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Antisocial rewarding in structured 
populations
Miguel dos Santos  1 & Jorge Peña 2,3

Cooperation in collective action dilemmas usually breaks down in the absence of additional incentive 
mechanisms. This tragedy can be escaped if cooperators have the possibility to invest in reward funds 
that are shared exclusively among cooperators (prosocial rewarding). Yet, the presence of defectors 
who do not contribute to the public good but do reward themselves (antisocial rewarding) deters 
cooperation in the absence of additional countermeasures. A recent simulation study suggests that 
spatial structure is sufficient to prevent antisocial rewarding from deterring cooperation. Here we 
reinvestigate this issue assuming mixed strategies and weak selection on a game-theoretic model of 
social interactions, which we also validate using individual-based simulations. We show that increasing 
reward funds facilitates the maintenance of prosocial rewarding but prevents its invasion, and that 
spatial structure can sometimes select against the evolution of prosocial rewarding. Our results suggest 
that, even in spatially structured populations, additional mechanisms are required to prevent antisocial 
rewarding from deterring cooperation in public goods dilemmas.

Explaining the evolution of cooperation has been a long-standing challenge in evolutionary biology and the 
social sciences1–6. The problem is to explain how cooperators, whose contributions to the common good benefit 
everybody in a group, can prevent defectors from outcompeting them, leading to a tragedy of the commons where 
nobody contributes and no common good is created or maintained7.

A solution to this problem is to provide individuals with additional incentives to contribute, thus making 
defection less profitable8, 9. Incentives can be either negative (punishment) or positive (rewards). Punishment 
occurs when individuals are willing to spend resources in order for defectors to lose even more resources10. 
Punishment can be stable against defection, since rare defectors are effectively punished11. However, to ini-
tially invade and resist invasion by individuals who cooperate but refrain from investing into incentives, i.e., 
second-order defectors, punishers must gain from punishing, for example, through reputational benefits in future 
interactions9, 12, 13.

Defection in collective action problems can also be prevented via positive incentives. Using rewards, coopera-
tors can pay to increase the payoff of other cooperators. While the emergence of such behavior is usually favored, 
as there are very few cooperators to reward when cooperators are rare, it becomes increasingly costly to sustain as 
cooperators become more abundant in the population14. To resist second-order defectors, non-rewarding players 
must benefit less from rewards15. Alternatively, when both rewards and punishment are present, rewards can fos-
ter the emergence of punishment, which in turn can be stable provided second-order punishment is available16.

Individuals can either decide to impose incentives unilaterally, or they can pool their effort to impose incen-
tives collectively. When acting collectively, individuals can be thought as investing into a fund used to either 
punish defectors or reward cooperators; in the latter scenario one speaks of “prosocial rewarding”. These collec-
tive mechanisms can be viewed as primitive institutions, as group members both design and enforce the rules to 
administer incentives to overcome social dilemmas17. Pool rewards15, 18 are particularly interesting because they 
involve the creation of resources, as opposed to their destruction (as in punishment). Prosocial rewarding can 
favor cooperation only if non-rewarding players can be sufficiently prevented from accessing reward funds so 
that second-order defectors benefit less from rewards than do rewarders15. However, the presence of “antisocial 
rewarders”, i.e., individuals who do not contribute to the public good but reward themselves, destroys coopera-
tion unless additional mechanisms, such as better rewarding abilities for prosocials, work in combination with 
exclusion19.
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Pool rewards can also be viewed as a second collective action dilemma played exclusively among those play-
ers who made a similar choice in the first public goods game, i.e., cooperators with each other, and defectors 
with each other. The nature of this secondary collective action is not necessarily similar to that of the first public 
goods game, and might, for example, involve non-linear returns. This observation extends beyond human behav-
ior, with situations where individuals are involved in different levels of social dilemmas being particularly likely 
in bacterial communities20. Indeed, many species of bacteria secrete public good molecules (e.g., iron-binding 
siderophores and other signaling molecules), which are susceptible to exploitation from both their own and 
other strains21–23. In addition, bacteria are also involved in within-species public goods games, as some of those 
public good molecules can also be strain-specific23, 24. Thus, the relevance of pool-reward mechanisms extends to 
non-human species.

A recent theoretical study by Szolnoki and Perc25 [hereafter, SP15] challenged the view that additional 
mechanisms are required to prevent antisocial rewarding from deterring cooperation in public goods games. 
Contrastingly, SP15 showed that, if individuals interact preferentially with neighbors in a spatially structured 
population, prosocial rewarding outcompetes antisocial rewarding and that increasing rewards is beneficial for 
prosocial rewarding. However, SP15 reached these conclusions by means of Monte Carlo simulations of a very 
specific model of spatial structure and evolutionary dynamics (a square lattice with overlapping groups and a 
Fermi update rule) where interacting groups are always equal to five. Hence, it remains unclear whether their 
results generalize to a broader range of spatial models.

Spatial structure can favor the evolution of cooperation. The main reason for this phenomenon is simple. 
When populations are spatially structured through limited dispersal, social interactions necessarily occur more 
often among relatives. Hence, kin selection is at work3, 26–28. However, spatial structure also means that compet-
itors are also more often kin29. In certain models (such as an island model with Wright-Fisher demography30 or 
an evolutionary graph updated with a Moran birth-death process31, 32), these two effects cancel each other out 
and spatial structure has no effect on the evolution of cooperation. More generally, the net effect is not null, and 
its direction and magnitude can be often conveniently captured by a single “scaled relatedness coefficient”33. The 
scaled relatedness coefficient depends on the demographic assumptions of a given model, including the “update 
rule” used to implement the evolutionary dynamics, but is otherwise independent of the payoffs from the game 
used to model social interactions33–37.

