
Performance Testing Support in a Continuous
Integration Infrastructure

Sören Henning

Kiel University
Department of Computer Science

24098 Kiel, Germany

July 16, 2017

Abstract. The application of continuous integration allows an agile
software development process by automating the build process, so it is
nowadays seen as a good practice. However, if the build process is au-
tomatized, also the testing has to be automatized, to ensure quality and
to detect faults while integrating. One possible quality characteristic of
a software that could be checked is its performance.
In this paper, we propose a performance testing framework for Java that
executes performance tests by using microbenchmarks. It uses the Java
benchmarking toolkit JMH and can test for machine-dependent perfor-
mance assertions. This framework can be included into the continuous in-
tegration server Jenkins, so performance tests will be executed automat-
ically during the build process. We conducted an feasibility evaluation of
this approach by applying it to the continuous integration infrastructure
of the Pipe-and-Filter framework TeeTime.

1 Introduction

Continuous integration [3, 6] describes a practice in software engineering where
the work of several developers or teams is integrated daily or multiple times per
day. This facilitates an agile development process and enables the continuous
delivery of software artifacts. When speaking about continuous integration, one
normally refers to an automated process that is executed, for example, after a
commit to the source code repository or daily at a specific time.

A continuous integration server typically tries to build, i.e., compile and link,
the software. Moreover, it is common practice to automatically execute tests and
perform further analyses in order to ensure that no faulty version of a software
is released.

Whereas unit testing [10] is an established method to verify functional quality
characteristics that is also used a lot in practice, automated performance testing
is done only rarely. This is often due to the fact that performance testing is a time
and resources consuming task. However, for many software such as web-based
applications, performance is a highly relevant attribute as it is often business-
critical. In this paper we present an approach how performance tests can be



executed automatically in a continuous integration infrastructure for Java-based
software.

In the following, we first state out the foundations of Java performance mea-
surements in Section 2. Moreover, we present the technologies our approach
and its evaluation relies on. After that, we describe how and why we use mi-
crobenchmarks for performance tests in Section 3. In Section 4 we explain how
our proposed performance test framework works in detail, followed by a demon-
stration of how we integrated it into a continuous integration tool in Section 5.
Afterwards, we evaluate our approach in Section 6 by applying it to the con-
tinuous integration infrastructure of a performance-sensitive Java framework.
Finally, we summarize this work in Section 7 and show which points future work
may address.

2 Foundations

2.1 Performance Measurements in Java

According to Eusgeld, Freiling, and Reussner [5], performance is the time be-
havior and the resource efficiency of a software. The ISO/IEC 25000 standard
[11] defines this as one of six quality characteristics of software. In this paper, we
only consider the execution time of Java code segments concerning performance.

As described by Georges, Buytaert, and Eeckhout [7], Blackburn et al. [2],
and Horký et al. [9], the performance of Java program sections can differ sig-
nificantly from run to run. The Java Virtual Machine (JVM) loads classes on
demand when they are used the first time. Since class loading takes time, the
program section that first executes this code is slower at this time. Another even
more important reason is the Just-In-Time (JIT) compiler that dynamically re-
compiles the Java bytecode based on gained knowledge about the execution be-
havior of the program. Thus, it can optimize program sections that are executed
frequently. To gain statistically significant measurement results, these aspects
have to be considered. Thus, for conclusive results, it is appropriate to execute
measurements multiple times: At first, to warm up the JVM and, subsequently,
to calculate a mean value.

When measuring the performance of small program sections with sample
inputs or states, as we propose it for performance tests, one has to take further
aspects into account. Compilers (applies not only the JVM) perform lots of
optimizations such as dead code elimination or constant folding.

2.2 The Java Microbenchmarking Harness (JMH)

Microbenchmarks are performance measurements of small code segments, whereby
the size is not clearly defined. The Java Microbenchmarking Harness (JMH) [14]
is a tool for declaring and executing such benchmarks for programming languages
targeting the JVM.



Benchmarks are specially annotated Java methods that contain the program
code that is supposed to be executed. With further annotations, one can con-
figure the execution setting. Possible configuration parameters are, for instance,
the duration of the warm up period, the number of measurements, or the number
of JVM forks. Also one can choose between different modes that describe what
JMH measures. This is, for example, how often a benchmark is executed per
second or the average execution time of this benchmark. However, even though
JHM handles a lot of configuration, it does not free the developer from writing
meaningful benchmarks.

