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Abstract

Modern cloud-based software systems are exposed to constant alterations due to changing
requirements. These changes can be based on various reasons. Ever-changing usage patterns
of the systems user-base can be one reason for changes. A shift in the user-behavior can
result in increasing load on single services or have strong economic effects for ecommerce
platforms. If the usage patterns are known, the software system can be analyzed and
adapted.

In this thesis we provide an approach to extract user-behavior from monitored operation-
calls of a software system. Since user-behavior is not only dependent on the navigational
pattern of the user in the system, but also on the specific information processed by the
call, our focus lies on adding this information to the monitoring records. We then propose
an identification of user-behavior models and clustering process for similar user-behavior
patterns. These user-behavior models are using the enriched call information to improve
accuracy.

We implemented our approach as a pipe-and-filter based service, which is integrated
into the iObserve framework. The framework provides access to the monitoring records of
the system and transforms them into user-sessions. To get the call-information from the
system, we extend the monitoring records to hold this data. In our service, we prepare the
sessions containing user-behavior and call-information for the clustering. Then the sessions
are aggregated to behavior models by a clustering algorithm.
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Chapter 1

Introduction

A modern cloud-based software system is exposed to constant changes. Continuously
services are added, removed, or modified due to changing requirements. A change of a
requirement can originate in various reasons. One of this reasons is the change of usage
patterns. Over the time the user-base can change and utilize the system differently than
it was originally intended. Knowing the user-behavior of a software system allows us to
predict future behavior and measure changes, which supports the adaptation and evolution
of the software system. For the underlying system this information can be used to predict
the number and type of accesses. Adapting the system based on that knowledge can help to
decrease the response times and thereby increase the performance for the user. Additionally,
knowing the user types of the system can help simulating user access on the system. Load
tests become more realistic since users simulation can be based on behavior of real users.

User-behavior can be represented in a directed graph, where all nodes are operations
the user called and all edges denote the order in which these transitions are called. In
Figure 1.1 an example user-behavior in a systems service is depicted. A user starts using
the service by calling operation 1 and follows the path. He can decide how often he takes
the loop (2, 3, 4) and which path he takes to reach operation 7. The behavior of a specific
user of the service therefore is a sub-graph of the graph in Figure 1.1.

Figure 1.1. Graph a) general graphs showing all possible paths

Figure 1.3, Figure 1.2, and Figure 1.4 each show a specific user of the service. Each user is
taking different path from Node3 to Node7 or a different number of iteration in the loop
(Node2, Node3, Node4). These behavior-graphs can be aggregated into one user behavior
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1. Introduction

model representing both graphs. Abstract behavior models are more manageable than
separate behavior graphs, i.e. analyses on small set of behavior-models are faster than on a
huge set of all possible behavior-graphs. We aggregate user behavior graphs by comparing
all nodes and transitions, followed by automatic grouping of the graphs with the highest
similarity.

Figure 1.2. Graph c)

Figure 1.3. Graph b)

Figure 1.4. Graph d)
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1.1. Goals

If we look at the behavior from Figure 1.3, Figure 1.2, and Figure 1.4, it is not trivial to
decide which graphs we should merge into one behavior model. Figure 1.2 and Figure 1.3
have the same number of iterations in the loop but a different transition from Node3 to
Node7, whereas Figure 1.3 and Figure 1.4 have the same transition structure, but a large
difference in the number of iterations of the loop. If we compare Figure 1.2 and Figure 1.4,
we only find the partial structural similarity, that all graphs of the service share. Thereby, we
can not merge all three graphs in one user group. It is hard to decide how we would merge
these user-behavior graphs solely based on the graph itself. A solution for this problem is to
add user specific data to the nodes, i. e. values of input forms, to describe the user behavior
and support the merging. This thesis provides an approach to use this user specific data to
improve merging results, integrated in the iObserve framework 1 [Hasselbring et al. 2013].

The iObserve project aims to facilitate adaption and evolution of distributed software
systems [Hasselbring et al. 2013]. The framework is able to collect user-behavior data, but
is missing a component to process this data based on the user-behavior and additional
user-specific data. The user-behavior of iObserve is stored as a list of operation calls for
each user-session. The contribution of this thesis is to provide a solution to enrich this user-
behavior with additional call-information and aggregate the behavior to behavior-models
representing user groups.

1.1 Goals

In the following sections we define our two goals for this thesis. The first goal in Section 1.2
is to extract user-behavior models from user sessions enriched with call-information. The
second goal is to evaluate our approach, which is defined in Section 1.3

1.2 G1: Extract User-Behavior Models from User-Session

Our first goal is to develop a service which aggregates given user-sessions extended with
user specific data to a user behavior model. This service has to be integrated as a TeeTime
[TeeTime Framework Webpage] Filter into the iObserve [Hasselbring et al. 2013] framework. It
is divided into the following subgoals.

1.2.1 G1.1: Provide a Concept to Enrich User-Sessions with User-Specific
Data

The user-sessions of the iObserve framework are a list of entry-calls, which represent a
users operation call within the system. These entry-calls are not ale able to store additional
data. Since we want to aggregate user behavior based on user-behavior and user-specific
data, we have to provide a concept to enrich the entry-calls with additional call-information.

1https://www.iobserve-devops.net/
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1. Introduction

1.2.2 G1.2: Aggregate Extended User-Sessions to Behavior-Models

To extract user groups from user-sessions, we need to aggregate the nested behavior from
the sessions. We will solve this task by providing a service to cluster user-sessions and is
integrated into the iObserve framework. The service has to fulfill three task. The first task
is to preprocess the user-session to be appropriate for the clustering. The second task is to
aggregate the user sessions by clustering and the third is transform the clustering results
into sufficient behavior models.

1.3 G2: Evaluation of the Approach

Our second goal is to evaluate our approach. Therefore, we will firstly verify in Section 1.4
that our approach is able to cluster enriched user-sessions by finding predesigned user-
types in generated workload. Then we will compare our approach with the user-behavior
aggregation approach of David Peter [Peter 2016] in Section 1.5 to show that we can match
his clustering implementation.

1.4 G2.1: Find Predesigned Use-Types by Clustering Extended
User-Sessions

In our first evaluation goal, we want to proof that our approach is able to cluster ex-
tended user behavior. Thus, we will create predesigned user types, whereas some are only
distinguishable by their call-information and others by their navigational structure.

1.5 G2.2: Comparative Evaluation of the Approach

The second sub-goal is to compare our approach with the approach of David Peter [Peter
2016], who implemented a clustering service for iObserve, which clusters user behavior
without additional information.

1.6 Document Structure

This thesis is structured as follows. In Chapter 2 we provide the foundations for this work.
It introduces the concepts, frameworks and technologies we used to develop our approach.
In Chapter 3 discuss our approach to reach the first goal of this thesis. Then we depict our
implementation for the clustering of the user-behavior in Chapter 4. Our approach and its
implementation are evaluated in Chapter 5. Chapter 7 concludes our work by discussing
our approach and its evaluation. In Chapter 6 we introduce other approaches that are
related to ours. Finally in Section 7.3 we depict potential future work.
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Chapter 2

Foundations

In this chapter we introduce the tools and concepts used in this work. We begin in
Section 2.1 with the pipe-and-filter framework TeeTime, which is used to process our data
streams in iObserve. Then we present the Weka data mining tool in Section 2.2.1 and
the K-Means algorithm in Section 2.2.2. In Section 2.3 we present an introduction of the
iObserve framework, which is the framework our approach is integrated in. It is followed
by WESSBAS in Section 2.5, an approach our work will build on. Finally we provide some
foundation for our evaluation in Section 2.6.

2.1 The Pipe-and-Filter Framework TeeTime

The pipe-and-filter architectural style is used to divide complex tasks into separate executed
operations [Buschmann 1998]. Each operation is performed by a segment called filter. Filter
are connected via pipes. A pipe forwards data from one filter to another without processing
it. Pipes and filter can be connected to complex structures, since a filter can have more
than one incoming and outgoing pipe. That way structures like loops and branches can be
created. A pipe-and-filter architecture can therefore easily handle many data of the same
kind or so called data streams and process it one date after the other. An example for a
simple pipe-and-filter concept in Java would be Java Streams, which are introduced in Java
1.8 [Urma 2014].

The iObserve analyses processes streams of monitoring records and can therefore be
appropriately supported by a pipe-and-filter framework. iObserve utilizes the TeeTime
framework [Wulf et al. 2014] [TeeTime Framework Webpage] to fulfill this task. TeeTime is
written in Java and able to realize complex pipe-and-filter structures. It provides developers
with broad predefined interfaces and implementations of pipes and filters. The filters of
TeeTime are called stages, while the pipes keep their name.

Each stage can have multiple in- and output ports. A port is the interface of a stage. An
input port receives data objects and the stage collects it one by one. Processed objects are
send to the output port by the stage. Ports are typed and therefor, accept only objects of a
certain type. We categorize stages into producer, consumer and sink stages. If a stage has only
output ports, it is called producer. On runtime the producer is generating elements and
sends them to its output port. A consumer has at least one input port and can have one or
more output ports. If an object is located at the input port of the consumer, its execution is
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2. Foundations

triggered. The object is processed and can be send to one or some of the output ports. A
consumer stage with no output port is called sink.

The output ports and input ports can be connected via pipes, whereby each port can
only be connected to one pipe at the time. Stages and pipes are easily extensible for various
purposes. To create a pipe-and-filter structure with TeeTime, a configuration is needed. In a
configuration the used stages and the connections between them are defined. The pipes
between the stages are then created on runtime. Depending on the configuration, pipes are
constructed differently, meaning capacities and transmission type can vary.

Figure 2.1 depicts different TeeTime configuration examples. Figure 2.1d depicts the
notation for the configurations in Euclidean Distance, Manhattan distance, and Composite
stage example. Stages are plotted as boxes labeled with their names. Pipes and ports are
merged to an arrow indicating the direction of the object flow. The type of the in- and
output ports is connected to the pipes via a dotted line. The composite stages are boxes
containing the inner stages. To illustrate their encapsulation, the ports of the composite
stages are smaller boxes on the side of the composite boxes. Ports on the left are always
input ports and ports on the right are always output ports.

Figure 2.2a shows a basic configuration. A producer stage P produces elements of type
A, the stage C processes them to elements of type B and sends them to a sink. In Figure 2.2b
the consumer stage C is separated into two distinct stages C1 and C2. Both stages transform
type A elements to B elements. A distributer stage D is deciding which element is send

(a) Basic example (b) Distributer and merger example

(c) Composite stage example (d) Notation legend

Figure 2.1. Examples for TeeTime Configurations
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to which consumer stage. The elements of C1 and C2 are then merged by merger M and
forwarded to the sink. Figure 2.2b demonstrates the characteristic of TeeTime, that it is
not possible to trigger an execution of consumer stage by two input ports. Each stage can
only have one active input port. If an object lies on a passive port, the execution will not be
triggered. Therefor, we need a merger to merge the input objects to one stage.

If we want to split a data stream, we either need a distributor or another output port. The
same rule applies if we want to obtain elements from two input pipes. In Figure 2.1c we see
a composite stage C containing a distributer, two stages, and a merger. In TeeTime we can
structure stages into groups for a better oversight by wrapping parts of the configuration
in container stages.

We will use the visualization notation from Figure 2.2a in the following thesis with a
small exception. For the reasons of readability, we will not show distributors and mergers.
Every time a stage has more than one input pipe, the deployed architecture contains a
merger stage for merging the inputs. The same can be applied for outputs and distributer
stages.

2.2 Data Mining Tools and Algorithms

For the aggregation of the user-behavior graphs we will use data mining techniques such
as clustering. Therefor, we present in the following section the data mining tools and
algorithms relevant for this work.

2.2.1 Data Mining with Weka

Weka [Hall et al. 2009] is a collection of data mining algorithms provided by the University
of Waikato New Zealand. It comes with a GUI tool to process datasets with different data
mining techniques like clustering, classification or regression. Also, Weka provides its
algorithms as a Java library. To use a Weka clustering algorithm, the input data has to be
converted into a special format called Attribute-Relation File Format(ARFF). An ARFF file
contains a set of vectors and a list of attribute names. The list maps each attribute name to
a position in the vectors. The vectors contain the values of the attributes. Each vector is
representing another measurement.

Example: If we want to cluster people by weight and height, the attribute list of the ARRF
file would contain the two attribute names weight and height. Each person in our clustering
would be represented by a two dimensional vector. The first attribute in the vector would
be the weight of the person and the second its height.

The Java implementation of the ARFF is called Instances. An Instances contains the
list of attribute, the vectors of attribute values are stored in Instances objects.

7



2. Foundations

2.2.2 The Clustering Algorithms K-Means and X-Means

For our approach we will use the X-Means [Pelleg and Moore 2000] clustering algorithm of
Weka. It is a special variant of the K-Means algorithm [DU 2010, section 4.3]. The K-Means
receives as input a set of vectors v1 . . . vn and a number k. The number k represents the
number of desired clusters. The K-Means chooses k random vectors as cluster centers and
adds the other vectors to the clusters based on a distance metric. A distance metric defines
the distance between two vectors, since there is more than one way to calculate the distance
between two points. Popular examples are the Manhattan or the Euclidean distance [DU
2010, section 4.2.3] which are displayed in Figure 2.2. The euclidean distance is the direct
distance between too data points, while the Manhattan distance is adding distances in each
dimension. Depending on how important the comparison of inner-dimensional values in
comparison to inter-dimensional values are, we can choose one over the other.

(a) Euclidean Distance (b) Manhattan distance

Figure 2.2. The Manhattan and the euclidean distance

The K-Means clustering is performed like followed. First we either pick k vectors from
the vector set or create k vectors randomly and call these vectors centroids. At the end of
the clustering each centroids will be the mean vector of a cluster. Then we assign each
vector vi to the nearest centroid cj based on a given distance metric. After the assignment of
all vectors to a centroid, we set the mean vector of all vectors in the group as new centroid.
The next step is, we iterate over the procedure by starting with assigning all vectors to
their nearest centroid until the mean vector of the vector group is almost identical to the
centroid. Then every group is a cluster and every mean vector is its centroid.

One quality measurement for the quality of a cluster is the Sum of Squared Errors (SSE).
It sums up the distance from all points to its cluster centers. It describes the density of the
clusters. The smaller the SSE is, the better is the clustering. Figure 2.3 shows the formula of
the SSE, where k is the number of clusters, Ci are the clusters with its centroid mi, and x is
a vector in this cluster. The function dist computes the distance of two vectors based on an
arbitrary distance metric.

8



2.2. Data Mining Tools and Algorithms

SSE =
k

∑
i=1

∑
xPCi

dist(mi, x)

Figure 2.3. Sum of Squared Errors (SSE)

K-Means is designed to find a specific number of clusters, but sometimes it is hard to
guess how many clusters can be found in a vector set. X-Means therefore executes K-Means
for a range x and returns the result with the most fitting clusters. The input for the X-Means
are a minimum, and a maximum number of clusters (kmin and kmax) and the input vectors.
The algorithm is divided into three steps.