Studies on spatial games and evolutionary graph theory have also investigated the effects of spatial structure 
on evolutionary game dynamics38–41. Theses studies have shown how particular features of the graph used to 
represent the population and the update rules can promote or hinder the evolution of cooperation. In particular, 
it has been shown that, assuming weak selection on discrete strategies and additive effects, the interplay between 
graph topology and update rule can be captured by a single “structure coefficient” independent of the underlying 
game42, 43. Importantly, the structure coefficient of evolutionary graph theory and the scaled relatedness coeffi-
cient of kin selection theory are connected by a simple transformation35. Therefore, using scaled relatedness as a 
measure of spatial structure allows one to capture a large variety of spatial models, including spatial games and 
evolutionary graphs.

Here, we formulate a mathematical model that clarifies the role of spatial structure for cooperation to be 
favored through pool rewarding. In contrast to SP15 [which, in the tradition of spatial games and evolution-
ary graphs38, 40, 41, 44, assume discrete strategies and strong selection] we assume continuous strategies and weak 
selection45, 46. Our different assumptions allow us to build on existing theoretical work36 to analytically derive 
the conditions under which cooperation is favored and to write them as functions of the parameters of the game 
(including the group size) and of a single “scaled relatedness coefficient”33, 35, 36, which serves as a natural measure 
of spatial structure. This allows us to make general predictions about the effect of spatial structure on cooperation, 
and to make connections between our results and the vast literature on social evolution theory3, 28, 47.

Model
Public goods game with prosocial and antisocial reward funds. We consider a collective action 
problem with an incentive mechanism based on reward funds following the model of SP15. Individuals interact in 
groups of size n and play a linear public goods game (PGG) followed by a rewarding stage with non-linear returns. 
There are two types of actions available to individuals: “rewarding cooperation” (RC, or “prosocial rewarding”), 
whereby a benefit r1γ/n is provided to all group members (including the focal) at a cost γ, and “rewarding defec-
tion” (RD, or “antisocial rewarding”), whereby no benefit is provided and no cost is payed. The parameter r1 is 
the multiplication factor of the PGG, and it is such that 1 < r1 < n; this ensures that the first stage of the game is a 
prisoner’s dilemma, so that if rewards are absent rewarding cooperation is a dominated strategy.

Individuals choosing RC or RD also invest in their own reward funds. Each reward fund yields a per capita net 
reward r2 − γ (reward benefit r2 minus cost of contributing to the reward pool γ) provided there is at least another 
individual playing the same action among the n − 1 other group members, and zero otherwise (i.e., self-rewarding 
is not allowed and the cost γ is payed only if the rewarding institution is created). For example, a focal individual 
playing RC will pay the cost and receive the reward only if there is at least another RC among its n − 1 partners. 
This reflects a situation where reward funds yield non-linear returns, and is reminiscent of those of a volunteer’s 
dilemma48. Since the net reward r2 − γ does not depend on the group size n, r2 can in principle take any value 
greater than, or equal to γ. Note that individuals choosing the most common action are more likely to get the 
reward, even under random group formation. Hence, RC can prevail as long as its frequency in the global popu-
lation is above one half and rewards outweigh the net cost of contributing to the PGG. However, if self-rewarding 
is allowed, cooperation is never favored even when all individuals play RC19.

With the previous assumptions, and letting without loss of generality γ = 1, the payoffs for a focal individual 
choosing either RC or RD when k co-players choose RC (and n − 1 − k co-players choose RD) are respectively 
given by (cf. Equations 3.1, 3.2, and 3.3 in SP15):
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Note that if everybody plays RC, everybody gets a payoff cn−1 = r1 + r2 − 2. Instead, if everybody plays RD, 
everybody gets d0 = r2 − 1. Since r2 > 1, cn−1 > d0 holds for all values of r1 and r2, which means that full prosocial 
rewarding Pareto dominates full antisocial rewarding: Players are collectively better if all play prosocial reward-
ing with probability one rather than if all play antisocial rewarding with probability one. Therefore, despite the 
presence of rewards available to both cooperators and defectors, the game we study retains the characteristics 
of a typical social dilemma where full cooperation by all individuals in the group yields higher payoffs than full 
defection by all individuals in the group. In such situations, it is usually expected that spatial structure facilitates 
the evolution of RC. As we show below, this is not always the case.

Spatial structure and evolutionary dynamics. We consider a homogeneous spatially structured popu-
lation of constant and finite size NT where individuals interact with n − 1 other individuals according to the game 
described above. The exact type of spatial structure can follow any of a large family of models, including variants 
of the island model49 and transitive evolutionary graphs50. In this last case, and for simplicity, we assume that 
individuals play a single (k + 1)-player game with their k nearest neighbors, where k is the degree of the graph. 
All that is required for our analysis to be valid is that the selection gradient can be written in a form proportional 
to the gain function given by Eq. (3) below. We refer the interested reader to previous literature28, 33–36 for more 
details on this formalism and the models of spatial structure captured by our approach.

We assume that individuals implement mixed strategies, i.e., they play RC with probability z and RD with 
probability 1 − z, and investigate the evolutionary dynamics of the phenotype z. More specifically, we consider the 
fixation probability ρ(z, δ) of a single mutant playing z + δ in a resident population of phenotype z, take the phe-
notypic selection gradient ρ δ= δ=S z d d( ) ( / ) 0 as a measure of evolutionary success35, 51, and look into conver-
gence stable strategies52 under trait substitution dynamics28.