Typically, JMH benchmarks are defined in particular classes, separated from
the actual program code. These benchmark classes enable more complex bench-
marks that have states or interact with each other.

JHM provides a so called Runner that executes these benchmarks under
consideration of the given configuration and measures the execution time. Based
on this, it calculates a so called score in a settable unit, for example, the execution
time directly or the throughput. Afterwards, JMH returns that score along with
additional statistics.

In our performance testing framework, tests are defined and executed by
means of JMH as described in Section 3.

2.3 The Continuous Integration Server Jenkins

Jenkins [12] is an open source web-based software for continuous integration.
It can be set up for multiple projects that are built and tested independently
from each other. In a common configuration, the build process is triggered by
an external event. For instance, this can be a change to the source code, a
manual user input, or a specific point in time. Afterwards, Jenkins checks out the
source code (e.g., from a version control system) and successively executes one
or multiple build actions such as compiling and testing. These build actions are
typically sequences of command line instructions. A build can either succeed or
fail, depending on the responses of the individual build steps. More specifically,
a build is successful if and only if all build steps execute without reporting a
failure.

Jenkins provides a graphical user interface that is accessible via a web browser.
It allows to configure the build process and also to manually start it. More-
over, this interface shows the history of all builds along with information about
whether they were successful or not. For each build, Jenkins also shows the
console output that is printed during the build process. The single build steps
usually use the console to display information to the user.

Furthermore, Jenkins functionality can be extended with plugins. The plot
plugin [4] enables displaying charts in Jenkins’ web interface based on data from
CSV tables. We use Jenkins together with its plot plugin to display the course
of performance measurements.



2.4 The Pipe-and-Filter Framework TeeTime

The Pipes-and-Filters pattern [15] is an architectural pattern for systems that
process a stream of data. The individual processing steps are performed in com-
ponents that are called filters. These filters can be connected by pipes, so that
objects can be sent through these pipes and pass filter by filter [8].

TeeTime [16, 8] is a Java framework for developing software systems that
are based on the Pipes-and-Filters pattern. It contains the basic entities stages,
ports, pipes, and configurations. Stages are equivalent to the filters in the pattern.
The framework provides multiple abstract stage types that can be extended at
will. At its execution, a stage reads an object from its input ports, processes it
in a defined way, and sends it to its output ports. In addition, the framework
provides a number of predefined stages. A pipe connects an output port of one
stage with an input port of another stage. In a configuration, stages could be
defined and their ports connected. The framework takes care of creating the
right pipes between the ports.

The framework we present in Section 4 is implemented with TeeTime. More-
over, we use TeeTime’s continuous integration infrastructure as a case study in
Section 6.

3 Using Benchmarks for Performance Tests

Unit tests consist of a sequence of program instructions and assertions about the
behavior that must hold at certain points of this instructions. Typically, there is
exactly one assertion for each test that is checked as the last statement of a test.
We want something similar to this for performance tests and, therefore, decided
that performance tests consist of a sequence of instructions and assertions about
the performance of these instructions.

In our proposed framework, the instructions part of a test is a JMH bench-
mark. Hence, we do not have to implement an own mechanism to measure the
execution time of tests and, also, do not have to launch the different steps of a
reasonable test execution such as multiple measurement runs, decoupled JVM
warm up runs, or JVM forks. Moreover, test developers can utilize the features of
JMH to avoid compiler optimizations and, thus, write meaningful performance
tests.

JHM benchmarks are often already used in Java projects for performance
experiments or tests that have to be checked manually. This leads to another
reason for choosing JMH since these benchmarks can directly be transformed to
performance tests containing assertions that can be checked automatically.

A reasonable choice of benchmark parameters depends on the benchmark
itself and on available resources. Therefore, it would not make sense to let our
framework set these parameters by itself, so we decided to give the test developer
the responsibility to write statistically significant tests.