1. Improve-Parameters

2. Improve-Structure

3. If k > kmax stop and re-
turn best solution found.
Else, Goto 1.

Improve-Parameters In the first iteration of X-Means, the K-Means clustering algorithm
is executed on the vectors for kmin. In every other iteration the K-Means is executed on
current state with the current k. The result of this execution is then saved for further use.

Improve-Structure In the second step, it is examined if one or more of the current cluster
centroids can be split into two separate centroids. Therefor, each cluster is considered as
an own clustering instance with a single centroid. The centroid of each instance is split
into two child centroids. The new centroids have the same distance d to the position of the
parent centroid and the distance 2d to each other. We execute the K-Means algorithm next
with k = 2 on each instance. Then the cluster of the children is compared to the cluster of
the parent. If the child centroids perform better in the evaluation than the parents, we keep
them by removing the parent and adding the children to the global instance. Thereby the k
is increased. If the children do not perform better than the parent, the cluster stays the same.

When k = kmax the maximum number of clusters is reached. The K-Means is executed a
final time for the kmax instance and then the found clustering results for all k are compared.
Finally the best result is returned.
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2. Foundations

2.3 The iObserve Approach

The iObserve approach (Integrated Observation and Modeling to Support Adaptation and
Evolution of Software Systems) [Hasselbring et al. 2013] [Heinrich et al. 2015] assumes that
a modern software system is exposed to constant deployment changes due to varying usage
and requirements. The iObserve approach is designed in order to support evolution and
adaptation and to react to these conditions. Evolution in this case means manual modifica-
tion of the system made by developers and operators, while adaptation means automated
improvements. Figure 2.4 visualizes this concept by showing the iObserve approach. It
follows the MAPE-K approach [Kephart and Chess 2003]. A MAPE-K framework monitores
a system or parts of a system. The resulting data is analyzed. If the system changed, a plan
is created to optimize the changed system. This plan is then executed on the monitored
system.

In iObserve the planning and execution is divided into two parts. The first is called
adaptation. The adaptation is an automated change of the the system based on a planning
algorithm. The second is called evolution. The evolution operators evaluate the monitored
and analyzed data and realize changes manually.

Figure 2.4. iObserve approach
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2.3. The iObserve Approach

2.3.1 The iObserve Monitoring Component

The iObserve approach uses the Kieker monitoring framework [Van Hoorn et al. 2012] as
base for its monitoring. The Kieker framework supports instrumentation technologies and
provides monitoring, which is necessary to observe runtime properties, like control-flow
tracing and application performance. When a service instrumented with Kieker is accessed,
the monitoring creates one or more Kieker monitoring records. The records are containers
for data gathered from the service. Each property in these records represents a single
measurement and can be represented by Java primitives and strings. Monitoring records
are collected by the Monitoring Controller and stored or sent via a Monitoring Writer. In
iObserve monitoring data is either sent to a remote analysis server via network stream or
written to a log file for a delayed analysis.

For iObserve, the Kieker instrumentation language (IRL) [Jung 2013] is used to extend
the existing Kieker monitoring records, as well as, creating new records. In Listing 2.1 we
see an example for an extended monitoring record. The defined EJBDeploymentEvent extends
the AbstractEvent of Kieker. It contains three string properties. An EJBDeploymentEvent is
created by an instrumented service when a servlet is deployed or undeployed.

Listing 2.1. iObserves EJBDeploymentEvent defined in Kieker IRL

1 abstract entity EJBDeploymentEvent extends AbstractEvent {

2 string serivce

3 string context

4 string deploymentId

5 }

2.3.2 The Palladio Usage Model

In our evaluation we want to compare our behavior models with the current behavior
models of the iObserve approach. The current models are stored as usage models of the
Palladio Component Model (PCM) [Becker et al. 2007; 2009]. It is a meta-model to describe
software systems. A Palladio instance comprises multiple sub-models, each characterizing
a view of system. This sub-models are used in the iObserve framework to map the system
to a model. For our approach we need to understand the UsageModel, which describes the
user-behavior of the system and is used as behavior model in the current user-behavior
aggregation approach by Peter [Peter 2016].

Figure 2.5 depicts this usage meta-model. The UsageModel is the collection of all user
groups of the system. It contains one or more UsageScenarios, where each scenario represents
a group of users from the system. The user-behavior itself is modeled by the ScenarioBehavior.
The scenario behavior contains a list of AbstractUserActions. Each monitored user action is
modeled by an EntryLevelSystemCallEvent and can be a Signature call, a variable usage, or
the user role. This action list always begins with a Start and always ends with a Stop action.
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Figure 2.5. Palladio usage model from [Becker et al. 2009]

All actions between start and stop are interconnected, that way all actions can be traversed.
This path of user actions is the monitored path of the users through the system. The PCM
only allows to concatenate user actions, to make a loop or a branch. The Loop and the Branch
action are necessary to model it. Therefore, a loop contains another behavior scenario,
which models the loop body. When traversing down the inner scenario recursively, is the
first entry call that is found thereby the start and the end of the loop. Branches contain a
set of branch transitions, each holding a probability and an inner behavior scenario. Due to
the inner scenarios of loops and branches, the behavior scenario is a recursive structure
and measured by the effort of coding.

2.3.3 The iObserve Analysis

iObserve uses models of the monitored system to analyze system properties. The models
are specified using the Palladio Component Model [Becker et al. 2009] of the monitored
system to analyze the system. Initially a model of the system, including architecture,
deployment, and user-behavior is created by a human developer. These models are then
updated at runtime based on the analysis of the monitoring data. Based on the model and
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2.4. iObserve Behavior Model Visualization

Figure 2.6. Processing of entry calls

the result of the analysis, the model can be modified. If the analysis proposes an adaptations
based on the modified model, this adaptation is evaluated and could be realized in the
monitored system.

Besides deployment, iObserve also analyses user-behavior models. These models are
based on entry call events, which can be synthesized based on call traces. In the moni-
tored system two Kieker records are created and sent to the monitoring writer for each
operation call. The BeforeOperationEvent is created when the operation is called and the
AfterOperationEvent when the operation returns. To process these records, the iObserve
analysis uses a TeeTime configuration. A reader stage reads incoming records and trans-
forms them into Java objects. These objects implement the IMonitoringRecord interface.
They are sent to the RecordSwitch stage, which switches the records by type and sends
them to processing stages for the respective records types. The BeforeOperationEvent and
AfterOperationEvent implement the IFlowRecord interface and are, therefore, forwarded to
the TEntryCallEvent stage. This can be seen in Figure 2.6, which shows a partial configura-
tion of the analysis containing only stages necessary for tracing user-behavior. The stage
TEntryCallEvent merges BeforeOperationEvent and AfterOperationEvent of an operation
to one record called EntryCallEvent. These EntryCallEvent records are then sent to the
TEntryCallSequence stage. At this point, the EntryCallEvent records are sorted by user and
session. For each user an EntryCallSequenceModel is created containing a list of sessions,
whereby each session is containing a list of EntryCallEvent records.

2.4 iObserve Behavior Model Visualization

The user-behavior model visualization of iObserve [Banck 2017] is web service to visualize
user-behavior graphs. It consists of a backend and a frontend component. The core backend
component is a Neo4j1 graph database storing the behavior graphs. It can be accessed via
REST to create, update, or delete graphs. It is connected to frontend via websocket. The

1http://neo4j.com/
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frontend is a React2 app visualizing the graphs from the backend.
In the internal model, the directed graph of the system is called Application. Each

application contains multiple nodes called Page objects. The properties of a page are all
transitions. The page is a part of a map of additional properties, which can be added
dynamically to the page. The transitions between those pages are called visits. A visit
has a source and target page. Furthermore, a visit has a property calls for the number of
transitions from the source to the target.

If we want to add a graph to the visualization, we send a POST-request with a JSON
of an Application to the backend. In return we get an identifier, which enables us to
referentiate the application later. It is impossible to create entities with an own identifier
on the backend service. After we added the application, we can add first the nodes and
then the edges one by one. When we add a node, we have to save the returned identifier to
referentiate the nodes in the edges. Since the REST interface does not support adding of
listed elements, we have to create a REST request for every entity sent to the server.

2.5 WESSBAS Approach

Like our approach, WESSBAS uses the modeling and automatic extraction of probabilistic
workload specifications from session-based application systems [van Hoorn et al. 2008;
2014; Vögele et al. 2015]. WESSBAS uses it for load testing on these systems. It aims to use
real user-behavior to generate scalable workload for testing. The approach predicts that
using real user-behavior base for the simulation of load on the system will make load test
more realistic and, therefore, more effective.

The architecture of this approach is depicted in Figure 2.7. It shows the four parts
of the approach. The first part is the monitoring. In the Monitoring, the instrumented
system under test (SUT) is used to create session logs. In the Behavior Model Extractor these
session logs are then transformed to an absolute behavior model for each session. This
model is a call graph represented by a nˆ n matrix containing the absolute transition
frequencies of the sessions’ operation calls. The matrices are then transformed to vectors
and clustered with Weka. The results of the clustering are behavior models, a behavior mix
and the workload intensity. The behavior models are represented by Markov chains, where
the Markov states are associated with operation calls. The transitions between the states
model the probability of a user following the path of the transition. The behavior mix is
storing how much percent of the overall user base a behavior model represents. Finally, the
workload intensity is a function defining the arrival rates of new sessions over time. The
behavior models and the behavior mix are then transformed into WESBASS-DSL instances
in the next component called WESSBAS-DSL Model Generator. The WESSBAS-DSL is the
core of the WESSBAS approach. It is used to define a workload model for load testing of
a system. The transformed behavior models are then sent to Test Plan Generator, which

2http://facebook.github.io/react/
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Figure 2.7. WESSBAS approach overview taken from [Vögele et al. 2015]

creates a JMeter test plan to simulate realistic user behavior on the system. In addition to
the test plan creation, WESSBAS has a fourth component. The Performance Model Generator
is using the monitoring data of the SUT and the extracted WESSBAS-DSL instances to
create PCM models of the system to store the workload characteristics of the system. Since
WESSBAS-DSL can not be mapped directly on any PCM Model, various models are created
and missing informations directly extracted from the monitoring.

2.6 Tools Used in the Evaluation

In this section we present a set of tools and projects we use for our evaluation. First, we will
describe the JPetStore, a webstore we instrumented to evaluate our behavior model creation,
in Section 2.6.1. Then we briefly introduce the Common Component Modeling Example
(CoCoME)[Herold et al. 2008] in Section 2.6.2. We will use the application CoCoME in
order to compare our approach to the approach of David Peter [Peter 2016]. In Section 2.6.3
we provide an overview of the workload generation for our evaluation. Finally we explain
the Goal-Question-Metric framework we will use to evaluate our approach.
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2.6.1 JPetStore

The JPetStore3 is a demonstration for a simple web application built with Java. It is built
on top of the frameworks Spring4, MyBatis5, and Stripes 6. The JPetStore incarnates a
full web shop including account, item, and order management. It is implementing the
model-view-controller (MVC) pattern. The controllers of the store are implemented as
Stripes ActionBean. When we are navigating the site, we are navigating through the different
actions. All actions are accessed with the same path.

http://localhost:8888/jpetstore/actions/

If we want to access the item catalog, we call the Catalog action. This is also represented in
the URL.

{path}/Catalog.action

Every sub page containing parts of the catalog, like categories or items, is accessed with
the query parameter of the catalog URL. If we want to see the category FISH we call the
catalog action with the queries viewCategory= and categoryId=FISH.

{path}/Catalog.action?viewCategory=&categoryId=FISH

The same concept is applicable for all sites of the store with an underlying model. The only
page with no underlying model is the help page.

We use the JPetstore in the version 6.0.2 to evaluate the software we create in our
approach. Therefor, we will interpret the the URLs as operation calls.

2.6.2 CoCoME

For the comparison of the two behavior model aggregations, we will use monitored
behavior from the Common Component Modeling Example (CoCoME) [Herold et al. 2008].
CoCoME is an enterprise management tool, where there exist different user roles. An
enterprise manager, e.g., can create new stores or products for an enterprise. For our
evaluation we will use the behavior of a cashier. A cashier uses the cashdesk. He starts a
purchase, scans items, and collects the payment of the customers. The actions of the cashier
can be mapped directly to the behavior of a customer, e.g. whether a customer buys many
items, the cashier scans many items.

3https://github.com/mybatis/jpetstore-6
4https://projects.spring.io/spring-framework/
5http://www.mybatis.org/mybatis-3/
6https://stripesframework.atlassian.net/wiki/display/STRIPES/Home
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2.6.3 Workload creation with Selenium

For our evaluation we have to create workload on the JPetstore and CoCoME simulating
multiple different users. [Selenium] is a framework for browser automation. It is primarily
designed for testing web applications but is not restricted to it. We can use it to create
sequences of web operations representing a certain user-behavior. Therefore, we need to
create a script containing a clickstream and run it on a Selenium WebDriver. A WebDriver
is an interface for translating commands into operations in a browser. The scripts can be
written in different languages like Java, C# or Ruby and run on the respective implementa-
tion of Selenium. When a script is executed, opens the driver a browser window and acts
as a user.

To create a script we can either write it manually or record our clickstream with the
Selenium IDE7 , a plug-in for the Firefox browser. It can record clicks and save them in
html scripts. Scripts can be executed by the IDE to repeat all actions directly or converted
to other languages.

To use Selenium with these scripts in our project we need to add the WebDriver Jar to
our project. This can be done via Maven (see Listing 2.2).

Listing 2.2. Selenium Web Driver Maven Dependency

1 <dependency>

2 <groupId>org.seleniumhq.selenium</groupId>

3 <artifactId>selenium-java</artifactId>

4 <version>3.3.1</version>

5 </dependency>

The Selenium community provides drivers for almost all common browsers such
as Firefox or Chrome. The browser we will use is the headless browser [PhantomJS].
PhantomJS is a command line browser running headless in the terminal. It is implemented
in Javascript using [Node.js]. Selenium offers us WebDrivers for this browser but not the
browser itself. Therefore, it has to be installed separately. We use PhantomJS since we do
not need a browser window to see how the clickstream is executed. We install Node.js to
our system, followed by using the Node Package Manager with the command ’npm install

-g phantomjs’. Now the PhantomJSWebDriver can be instantiated as seen in Listing 2.3.

Listing 2.3. Create a PhantomJs Driver for Selenium

1 public PhantomJSDriver createPhantomJSDriver() {

2
3 final DesiredCapabilities capabilities = new DesiredCapabilities();

4 //set path of phantomjs executable

5 capabilities.setCapability(PhantomJSDriverService.