In order to evaluate the selection gradient, we make use of standard results regarding the evolution of a con-
tinuous phenotype in a spatially structured population28. Denoting by z• the phenotype of a focal individual, by 
z◦ the average phenotype of the individuals it socially interacts with, and by f(z•, z◦) the fecundity of the focal 
individual, and further assuming that fecundity is proportional to the expected payoffs from the game, the selec-
tion gradient S z( ) takes the form34

κ∝ =
∂

∂
+

∂
∂

•

• =

−

•

=

−
• •� ������� �������� � ������� ��������

� �

�
� �

S G

CC BB

z z f z z
z

f z z
z

( ) ( ) ( , ) ( , ) ,

(3)
z z z

z

z z z

z

,

( )

,

( )

where G z( ) is the “gain function”, which consists of three components: (i) the effect of the focal individual’s behav-
ior on its fecundity (i.e., the “direct effect” −CC z( )), (ii) the effect of the co-players’ behavior on the focal individu-
al’s fecundity (i.e., the “indirect effect” BB z( )), and (iii) a measure of relatedness between the focal individual and 
its neighbors, demographically scaled so as to capture the effects of local competition (i.e., the “scaled relatedness 
coefficient” κ).

For the matrix game with two pure strategies as the one we consider here, the direct and indirect effects 
appearing in Eq. (3) can be written, up to a constant factor, as36
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where

∆ = −c d (5)k k k

are the “direct gains from switching” recording the changes in payoff experienced by a focal if it unilaterally 
switches its action from RD to RC when k co-players stick to RC and n − 1 − k stick to RD53, and

Θ = − + − − −− +k c c n k d d( ) ( 1 )( ) (6)k k k k k1 1

are the “indirect gains from switching” recording the changes in the total payoff accrued by co-players when the 
focal unilaterally switches its action from RD to RC36. Eq. (4) expresses −CC z( ) and BB z( ) as expected values of the 
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direct and indirect gains from switching when the number of other individuals playing RC is distributed accord-
ing to a binomial distribution with parameters n and z.

A necessary and sufficient condition for a mutant with phenotype z + δ to have a fixation probability greater 
than neutral when δ is vanishingly small is that >S z( ) 0 and hence that κ− + >CC BBz z( ) ( ) 0 holds. This condi-
tion can be interpreted as a scaled form of Hamilton’s rule33, 35. Importantly, the gain function 

κ= − +CC BBG z z z( ) ( ) ( ) allows one to identify “convergence stable” evolutionary equilibria54–56; these are given 
either by singular strategies z* (i.e., the zeros of the gain function) satisfying ′ <⁎G z( ) 0, or by the extreme points 
z = 0 (if <G(0) 0) and z = 1 (if >G(1) 0). Convergence stability is a standard way of characterizing long-term 
evolutionary attractors; a phenotype z* is convergence stable if for resident phenotypes close to z* mutants can 
invade only if mutants are closer to z* than the resident52.

Scaled relatedness. The coefficient κ appearing in Eq. (3) is the “scaled relatedness coefficient”, which bal-
ances the effects of both increased genetic relatedness and increased local competition characteristic of spatially 
structured populations29, 33–35, 37. The scaled relatedness coefficient has been calculated for many models of spatial 
structure for which Eq. (3) applies, see Table 2 of ref. 33, Table 1 of ref. 34, Appendix A of ref. 36, and references 
therein for some examples. We also note that by identifying

κ σ
σ

=
−
+

1
1

,
(7)

where σ is the so-called “structure coefficient”, the right hand side of Eq. (3) recovers the “canonical equation of 
adaptive dynamics with interaction structure” (ref. 43, Eq. 5). Table 1 of ref. 43 provides several examples of mod-
els of spatial structure and their respective values of σ; transforming these values via Eq. (7), the scaled relatedness 
coefficients for such models can be obtained in a straightforward manner.

Usually, κ takes a value between −1 and 1 depending on the demographic assumptions of the model, but it is 
always such that the larger it is the less genetic relatedness is effectively reduced by the extent of local competition. 
Importantly, the larger the magnitude of scaled relatedness κ the more important the role of the indirect effect 
BB z( ) in the selection gradient. For this reason, we use scaled relatedness κ as a measure of spatial structure; we 
hence refer in the following to an increase in κ as an increase in spatial structure.

In the following, we present some examples to illustrate the connection between explicit spatial structure 
models and the formalism we use here, based on the scaled relatedness coefficient. For a well-mixed population 
or an island model with Wright-Fisher demography (such that generations are overlapping), the value of scaled 
relatedness is

κ = −
−N
1

1 (8)T

(ref. 34, Eq. B.1). Contrastingly, in an island model with nd demes with N individuals each (so that NT = ndN) 
and a Moran demography (where adults have a positive probability of surviving to the next generation) scaled 
relatedness becomes
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where m is the migration rate (ref. 34, Eq. B.2). In this case, κ is inversely proportional to the migration rate m; it 
follows that an island model with less migration has, according to our definition, more spatial structure. As a final 
example, consider a transitive evolutionary graph of size NT and degree k updated with a (death-birth) Moran 
demography. In this case we have
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(ref. 34, Eq. B.5 with m = 1; which can also be recovered from the value of σ given in Table 1 of ref. 43 after 
applying identity (7)). For this model of population structure, scaled relatedness is inversely proportional to the 
degree k. This means that, according to our terminology, graphs of larger degree (and hence more similar to a 
well-mixed population represented by a complete graph for which k = NT − 1) are characterized by smaller spatial 
structure.