Whereas for unit tests it is clearly determinable whether a test was successful
or not, for performance tests this decision is more challenging. This is due to the



fact that execution times may differ from run to run (as describes in Section 2)
and that they also depend on the executing machine. To deal with the issue of
slightly varying execution times on the same machine, assertions are not defined
as fixed values but instead as intervals. Thus, tests are successful if their exe-
cution time is within the bounds of their assertion interval. A sole definition of
upper bounds is often not sufficient since also a sudden improvement in perfor-
mance can be an indicator of unintended behavior. However, if a lower bound is
actually unnecessary, it simply can be set to zero. Different execution times on
different machines are handled by individual assertions that must be defined for
each machine that executes the tests.

In contrast to unit tests, assertions for performance tests may change from
time to time, for instance, when implementations of algorithms are replaced by
more efficient ones. In this case, the assertions have to be adjusted appropriately.

4 Proposal for a Performance Testing Framework

We have developed a performance testing framework for Java called RadarGun1.
One can execute it in two different ways: First, as a command line program
and, second, it provides a Java API. RadarGun can be seen as an encapsulated
function that obtains a set of performance tests, i.e., benchmarks and associated
performance assertion bounds, as input and outputs information about every
test whether it was successful or not and, additionally, the actual value.

The actual procedure corresponds to a pipeline-like processing based on the
following steps: Execution of the passed benchmarks, comparison with their cor-
responding assertion, and finally generation of reports or further actions. For
this reason, we decided to implement the proposed framework with the Pipe-
And-Filter framework TeeTime. This enables an encapsulating of the individual
processing steps and an abstraction from the data exchange and the pipeline’s
execution. Further advantages are a more flexible expandability and a higher
exchangeability of processing steps.

Figure 1 gives an overview of RadarGun’s Pipe-and-Filter architecture. The
Benchmark Runner is a producer stage that creates the initial elements for this
configuration by running the desired benchmarks. Afterwards, it forwards the
benchmark results to the Results Comparator. This stage compares each of them
with its corresponding assertion. The result of this comparison is forwarded to a
Distributor that broadcasts it to the stages Results Printer, CSV Exporter, and
Exit on Fail Stage. For each of these stages it is configurable whether it should
be used or not. The Results Printer outputs the test result on the system’s con-
sole, the CSV Exporter stores it in a CSV table file, and the Exit on Fail Stage
aborts the whole program execution as soon as one test fails. In TeeTime every
configuration is a stage itself. Therefore, RadarGun’s Pipe-and-Filter configura-
tion exposes one of the distributor’s output ports. In this way, one can extend
RadarGun with custom stages.

1 https://github.com/SoerenHenning/RadarGun

https://github.com/SoerenHenning/RadarGun


Benchmark 
Runner DistributorResults 

Comparator

Results
Printer

CSV Exporter

Exit on Fail Stage

Fig. 1: Overview of RadarGun’s Pipe-and-Filter architecture

4.1 Execution of JMH Benchmarks

The Benchmark Runner stage can be seen as a wrapper around JMH. It executes
a given set of JMH benchmarks using JMH’s Runner class. If not specified more
precisely, it executes all benchmarks found by JMH in the current Java classpath.
However, when RadarGun’s Java API is used, a custom JMH Runner object can
be passed to define more precisely the benchmarks to run. Moreover, one can
configure whether the default JMH output should be printed to the console. After
the JMH runner finished its execution the Benchmark Runner stage catches the
benchmark results and forwards them to next processing stage.

4.2 Comparison with Predefined Assertions

As explained in Section 3, performance assertions have to be defined for each
machine individually that executes these performance tests. Therefore, we have
to decide how the executing machine will be identified and where the assertions
are defined.

Machine Identification A clear identification of machines is difficult. On the
one hand, from a more theoretical point of view, since it is difficult to find a
definition for the equality or similarity of machines. On the other hand, even if
we had such a definition, it would probably state something like: Two machines
are equal if and only if all their components and configurations are equal. Then,
this would be difficult to implement as it is technically problematic to read out
all components and configurations of a system and to compare them.

Thus, we have opted for a more practical approach by making the process
of machine identification configurable and exchangeable. RadarGun defines the
Java interface Machine Identifier (see Listing 1, MachineIdentifier) that po-
tential identifiers have to implement. The testMachine() method of an identifier
supplies a boolean value indicating whether the executing machine matches this
identifier or not. In this way, miscellaneous identifiers can be implemented that
differ in accuracy.