PHANTOMJS_EXECUTABLE_PATH_PROPERTY,

7https://addons.mozilla.org/en-US/firefox/addon/selenium-ide/, visited: 20.03.2017
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6 this.PATH_PHANTOMJS);

7 //load javascript on site

8 capabilities.setJavascriptEnabled(true);

9 // able to take screenshots

10 capabilities.setCapability("takesScreenshot", true);

11
12
13 final PhantomJSDriver driver = new PhantomJSDriver(capabilities);

14
15 driver.manage().timeouts().implicitlyWait(30, TimeUnit.SECONDS);

16 driver.manage().window().setSize(new Dimension(800, 600));

17
18 return driver;

19 }

Listing 2.3 shows the configuration for the PhantomJSWebDriver. First we provide the
WebDriver with the path to our PhantomJS executable. Then we configure our driver to load
JavaSript, since almost all modern sites use JavaScript elements. Additionally, the driver is
able to take screenshots of the virtual browser window, which will help us debugging.

The PhantomJSWebDriver can be used to browse a site. An example for a script that can
be executed is shown in Listing 2.4. It shows how a WebDriver is using a login form to log
into a website by navigating the DOM tree, finding elements and calling events on them.

Listing 2.4. Using the PhantomJS WebDriver

1 private void browseSiteWithWebDriver(final WebDriver driver) {

2
3 //call the page

4 driver.get("http://localhost:8080");

5
6 //navigate the page

7 driver.findElement(By.linkText("Sign In")).click();

8 driver.findElement(By.name("username")).sendKeys("name");

9 driver.findElement(By.name("password")).sendKeys("password");

10 driver.findElement(By.name("signon")).click();

11
12 }

2.6.4 The Goal Question Metric Method

For our evaluation we use the Goal-Question-Metric method (GQM) [Basili and Weiss
1983]. The GQM was originally defined for the NASA Goddard Space Flight Center. It
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was created for evaluating flaws of projects and is based on the following assumption. To
measure the success of a project, its goal must be specified first with respect to which data
and operational methods. The GQM was extended into an application by [Van Solingen
et al. 2002]. It results in the specification of a measurement model which defines questions
and rules to interpret the measurement data. The model is divided into three levels. These
levels are depicted in Figure 2.8.

Figure 2.8. Levels of the GQM framework [Basili 1992]

The first level is called conceptual level. It is the goal we want to reach with the GQM
method. A goal has a set of properties, which are defined in a template. The goal definition
properties are object of study, purpose, focus, stakeholder, and context. The object of study can be
either a product, a process, or a resource. The object is analyzed for a purpose with a focus
on a part of this object. The achievement of the goal can depend on different people, called
stakeholder. In some cases reaching the goal is not only dependent on the stakeholder, it is
also dependent on the environment the object is located in. This environment has to be
defined in the goal as context.

The second level is the operational level. It contains a set of questions which are used
to describe a quality aspect of the object mentioned before. The questions also imply how
the achievement of a goal is going to be conducted. It is preferable that a question can be
answered quantitatively.

The third level is the quantitative level. It contains metrics to measure the data provided
with the object. With metrics data can be measured in a quantitative way. Metrics are used
to answer the questions. Multiple metrics can be used to answer a question and metrics are
usable by multiple questions.

A GQM implementation consists broadly of four phases [Southekal 2017], which
are shown in Figure 2.9. The first phase is the planning phase. In the planning phase,
the environment of the object of study is characterized, leading to a specification of all
properties of the goal. Then the goal is defined in the definition phase. We define questions
to specify the goal and metrics to reach our measurement goal. In the data collection phase,
we collect all data relevant in the environment of the goal. After that we can analyze and
interpret it in the interpretation phase. We use the measurements done with the metrics to
answer the questions. Thereby, we can verify if we accomplished the goal.
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Figure 2.9. Phases of the GQM [Southekal 2017]
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Chapter 3

Approach

In this chapter we formally describe our approach for aggregating user-behavior as defined
in goal G1 (see Section 1.2). The extraction of user-behavior from session logs is a known
problem and different solutions were already proposed [Banerjee and Ghosh 2001; Peter
2016; Dharmarajan and Dorairangaswamy 2016]. One solution is the Model Extractor
component of the WESSBASS approach for workload extraction [van Hoorn et al. 2014] as
described in Section 2.5. We extend their Behavior Model Extractor approach by adding
user specific information. User specific data is defined as all data, that is associated with
a user and not represented by the user sessions. It is data such as, input of login forms,
parameters of internal operation calls, or general user information.

The current version of the iObserve analysis groups monitored operation calls by session
and user. For each distinguishable user, a set of sessions is stored. Each session is a list of
operation calls.

In our approach, we take the following steps to extract the user-behavior from monitored
user sessions and user specific data. First, we propose our concept for enriching user
sessions with additional call information in Section 3.1. Before clustering, we filter all non
relevant operation calls to reduce the complexity of the clustered vectors. This is shown in
Section 3.2. When we have filtered our sessions we need to prepare them for the clustering.
Since we use the Weka library (see Section 2.2.1) for clustering, we have to transform each
session with its list of calls to a vector. We explain our concept for this transformation in
Section 3.3. After that, we can cluster the vectors, which is explained in Section 3.4. Finally,
we provide the definition of our behavior models in Section 3.5.

3.1 Enriching the User Sessions with Call Information

Goal G1.1 in Section 1.1 describes the necessity to merge user-behavior graphs with user
specific data. We reach this goal by extending the model for the entry-calls of the current
iObserve system. An entry-call models 1an operation call from the monitored system. It is
a record type containing different attributes of the call, like the operation signature. We
extend this type with the attribute callInformation, typed as an string array to hold all passed
parameters. The exact implementation is described in Section 4.1.
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3.2 Filtering Entry Calls

The set of entry-calls represents the operation calls generated in a system by direct user
action. Not all operation calls are relevant to trace the user-behavior. For example, an
operation can invoke other operations in the system. If operation a invokes always operation
b and c, we are not interested in the call of b and c after we found an operation call for
operation a, since we know that b and c will be called. Furthermore, not all entry-calls are
relevant either. For example, the navigation of the user is bound to multiple entry-calls.
In this case, we can again generally assume that after the call of the first operation, the
other operation calls will follow. Operation calls, like in the second example, are not always
irrelevant, assuming three operations are normally called after another, if the user uses the
system correctly. When the user exits the system after calling the first operation, the second
an third operation become relevant. Now they are not part of the call sequence, which they
would have been if we declared them as not relevant.

We create a filter function δ : E Ñ B, with E being the set of all entry-calls. This function
returns true if the entry-call is relevant and false otherwise. The relevance of an entry-call
has to be decided for each system and, therefore, has to be specified for each system
separately by an operator or a developer. Only a developer or operator can decide whether
an entry-call is relevant. Such information can also be derived from the design-time model,
e.g. the Palladio Component Model.

3.3 Transforming User Sessions to Vectors

Our given system provides us with a set of user sessions U for each distinguishable user
while every session is a list of entry-calls enriched with call-information. For the clustering,
we need to transform these list of enriched entry-entry calls into a vector. The vector has
to contain each transition of the user session and the call-information of the entry-calls,
which are part of the transition. Every vector has to have the same dimensions and has
to be equally structured, since the clustering needs the same kind of data at each field of
the vector to provide a useful result. Therefore, we divide the creation of the vectors into
two steps. First, we create a matrix containing all possible transitions and a function to
assign a call-information to each entry call in Section 3.3.1. This matrix is used to create a
matrix for the transition of each session. The call-information for each session is collected
in Section 3.3.2. In Section 3.3.3 the matrix and the call-information are transformed into a
vector for the clustering.

3.3.1 Creating the Transition-Matrix

For the creation of the transition-matrix, we first create a matrix prototype from the entry-
call signatures of the user sessions, then we setup an instance of this prototype matrix for
each session. Finally, we explain how we connect the call-information to the signatures.

22



3.3. Transforming User Sessions to Vectors

Our given system is providing us with a set of user sessions U for each distinguishable
user while every session is a list of entry-calls. Based on these sessions, we generate a
set S containing every operation signature from all existing entry-calls. Then we create a
zero nˆ n-matrix T, with n = |S|, for each session, based on all operation signatures. The
bidirectional function o : S Ñ N maps every operation call to a row and column in the
matrix. The position (i, j) with i, j ă= n in the matrix denotes the number of transitions
from operation o´1(i) to operation o´1(j) with o´1 the inverse function to o. We need the
inverse function to be able to lookup the operation signature for an specific index, e.g. such
function is useful when we iterate over the matrix.

To add a transition to the matrix and therefore, modifying the transition counts T, we
can reference it by first getting the indices for the matrix with the function o by calling
o(s), s P S for the source and the target signature of the transition. The matrix T is built
symmetrically, meaning that the index i in a row and in a column always references the
same signature. Thus, the ti,i shows transitions from the service o(i) to itself.

To setup the matrix T, we add every transition from the session to the matrix of the
session. A transition is a pair of two entry-calls. For each entry-call ei from the the session
u with 0 ă i ă |u|, we add the pair (ei´1, ei) to the transition matrix if the filter function
allows each entry-call, i.e., δ(ei´1) = true and δ(ei) = true. If one entry-call ei of a transition
is not valid and thereby, δ(ei) = f alse, we skip this call and replace it. We replace ei it with
ei+j, where j P N δ(ei+j) = true and for all 0 ă k ă j δ(ei+k) = f alse.

For the clustering we need our data in the form of vectors. The dimensions of these
input vectors should be as small as possible to create the best result in the clustering.
Higher dimensions can lead to longer distances between the data vectors. This can be
aggravated by the used distance metric. The closer two vectors are, the more likely it is
that they are in the same cluster. With higher dimensions the distances become longer and
it is harder to find clusters [Steinbach et al. 2004]. Thus, it would be favorable to reduce the
dimension of the vector.

Not every transition is possible in a system, thus, there exists a position (i, j) with i, j ď n
where ∑SPS˚ ∑sPS si,j = 0, while S˚ is the set of all sessions. This means there are transition
counts that are zero for every session. We call these transitions empty transitions. An empty
transition increases the dimensions of the vectors unnecessarily. However, it will not affect
the result since the value will always be zero, because the distances between vectors are
not increased. The computational effort will be increased instead, due to the high number
of input values for the distance calculation. We define a function λ : NˆN Ñ B which
returns true if the transition is empty and f alse otherwise.

3.3.2 Managing Call-Information

A call-information is a key-value pair. Multiple call-information can belong to a operation
signature, where each call-information key is unique for each signature. Therefore, we
create a set I(s,U) for each signature s P S and user session U P U . I is the set of all existing
I(s,U). I(s,U) contains a set for every distinguishable call-information key for every entry-call,
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that had the operation signature s in the session u. The function γ : Sˆ U Ñ I maps every
signature of a session to its call-information.

3.3.3 Transforming the Transition Matrix into Vectors

We now transform each session matrix to a vector by adding every position (i,j) with
i, j ă n of the matrix to the vector if λ(i, j) = true. If the set of all existing distinguished
call-information keys is K, we add |K| fields to the vector. This is done because we want
to cluster the call-information together with the behavior graphs. We define a function
δ : K Ñ [n . . . n + |K| ´ 1] which maps every key to a position in the vector. Now we add
the value of one call-information c out of every I P γ(s, u), where s P S, u P U, to the vector
at the position δ(c.key). To find the best c in I we define a function β : I Ñ I which returns
the best fitting call-information. This function has to be implemented for every system
individually, since every system has different call-information. In Section 5.2, we provide
an example implementation.

3.4 Clustering of the User Sessions

The created vectors from Section 3.3 are then clustered by a clustering algorithm. In this
section we describe which algorithm is used in Section 3.4.1 and how it is applied in
Section 3.4.2.

3.4.1 The Clustering Algorithm

For the clustering of the user sessions we use the X-Means clustering algorithm [Pelleg
and Moore 2000]. As described in Section 2.2.1, X-Means is an extension of the K-Means
algorithm. Thus, the most characteristics of the K-Means algorithm are also applicable for
X-Means. These characteristics are, for example, feasibility and scalability [Suthar and Oza
2015], good results on huge datasets [Verma et al. 2012], and its sensitivity for noise [Abbas
2008]. We use X-Means because it is a clustering algorithm which performs in general with
good performance and needs a low configuration effort. Due to those characteristics, we
choose it to act as a general purpose solution for a clustering. Since there is no clustering
algorithm fitting perfectly for all clustering problems, our approach allows us to exchange
X-Means by other clustering algorithms. The implementation of the clustering can be seen
in Section 4.3.3.

3.4.2 The Execution of the X-Means Clustering

The higher the range of the X-Means, the higher is the time performance, since the X-Means
is executed for every number k in the range x = [i...j], with i, j P N0 and i ď j. The execution
time of X-Means depends on the input range for the cluster sizes. In order to reduce the
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time-performance, we have to estimate the cluster range in advance. This can not be done
in general, since it always depends on the analyzed system and its user-behavior.

Another input of the X-Means clustering is the. For our clustering we choose the
Manhattan distance[DU 2010, section 4.2.3], since we want, for its inner-dimensional
distance to have a higher effect on the overall distance than inter-dimensional distances.

We execute the X-Means clustering multiple times and compare the sum of squared
errors of each clustering result to each other. Our output is the cluster centroids with the
lowest SSE. This is necessary, since the X-Means clustering is very sensitive to the initial
centroids [Suthar and Oza 2015]. The initial centroids are chosen randomly, it can happen,
for example, that two centroids are placed in one cluster. It is possible that in the end, these
centroids define two clusters, splitting the existing one. Vice versa an initial centroid can
be placed in the middle of two clusters with no other centroid closer to them. During the
clustering, the two clusters will be added to the centroid in the middle of them. The result
of the clustering will be one merged cluster.

The result of the clustering will be a set of k, k P X vectors. Each vector is the centroid of
the cluster and each cluster is a group of users. The centroid vectors represent the behavior
of all user in the cluster.

3.5 The Behavior Model

The result of the clustering is transformed to our behavior models. A behavior model is a
graph M = (N, E, ∆, Γ). N is the set of nodes, where each node represents an operation
call. The set E is the set of all directed transitions (s, t) with s, t P N, where s denotes the
source and t the target node. The function ∆ : E Ñ N returns the transition count of a
given edge. The relation Γ : N ˆ I, where I is the set of all call-information and it denotes
which node contains which call-information.
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Chapter 4

Implementation

The approach introduced in Chapter 3 is realized as a pipe-and-filter system using TeeTime
[Wulf et al. 2014] stages. We created a hierarchical stage system using composite stages to
divide our tasks into further subtasks. The top level of this hierarchical structure can be
seen in Figure 4.1. The highest ordered stage is the TBehaviorModel. It takes user sessions,
which are represented by EntryCallSequenceModel-objects, as input and creates behavior
models. Each behavior model represents a user group of the system.

Following our approach starting at Section 3.1 we provide our implementation for
entry-calls, which are enriched with call-information in Section 4.1. From these extended
entry-calls we create the user groups. We separated this creation of user groups into two
phases. In the first phase the incoming entry-call sequence models are prepared for the
clustering. This is done by the TBehaviorModelPreperation, which is described in detail in
Section 4.2. The second phase is the aggregation of the preprocessed user sessions to user
groups in the form of behavior models. These behavior models are send to a visualization
server. The second phase runs in the TBehaviorModelAggregation stage and is described in
Section 4.3.