Results
Calculating the gains from switching by first replacing Eqs (1) and (2) into Eqs (5) and (6), then replacing the 
resulting expressions into Eqs (4a) and (4b), and simplifying, we obtain that the gain function for the PGG with 
reward funds can be written as (see Methods)
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In the following, we identify convergence stable equilibria and characterize the evolutionary dynamics, first 
for well-mixed and then for spatially structured populations.

Infinitely large well-mixed populations. For well-mixed populations, and as NT → ∞, the scaled relat-
edness coefficient reduces to zero (Eq. (8)). In this case, the gain function simplifies to = −CCG z z( ) ( ) and we 
obtain the following characterization of the evolutionary dynamics (see Methods). If r1/n + r2 ≤ 2, z = 0 is the only 
stable equilibrium, and RD dominates RC. Otherwise, if r1/n + r2 > 2, both z = 0 and z = 1 are stable, and there is 
a unique z* > 1/2 that is unstable. In this case, the evolutionary dynamics are characterized by bistability or posi-
tive frequency dependence, with the basin of attraction of full RD (z = 0) being always larger than the basin of 
attraction of full RC (z = 1). Moreover, z* (and hence the basin of attraction of z = 0) decreases with increasing r1 
and r2. In particular, higher reward funds lead to less stringent conditions for RC to evolve. In any case, RC has to 
be initially common (z > 1/2) in order for full RC to be the final evolutionary outcome.

Spatially structured populations. Interactions in spatially structured populations (for which κ is not 
necessarily equal to zero) can dramatically alter the evolutionary dynamics of public goods with prosocial and 
antisocial rewards. In particular, we find that whether or not the extreme points z = 0 and z = 1 are stable depends 
on how the scaled relatedness coefficient κ compares to the critical values
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n r r

n r
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which satisfy κ* ≤ κ*, in the following way (Fig. 1):

 1. For low values of κ (κ < κ*), full RD (z = 0) is stable and full RC (z = 1) is unstable.
 2. For intermediate values of κ (κ* < κ < κ*), both full RD and full RC are stable.
 3. For large values of κ (κ > κ*), full RC is stable and full RD is unstable.

For a given group size n and PGG multiplication factor r1, κ* = κ* if and only if r2 = 1, i.e., if rewards are 
absent. In this case, full RD and full RC cannot be both stable.

Rewards have contrasting effects on κ* (the critical scaled relatedness value below which full RC is unstable) 
and κ* (the critical scaled relatedness value above which full RD is unstable). On the one hand, κ* is decreasing 
in the reward benefit r2, so larger rewards increase the parameter space where full RC is stable. If spatial structure 
is maximal, i.e., κ = 1, the condition for full RC to be stable is r1 + r2 > 2, which always holds. On the other hand, 
κ* is an increasing function of r2. Hence, larger rewards make it harder for spatial structure to destabilize the full 
RD equilibrium, and hence for RC to invade. For κ = 1, full RD is still stable whenever r1 < r2. Contrastingly, full 
defection can never be stable if κ = 1 in the absence of rewards (i.e., r2 = 1) since, by definition, r1 > 1. From this 
analysis we can already conclude that even maximal spatial structure does not necessarily allow RC to invade and 

Figure 1. Phase diagrams illustrating the possible dynamical regimes of public goods games with prosocial and 
antisocial reward funds. Prosocial rewarding (RC) is stable if κ > κ*, while antisocial rewarding (RD) is stable if 
κ < κ*. The critical values κ* and κ* are functions of the public goods game multiplication factor r1, the reward 
benefit r2, and the group size n, as given by Eqs (12) and (13). Increasing the reward benefit r2 makes it more 
difficult for both prosocial and antisocial rewarding to invade a population otherwise playing full antisocial and 
prosocial rewarding, respectively. Parameters: n = 5.
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increase when rare. In addition, a minimum value of scaled relatedness is required for prosocial rewarding to be 
stable once it is fully adopted by the entire population.

Let us now investigate singular strategies. Depending on the parameter values, there can be either zero, one, 
or three interior points at which the gain function (and hence the selection gradient) vanishes (see Methods). 
If there is a unique singular point, then it is unstable while z = 0 and z = 1 are stable, and the evolutionary 
dynamics is characterized by bistability. If there are three singular points (probabilities zL, zM, and zR, satisfying 
0 < zL < zM < zR < 1), then z = 0, zM, and z = 1 are stable, while zL and zR are unstable. In this case RD and RC coex-
ist at the convergence stable mixed strategy zM; a necessary condition for this dynamical outcome is both relatively 
large reward benefits and relatively large scaled relatedness.