One good option to clearly identify machines is, for instance, taking advan-
tage of the way how they are identified in a network, for example, with their
MAC or IP address. A problem with this is that computers can have multiple
network interfaces and, in particular, none. Moreover, an identification by the IP
address is only possible if it is statically specified. Most operating systems have
the concept of something like a computer name. This enables another option to
identify a machine. We have implemented several identifiers, which are outlined
in the following.

Network Address Identifier This identifier is constructed with an array of net-
work addresses which can either be IP addresses or host names. Its test method
returns true if the executing machine has one of those host names or IP addresses.

Mac Address Identifier This identifier behaves similar to the Network Address
Identifier. However, it tests for one or more MAC addresses.

Windows Computername Identifier Also this identifier behaves similar to the
Network Address Identifier. However, it tests for one or more Windows computer
names. Thus, it can only be used on Windows machines.

Wildcard Identifier The test method of this identifier returns true for all ma-
chines. It can be used when no machine distinction is necessary, for instance, if
there is only one machine.

Dismiss Identifier The test method of this identifier returns false for all ma-
chines. In our implementation, we use it for realizing the Null Object pattern
[13].

By using the described identifier interface, it is possible to extend RadarGun
by further identifiers in a later step or to use it with own custom identifiers.

In order to load identifiers dynamically, as described later, they must provide
a constructor that accepts an arbitrary number of strings as arguments. In the
example of the MAC address identifier these are one or multiple MAC addresses
for which the executing system will be tested.

Location of Test Assertions One possibility of defining assertions could be
to do this directly in the benchmarks. For example, this could be done with Java
annotations like the other configuration options of JMH benchmarks. However,
this implies several disadvantages. For a high number of machines, declaring all

Listing 1: The interface for machine identifiers

1 public interface MachineIdentifier {
2
3 public boolean testMachine();
4
5 }



assertions in the benchmarks themselves would lead to long and overcomplicated
test cases. When a new machine is added, one have to modify all tests. This is
especially challenging if tests are executed on machines that are not under control
of the source code developers. Assume, for example, someone wants to build an
open source software project in which development he was not involved. If he now
wants to execute performance tests, he has to modify the source code for all tests
(at least in a local copy) to define his own machine specific assertions. Linked to
this, when new test cases are defined, it can be cumbersome to obtain an overview
which machine exists at all. Furthermore, the test execution instructions would
not be longer plain JMH benchmarks when using this method.

For this reasons, we decided to separate the benchmarks from the assertions
entirely. First, there are the benchmarks that are plain JMH benchmarks and,
second, there are assertions that are located in separate files.

Declaration of Test Assertions Assertions are defined in files in the YAML
data serialization standard [1]. We selected YAML since its syntax is designed
to be human-readable. A YAML block (start declared by three hyphens) always
describes a set of assertions for a certain machine. As defined by the YAML
standard, multiple blocks can be listed in one file. Also multiple YAML blocks
can describe the same or overlapping machines.

Listing 2 shows an example of such a YAML file containing one block. Firstly,
it defines the machine by an identifier class (Line 2) and the parameters by
which it will be created (Line 3). Afterwards, all assertions are declared by the
fully qualified name of the benchmark and the lower and upper bound for the
permitted benchmarks result, i.e., the JMH score (Lines 4-7).

Comparison of Actual Score with Test Assertions RadarGun can be
executed with a set of multiple YAML files or directories from which is selects
all containing YAML files. These files cannot be located in the file system only,
but also in the current classpath. Thus, one can place the test assertions at the
same place as the benchmarks, for instance, in the same Git repository. In this
way, the declaration of assertions is flexible and adaptable for different use cases
or workflows. For each found definition of assertions, the framework creates a

Listing 2: Example of a YAML file that declares assertions

1 −−−
2 identifier: MacAddressIdentifier
3 parameters: [01:23:45:67:89:AB]
4 tests:
5 myproject.benchmark.MyFirstBenchmark.run: [70, 90]
6 myproject.benchmark.MySecondBenchmark.run: [6.4, 6.7]
7 myproject.benchmark.MyThirdBenchmark.run: [1300, 1400]



Java object representing the defined machine identifier. Then it checks whether
it matches the executing machine and, if so, collects the declared assertions.