Figure 4.1. Top level stages of the analysis of the approach

Our stage system is integrated in the iObserve analysis. To receive user sessions format-
ted as EntryCallSequenceModel we create another output port in the TEntrySequenceModel

stage and connect it to our TBehaviorModel stage. Every system model created in the
analysis is also send to our stage system.

We implemented our approach as a general purpose solution, thus, we provide config-
urability for special purposes. In Section 4.4 we show the implementation of our configura-
tion object. Finally in Section 4.5.1 we describe the steps for executing our implementation

27



4. Implementation

on a system.

4.1 The Monitoring and Prerequisites

Our first goal defined in Chapter 1 implies that we want to add user specific data to
user-behavior and to include it in the clustering. Therefore, we have to define which user
specific data we want to consider, while comparing and aggregating user-behavior. We can
use globally known data such as contact details or data created by the user while using
the software system. The latter is data created at runtime and the input of an operation.
To access the data we have to instrument these operations and create records holding the
data. The existing monitoring records used to transport user-behavior information, such as
BeforeOperationEvent and AfterOperationEvent, are not sufficient to transport additional
behavior information. Therefore, we have to extend these event types to facilitate the
collection of additional user data. Instead of an extension, we could also define our own
event types. However, this would render existing stages useless, increase the work necessary
to implement our own approach and hinder comparison to existing approaches.

We want to be able to store the call-information as a variable list of key-value-pairs in
each operation-event. The version of Kieker IRL used in this work is not able to compile
records holding arrays. Since we want a set of parameters for each operation, we can either
send multiple records or one record containing a list. A simple solution would be to create a
new record type containing a single parameter. From the monitoring side of view, this would
be the fastest and easiest solution. On the analysis side though, this would cause extra effort,
because the parameter records would have to be reconnected to its operation calls. Therefore,
we decided to extend the BeforeOperationEvent and the AvterOperationEvent with a simple
field of the type string called information. The parameters are stored in the field as a JSON
string in the form of key-value pairs. An operation like public void buy(long itemID),
which is invoked with buy(123456789), produces a JSON of the form:

[{"informationSignature":"itemID","informationCode":"123456789"}]

This causes some overhead, but can be replaced with an array more easily, when arrays are
available in the Kieker IRL generator.

We called the new created records ExtendedBeforeOperation and ExtendedAfterOperation.
They can be handled by the analysis without problems, since they are inheriting the types
BeforeOperationEvent and AvterOperationEvent, which are already handled by the analy-
sis. To get the operation parameters to the user-behavior analysis we have to extend the
EntryCallEvent the same way we extended the operation call records. When merging them
in the TEntryCallEvent stage, we are merging their JSON call-information strings as well.
The Kieker IRL definition of the ExtendedBeforeOperation, ExtendedAfterOperationEvent,
and ExtendedEntryCallEvent are shown in Listing 4.1.
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Listing 4.1. ExtendedAfterOperationEvent defined in Kieker IRL

1 @author ’Christoph Dornieden’ @since "1.0"

2 entity ExtendedAfterOperationEvent extends AfterOperationEvent{

3 string information

4 }

5
6 @author ’Christoph Dornieden’ @since "1.0"

7 entity ExtendedAfterOperationEvent extends AfterOperationEvent{

8 string informations

9 }

10
11 @author "Christoph Dornieden" @since "1.0"

12 entity ExtendedEntryCallEvent extends EntryCallEvent{

13 string informations

14 }

The TEntryCallEvent stage merges BeforeOperationEvents and AfterOperationEvents to
EntryCallEvent-objects. Every incoming BeforeOperationEvent is stored in a map. When
the corresponding AfterOperationEvent arrives, the BeforeOperationEvent is retrieved from
the map and merged with the AvterOperationEvent to an EntryCallEvent. For our imple-
mentation we have to modify the stage for extended events. Since the extended operation
events extends the operation events, the stage can handle them without any modifica-
tion. Thus, we only need to modify the merging process. When the stage is merging the
BeforeOperationEvent and AvterOperationEvent, we check whether one or both events are
extended. For each extended event, we extract the JSON string containing information.
If both are extended events we merge the JSONs with string operations to one JSON
string. Now we create an ExtendedEntryCallEvent instead of an EntryCallEvent and add
the extracted information to it.

Operation parameters in general can be of any variable type. The problem for the
analysis is that our X-Means clustering method from Weka can only handle numeric values
of type double. Therefore, we have to encode parameters of other types. Since the method of
encoding a parameter has impact on the clustering, we can not provide a general encoding
concept. The encoding has to be done for every project particularly. In Section 5.2 we have
created an encoding for a specific project and explain it in detail.

4.2 The Preprocessing Stages

Before we can aggregate the user-behavior, we have to eliminate unnecessary transitions,
presort call-information, and transform the behavior into a format we can use for the
clustering. These tasks are all handled in the composite stage TBehaviorModelPreprocessing,
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which is depicted in Figure 4.2.

Figure 4.2. Behavior model preprocessing stage

This preprocessing stage contains four stages. Initially all incoming EntryCallSequence-

Models are filtered by the TEntryCallFilter. It filters out all EntryCallEvents from the
sessions of the EntryCallSequenceModels that are not needed for the clustering. Then the
TBehaviorModelTableGeneration and the BehaviorModelPreperation take the filtered entry-
call sequence models, and create a behavior model table for each session of the sequence
model. The generation stage preprocesses the entry-calls by creating a model table prototype
of them. The preparation stage takes this prototype of the entry-call sequence models as
input. It transforms each session to a behavior model table. The last stage then transforms
the tables to an Instances vector for the clustering.

4.2.1 BehaviorModelTable

The BehaviorModelTable seen in Figure 4.3 is the implementation of the nˆ n matrix from
Section 3.3. It contains the matrix as a two dimensional integer array called transitions.
Further, it holds a map signatures and an array inverseSignatures corresponding to the
functions o and o´1 mapping operation signatures to the transition matrix and vice versa.

Besides the index of an operation signature, the signatures map is also mapping to
the signatures on call-information and thereby implementing the function γ. The call-
information, Is,U , are stored in objects of the type AggregatedCallInformation. This class
is designed to hold multiple call-information of the same type and is needed when a
user accesses the same operation multiple times with different arguments. Each argument
is saved as a list of numbers in the callInformationCodes field. For the clustering, we
can only use a fixed number of parameters, thus, we have to aggregate all codes to
a fixed number of codes. We decided to use only one code as representative for each
AggregatedCallInformation-object. This code is stored in the representativeCode field. To
find this represented code, a strategy β is necessary. We implemented β as a basic strategy,
that returns the call-information with the most occurring value, but it can be exchanged for
a custom integration by implementing the IRepresentativeStrategy interface.
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Figure 4.3. Class-diagram of BehaviorModelTable and AggregatedCallInformation

4.2.2 DynamicBehaviorModelTable

In the BehaviorModelTable every array has a fixed size. This is needed to create comparable
Instance vectors from it. When we get a list of user sessions, we do not know how many
different operation calls are in the entry-calls, thus, we do not know the size of the arrays.
To overcome this problem we design a dynamic sized behavior model, which can be used
as a prototype for fixed-size behavior models called DynamicBehaviorModelTable.

Figure 4.4. Class-diagram of DynamicBehaviorModelTable

The members of this class can be seen in Figure 4.5. Since the dynamic behavior
model table is transformed to a fixed size behavior model table, the attributes signatures,
inverseSignatures, and transitions fulfill the same roles as in the behavior model table.
The only difference is that we have lists instead of arrays.

For signatures added to the table, a new entry to the signature map and the inverse
signature list is created. Then, the matrix, which holds the transition counts, is extended
from the size of nˆ n to a (n + 1)ˆ (n + 1)-matrix. Every new field in the matrix is marked
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as an empty transition with the value of ´1 until a transition is added for this field. This
way we create a sparse matrix. When the generation of the table is finished, we can assume
that these fields are not used.

When adding new information, we have to create new aggregated call-information.
Since every aggregated call-information needs a representative strategy, the generation
stage provides it in the attribute strategy.

4.2.3 EntryCallFilterRules

The entry-call filter rules are the implementation of the δ function from Section 3.2. The
purpose of this rule set is to verify whether an operation signature is an allowed signature.
It contains a boolean and a list of regular expression pattern. If the boolean is true, the
pattern list is a black list and if it is false the list is a white list. A signature verified with
this filter is checked against all regular expression patterns. If the filter rules are white list
rules, the signature has to match at least one pattern from the rule set. When rules are
configured as a black list, the signature is not allowed to match any of the patterns.

Figure 4.5. Class-diagram of EntryCallFilterRules

4.2.4 The TEntryCallFilter Stage

In the TEntryCallFilter the filter rules from the EntryCallFilterRulesare applied. For each
incoming EntryCallSequenceModel a filtered copy is created and send to the output port.
In the filtered copy all EntryCall-objects, which signature do not matches the rule set, are
removed from the sessions of the input EntryCallSequenceModel.

4.2.5 The TBehaviorModelGeneration Stage

The clustering can only handle vectors of the same size and order. Thus, our behavior
model tables need to have the same signature index mapping. Therefore, we need an empty
predefined table as sample to create new tables of the same kind. To create this sample
table we place a table generation stage between the TEntryCallSequenceModel stage and the
BehaviorModelPreperation stage.

The TBehaviorModelGeneration stage uses the DynamicBehaviorModelTable as inner model
to create a prototype behavior model table. On initialization, a new dynamic table is cre-
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ated with an IRepresentativeStrategy. The input of the stage are objects of the type
TEntryCallSequenceModel. For every entry-call sequence model, every transition of every
session is added to the dynamic table.

On termination of the stage, a cleared fixed sized copy of the dynamic table is created
and send to the output port. A cleared copy of fixed size is a BehaviorModelTable containing
the same signatures as the dynamic table. The difference is that the aggregated call-
information only contains a signature and no stored information. In the transition matrix,
every value is set to zero, except for empty transitions. For empty transitions, we can
choose depending on our scenario whether we want to keep them or not.

4.2.6 The TBehaviorModelPreperation Stage

The TBehaviorModelPreperation receives objects of the type EntryCallSequenceModel and an
empty BehaviorModelTable. As described in Section 2.3.3 EntryCallSequenceModel-objects
contain lists of EntryCallEvent-objects assigned to sessions which are assigned to users. In
our aggregation we want to cluster all user sessions. Therefore we have to extract them
from the user sessions. Each session represents a path the user has taken while navigating
the system. For our aggregation we want to know which transitions the user took regularly
and which he did not.

The TBehaviorModelPreperation stage creates a new behavior model table for each
list of EntryCallEvent-objects and adds the call events pairwise to the model. When one
EntryCallEvent is an instance of an ExtendedEntryCallEvent, the stored information is
added separately to the BehaviorModelTable.

When initialized, the BehaviorModelPreperation stage is storing all incoming entry call
sequence models until it gets the prototype table from the generation stage. Then it starts
processing first the stored and second the incoming models.

In the TBehaviorModelGeneration stage we use the EntryCallFilterRules to verify if
a signature is relevant for the dynamic behavior model table. Since we have a fixed
size of the transitions matrix and a fixed number of signatures, we do not need the
EntryCallFilterRules. Thus, it is not possible to add new signatures to the model table. If
a transition is added with an entry-call signature, which is not in the signatures map, we
skip this entry-call after the same concept, we used in Section 3.2.

The incoming models and sequences are processed with the same input port and
separated in an if-case via instanceof. That means that the input port is of type Object. In
general this is bad style, since we are not maintaining Separation of Concerns and disable
the type system. The stage implementation used version of the TeeTime Framework only
has one execution that is triggered by one input port. Since we want an execution for each
element and not only for one type we have to use one input port with two input types.
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4.2.7 The TInstanceTransformation Stage

The TInstanceTransformation stage transforms a set of BehaviorModelTable-objects to a
single Instances-object. This Instances element is needed for the clustering, since we use
Weka which is only able to cluster Instances. An Instances-object is a collection of Weka
Instance-objects. Each Instance-object is an attribute vector, while the Instances stores the
attribute names for these vectors and the vectors itself. Behavior model tables contain both
information in one object, therefore, the information has to be split.

The first behavior model table processed by the TInstanceTransformation stage is
used to create the Instances-object. Every field in the transition matrix and every call-
information is transformed into one attribute. To reconstruct our behavior model from
these Instances, we encode the attribute names. For transitions we use an identifier at the
beginning of the attribute name, followed by the source operation name, a unique separator
and the target operation. A transition from operationA to operationB will be encoded
as "><operationA->operationB". Call information start with another identifier and have a
different separator, but the concept is the same. A call-information infoC of operationA is
transformed to "##operationA~~infoC". Whereby the value for infoC is the representative
value of the aggregated call-information of infoC. For the encoding we use characters,
which are normally not part of a operation signature. When the attribute names for the
Instances-object are defined and the object is created, incoming behavior model tables can
be transformed to Instance vectors. The value for each call-information is the representative
value of the aggregated call-information.

As we described in Section 3.3.1, for the clustering of the Instances it is preferable to
have small vectors. Therefore we have to reduce the number of attributes to a minimum.
At this point, we have a benefit from using a sparse matrix for the transition values. Every
empty transition can be left out from the Instances-object. This way we can reduce the
number of attributes. Since every behavior model table is derived from the same initial
table in the TBehaviorModelPreperation, the empty transitions are the same for every table.

4.3 Aggregation and Visualization

The aggregation stage TBehaviorModelAggregation is a composite stage directly connected
to the output port of the preparation stage. Figure 4.6 shows the aggregation stage with
its sub-stages. The first stage is the TClusteringStage. It takes the Instances-object and
aggregates them to clusters. The centroids of these clusters in the form of Instances

are the output of the clustering. Then, the instances are transformed to BehaviorModel-
objects in the TBehaviorModelCreation. The created behavior model are then send to the
TBehaviorModelVisualization, which sends the models to the user-behavior visualization
component of iObserve.
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Figure 4.6. Behavior model aggregation stage

4.3.1 BehaviorModel

We implemented the behavior model M = (N, E, ∆, Γ) described in the approach (Sec-
tion 3.5), as depicted in Figure 4.7. We realized the graph M as the BehaviorModel class,
which contains sets of EntryCallNode (N) and EntryCallEdge-objects (E). Each edge has
an attribute calls, which is our implementation of the function ∆. We implemented the
function Γ as composition of CallInformation-objects in a node.