We calculated the singular strategies numerically, as the equation =G z( ) 0 cannot be solved algebraically in 
the general case (Figs 2 and 3). Increasing scaled relatedness generally increases the parameter space where RC is 
favored. Yet, there are cases where increasing scaled relatedness can hinder the evolution of RC. Specifically, when 
the reward benefit is considerably larger than the public goods share, increasing scaled relatedness can increase 
the basin of attraction of the full RD equilibrium (Fig. 2c). Also, increasing rewards can be detrimental to RC in 
spatially structured populations by increasing the basin of attraction of full RD (Fig. 3c,f,h,i); this is never the case 

Figure 2. Bifurcation plots illustrating the evolutionary dynamics of pool rewarding in spatially structured 
populations. The scaled relatedness coefficient serves as a control parameter. Arrows show the direction of 
evolution for the probability of playing prosocial rewarding. Solid (dashed) lines correspond to convergence 
stable (unstable) equilibria. In the left column panels (a,d,g), rewards are absent (i.e., r2 = 1). In the middle 
column panels (b,e,h), r2 = 2.5. In the right column panels (c,f,i), r2 = 4.5. In the top row panels (a–c), r1 = 1.25. In 
the middle row panels (d–f), r1 = 2.5. In the bottom row panels (g–i), r1 = 4.5. In all panels, n = 5. A value of κ = 0 
could correspond to an infinitely large well-mixed population (Eq. (8)); a value of κ = 0.25 could correspond to 
an evolutionary graph updated with a death-birth Moran model with N kT  and k = 4 (Eq. (10)); a value of 
κ ≈ 0.167 could correspond to an infinite island model with deme size N = 5 and m 1 (Eq. (9)).
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when there is no spatial structure (Fig. 3a,d,g). Finally, the best case scenario from the point of view of a rare 
mutant playing z = δ (where δ is vanishingly small) is in the absence of rewards (i.e., r2 = 1), because that is the 
case where the required threshold value of scaled relatedness to favor prosocial rewarding is the lowest (i.e., where 
κ* attains its minimum value in Eq. (13)).

In order to understand why, contrary to naive expectations, increasing spatial structure might sometimes 
select against RC, note first that the derivative of the gain function with respect to κ is equal to the indirect effect 
BB z( ). This is nonnegative if

+ −
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In the absence of rewards (i.e., r2 = 1), condition (14) always holds. That is, increasing scaled relatedness 
always promotes cooperation when there are no rewards. In addition, when 0 ≤ z ≤ 1/2, the function q(z) is non-
negative, so that condition (14) holds and BB z( ) is positive. Hence, increasing scaled relatedness is always benefi-
cial for RC when such behavior is expressed less often than RD. However, increasing scaled relatedness might not 
always favor RC when such behavior is already common in the population, i.e., if z > 1/2. Indeed, when the 

Figure 3. Bifurcation plots illustrating the evolutionary dynamics of pool rewarding in spatially structured 
populations. The reward benefit serves as a control parameter. Arrows show the direction of evolution for the 
probability of playing prosocial rewarding. Solid (dashed) lines correspond to convergence stable (unstable) 
equilibria. In the left column panels (a,d,g), there is no spatial structure (i.e., κ = 0). In the middle column 
panels (b,e,h), κ = 0.2. In the right column panels (c,f,i), κ = 0.8. In the top row panels (a,b,c), r1 = 1.25. In the 
middle row panels (d,e,f), r1 = 2.5. In the bottom row panels (g,h,i), r1 = 4.5. In all panels, n = 5.
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multiplication factor of the PGG is relatively small and rewards are relatively large, condition (14) is not fulfilled 
for some z and BB z( ) is negative for some probability of playing RC (Fig. 4).

A closer look at the indirect gains from switching Θk (Eq. 6) reveals why BB z( ), and hence the effect of scaled 
relatedness on the selection gradient, can be negative for some z. The indirect gains from switching are nonnega-
tive for all k ≠ n − 2. For k = n − 2 and n ≥ 4 we have Θn−2 = (n − 1)r1/n − r2 + 1, which can be negative if

− > −r n r n1 ( 1) / (15)2 1

holds. Inequality (15) is hence a necessary condition for BB z( ) to be negative for some z and for prosocial reward-
ing to fail to qualify as payoff cooperative or payoff altruistic [sensu ref. 36]. Indeed, when condition (15) holds 
and hence Θn−2 < 0, prosocial rewarding cannot be said to be altruistic according to the “focal-complement” 
interpretation of altruism57, 58. This is because the sum of the payoffs of the n − 1 co-players of a given focal indi-
vidual, out of which n − 2 play RC and one plays RD, is larger if the focal plays RD than if the focal plays RC. We 
also point out that RC is not altruistic according to an “individual-centered” interpretation58, 59 or “cooperative” 
[sensu ref. 60] if

− >r r n1 / , (16)2 1

since in this case the payoff to a focal individual playing RD as a function of the number of other players choosing 
RC in the group, dk (see Eq. (2)), is decreasing (and not increasing) with k at k = n − 2. Indeed, if condition (16) 
holds, players do not necessarily prefer other group members to play RC irrespective of their own strategy: a focal 
RD player would prefer one of its n − 1 co-players to play RD rather than play RC. In the light of this analysis, it is 
perhaps less surprising that for some parameters increasing spatial structure can be detrimental to the evolution 
of prosocial rewarding, even if prosocial rewarding Pareto dominates antisocial rewarding.

Individual-based simulations. To test the validity of our mathematical model, we also ran individual-based 
simulations for a well-mixed population and a square lattice of size NT = 400, both updated with a Moran 
death-birth rule (see Methods for details). As predicted by our mathematical analysis, the evolutionary dynamics 
are often characterized by a single interior convergence unstable point z* (Fig. 5). When the phenotypic value z0 of 
the initially monomorphic population is below such point, selection tends to disfavors rewarding cooperation and 
the population converges to full RD (z = 0). Contrastingly, when the population starts with a phenotypic value 
larger than z*, selection tends to favor rewarding cooperation and the population converges to full RC (z = 1). In 
all cases, the convergence unstable strategy z* resulting from our mathematical analysis are very good predictors 
of the point at which selection changes direction in our individual-based simulations.

