipsoid) is EW in the pole figure, the foliation normal (Z-direction of the finite 

strain ellipsoid) is oriented NS, and the Y-direction (perpendicular to X and Z) lies normal to the pole 

figure plane. Pole figures are lower hemisphere equal area projections on a 5x5° grid. Contour levels 

are multiples of a random distribution. Maxima are indicated at the lower right of each pole figure. 

Only significant pole figures are given. They illustrate the textural differences between samples. See 

text for pole figure description and discussion. 

  



 

 
© 2017 American Geophysical Union. All rights reserved. 

 
Fig. 5: Modelled P-wave and S-wave velocity distributions of the two blueschist (SY1, SY5) and the 

two eclogite (SY2, SY4) samples. Colored contour lines show velocities in km/s. Minimum and 

maximum velocity is given in the lower right corner of the pole figures, and orientation zones of 

maximum velocity are surrounded by grey or orange contour lines. A: elastic anisotropy. See text for 

discussion. 

 
 