Each EntryCallNode has a signature. This is the identifier of the node and unique in
each behavior model. When a node is added to the model with the same signature, both
nodes are merged to one. This means that the call-information of both nodes are combined
in one node. If two call-information have the same signature, we discard the newest. At the
point of the implementation, this scenario is a theoretical case. Since the behavior models
are created from the clustering results, it is not possible to have more than one information
code per information signature. If the data structure is used in the future, with different
use cases, a solution for this problem would be to use AggregatedCallInformation instead
of CallInformation-objects.
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Figure 4.7. Class diagram of the behavior model

4.3.2 The IClustering Interface and its Implementations

We define an interface for clustering algorithms that can be used by our clustering stage.
Since there is no clustering fitting perfect for all clustering scenarios, we use an interface
instead of one algorithm. A clustering algorithm implementing this interface is required to
implement one operation:

Optional<ClusteringResults> clusterInstances(Instances instances)

This operation takes Instances for the clustering and returns a ClusteringResult if the
clustering was successful. The class ClusteringResult was implemented by Peter (2016) and
is part of the existing solution in iObserve for user-behavior aggregation. It is a container
class for clustering results and provides some meta information like the SSE.

We implement the X-Means clustering in XMeansClustering. It implements the interface
IClustering and uses the XMeansClusterer of the Weka framework. The constructor of the
class takes the number of the predicted user groups, the variance of this prediction and a
distance metric. Since the X-Means clustering depend on the initial k of the K-Means used
in the X-Means, we execute the clustering multiple times. We compare the SSE of each
solution and return the result with the lowest error count.

4.3.3 The TClustering Stage

The TClusteringStage initializes with a clustering implementing the interface IClustering.
For every Instances-object it receives at its input port it executes the clustering method of
the interface.

We implement the clustering stage as a general purpose clustering. It can be used
in any part of the iObserve framework. We use the TeeTime framework and implement
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the TClustering as a stage. It can be connected to any pipe in the iObserve analysis. If a
clustering is needed in the future, this stage can be reused. In that case the stage could
even be initialized with another clustering algorithm that fits the purpose better.

4.3.4 The TBehaviorModelCreation Stage

The TBehaviorModelCreation takes an instance vector and transforms it into a BehaviorModel.
The input instance vector has to be in the same format as provided by the TInstance-

Transformation stage. For the transformation to behavior models, the attribute names of
the instance are categorized and split into its components. First, an empty BehaviorModel

is instantiated. For every transition an EntryCallEdge and two EntryCallNodes are created
and added to the behavior model.

If a transition count denotes the number of times the transition is taken we call it an
absolute transition count. An absolute transition count can be represented by integer values.
Furthermore, a transition count can represent the possibility that a transition is taken. In
this case we call it a relative transition count. The relative transition count is a real number
between one and zero and has to be represented by a float or double value. The attribute
calls of the entry call edges is of type double, therefore it can also be used for relative
transitions, but for our approach we want to have absolute transition counts. Therefore, we
need positive integers as call count. Vectors created by the clustering can have values of
the type double. Since we know that our input for the transition values was positive, we
know that the transition values after the clustering are positive too. While single matrices
contain only integer values, during the clustering values are aggregated and can become
real numbers, e.g., a transition count of 1 and a transition count of 2 will be merged to a
transition count of 1.5 in the behavior model. Therefore, we round every call count to the
nearest integer before we add the corresponding edge to the model. Is the rounded call
value of a edge zero, we do not add the edge to the model. Thereby, a transition with a call
count below 0.5 will be discarded.

When the attribute is a call-information, a node is created and the call-information
added to it as CallInformation-object . Then the node is added to behavior model. If a
node of with the same operation signature already exist in the behavior model, both nodes
are merged, by merging all call-informations in one list. Since every field of the Instances

vector contains a different call-information, it is not possible to create a node with two
CallInformation, that have the same signature.

Each Instance from the Instances is one user group. Therefore, we create a behavior
model for each instance vector. If the behavior model is empty, because no edge or node
was added, we discard it, otherwise we delegate it to the output.

4.3.5 The ISignatureCreationStrategy Interface and its Implementations

In the visualization, the node is labeled with the full operation signature. Depending on the
project name, the nested packages, and the class name these labels can be very long. Long
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names create a bigger layout and thereby increase the visual complexity of the behavior
model graph. Since we know the packages and class of a operation in the most cases, we
do not always need to display the whole operation signature.

The ISignatureCreationStrategy interface requires the implementation of the operation
String getSignature(EntryCallNode node). This operation takes an entry-call node and
returns the displayable name of the node. An object of the interface is needed in the
TBehaviorModelVisualization, which is sending the behavior models to the visualization
server. We created some strategies implementing this interface. The GetLastXSignatureStrategy

returns a cropped signature with the last x parts of the operation. When it is called with 1
or less it returns only the operation name. When it is called with INT_MAX or a number
grater than the number of parts, it returns the full operation signature.

4.3.6 The TBehaviorModelVisualization Stage

We visualize our behavior models with the User-behavior Model Visualization for iObserve
[Banck 2017] by Daniel Banck, which is described in Section 2.4. Therefore, we create the
TBehaviorModelVisualization to send our behavior to the visualization backend server.

The internal behavior graph model of the visualization component resembles our
behavior model, since both represent a directed graph. The Application corresponds to our
BehaviorModel, the Page nodes to our EntryCallNode, and the visits to our EntryCallEdge.
Each page has a list of key-value pairs as property. Since our CallInformation class basically
is a key-value pair, call-information can be added to pages without great effort.

For each behavior model we process in the TBehaviorModelVisualization stage, we
create an Application with the name of the behavior model at the server. To differentiate
between behavior models of different systems, we add a prefix to the name of the model.
Then we transform every node of the model to a JSON object matching the Page-object. The
JSON objects are send to the backend via REST. The visualization backend server assigns
its own ids to the elements send to the server. Therefore, we can not use our own ids when
accessing the models on the server. Since we can not use our own ids for the nodes, the
response for each request is linked to the node send. After that, all edges are transformed
to the JSON conforming to a Visit-instance of the visualization. The ids from the mapped
responses are used to identify source and target nodes of the edges.

4.4 The Behavior Model Configuration

Our Approach is depending on many variables, since we are trying to create a general
purpose solution. To be able to store all configuration possibilities, we created a config-
uration metamodel TBehaviorModel, depicted in Figure 4.7. We use an instance of the
configuration class is a parameter of the constructor of the TBehaviorModel stage. From
there the configuration instance is distributed to the sub-stages.
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Figure 4.8. Class diagram of the behavior model configuration

The EntryCallFilterRules is needed in the preprocessing to filter out non relevant entry-
calls. The IRepresentativeStrategy is required in the stage, TBehaviorModelGeneration. It
defines how the representative of a AggregatedCallInformation is chosen.

One property of the configuration is the behaviorModelNamePrefix. The name prefix
is a string referencing the system where the user behaviors are created from. It is used
in the TBehaviorModelVisualization to extend the name of the behavior model. We need
this prefix to separate the models of the different systems in the visualization, since
all behavior models are displayed there at once. Two other configuration properties are
needed in the TBehaviorModelVisualization stage. The first is the URL of the backend
server, the behavior models are sent to, and the second is an object implementing the
ISignatureCreationStrategy interface.

The behavior model configuration has a default constructor providing a basic configu-
ration. The basic configuration contains defaults for all relevant properties and thereby can
be used in the TBehaviorModel stage without modification. All properties can be changed
later. All properties can be seen in the following table:
behaviorModelNamePrefix BehaviorModel
visualizationUrl localhost:8080
entryCallFilterRules new EntryCallFilterRules(false).addFilterRule(".*")

representativeStrategy new DefaultStrategy()

signatureCreationStrategy new GetLastXSignatureStrategy(Integer.MAX_VALUE)

clustering new XMeansClustering(1, 1, new ManhattanDistance())

A notable property are entryCallFilterRules and the clustering. An entryCallFilterRules-
instance is set to whitelist-mode allowing all operation signatures. The clustering is a X-Means
clustering with an output of one cluster. Therefore, the aggregated behavior will be the
mean of all behaviors.
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4.5 Steps for a custom Integration

The idea of our approach is to be used in a wide spectrum of systems. Therefore, we
implemented our approach to be adaptable. To integrate our approach in a custom scenario,
configuration steps have to be made. In the following section we describe what configuration
has which effect. Note that we assume that a monitoring and a iObserve system is already
set up. If this not the case, it has to be done upfront.

4.5.1 Extension of the Monitoring

Our implementation is designed to cluster user sessions containing extended entry-call
events. To get extended entry-call events the monitoring has to be modified. In the mon-
itoring call-events have to be created for each operation call. This is done by creating a
BeforeOperationEvent when the operation is called and an AfterOperationEvent when the
operation returns. To add call-information to the Events, the extended versions of these
events have to be used. The ExtendedBeforOperationEvent and the ExtendedAfterOperationEvent

can either hold a string of call-information. It does not matter which event is used to store
call-information and it is not relevant that both operation events are extended. For example,
it is possible to create a BeforeOperationEvent and a ExtendedAfterOperationEvent for the
same operation and the analysis will handle them correctly.

For the analysis it is important that the call-information are in the right format. A
call-information has two properties. The informationSignature and the informationCode.
The signature is the string identifier of the call-information. The informationCode stores the
information itself as a number. If the call-information is a string or another data type, it
has to be transformed into number. Depending on the information, it can sometimes be
more reasonable to split the user information into more than one call-information. We do
this in our integration for the JPetstore in Section 5.2.

A list of call-information can be stored as JSON string in the extended operation events.
An example string containing a call-information list is provided in Listing 4.2.

Listing 4.2. JSON representation of a call-information

1 [{"informationSignature":signatureA,"informationCode":codeA},

2 ...

3 {"informationSignature":signatureZ,"informationCode":codeZ}]

It is also possible to use our approach without the extension of the monitoring. The entry-
call events created in the analysis entry-call events will not contain call-information, but
the aggregation will perform solely on the operation signatures. Then the aggregation is
only based on the navigational patterns of the user.
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4.5.2 Creation of a Configuration

The second important step for a custom integration is the composition of the configuration
object. The BehaviorModelConfiguration-instance has to be passed to the TBehaviorModel

stage. The different properties have to be adapted to system monitored, e.g., to create
the entryCallFilterRules-instance properly, all important operation signatures have to be
known by the operator creating the filter. When we want to do a custom integration we
have have to find proper values for the following configuration properties.

EntryCallFilterRules To decide how the entry-call filter rules are designed, we have to
know which nodes are relevant in our system. The filter uses Java regular expressions
which are applied to the operation signature. We can both create a black or a white list.
With the filter rules we can filter out operation calls that are not relevant for the behavior
because they are, for example, made by subroutines. Furthermore, we can even allow only
calls from a specific sub-system. Thereby, we are able create behavior models for different
sub-systems. Important is that the creator of the filter knows which operation calls are
monitored on the system and which of them should be relevant for the behavior model
creation.

IClustering Essential for a good clustering result is the selection of the right clustering
algorithm [Suthar and Oza 2015; Abbas 2008]. Using IClustering gives us the opportunity
to decide which algorithm we use and how we configure it. We can use any algorithm that
is Weka conform, meaning it accepts and returns Weka Instances.

IRepresentativeStrategy For each aggregated call-information signature, only one code
can be added to the Instances-vector for the clustering. Our implementation needs a strat-
egy for handling multiple codes of one call information. The strategy is highly depending
on the information coding done in Section 4.5.1. Therefore, it can be necessary to use
different strategies for different signatures. For example, we have a website where each
page measures the time a user is browsing it an puts this time in a call information. Then,
we will have aggregated call-information containing a list of durations. We now have
to decide what the representative code for the aggregated call-information should be. If
we want to know the overall duration for each user, we create a strategy to sum up all
durations. Otherwise, if we want to know the mean duration, we create a strategy finding
the mean of all durations.

If use our approach with extended entry-call events, but want to aggregate the behavior
on the behavior graph only. We can create a IRepresentativeStrategy, which constantly
returns the value 0. Thereby, the call-information fields in the input vectors of the clustering
do not span another dimension. Thus, the call-information have no effect on the clustering
and user behavior is aggregatedIRepresentativeStrategy based on the structure of the
behavior graphs.

41





Chapter 5

Evaluation

In this chapter, we describe the setup and evaluation of our approach and its implemen-
tation. In Section 5.1, we compare the behavior models of our approach to the models of
David Peter’s [Peter 2016] approach. In Section 5.2, we describe how we generate user data
of the JPetStore, which we will use for our evaluation. In Section 5.3, we verify whether our
implementation is capable of clustering user sessions with user specific data to meaningful
user-behavior. And in Section 5.4, we compare the behavior model creation approach by
David Peter [Peter 2016] with the results of our approach.

5.1 Setup for the Behavior Model Comparison

In our evaluation we compare the models created by our approach to the models of the
approach of David Peter [Peter 2016], since both approaches in are implemented in the
iObserve framework

5.1.1 Prerequisites

David Peter’s user-behavior model generation is based on the Palladio Component Model
(PCM) (see Section 2.3.2). Its behavior models are represented in user usage models. To
create these usage models Peter has the use the other models of the framework.

Peter’s approach aggregates sequences of EntryCallEvent objects to create a usage
model. In the usage model, the entry-calls are represented by EntryLevelSystemCalls.
During the aggregation a Run-time Architecture Correspondence (RAC) is applied to
transform the EntryCallEvents to EntryLevelSystemCalls.

5.1.2 Overview of the Comparison Implementation

The creation of the current behavior models is done in the TEntryEventSequence stage of the
iObserve analysis. It takes EntryCallSequences as input, creates the behavior models and
saves them all in a Palladio usage model. To be able to compare these usage models with
the behavior models generated by our new approach, we transform the usage model into a
representation which can be viewed by out behavior visualization. The model is stored on
the file system. For our comparison we transform the usage model to our behavior model

43



5. Evaluation

and send it to the visualization. In the visualization we then can compare the two models
visually.

We created a composite stage TBehaviorModelComparison, which is depicted in Figure 5.1.
Its input port is connected to the output port of the TEntryCallSequence stage. The compos-
ite stage contains four sub-stages. The first stage is the TBehaviorModel stage, which is the
implementation of our approach. The second is the implementation of the current approach
in form of the TEntryCallEventSequence. We created a Distributor copying the incoming
entry-call sequences by reference and sending one copy to the behavior model stage and
one the entry-event sequence stage. We use a copy by reference distributor, because we
know that neither of the stages is modifying the data of the sequences relevant to the other
stage.

We create the TUsageModelToBehaviorModel stage to transform a usage model to behavior
models. It is explained in detail in Section 5.1.3. The input of this stage is a usage created
by the TEntryEventSequence stage. The current implementation of the entry-event sequence
stage has no output port. Therefore, we create one and let the usage model be send to the
output port, after it is stored to the file system, to be able to receive the usage model the
subsequent stage.

Figure 5.1. Behavior model comparison stage

Finally the behavior models created by the TUsageModelToBehaviorModel are send to a
instance of the TBehaviorModelVisualization stage, which sends them to the visualization.
Since the TBehaviorModel does the same with its created models, both models are on the
visualization server and can be compared.