Discussion
We have investigated the effect of spatial structure on the evolution of public goods cooperation with reward 
funds. Measuring spatial structure by means of a scaled relatedness coefficient allowed us to capture both the 
effects of increased genetic assortment and increased local competition that characterize evolution in spatially 
structured populations. We have found that (i) prosocial rewarding cannot invade full antisocial rewarding 
unless scaled relatedness is sufficiently large, but (ii) increasing scaled relatedness can be detrimental to prosocial 
rewarding in cases where rewards are considerably larger than the public goods share. We have also demonstrated 

Figure 4. Parameter space where condition (14) does not hold and increasing spatial structure is detrimental to 
prosocial rewarding for some values of the probability of playing prosocial rewarding, z. Parameters: n = 5.
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the contrasting effects of increasing rewards, which (iii) only benefits prosocial rewarding in well-mixed popula-
tions, but (iv) can also benefit antisocial rewarding in spatially structured populations. These results illustrate how 
pool-rewards introduce non-linearities to the public goods game, which in turn lead to counterintuitive effects of 
population structure on the evolutionary dynamics.

We found that increasing spatial structure can sometimes be detrimental to prosocial rewarding. We con-
firmed this analytical result with individual-based simulations, where we showed that the basin of attraction 
of full prosocial rewarding can be greater in a well-mixed population than in a square lattice with a Moran 
death-birth demography. This is a somewhat counterintuitive result, because spatial structure often favors the 
evolution of cooperation39, 41, 50, 60–62. However, previous studies have shown that increasing population structure 
can sometimes have a negative effect on the evolution of cooperative strategies34, 63, 64. For example, Hauert and 
Doebeli63 found that, when social interactions are modelled as a two-player snowdrift game between pure strate-
gists under strong selection, well-mixed populations lead to higher levels of cooperation than square lattices. Peña 
et al.64 studied a multiplayer version of this game, but assuming weak selection and a death-birth Moran process, 
and found similar results. In our case, spatial structure can oppose prosocial rewarding because the indirect 
gains from switching from antisocial to prosocial rewarding can be negative. In particular, if individuals interact 
in groups of size n ≥ 4 and exactly n − 2 co-players choose rewarding cooperation while one co-player chooses 
rewarding defection, playing rewarding defection (RD) rather than rewarding cooperation (RC) might increase 
(rather than decrease) the payoffs of co-players. The reason is that, in this case, by choosing RD the focal player 
helps its RD co-player getting the reward fund, while also allowing its RC co-players to keep theirs, as the focal 
contribution is not critical to the creation of the prosocial reward fund. If the reward benefit is so large that Eq. 
(15) holds, the benefit to the single RD co-player is greater than what everybody loses by the focal not contribut-
ing to the public good, and the sum of payoffs to co-players is greater if the focal plays RD than if it plays RC. This 
implies that, although prosocial rewarding Pareto dominates antisocial rewarding, it does not strictly qualify as 
being payoff altruistic or payoff cooperative36, hence the mixed effects of increasing spatial structure.

Our results also revealed the fact that higher values of the reward benefit r2 make it more difficult for prosocial 
rewarding to invade from rarity in spatially structured populations. Indeed, the critical value of scaled relatedness 
required for prosocial rewarding to be favored over antisocial rewarding is greater in the presence of rewards 

Figure 5. Evolution of the probability of playing rewarding cooperation in a simulated population of NT = 400 
individuals interacting in groups of size n = 5. Solid lines show the average phenotypic value of the population, 
gray dots show trait values of 10 individuals randomly sampled every NT time steps. Each set of solid line and 
gray dots represent one realization of the stochastic process starting with a different initial condition where 
the population is monomorphic for trait value z0. Dotted red lines represent the analytical prediction for the 
value of the convergence unstable interior point z*. Parameters: w = 10, μ = 0.01, ν = 0.05. Left panels (a,c): 
well-mixed population updated with a Moran death-birth process (κ ≈ −0.0025). Right panels (b,d): square 
lattice with periodic boundary conditions and von Neumann neighborhood, i.e., each node is connected to 
North, East, South, and West neighbors (κ ≈ 0.2462). Top row panels (a,b): r1 = 4.5, r2 = 4.5. Bottom row panels 
(c,d): r1 = 1.1, r2 = 8.0. In all cases, the analytical model predicts bistable evolutionary dynamics with a single 
convergence unstable equilibrium z* dividing the basins of attraction of the two stable equilibria z = 0 and z = 1. 
(a) z* ≈ 0.5309. (b) z* ≈ 0.2472. (c) z* ≈ 0.606. (d) z* ≈ 0.632.
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than in their absence. This is important because rewards are meant to be mechanisms incentivizing provision in 
public goods games15, 18, rather than making collective action more difficult to emerge. Clearly, our result hinges 
on the assumption that prosocial rewarders and antisocial rewarders are both equally effective in rewarding them-
selves, i.e., that r2 is the same for both prosocial and antisocial rewarders. Challenging this assumption by making 
investments in rewards contingent on the production of the public good, or by increasing the ability of prosocials 
to reward each other relative to that of antisocials19, will necessarily change this picture and promote prosocial 
rewarding in larger regions of the parameter space.

Although higher rewards prevent the initial invasion of prosocial rewarding, we have also shown that, once 
prosocial rewarding is common, higher rewards can further enhance the evolution of prosocial rewarding. These 
results are in line with the findings of SP15, who showed that when both spatial structure is sufficiently large (their 
spatial model supports cooperation even in the absence of rewards) and the initial frequency of prosocial reward-
ing is relatively high (i.e., 1/4 in their simulations), larger rewards promote prosocial rewarding.