When now the Results Comparator processes benchmark results, it compares
the actual value with the lower and upper bound and creates a proper test result
object. The possible test results are:

1. The benchmark result value is within the assertion bounds.
2. The benchmark result value is greater than the assertion’s upper bound.
3. The benchmark result value is less than the assertion’s lower bound.
4. There is no assertion for this test.

After a test result object for one these types is created, it is forwarded to the
succeeding stages in the Pipe-and-Filter configuration.

4.3 Further Processing of Test Results

In a last step, RadarGun can handle the test results in different ways. There-
fore, it connects corresponding stages to its Pipe-and-Filter configuration. These
stages behave independent from each other so a user can specify the desired ac-
tions. Moreover, this is extendable for further actions, for instance, export to
other formats.

The Results Printer outputs the result for every test on the system’s standard
output stream or a different one if configured. The actual output is one line
per test that states the result status, i.e., failed, successful, or not executed,
the benchmarks name, the test result’s value, and its assertion. This output is
activated per default since RadarGun is typically executed from the command
line.

The CSV Exporter exports every test result to a separate CSV table. This
provides a simple approach to keep track of the test executions. Besides the
actual measured value, it stores also the assertion bounds as they can change
between test executions. This stage appends new values always to the end of the
table or, if that does not exist, creates a new one. As suggested in Section 5,
Jenkins can use these CSV tables to generate a visualization of the test results.

The Exit on Fail Stage terminates RadarGun with an exit code of −1 if
at least one test has failed. This is the common way to signal a continuous
integration tool that the build process should fail. For this stage, we provide two
different implementations. The first one terminates as soon as the first test fails.
Hence, other tests will not be analyzed anymore. The second one, waits until all
tests have been analyzed and terminates RadarGun if one or more of them has
failed. Which of the two implementations is more appropriate depends on the
use case.

5 Executing RadarGun by a Continuous Integration Tool

RadarGun is developed with the intention to be easily includable into a contin-
uous integration process. In the following, we describe the integration into the



Check out
Benchmarks

Compile
Benchmarks

Execute
RadarGun with

Benchmarks
Plot Charts

Fig. 2: Steps of an automatic execution of performance tests with RadarGun

continuous integration server Jenkins as an example. Although not demonstrated
here, this approach might be similar for other continuous integration tools.

Besides the execution of performance tests, further desired functionalities
are the output of test results, a generation of charts that plot the course of test
results and perhaps bounds, and the ability to abort the build process to avoid
releasing versions with performance issues.

These requirements lead to a sequence of actions as visualized in Figure 2.
First of all, Jenkins has to check out the JMH project containing the bench-
marks. Afterwards it compiles them using Apache Maven. RadarGun executes
these tests in the next step, produces an output to Jenkins’ console, and creates
or updates the CSV tables. For this purpose, RadarGun has to be configured
accordingly via command line options. In the last step, the Jenkins Plot Plugin
loads these CSV tables and creates a chart for each of them. For this purpose, in
Jenkins’ configuration a separate plot has to be generated for each test. Radar-
Gun provides an automatically abort of the build process if one or more tests
fail which can be very useful. However, the Plot Plugin can only update plots
in after build action. Thus, the plots will not b updated and therefore will not
show the failing builds.

6 Feasibility Evaluation

The Pipe-and-Filter framework TeeTime (Section 2.4) has a completely auto-
mated build infrastructure2. On a daily basis, a Jenkins server builds a so called
snapshot from the current version of the source code. Afterwards, Jenkins checks
the quality of this build with various tools and, on success, releases it.

High performance is a key feature of TeeTime, so an automatic detection
of performance changes between builds is particularly important. Since good
performance results are shown and published [17], deviations in performance
may make these results invalid. Therefore, integrating automatic performance
tests is a way to detect this.

In a feasibility evaluation, we show how automated performance testing with
RadarGun can be added to a continuous integration infrastructure by the ex-
ample of TeeTime. Since TeeTime already provides JMH benchmarks3, we can
transform them to RadarGun tests.

2 https://build.se.informatik.uni-kiel.de/jenkins/view/TeeTime
3 https://build.se.informatik.uni-kiel.de/teetime/teetime-benchmark

https://build.se.informatik.uni-kiel.de/jenkins/view/TeeTime
https://build.se.informatik.uni-kiel.de/teetime/teetime-benchmark


6.1 Methodology and Test Scenarios

Jenkins builds and publishes the current version of TeeTime daily at a spe-
cific time in the project teetime-nightly-release. We created a new project called
teetime-nightly-performance-test for automatically executing TeeTime’s perfor-
mance tests. The start of this project is triggered after the build of teetime-
nightly-release has finished.