5.1.3 The TUsageModelToBehaviorModel Stage

In the TUsageModelToBehaviorModel stage, we are transforming a UsageModel of the PCM to a
set of BehaviorModel objects. The structure of the UsageModel was introduced in Section 2.3.2
and class diagram of it in Figure 2.5. Each behavior of the user group is stored as a
UsageScenario in the BehaviorScenario of the UsageModel.
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When we are transforming the UsageScenario to a behavior model, we create an
empty BehaviorModel and find the Start action of the UsageScenario. Then we call the
traverseScenarioBehavior operation with the usage scenario and the created behavior
model. The traverseScenarioBehavior operation initializes the traversion of the scenario
behavior. It finds its start node, and calls the traverseAction operation, which is shown in
Listing 5.1, with the behavior model, successor of the start action and an empty Optional. 1

1https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Optional.html
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Listing 5.1. The traverseAction operation of the TUsageModelToBehaviorModel stage

1 private Map<EntryCallNode, Double> traverseAction(

2 final BehaviorModel behaviorModel,

3 final AbstractUserAction action,

4 final Optional<Map<EntryCallNode, Double>> optPreviousNodes) {

5
6 if (action instanceof Branch) {

7 final Branch branch = (Branch) action;

8 return this.traverseBranch(behaviorModel, optPreviousNodes, branch);

9 } else if (action instanceof EntryLevelSystemCall) {

10 final Map<EntryCallNode, Double> endNodes = new HashMap<>();

11 final EntryLevelSystemCall entryLevelSystemCall = (

EntryLevelSystemCall) action;

12 final EntryCallNode entryCallNode = this.createEntryCallNode(

entryLevelSystemCall);

13 behaviorModel.addNode(entryCallNode);

14 if (optPreviousNodes.isPresent()) {

15 optPreviousNodes.get().keySet().stream()

16 .map(previousNode -> new EntryCallEdge(

17 previousNode,

18 entryCallNode,

19 optPreviousNodes.get().get(previousNode)))

20 .forEach(behaviorModel::addEdge);

21 }

22 endNodes.put(entryCallNode, 1.0);

23 return this.traverseAction(behaviorModel, Optional.of(endNodes),

action.getSuccessor());

24 } else if (action instanceof Loop) {

25 final Loop loop = (Loop) action;

26 final Map<EntryCallNode, Double> endOfTheLoop = this.traverseLoop(

behaviorModel, optPreviousNodes, loop);

27 return this.traverseAction(behaviorModel, Optional.of(endOfTheLoop),

action);

28
29 } else if (action instanceof Stop) {

30 return optPreviousNodes.isPresent() ? optPreviousNodes.get() : new

HashMap<>();

31 } else { // skip action

32 return this.traverseAction(behaviorModel, optPreviousNodes, action.

getSuccessor());

33 }

34 }
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The traverseAction operation is called with three parameters. The first is the BehaviorModel

all nodes and transitions are added to. The second is the current Action the function is
called with. The operation processes the action and then calls itself with the successor of
this action, thereby the operation is recursive. The last parameter is the optPreviousNodes

map. Since we want to create a behavior model, we have to assemble all entry-call nodes in
the sequence of actions. When we found a node a, we add it to optPreviousNodes with the
value 1. With next node b found by traversing the action sequence, we create a transition
from a to b with a probability of one. Since it is possible that one node has multiple
incoming nodes, we use a map to store all nodes that have to be connected to the next node
found.

In the body of the operation we check the sub-type of the action. If the action is an
instance of a Branch, we traverse the each transition of the branch separately by calling the
traverseBranch operation. The operation returns a map, where the keys are all end-nodes
of the transitions. The value to each key node is the probability of the outgoing transition
on the node. Since all nodes from the maps are end-nodes, the probability is always 1.0.
In the traverseBranch operation, the inner ScenarioBehavior of each BranchTransition tra-
versed by the traverseScenarioBehavior operation. We call the traverseScenarioBehavior

operation with the currentoptPreviousNodes, but change the transition probability of all
nodes in it, to the transition probability of the BranchTransition.

EntryLevelSystemCall represent a entry-call and contain a operation signature. If an
action is an instance of an EntryLevelSystemCall, we transform it into an EntryCallNode by
creating a new node containing the signature of the entry level call (Line 11, Listing 5.1).
Now we add the node to the behavior. For all nodes from the optPreviousNodes map we
create an edge to the new node and add the edge to the model. Then we create a new map
containing the new node mapped to the probability of 1. After that we call traverseAction
operation with the successor of the action and the new map.

If an action is an instance of Loop, we call the traverseLoop operation with our be-
havior model, the map with the previous nodes, and the Loop . In the operation we call
traverseScenarioBehavior for the inner behavior of the loop. The traversing of the inner
behavior returns the end node of the loop behavior. Then, we create a transition from the
end node of the loop to the start node in our behavior model. The operation traverseLoop

returns a new optPreviousNodes-instance containing the start node of the loop.

The Stop signalizes the end of the behavior. When the action is an instance of the class
Stop, the operation traverseAction returns and thereby breaks the recursion.

When the initial call of the traverseScenarioBehavior operation returns, the behavior
model with relative transition counts, passed as property of the operation, contains all
operation-calls and transitions of the scenario behavior. We then send it to the output port
of the TUsageModelToBehaviorModel stage.
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5.1.4 Configuring our Approach for CoCoME

For the comparison of the two behavior model aggregations we use monitored behavior
from CoCoME (Section 2.6.2). To execute the current user-behavior generation in the
analysis, we have to provide a set of PCM models. These models,e.g., the repository-model,
have been all created before and are up to date. Additionally a set of monitoring data is
already provided. In the following we describe our configuration instance and the reasons
for the usage of each property.

entryCallFilterRules The current behavior model generation uses the internal models to
sort necessary and unnecessary operations. The resulting behavior model is only containing
relevant operations. Instead of the model to analyze the operations from the monitoring,
we use our EntryCallFilterRules tho filter the operation signatures. In our evaluation we
want to make a comparison based on designed workload for the user Cashier of CoCoME.
The operations relevant for the behavior of the Cashier are:

{. . .}.cashdeskservice.CashDesk.startSale(. . .)

{. . .}.cashdeskservice.barcodescanner.BarcodeScanner.sendProductBarcode(. . .)

{. . .}.cashdeskservice.CashDesk.finishSale(. . .)

{. . .}.cashdeskservice.CashDesk.selectPaymentMode(. . .)

Therefore, we use the EntryCallFilterRules in the whitelist-mode with the rule:

.˚(cashdeskservice)\.(\w˚\.)˚\w˚\(.˚

signatureCreationStrategy For our signatureCreationStrategy we use an instance of the
class GetLastXSignatureStrategy introduced in Section 4.3.5. The relevant operations for
the Cashier are listed in Section 5.1.4. We can see, that the last part of the signatures is
unique. Thus, we can choose x = 1 as input parameter for the GetLastXSignatureStrategy

strategy.

representativeStrategy The CoCoME workload is used for the comparison of user-
behavior, that does not contain call-information. Hence, the entry-calls do not contain
call-information and the representativeStrategy is never used. Therefore, we can set an
arbitrary strategy as signatureCreationStrategy. We choose the DefaultStrategy, which is
always returning the first information-code of the aggregated call-information.

clustering For the clustering, the approach of David Peter [Peter 2016] uses the X-Means
algorithm in combination with the Manhattan distance from the Weka tool suite. There-
fore, we use our XMeansClustering with the Manhattan distance metric. The parameters
expectedUserGroups and varianceOfUserGroups is set in the Section 5.1.5, since it is depend-
ing on the designed user groups.
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5.1.5 Design of the Workload for the Cashier of the CoCoME instance

For the comparison of user sessions without user specific data, we use user sessions from
an CoCoME instance and the configuration of Section 5.1. Therefore, we simulate different
customers at the cash desk of a store. We model these customer behavior by creating a
three different cashing processes with Selenium. The resulting records are the input for our
analysis configured for the comparison. The final clustered user groups of both approaches
are then evaluated with the metrics from our GQM evaluation plan.

After login, the cashier performs a loop of four actions, which are depicted in Figure 5.2.
The first action is the startSale operation which starts a new checkout process, meaning the
cashier serves a new customer with a new set of items. Then he starts scanning products
with the barcode scanner. For each item scanned the action scanProductBarcode is called.
After all items are scanned the action finishSale is called. Then a payment method is selected
via selectPaymentMode. When the payment method is selected, the customer pays his items
and the purchase is finished.

Figure 5.2. General behavior model of the CoCoME cashier with x, y P N

In this behavior, we can see two loops. One loop is the whole checkout process. The
number of its loops is described with the number y P N. Since a checkout process begins
at start and ends with checkout, the transition between these two has a count of y´ 1. The
other loop represents the scanning of item barcodes. If x items are scanned, the scanBarcode
action is called x times. Note that we only consider completed checkouts in Figure 5.2. If a
checkout is aborted, e.g., a system failure, the behavior does not represent the scanning
of item barcodes. To design a scenatio for the cashier, we execute the scenario for a pair
(x, y) P NˆN.

We designed three different behavior scenarios. In the first we have one customer
buying eight items, resulting in x = 8, y = 1. Then we have x = 1, y = 8 by having eight
customers with one item each. Finally we create behavior for four customers with four
items each, which entails x = 4, y = 4.
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We create these user-behaviors with the Selenium framework [Selenium]. This is done
by recording one checkout process with the Selenium IDE and converting the recorded
script to a Java file. In the file we add the two loops at the beginning of the checkout and
at the barcode scanner. To generate the test data we execute this test script on a CoCoME
instance 20 times for each behavior. In addtition, we used monitoring data and tooling
from David Peters’ thesis [Peter 2016] for a proper comparison.

5.2 Setup for the JPetstore Evaluation

We use generated user data of the JPetstore2 in our evaluation. Therefore, we implement
an integration of JPetstore for our approach. To setup the JPetstore for our approach we
followed the steps from Section 4.5. First, we extend a instrumented version of the store to
create events containing call-information described in Section 5.2.1. Second, we created a
configuration for the TBehaviorModel stage discussed in Section 5.2.2. Third, in Section 5.2.3
we design the workload, that is created on the JPetstore and used in the evaluation.

5.2.1 Prepare the Monitoring

To evaluate our approach, we use a instrumented version of the JPetstore3 and analyze the
monitored data to create our behavior model. The instrumented version of the JPetstore
is provided by the Kieker project. The SessionAndTraceRegistrationFilter is added to the
web.xml of the JPetstore jetty container. It creates events for every page call of the web site
and sets the URL as operation signature of the event.

We extended the original iObserve/Kieker SessionAndTraceRegistrationFilter to collect
our own version of the SessionAndTraceRegistrationFilter to determine and to add infor-
mation to the call events. Since the filter, filters the URLs we have to get our call-information
out of the URL. We recall from the Section 2.6.1, that the JPetstore controller are stripes
actions. Each URL call is directed to an action, and the action executes the corresponding
operation. If the operation requires parameters, they are added as query to the URL. Thus,
we can treat these URL like operation-calls. When we have the calls like:

{host}/jpetstore/actions/Catalog.action

{host}/jpetstore/actions/Catalog.action?viewCategory=&categoryId=FISH

We notice that, if a operation of the action is called, it is the first parameter of the query.
The second query parameter, if there is one, is a parameter of the operation. We want to
generate the following operation-calls from them:

jpetstore.actions.Catalog.index())

2https://github.com/mybatis/jpetstore-6
3https://github.com/kieker-monitoring/kieker/tree/stable/kieker-examples/JavaEEServletContainerExample/jetty
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jpetstore.actions.Catalog.viewCategory()

The query parameters of the operation viewCategory() are then added as additional infor-
mation to the call events.

The analysis expects for every operation-call an BeforeOperationEvent created on enter-
ing the operation an a AfterOperationEvent created on the return of the operation. Since
we only get the URL calls, we can only register the before-operation events. We, therefore,
have to assume, that the operation returned and create an after-operation event for the
analysis.

The transformation of a URL is done by several string operations. When the filter gets
an URL, the first step is to replace all slashes with dots. Then we check whether the URL
has query parameters by searching for a questionmark. If we found none, we just have to
replace the last occurrence of the word "action" with "index" and add "()" at the end. Else
we extract the operation and its parameters from the query. We do this by splitting the
query in its components. This can be done by splitting the query string at the "&"s. We
now replace the last occurrence of word "action" with the found first parameter and add
"()" at the end. The other query parameter is split into its key and its value and saved as
call-information.

In the clustering we can only handle numerical data. Therefore, we have to encode all
values to numbers. The encoding is a challenging task, because it is highly relevant for the
clustering. In the JPetstore, almost every call information of an operation is describing one
element of a group. For example, the operation-call for viewing a certain category of the
store contains a attribute called CATEGORY. Each category has a different String. When we
want to create a call-information for this operation-call, we have to decide how categories
should be clustered. We could create one attribute called Category and each category has a
different integer value. This could look like: FISH=100,CATS=200,DOGS=300. When we
cluster two vectors and one has a category value of 100 and the other a value of 300, the
merge of these two would be 200. We aggregated category FISH and DOGS and the result
is CATS. Thus, we create a call-information for each category separately. If the category is
FISH, we add the call-information FISH : 1 to the event call. Now the clustering will only
merge numbers of one category instead of different category codes. Thereby we increase
the dimensional complexity of input vectors for the clustering. However, this will avoid the
described issue and may lead to better clustering results.

In addition to the categories, the user can view products and items. A product is a
specified category for a set of items, whereby an item is a specific animal. For example,
there is the product type FI-SW-01 of the category FISH. FI-SW-01 is the id for the product
type angler fish. It contains two items EST-1 and EST-2, which are small and large angler
fishes.

We can use either an ExtendedBeforeOperationEvent or an ExtendedAfterOperationEvent

to store call-information. Since both will be merged in the analysis, it is not relevant, which
object is storing the data. Therefore, we can choose the event arbitrarily. We pick the
ExtendedAfterOperationEvent.
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Not all URL calls are directed to an action, sometimes images or CSS elements are
loaded via GET-Request. We transform them to our operation format by replacing the
slashes with dots. Then we create the two entry call events. Since we do not need them for
the analysis, we could discard all image and css calls, but we want to demonstrate the use
of the EntryCallFilterRules in the analysis.