In contrast to the original model by SP15, which considered discrete strategies and strong selection, we assumed 
continuous mixed strategies and weak selection36. For well-mixed populations, it is well known that these different 
sets of assumptions lead to identical results under a suitable reinterpretation of the model variables53. Thus, our result 
that in this case there is a unique convergence unstable z* in mixed strategies also implies that the replicator dynam-
ics for the two-strategy model will be characterized by an unstable rest point at a frequency z* of prosocial rewarders, 
and corroborates the numerical results presented in section 3.a of SP15. By contrast, for structured populations the 
invasion and equilibrium conditions between discrete- and mixed-strategy game models45, 46, 63 and between weak 
and strong selection models61 can differ. Hence, our results for spatially structured populations need not be identical 
to those reported in SP15. Importantly, our mathematical framework assumes that the population is essentially 
monomorphic. An initial state of, say, z = 1/3 in our Fig. 2 means that all individuals in the population play the same 
mixed strategy z = 1/3. Evolution then proceeds by means of a trait substitution sequence (TSS), whereby a single 
mutant (which we also assume plays a slightly different mixed strategy z + δ, where δ is small) will either become 
extinct or invade and replace the resident population65. If the latter happens, the resident strategy is updated to z + δ 
and the process starts again, until a convergence stable state is reached. The TSS assumption, common in adaptive 
dynamics and related mathematical methods studying the evolution of continuous traits in spatially structured pop-
ulations28, 66 is then in stark contrast to the numerical simulations used in SP15 and related studies41, where evolution 
starts from a polymorphic population where a large number of mutants appear en masse either randomly or clus-
tered together according to a given “prepared initial state”.

Finally, there is a slight difference in the way SP15 and our study (explicitly in our simulations and implicitly 
in our analytical model) implemented the evolutionary game on a graph. SP15 assume, in the tradition of other 
computational studies (e.g., refs 41, 67, 68), that a focal player’s total payoff is given by the sum of payoffs obtained 
in k + 1 different games, one “centered” on the focal player itself and the other k centered on its neighbors. As a 
result, a focal player interacts not only with first-order but also with second-order neighbors. An analytical treat-
ment of such case would need an extension of our framework to incorporate an additional scaled relatedness coef-
ficient to account for interactions with second-order neighbors50. Contrastingly, we assumed that a focal player 
obtains its payoff from a single multiplayer game with its k immediate neighbors64, 69. This more parsimonious 
assumption allows us to analyze multiplayer interactions on graphs in a straightforward way (i.e., by allowing 
us to directly use the framework developed in ref. 36 requiring a single scaled relatedness coefficient) without 
importantly modifying the underlying evolutionary dynamics69.

Our motivation for a set of assumptions different to those of SP15 was hence for both analytical tractability 
and wider applicability. An analytical solution of the model with discrete strategies (as in SP15) would require 
tracking higher-order genetic associations and effects of local competition, which can be a complicated task even 
in relatively simple models of spatial structure under weak selection61, 70–73. By contrast, assuming continuous 
strategies (and a single game per player) allowed us to identify convergence stable levels of prosocial rewarding 
in a wide array of spatially structured populations, each characterized by a particular value of scaled related-
ness. This way, we made analytical progress going beyond the numerical results on a particular type of popu-
lation structure (a square lattice with overlapping groups of size n = 5) studied in SP15. Furthermore, treating 
scaled relatedness as an exogenous parameter independent of specific demographic assumptions, allows making 
more general predictions on the evolution of a trait, as well as relating results from different types of models74. 
Understanding the effect of more specific demographic parameters (such as the dispersal rate, the update rule, or 
the degree of the network) can be achieved by determining how scaled relatedness can be expressed in terms of 
those parameters, as we have shown above.

Our analytical results are valid only to the first order of δ (the difference between the trait of mutants and the 
trait of residents). As a result, we cannot evaluate whether or not the singular strategies we identify as conver-
gence stable are also “evolutionarily stable” or “locally uninvadable”, i.e., whether a population monomorphic for 
a singular value will resist invasion by mutants with traits close to the singular value37, 52, 54, 75. This also means that 
our model does not allow one to check whether or not evolutionary branching (whereby a convergence stable but 
locally invadable population diversifies into differentiated coexisting morphs76) might occur. We hasten to note 
that such drawback is not particular to our method28. Evolutionary stability in spatially structured populations is 
significantly more challenging to characterize than convergence stability37, 77–80 and is thus beyond the scope of 
the present paper.

A related issue has to do with our assumption that individuals play mixed strategies and hence that payoffs are 
linear in the focal’s own strategy. For this kind of models, “a peculiar degeneracy raises its ugly head”81, namely 
that the second-order condition to evaluate evolutionary stability in a well-mixed population is null. In turn, this 
implies that phenotypic variants at a singular point that is convergence stable are strictly neutral. Such degeneracy 
is however restricted to well-mixed populations, and does not necessarily apply to spatially structured popula-
tions. Indeed, the condition for uninvadibility under weak selection in subdivided populations has been shown 
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to depend also on mixed partial derivatives of the payoff function37, which in general are not zero. All in all, our 
view is that assuming individuals play mixed strategies of a matrix game is not that problematic: For well-mixed 
populations (where the degeneracy raises its head), the convergence stable mixed strategies can be reinterpreted 
as evolutionarily stable points of a replicator dynamics in discrete strategies; for spatially structured populations, 
there is simply no degeneracy. Future work should explore the conditions under which convergence stable mixed 
strategies of the model presented here and other matrix games are locally uninvadable.