TeeTime currently provides three benchmarks. Each of them measures the
performance of a different way to detect termination signals when they are re-
ceived from pipes. We convert these benchmarks to performance tests by adding
assertions for each of them. These assertions are declared in a YAML file located
in a separate branch of the TeeTime benchmarks Git project. To determine rea-
sonable assertion bounds we executed the tests several times and examined the
range of the execution times.

We set up the nightly performance test project as describes in Section 5.
Jenkins first loads the source code of the TeeTime benchmarks projects, where
we also have defined the assertions. Then, it compiles the benchmarks and,
afterwards, Jenkins loads the latest version of RadarGun and executes it with
the compiled benchmarks. For every test, we define an after build action that
plots the resulting values for this test.

For our feasibility evaluation, we only consider one benchmark since the
benchmarks do not differ in their methodology. Therefore, we selected the Port-
2PortBenchmark. To simulate deviations in performance we intentionally decel-
erate the benchmarks by using JMH’s blackhole4. It burns CPU cycles according
to the given workload value, in our case by a value of 10. Before starting the
actual evaluation, we executed the test multiple times and observed that the
execution time in all runs is between 30 nanoseconds per operation (ns/op) and
35 ns/op. Thus, we define these values as the assertion for this test. In the
following, we describe the scenarios we analyzed in our feasibility evaluation.

S1: Result within bounds First, we evaluate the case where the measured
execution time matches the specified assertion. This means the measured value
is greater or equal than the lower assertion bound and lower or equal than the
upper bound.

For a correct behavior, we expect that Jenkins produces a console output,
which confirms that the test was successful. In addition, it should also print
the test’s name, its assertion bounds, and the actual execution time including
further statistical information provided by JHM. Furthermore, we expect that
the Jenkins Plot Plugin updates the chart for this benchmark by adding new
values on the x axis. These values should be the actual measurement, the upper,
and the lower assertion bound. We also expect that they correspond with the
values that are printed to the console. Thus, the measured value has to be
between the values for the lower and upper bound.

4 org.openjdk.jmh.infra.Blackhole.consumeCPU(long tokens)



S2: Result lower than lower bound In a second scenario, we evaluate the
case that the execution time is lower than the lower assertion bound. The bench-
mark was therefore faster than expected. To simulate this behavior we remove
the previously set deceleration.

In this scenario, we expect that Jenkins produces a console output that in-
dicates that this test has failed. In addition, further information as described in
scenario S1 should be displayed. Also the chart should be extended by a new en-
try that displays the actual value, the lower, and the upper bound. These values
should correspond to the values displayed on the console. The new chart entry
for the actual value should be below the entry for the lower bound.

S3: Result greater than greater bound The third evaluation scenario is
that the benchmark is slower than expected and hence its execution time is
greater than the upper assertion bound. To simulate this behavior we increased
the deceleration from a value of 10 to a value of 15.

As in scenario S2, we expect a console output that displays the fail of this
test and also the additional information. Also in this scenario we expect that
the chart is extended by a new entry that displays the actual value as well as
the lower and the upper bound for this test. These values should corresponds
with the values displayed on the console. Since in this case the measured value
is greater than it should be, we expect that it exceeds the bounds.

In total, we perform 20 builds, whereby we first execute scenario S1 ten times,
than S2 one time, than S1 again six times, than S3 one time, and afterwards S1
two times. In this way, we expect to obtain a realistic plot. Since scenario S1 is
executed 18 times in total, we evaluate its output exemplary by the first build.
Since we conducted some experiments before the actual evaluation, the counter
of the considered builds starts at #59 and thus runs to #78.

All evaluation scenarios are executed at the build server of the Software En-
gineering Group at Kiel University with Jenkins version 2.64. The JHM bench-
marks are built with Apache Maven 3.2.3 and RadarGun is executed by Oracle
Java 1.8.0 40.