5.2.2 Creating a Behavior Model Configuration

entryCallFilterRulesr For our behavior models, we use only the actions directly called
by the user. From Section 5.2, we know that we we have actions of matching the following
regular expression:

jpetstore\.actions.˚

Thus, we can set our rules to whitelist-mode and add the regular expression to it. Thereby,
we allow user actions only and exclude all image and css requests.

representativeStrategy The call-information, which are created while browsing the JPet-
store, are information about the categories, products, and items the user is viewing or
buying. As described in Section 5.2.1, each of the call-information contains the identifier of
the category, product, or item and the number it was viewed/bought as call-information
code. Since we create only one call-information per view/buy, the code is always 1. We
design our IRepresentativeStrategy to sum up all codes. Thereby, the representative code
of the aggregated call-information is the number of the contained call-information codes.

signatureCreationStrategy For our signatureCreationStrategy we use an instance of the
class GetLastXSignatureStrategy, introduced in Section 4.3.5. To find an appropriate x P N

as input for the constructor of the strategy, we have to find the minimal x so that the
created signature for the visualization is unique. The operation signatures of the entry-
calls from the JPetstore are created by the transformation of the URL of the requested
page. In Section 5.2.1, we explained that every direct request on an action is stored as
call of an index()-function. Thereby, we cannot choose x = 1, since multiple operation
signatures end with index(). Furthermore we designed our EntryCallFilterRules to allow
only signatures matching the pattern "jpetstore\.actions.˚". Hence, we do not need to choose
x ą 2, because every signature string will start with jpetstore.actions.. Thereby, we choose
the GetLastXSignatureStrategy with the value x = 2 for our signatureCreationStrategy.

clustering For the clustering we use the X-Means algorithm with the Manhattan metric
as distance metric. The reason we use this combination is explained in Section 3.4. The
number of expected user groups and the variance is set later, because it is different some
executions of the evaluation.
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5.2.3 Design of the Workload for the JPetstore

For our evaluation, we design five different user types for JPetStore. All users start on the
main page of the store, which is the Catalog.index call.

In Figure 5.3, we depict all possible transitions our user types take in the system.
Thereby, the behavior of each user type is a subgraph of it.

Figure 5.3. Overview over all transitions the created user types take in the system

The call-information are not depicted in the Figure 5.3. Nevertheless the user types
produce such, e.g. by selecting categories, products, and items in the store. The categories
of the store are FISH, DOGS, REPTILES, CATS, and BIRDS. The products and items that
belong to these categories, have cryptic names that will not be explained, because we will
focus on the categories in our user type creation. Every time we name a product or item, it
is always obvious to which category it belongs to.

Clustering becomes harder the more similar the user types behave. Thus, we designed
all user types to be unique, but to share sub-graphs, transitions, or call-information with
other user types. In the following, the user types are presented:

Fish-Lover The user fish-lover enters the store, goes to the category FISH and adds 8 fishes
of the type FI-SW-01 to the cart. He first signs into the shop, goes to the Category FISH and
adds one additional fish of the type FI-FW-01 to the cart. He then proceeds to the checkout,
creates a new order, and opens the order view.
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Cat-Lover The cat-lover performs the same actions as the fish-lover, but instead of buying
items of the category FISH, he is buying products of type FL-DSH-01 in the category CATS.
We designed the cat-lover to evaluate if our clustering can differentiate between behaviors
that are structurally similar but have different call information on the entry calls.

Single Fish Buyer The single fish buyer selects the category FISH, navigates to the view for
productFI-SW-01, and adds the first item listed to the cart. He then proceeds to checkout
by first logging in and then ordering the item from his cart. The single fish buyer uses the
same transitions as the Cat Lover and the Fish Lover, but with different transition counts.

Single Reptile Buyer The single reptile buyer acts like the single fish buyer, but goes to the
category REPTILE and orders an item of the product RP-SN-01. Both single buyer users buy
exactly one item as per definition. Therefore the distance between both is much smaller
than the distance between the fish-lover and the cat-lover. We expect that both single buyer
user types will be merged, if the clustering has low input range.

Browsing User The browsing user visits different categories, products, and items, but
never buys anything. He therefore does not take the path of the ordering process. He
begins by navigating to the REPTILES category and then the product view for item RP-SN-
01. After that he continues with browsing different products and items from the from the
category BIRDS. After visiting the category four times, he uses the search bar to query for
fishes. He finds one fish product and its item and then terminates the session. We designed
this user to include sub-graphs in common with the user types we already introduced, but
is missing some transitions of these types, as well as having unique sub-graphs, e.g. the
search.

New Customer Every user type we introduced is using the same user account to log into
the store. The new customer enters the store and registers as new customer. Then he logs
into the store with his new account and buys an item from the product RP-SN-01, which
belongs to the category REPTILES. This user is sharing sub-graphs and call-information
with the single reptile buyer.

Account Manager The account manager is changing his contact information in the ac-
count management after login. After that he is inspecting one of his prior orders. The
account manager is the most different user we designed. The only transition it shares with
other users is the login transition. We expect that this user type is the easiest to find by the
clustering.

We create a Selenium [Selenium] script to simulate each user type and execute all script
sequentially. The clustering only finds groups of users if multiple user share a behavior.
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Therefore, we run each user script 20 times. After each run of a script, we reset the browser
used for the script execution. This creates a new session for each script execution.

5.3 Finding Predesigned User Groups in JPetstore Work-
load Data

In the first part of our evaluation, we want to verify that the implementation of our
approach is capable of clustering user sessions with user specific data into meaningful
user-behavior models. To achieve this, we design workload for the JPetstore which contains
different behaviors. Our goal is to detect these behaviors solely based on the monitoring
data. Furthermore, we want to verify the reproducibility of the results we get from one
clustering execution run. We test this by executing our analysis on the same workload
several times. Furthermore, we run the evaluation for different overlapping input ranges of
the X-Means clustering to verify that the clustering is not depending on the given input
range.

Following the GQM framework, the object of study is the user-behavior that is created
by the implementation of our approach. We define our goal with the purpose of covering
the predesigned user types in the context of the JPetstore. For that our focus lies on the
structural equality of the user types and the user-behavior models. The stakeholders of this
goal are the developer of iObserve, i.e. we.

Goal Creation of user-behavior models that match with the predesigned user types of
the JPetstore with the focus on structural similarity from the perspective of an iObserve
operator/developer.

5.3.1 Questions: To what extend do the behavior models match the pre-
designed user types?

As stated in our goal, we want to match the predesigned user types with the behavior
models we generated in our clustering. Therefore, this questions aims to discover how
suitable our behavior models are to represent the predesigned user types.

Q1: At which input range of the X-Means clustering do we get the best match of behav-
iors? The result of clustering algorithms depends, among other things, on the configura-
tion parameters. For the X-Means algorithm we can define the range of expected clusters.
The algorithm will then find a fitting set of clusters within this range. We want to verify for
our X-Means implementation always returns the best result for the given range.

Q2: To what extend do the behavior models of the best clustering result match the
predesigned user types? We expect behavior-models of different structure and quality as

55



5. Evaluation

we execute the clustering multiple times within different input parameters. To answer our
question Q1 we consequently have to ask to what extend the best models of the clustering
iterations match the user types.

5.3.2 Metrics

M1: Coverage With this metric, we check if one behavior graph is a part of another
behavior graph. Thus we check whether one behavior graph is the subgraph of another.
A graph A is a subgraph of a graph B, if its nodes and edges are a subset of the nodes
and edges of B. This means that a behavior model M is part of a behavior model N , if all
pages and visits of M are in N and for all visits in M applies that the call count of the
visits from M are lower or equal to the call counts of the visits from N .

M2: Similarity Ratio The similarity ratio represents the number of differences and sim-
ilarities of two behavior graphs and the call-information on each node. To count the
differences between two behavior models, we compare the sets of pages and visits from
both behavior models. Each different node, different edge and call count is summed up.
Thereby, we get the number of differences between two models. Vice versa, we get the
similarities of the models. The result is the quotient of the differences and the similarities.
If one sum is zero, we say that the models are either equal or unequal.

M3: Sum of Squared Errors (SSE) The SSE sums up the distances between all vectors
to its clusters centroid. The higher the SSE, the worse are the clusters. The user types we
designed have no variation in its structure. Hence, all created vectors are equal. If our
clustering finds all user types, the centroids would lie exactly on these vectors, having a
SSE of 0. To measure how close we are to a total match we use the SSE.

5.3.3 Results of the Clustering

We run the clustering of the designed workload with a varianceO f UserGroups = 3 and
with an increasing number of user groups from 2 to 9 as a parameters for the X-Means
algorithm. For each number of expected user groups we run our analysis five times. The
number of clusters we get for each number of user groups are denoted in Table 5.1 with
their corresponding SSE.
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Table 5.1. Clustering result for our designed user types

Expected User Groups Range Behavior Models Avg. SSE SSE variance
2 [1...5] 2 ca. 620 0
3 [1...6] 2 ca. 620 0
4 [1...7] 2 ca. 614 0
5 [2...8] 4 ca. 311
6 [3...9] 6 ca. 73 1
7 [4...10] 4 ca. 225 0
8 [5...11] 5 ca. 225 0
9 [6...12] 6 ca. 138 9

The results from the analysis are stable for each number of expected user groups. Each
execution produces the same number of behavior models with a low variance for the SSEs.
In the Table 5.1 we can see that the number of resulting clusters varies. The best SSE score
is achieved with 6 expected user groups as input parameter for the algorithm. The other
scores are at least 90 percent higher.

If six behaviors is the best we can achieve with the X-Means clustering, we should have
found six behavior models for all expected user group values in the range of three. This
should hold true, since the X-Means clustering algorithm is designed to find the optimum
number of clusters within a range. Thus, we can assume that the X-Means algorithm is not
fit for the task of clustering user behavior in higher dimensions.

By reviewing Table 5.1 we can answer the question for the best input rage (Q1.1) using
the SSE (M3). The best results are achieved in the range [3...9].

To answer Q1.2 we examine each created behavior model and determine which user
types are part of it. The first created behavior-model is depicted in Figure 5.4. The user
views the category FISH 9 times, then continues to view two different fish products, and
adds 9 of them into his cart. At some point in this process of adding items to the cart, he
logs in and navigates back to the category via the index page. Finally, he orders all items
from the cart. If we apply the coverage metric M1, we see that the model covers the user
type fish lover. With the similarity ratio metric M2 we can detect that the structure of the
model is not only covered, but also similar to the user type fish lover.
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Figure 5.4. Generated behavior-model 1 of the JPetstore workload clustering

The second behavior is shown in Figure 5.5. It looks like the first behavior-model with
the difference that the visited items and products are from the category CATS. From the
definition of the user types, it follows that this matches with the cat lover user type.

Figure 5.5. Generated behavior-model 2 of the JPetstore workload clustering

Figure 5.6 depicts the third behavior-model, where the Catalog.viewCategory is accessed
five times. One time for the category REPTILES and four times for the category Birds.
Then the store is navigated further, followed by opening different products and items from
different categories. If we apply the coverage metric M1 on this behavior comparing with
the browsing user, we get a structural coverage. The similarity ratio M2 confirms that the
call-information are also the same.
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Figure 5.6. Generated behavior-model 3 of the JPetstore workload clustering

The fourth found behavior is depicted in Figure 5.7. In contrast to the other behaviors
it only uses single transitions and mainly uses pages managed by the Account and the
Order controller. The user logs in, edits his account information, and reviews an order. This
matches the user type account manager, as the similarity ratio metric M2 indicates.

Figure 5.7. Generated behavior-model 4 of the JPetstore workload clustering

In the Figure 5.8, the fifth generated user behavior is shown. We see that the structure
almost matches the behavior of the cat lover and fish lover user type, but the login sequence
is at the beginning of the navigation path. The user signs in, opens the category FISH,
inspects a product, buys an item, and checks out the order. This behavior matches with the
single cat buyer.
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Figure 5.8. Generated behavior-model 5 of the JPetstore workload clustering

The last behavior-model, depicted in Figure 5.8, includes two user types: the new
customer and the single reptile buyer. Both buy the same item from the store without taking
any detours in the store. Thereby, the subgraph starting at Catalog.viewCategory matches
for both user types using the coverage metric M1. The difference between the user types
lies in the login process. The single reptile buyer signs in with his credentials and the new
customer creates a new account, after he clicked sign in and before he can log in. Thereby,
the connections Account.signOnForm to Account.newAccountForm, Account.signOnForm to
Account.login, and Account.newAccountForm to Account.login only have call values of 0.5
and are rounded down to zero. In summary, both user types have a high similarity to the
behavior model, but do not match the behavior in Figure 5.8 exactly.

Figure 5.9. Generated behavior-model 6 of the JPetstore workload clustering
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5.3.4 Summary

Our goal was to be able to detect all designed user types with our analysis. However, this
goal was not achieved completely. In Section 5.3.1, we identified that the resulting behavior
models are highly similar to the defined user types. The two user types, that where merged
together, are very close to each other. Therefore, the matching of the best results from the
clustering is acceptable.

If we look at all results of the execution, we observe that the clustering results are highly
varying in their quality. Despite using X-Means with a input range of desired clusters, we
have to guess the number of clusters in advance, execute the algorithm for each guess and
take the best solution. If X-Means fails to find the best cluster in a range for designed data
we can assume that it also fails for real world data, where the user behavior is varying and
we have outliers, which can not be clustered. Thereby, X-Means is not a feasible algorithm
for this scenario.

5.4 Comparison of Our Approach With the Existing User-
Behavior Without User Specific Data

In this part of the evaluation we compare the behavior model creation approach by David
Peter [Peter 2016] with the results of our approach. We do this by using the Goal-Question-
Metric framework, which is explained in Section 2.6.4. With the evaluation we want to show,
that our implementation produces results as good as the results of Peters implementation
for behavior creation without user specific data. David Peter showed in his thesis, that his
behavior models represent monitored workload characteristics precisely. Since our and
Peters approach based on the same system, we do not expect to achieve significantly better
results as long as we reduce our approach to cluster user-behavior only.

For this comparison we use an instance of the CoCoME to create the monitoring records
and the setup from Section 5.1 to generate user-behavior models from both implementations.
The behavior models are visualized through the methods described in Section 2.4. The
evaluation is mainly done by a visual inspection on the visualization. We therefore use the
terminology of the visualization to describe the behavior models.

The first step for the usage of the GQM is to define one or more goals for this evaluation.
In this section we evaluate the implementation of our approach. Therefore, the object of
study is the implementation of our approach and the purpose is to evaluate by comparison.
The focus lies on structure of the models, because we will compare the created models
visually. The stakeholder is implied by the iObserve context. Therefore, it is the operator of a
software system and subsequently also the developer who can use the models at design
time.

Goal The goal is to compare the behavior models created by our approach with Peters
behavior models, while ignoring user specific data, with the focus on the structure of
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the models from the perspective of an iObserve operator/developer in the context of the
CoCoME.

5.4.1 Question Q1: How similar are the results?

We want to show that our approach yields comparable or better results regarding user-
behavior clustering than the approach from David Peters. With the first question we want
to check, how similar our results are to the other. If we have a high similarity, we can
assume that comparable results to Peters approach, if not better. To answer this question,
we divided our question into three sub-questions.

Q1.1: How many models have a high similarity? With the first sub-question, we want
to find all models that are almost equal or equal from both results. If all models have a
high similarity, the results have high similarity.

Q1.2: How different are the most equal and most different models? This sub-question
asks for the difference of the edge cases from the results. If there is a high gab between
these differences, it is an indicator for a low similarity, even if many models have a high
similarity to each other.

5.4.2 Question 2: Is one result more relevant than the other?

With the second question we want to find out if one result is better than the other. If a
model has a hight significance, it is more relevant than another. Significance, measures how
well the user groups represented by the system can be outlined.

Q2.1: Are behavior models sub-models of other behavior models? A model is more
significant, if it describes a characteristic of a of another model. Sub-models of a behavior
models, are special characteristics of a behavior model. Therefore, they are more significant.
With this question, we try to find out if some models from one result are more significant,
than models of the other result.

Q2.2: Does a merged model has a high similarity to another model? A merged model,
is a model that is merged together from different models. If two or more highly different
models m0 . . . mncan be merged to another exiting model e, these sub-models m0 . . . mn
present each a characteristic of the model e. Thereby, they are more significant. This
questions tries to find similar models as Q2.1. Q2.1 asks for real sub-models, but sometimes
a merge of models can be similar to another model, even if the models of the merge are no
sub-models.
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5.4.3 Metrics

M1: Sub-Model With this metric, we check if one behavior model is a part of another
behavior model. Thus, we check one behavior graph is the subgraph of another behavior
model graph. A graph Ais a subgraph of a graph B, if its nodes and edges are a subset of
the nodes and edges of B. Thus, a behavior model M is part of a behavior model N , if all
pages and visits of M are in N and for all visits in M applies, that the call count of the
visits from M are lower or equal to the call counts of the visits from N .

M2: Similarity Ratio The similarity ration represents the number of differences and
similarities of two behavior models. To count the differences between two behavior models,
we compare the sets of pages and visits from both behavior models. Each different node,
different edge and call count is summed up. Thereby, we get the number of differences
between two models. Vice versa, we get the similarities of the models. The result is the
quotient of the differences and the similarities. If one sum is zero, we say that the models
are either equal or unequal.

5.4.4 Results of the Clustering

We executed our implementation and the approach of David Peter by using the setup
from Section 5.1. The version of David Peters implementation we are using is the commit
with the hash identifier of c39addff830a2f06949dfc17a9792a5696689f43 from github.com4.
The clustering result of David Peter are two clusters. One of these clusters is depicted in
Figure 5.10. We can see that version we are using has some errors in the merging process,
since every operation is displayed multiple times. At the point in time we recognized
this error, we were not able to fix it before the deadline of the thesis. The evaluation can
therefore not be fully concluded due to external dependencies.

4https://github.com/research-iobserve/iobserve-analysis
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Figure 5.10. First clustering result of David Peter
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Chapter 6

Related Work

In the domain of web usage mining different approaches are available to to aggregate user
behavior based on the navigational pattern of the user. The approach Workload Extraction
and Specification for Session-Based Application Systems (WESSBAS) [van Hoorn et al.
2014] extracts user behavior from monitored workload and created user behavior models.
Theses models are used to generate workload for load testing. In contrary to our approach,
WESSBAS uses relative models in the form of Markov chains. Markov chains facilitate the
generation of user workload, but lacks the information of the calls of the transitions. Our
approach uses absolute, which contain the number of transition calls. An absolute model
can be transformed to an relative model straightforward. The WESSBAS behaviors contain
the think time of the user for each transition, but do not provide additional information.
Since our approach can contain arbitrary call-information, we are able to model think-time
as well.

An implementation of the WESSBAS approach is presented in the masters thesis of David
Peter [Peter 2016]. It implements the behavior models of the WESBASS approach for the
iObserve framework. It uses relative behavior models represented by usage models of the
Palladio Component Model (PCM) and consist of the navigational pattern of the user. The
aggregation of user behavior is tightly bound to the used PCM models used in the iObserve
framework. For the clustering the X-Means algorithm is used and not exchangeable via
configuration. The input parameters for the clustering are chosen iteratively. After each
clustering execution, the found number of clusters is taken as expected number of user
group for the next clustering. In contrast, our approach is independently from the PCM
models, which makes it individually configurable. Furthermore, we are not dependent on
the X-Means clustering algorithm, which turned out to be unreliable (see Section 5.3.3).

An older approach to discover usage patterns is the approach of Gündüz and Özsu [Gündüz
and Özsu 2003b]. Its underlying clustering compares user click-streams pairwise using a
similarity metric. Highly similar user sessions are then aggregated and a click-stream tree
is created. Each node in the tree represents a web-page and its children the next possible
pages of a user to visit. The branches denote the probability of a user visiting the child node.
The click-stream tree is used to predict user behavior. The tree based model is the main
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difference to our graph-based approach. One advantage for the graph-based approach is
its compactness compared to the click-stream tree, which may contain the same operation
call multiple times and is more comprehensible when visualized.

For the monitoring of user behavior in social networks, Wang et al. [Wang et al. 2016]
provide a solution to aggregate user behavior to a hierarchical behavior model. Their
software aggregates the click-stream collected from HTTP logs with a self designed hier-
archical clustering. The created clustering performs well in comparison to K-Means and
a another hierarchical clustering methods. Furthermore, it provides a visualization that
features different views on the created behavior models. The software of Wang et al. is
designed as standalone software with low configurability and it is not connected to a
deeper monitoring. Its analysis is based on the users HTTP click-streams extracted from the
session logs. Our approach provides a higher configurability, i.e., exchangeable clustering
or entry call filtering. Furthermore our approach allows to cluster events from deeper
system layers, which can provide an abstracted reduced behavior.
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Chapter 7

Conclusions

In this chapter we present the conclusion of our approach. First we summarize our
evaluation results and our scientific work in Section 7.1. Then in Section 7.2 we list our
technical work for this approach. Finally in Section 7.3 we present our ideas and suggestions
for future improvements of the approach.

7.1 Summary of the Evaluation Results

The core goal of this thesis was the development of a user behavior clustering which
includes information based on data provided by the user and the domain to achieve better
clustering results. We evaluated this approach in two steps. In the first evaluation our
aim was to find predesigned user type enriched with user specific data from generated
workload in the JPetstore, whereas the second was a comparison with the approach of
David Peter which does not use additional information.

The evaluation for the JPetstore has shown that it is possible to find predesigned user
behavior in generated workload. The results of the clustering depend on the choice and the
configuration of the clustering algorithm. In out evaluation scenario, we used the Weka
implementation of the X-Means algorithm. We discovered that the algorithm does not fit to
the clustering problem at hand, because it did not produce the expected results. This might
be caused by the high dimensionality of our input vectors.

We implemented a concept for clustering user data. Clustering creates a new cluster
every time it is executed. If the algorithm is easily affected by noise or small changes of the
data set, it can occur that the results are highly different than expected. This can even be
the case if the data changed only a bit. In our evaluation X-Means provided unsatisfactory
results. This indicates that X-Means is not well suited for the automatic clustering of user
behaviors.

7.2 Technical Contribution

This thesis provides an approach for the aggregation of user-behavior in the form of
user-sessions for the iObserve framework. The approach is implemented as pipe-and-filter
architecture supported by the TeeTime framework. Every processing step for the user-
behavior generation is realized in its own filter, therefore, we have high modularity with
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a low coupling. A summary over all filters is presented in Section 7.2.1. We designed
our implementation for general purpose scenarios and thereby provided configuration
classes, which are depicted in Section 7.2.2. To cluster behavior with call-information, we
have to aggregate them from the monitoring component. Furthermore, we made a custom
integration of our approach for the JPetstore and CoCoME example applications, which is
explained in Section 7.2.4.

7.2.1 Created Filters for the Behavior Model Generation

To process the session stream provided by the analysis, we created a pipe-and-filter system
with TeeTime. Through the use of composite stages we structured and encapsulated our
service for an easier deployment. To integrate our implementation only the TBehaviorModel

stage has to be instantiated and connected to a stage producing entry-call sequence models.
The inner stages of the TBehaviorModel are exchangeable or reusable with low configuration
effort, if necessary.

The substages of TBehaviorModel are the TBehaviorModelPreprocessing, which prepro-
cesses the incoming sessions to instance vectors for the clustering, and the TBehaviorModel-

Aggregation, which transforms the instance vectors into behavior models.
The TBehaviorModelPreprocessing is assembled by four stages. First the sessions are filtered
in the TEntryCallFilter, then the TBehaviorModelGeneration and the TBehaviorModelPreprocessing

transform the sessions into BehaviorModelTable-objects containing a graph representation
of the user behavior. These tables are transformed into instance vectors for the clustering in
the TInstanceTransformation. In the TBehaviorModelAggregation the vectors are clustered
by the TClusteringStage and transformed to instances of the BehaviorModel. These models
are then send to the visualization by the TBehaviorModelVisualization.

The TClusteringStage is usable with any self designed clustering algorithm, that accepts
and produces Weka instances. We designed it to be reusable in other contexts of the iObserve
framework.

7.2.2 Configuration Objects

We designed our approach for a general purpose, therefore we provide high level of
configurability. A developer/operator can configure our service individually for his specific
requirements. He can filter out non relevant operation calls with the EntryCallFilterRules

and configure his own clustering algorithm to adapt to his input behavior by using the
IClustering. The BehaviorModelConfiguration stores all these configurations.

7.2.3 Extension of the Kieker and iObserve Events for Clustering

To transport our call-information from the monitoring to the iObserve analysis, we ex-
tended the the BeforeOperationEvent and the AfterOperationEvent of Kieker as well as the
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EntryCallEvent of iObserve to hold a string. The call-information are stored in these events
as JSON string.

7.2.4 Instrumentation for the JPetstore and CoCoME

We instrumented the JPetstore with a modification of the SessionAndTraceRegistrationFilter

of the iObserve servlet filters. The URLs of the JPetstore are defined by the actions they
are calling internally. We deconstructed each URL string in the operation call with its
parameters of the underlying system. The parameters are stored as call-information in an
extended operation event with the signature of its operation call.

For the analysis of CoCoME and the JPetstore, we created filter rules to filter out non
relevant operation calls. Additionally we created strategies for shortening the operation
names in the visualization. Furthermore, we designed a strategy to find the representative
call-information of an entry-call for the JPetstore.

7.2.5 Automatic Workload Generation Scripts

For the generation of user types for the JPetstore and CoCoME, we used the Selenium
browser automation to execute the headless PhantomJS browser with scripts simulating
user behavior. The script for each user type is recorded with the Selenium IDE and
transformed into a Java class, where the behavior can be looped and reproduced.

7.2.6 Setup for the Comparison of Approaches

For the comparison of David Peters approach and our approach we created the composite
stage TBehaviorModelComparison. This stage include instance of the TEntryEventSequence

and TBehaviorModel, which are the implementations of the both approaches. To provide
the same input for both approaches, we connect their input ports to an distributer, which
sends both stages the same EntryCallSequences.

To visualize the output of the TEntryEventSequence stage, we created the TUsageModelToBehaviorModel

stage and connect it to an instance of TBehaviorModelVisualization. Thereby, the created us-
age models of David Peters approach are transformed to behavior models and subsequently
send to the visualization server.

7.3 Future Work

In this section we describe the possible future work of this approach. We divided the
chapter based on the characteristic of the work. In Section 7.3.1 we describe all technical
work, while were discussing possible scientific work in Section 7.3.2.
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7.3.1 Technical Work

Start Node Detection When we are transforming the entry-call sequences to behavior
model tables, we take each transition between two entry-calls and add it to the table. In
this table, the order in which the entry-calls are added is not preserved. Therefore, we
cannot tell which node of the behavior is the start node. However, knowing the start
node is relevant to understand user behavior. In the future, a flag for the start of the
behavior could be added to signalize the initial entry-call. This could also be realized with
a call-information at the start node. If we add a flag or a call-information to determine the
start of a behavior, we have to increase the dimension of the input vector for the clustering.
Depending on the implementation of the clustering algorithm and the added number of
dimension to the vector, this can have a negative effect on the results. Thus, we have a
trade-off that has to be evaluated in the future.

Configure the Stages for a Live Environment The implementation of our approach is
configured for a single execution of the analysis. The TBehaviorModelGeneration sends the
created BehaviorModelTable to its output port, when the stage is terminating. Thereby, it
would never send the table to the next stage in a live scenario. To use our system in a
live environment, the TBehaviorModelGeneration needs a signal for sending the current
behavior model table to an output port. This signal can be used to define a clustering
interval. Every x EntryCallSequenceModel-instances a new prototype model table has to be
created. With the new prototype, the x sequence models can be transformed to clustering
instances and clustered by our implementation. Thereby, the user behavior models are
renewed x EntryCallSequenceModel-instances and represent the current user behavior on
the system.

Transfer Call-Information Encoding from the Monitoring to the Analysis The instru-
mentation of a system to get call-information for the operation events is the most complex
part for a developer or operator of the system. In our implementation, we proposed to
encode the call-information, since we can only cluster numerical vectors. We encode them
during the monitoring and send the encoded call-information to the analysis. Not only
is the instrumentation complicated but the overhead of the monitoring increases. Since
we want to keep the overhead of the monitoring low for performance reasons, we should
encode the call-information in the analysis. It would additionally give us the advantage that
we have to encode in the analysis exclusively. When we decode the call-information after
the clustering and send the decoded information to the visualization, the encoding is not
handled. Thereby, an operator maintaining the system would see the same call-information
go into the clustering and come out in the visualization, which could mitigate confusion.

Filter Call-Information In some cases we do not need all call-information of the extended
entry-call events for the clustering. For example if we want to cluster users of the JPetstore
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only by the call-graph and the category, a user is browsing without the call-information
about viewed product and we cannot filter them out in the analysis. The TEntryCallFilter

stage filters all entry-calls that are not relevant for the clustering, they are filtered out based
on their operation signature. The stage can be extended to delete call-information from
specific entry-call events.

7.3.2 Scientific Work

Context Information Based on System Knowledge In our implementation, user infor-
mation is bound to entry-calls. Thereby, general information, i.e. age of a user, can only be
added by abusing the behavior-model. The age of a user can be designed as an entry-call
containing the age as call-information. The age would therefore be relevant for the clus-
tering, but not displayed in the visualization, since only the edges of the behavior model
are displayed. We either have to change the rules for the visualization or connect the age
node via edge to the behavior-model graph. In the future, a concept for adding global
call-information should be provided without the abuse of the entry-call node.

Alternative Clustering Algorithms The results of the clustering are highly dependent
on the clustering algorithm and its configuration parameters (see Section 5.3). Further
clustering algorithms should be evaluated and implemented to achieve improved clustering
results than X-Means.

For a continuous adaptation to user-behavior, a concept for classification [DU 2010,
chapters 6-7] of user groups could be useful. When using classification, we have predesigned
groups and every new behavior is added to the group, which represents it the best. With
each added behavior the user group changes which leading to ever-evolving user behavior
models. In the future, the clustering stage could be exchanged by a classification stage
dependent on the requirements of each specific use case to achieve the best results.
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Code Repository

https://github.com/research-iobserve/iobserve-analysis

Branch : cdor-userbehavior
Commit : d444f00037ce1cc214a8d8a28a2b101c4c1a4510
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