6.2 Results and Discussion

Figure 3 shows the chart that is generated by the Jenkins Plot Plugin. It contains
the actual execution time (called score, red color) as well as the lower assertions
bound (green) and the upper assertion bound (blue) in ns/op in relation to the
build number. The chart displays the last 20 builds from build #59 to build
#78.

The values for the lower and the upper bound are constant at 30 ns/op and
35 ns/op, respectively. This corresponds to the defined assertions and, thus, to
the expected behavior. For most builds, the score value fluctuates slightly but
stays between the lower bound and the upper bound. At build #69 it exceeds
the upper bound and reaches approximately 40 ns/op whereas at build #76 it



Fig. 3: The chart generated by Jenkins in our feasibility evaluation

falls to approximately 18 ns/op. Also this is expected as we executed scenario
S2 and S3 in this builds and scenario S1 in all the others.

Listing 3 shows RadarGun’s output on Jenkins’ console after the test in build
#59 was executed. First it states that this test was successful, followed by the test
name. After that, the actual score containing additional statistical information is
printed. Finally, the assertion bounds are displayed in parentheses. They comply
with the values declared in the YAML file. This build executes scenario S1 which
represents a successful test. In summary, the console output is in accordance with
our expectations.

Listing 3: RadarGun console output for build #59

[SUCCESSFULL] teetime.benchmark.Port2PortBenchmark.queue Score: 32.777
±(99.9% 1.982 ns/op (Bounds: [30.0, 35.0])

The output for build #69 is shown in Listing 4. Its schema corresponds to the
output for build #59. However, this time the measured score exceeds the asser-
tions, so the test is consequently labeled as failed. This meets our expectations
since in this build scenario S2 was executed.

Listing 4: RadarGun console output for build #69

[FAILED] teetime.benchmark.Port2PortBenchmark.queue Score: 40.386 ±(99.9%
1.637 ns/op (Bounds: [30.0, 35.0])

Listing 5 shows the output after build #76. Here again, the schema corre-
sponds to the output schema of build #59. This time, the score undercuts the



assertions and the test is also labeled as failed. In this build, scenario S3 was
executed so the output is as desired.

Listing 5: RadarGun console output for build #76

[FAILED] teetime.benchmark.Port2PortBenchmark.queue Score: 18.613 ±(99.9%)
4.536 ns/op (Bounds: [30.0, 35.0])

For all of the three evaluated scenarios, the values from the console output,
i.e., score, lower bound, and upper bound, comply with the values printed in the
plot. Moreover, they equal the values that are set in the assertions declaration
and output by JHM. Thus, we conclude that our approach works as desired.

6.3 Threats to Validity

We evaluated our approach with only one TeeTime benchmark. However, JMH
provides further test methods and configuration parameters, which we do not
have used. For instance, this is measuring the throughput instead of the execution
time. To increase the validity, we also have to evaluate other types of benchmarks.

Moreover, our evaluation was only executed with one hardware and software
environment. Thus, we cannot guarantee that our approach is also feasible in
other environment. An execution on different systems would increase the validity.

7 Conclusions

In this paper, we presented an approach of how performance testing can be
included into a continuous integration infrastructure. Hence, we pointed out
necessary requirements for a performance testing framework and, afterwards,
presented an implementation called RadarGun.

This performance testing framework utilizes JMH to execute benchmarks and
extends it by providing the ability to define assertions for them. RadarGun can
be integrated in the build process with an continuous integration tool, to execute
those performance tests automatically, e.g., before publishing releases, every day,
or after every commit. To show the feasibility of our approach, we applied it to
the open source project TeeTime, which has high performance requirements.

We designed RadarGun primarily to write and execute performance tests
for Java programs. However, since we basically rely on JHM, it is likely that
RadarGun is also applicable for other emerging JVM-based languages such as
Kotlin or Scala. This may be analyzed in future works.

The manual configuration of the Jenkins Plot Plugin can be cumbersome
for a high number of performance tests. Thus, a RadarGun Jenkins plugin is
currently under research. It could automatically generate visualizations for all
tests. Apart from this, the plugin could also generate interactive charts instead
of the current static ones to allow zooming and moving through the build history.
As there seems to be no way to update the chart after a failed build, this may
also be addressed by it.



References

[1] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. YAML Ain’t Markup
Language (YAML) (tm) Version 1.2. Tech. rep. YAML.org, Sept. 2009.

[2] Stephen M. Blackburn et al. “The DaCapo Benchmarks: Java Benchmark-
ing Development and Analysis”. In: Proceedings of the OOPSLA. 2006.

[3] G. Booch. Object-oriented Analysis and Design with Applications. Ben-
jamin/Cummings series in object-oriented software engineering. Benjam-
in/Cummings Publishing Company, 1994.

[4] Nigel Daley and Eric Nielsen. Jenkins Plot Plugin. Accessed: 2017-06-12.
2017. url: https://plugins.jenkins.io/plot.

[5] Irene Eusgeld, Felix C. Freiling, and Ralf Reussner, eds. Dependability
Metrics: Advanced Lectures. Springer-Verlag, 2008.

[6] Martin Fowler and Matthew Foemmel. Continuous integration. Accessed:
2017-06-18. 2006. url: https://www.thoughtworks.com/continuous-
integration.

[7] Andy Georges, Dries Buytaert, and Lieven Eeckhout. “Statistically Rigor-
ous Java Performance Evaluation”. In: Proceedings of the OOPSLA. 2007.

[8] Sören Henning. “Visualization of Performance Anomalies with Kieker”.
Bachelor’s Thesis. Kiel University, Sept. 2016.

[9] Vojtěch Horký et al. “DOs and DON’Ts of Conducting Performance Mea-
surements in Java”. In: Proceedings of the ICPE. 2015.

[10] Institute of Electrical and Electronics Engineers. “IEEE Standard for Soft-
ware Unit Testing”. In: ANSI/IEEE Std 1008-1987 (1986).

[11] International Organization for Standardization. “Systems and software en-
gineering – Systems and software Quality Requirements and Evaluation
(SQuaRE) – Guide to SQuaRE”. In: ISO/IEC 25000:2014 (Mar. 2014).

[12] Kohsuke Kawaguchi. Jenkins. Accessed: 2017-06-12. 2011. url: https:

//jenkins.io.
[13] Robert C. Martin, Dirk Riehle, and Frank Buschmann, eds. Pattern Lan-

guages of Program Design 3. Addison-Wesley Longman Publishing Co.,
Inc., 1997.

[14] OpenJDK. Java Microbenchmarking Harness. Accessed: 2017-06-12. 2017.
url: http://openjdk.java.net/projects/code-tools/jmh.

[15] M. Shaw. “Larger Scale Systems Require Higher-level Abstractions”. In:
SIGSOFT Softw. Eng. Notes (Apr. 1989).

[16] Christian Wulf, Wilhelm Hasselbring, and Johannes Ohlemacher. “Paral-
lel and Generic Pipe-and-Filter Architectures with TeeTime”. In: Interna-
tional Conference on Software Architecture (ICSA) 2017. Apr. 2017.

[17] Christian Wulf, Christian Claus Wiechmann, and Wilhelm Hasselbring.
“Increasing the Throughput of Pipe-and-Filter Architectures by Integrat-
ing the Task Farm Parallelization Pattern”. In: Proceedings of the CBSE.
Apr. 2016.

https://plugins.jenkins.io/plot
https://www.thoughtworks.com/continuous-integration
https://www.thoughtworks.com/continuous-integration
https://jenkins.io
https://jenkins.io
http://openjdk.java.net/projects/code-tools/jmh

	Performance Testing Support in a Continuous Integration Infrastructure
	1 Introduction
	2 Foundations
	2.1 Performance Measurements in Java
	2.2 The Java Microbenchmarking Harness (JMH)
	2.3 The Continuous Integration Server Jenkins
	2.4 The Pipe-and-Filter Framework TeeTime

	3 Using Benchmarks for Performance Tests
	4 Proposal for a Performance Testing Framework
	4.1 Execution of JMH Benchmarks
	4.2 Comparison with Predefined Assertions
	Machine Identification
	Location of Test Assertions
	Declaration of Test Assertions
	Comparison of Actual Score with Test Assertions

	4.3 Further Processing of Test Results

	5 Executing RadarGun by a Continuous Integration Tool
	6 Feasibility Evaluation
	6.1 Methodology and Test Scenarios
	S1: Result within bounds
	S2: Result lower than lower bound
	S3: Result greater than greater bound
	

	6.2 Results and Discussion
	6.3 Threats to Validity

	7 Conclusions