Both our model and that of SP15 have not considered the presence of individuals who are able to benefit 
from reward funds without contributing to them. In other words, second-order defection is avoided by design. 
Allowing for second-order defection makes cooperation through pool rewarding vulnerable, even in the absence 
of antisocial rewarding15. Therefore, even though the conclusions of SP15 contradict the findings of dos Santos19, 
namely that antisocial rewarding deters cooperation except in certain conditions (e.g., better rewarding abilities 
for prosocials), SP15 did not investigate standard pool-rewarding15, 18, 19. Hence, their claim that spatial structure 
prevents antisocial rewarding from deterring cooperation, while not always true as we have shown here, does 
not apply to the more general case of pool-reward funds where second-order defection is allowed. Exploring the 
effects of spatial structure in these more realistic cases remains an interesting line of research.

To conclude, we find that antisocial rewarding deters the invasion of cooperation unless scaled relatedness is 
sufficiently high and rewards are relatively low, or ideally absent. We argue that additional countermeasures, such 
as exclusion and better rewarding abilities for prosocials19, are still required to (i) prevent antisocial rewarding 
from deterring cooperation between unrelated social partners, and (ii) allow prosocial rewarding to invade either 
when relatedness is low or when rewards are too large.

Methods
Gain function. To derive the gain function G z( ) (Eq. (11)), we first calculate the direct and indirect gains 
from switching (Eqs (5) and (6)) associated to the payoffs of the game. We find that the gains from switching 
depend on the group size n in the following way.

 1. For n = 2: (Δ0, Δ1) = (r1/2 − r2, r1/2 + r2 − 2) and (Θ0, Θ1) = (r1/2 − r2 + 1, r1/2 + r2 − 1).
 2. For n = 3: (Δ0, Δ1, Δ2) = (r1/3 − r2, r1/3 − 1, r1/3 + r2 − 2) and (Θ0, Θ1, Θ2) = (2r1/3, 2r1/3, 2r1/3).
 3. For n = 4: (Δ0, Δ1, Δ2, Δ3) = (r1/4 − r2, r1/4 − 1, r1/4 − 1, r1/4 + r2 − 2) and (Θ0, Θ1, Θ2, Θ3) = (3r1/4, 

3r1/4 + r2 − 1, 3r1/4 − r2 + 1, 3r1/4).
 4. For n ≥ 5: (Δ0, Δ1, …, Δn−2, Δn−1) = (r1/n − r2, r1/n − 1, …, r1/n − 1, r1/n + r2 − 2) and (Θ0, Θ1, Θ2, …, 

Θn−3, Θn−2, Θn−1) = ((n − 1)r1/n, (n − 1)r1/n + r2 − 1, (n − 1)r1/n, …, (n − 1)r1/n, (n − 1)r1/n − r2 + 1, 
(n − 1)r1/n).

Replacing the direct gains from switching Δk into the expression for the direct effect −CC z( ) (Eq. (4a)) and the 
indirect gains from switching Θk into the expression for the indirect effect BB z( ) (Eq. (4b)), and simplifying, we 
obtain the gain function G z( ) given in Eq. (11), which is valid for all n ≥ 2.

Evolutionary dynamics for κ = 0. For κ = 0, the gain function G z( ) (Eq. (11)) reduces to −CC z( ) (Eq. (4a)). 
This function is increasing and its end-points are given by − = −CC r n r(0) /1 2 and − = + −r n r(1) / 21 2 . Since 
1 < r1 < n and r2 > 1, − <CC(0) 0 always holds and z = 0 is always stable. If r1/n + r2 ≤ 2, −CC z( ) is nonpositive for 
all z and z = 0 is the only stable equilibrium. If r1/n + r2 > 2, − >CC(1) 0 and z = 1 is also stable. In this case, and 
since −CC z( ) is increasing, −CC z( ) has a single zero z* in (0, 1) corresponding to an unstable equilibrium. Such zero 
is given by the unique solution to
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Since p(z) is increasing in z, p(1/2) = 0, and α > 0 always holds, it follows that z* > 1/2. Additionally, since α is 
decreasing in both r1 and r2, z* is increasing in both r1 and r2.

Evolutionary dynamics for κ ≠ 0. Rearranging terms, the gain function G z( ) given by Eq. (11) can be 
alternatively written as

κ= + − − + −G Pz r
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is a polynomial in Bernstein form53 of degree n − 1 with coefficients given by

 1. (ζ0, ζ1) = (−(1 + κ), 1 + κ) if n = 2.
 2. (ζ0, ζ1, ζ2) = (−1, 0, 1) if n = 3.
 3. (ζ0, ζ1, ζ2, ζ3) = (−1, κ, −κ, 1) if n = 4.
 4. (ζ0, ζ1, ζ2, …, ζn−3, ζn−2, ζn−1) = (−1, κ, 0, …, 0, −κ, 1) if n ≥ 5.
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The number of sign changes (and hence of singular points) of G z( ) is bounded from above by the number of 
sign changes of P z( ). Moreover, and by the variation-diminishing property of polynomials in Bernstein form53, 
the number of sign changes of P z( ) is equal to the number of sign changes of the sequence of coefficients (ζ0, …, 
ζn−1) minus an even integer. It then follows that the number of singular points is at most one if n ≤ 3 or if scaled 
relatedness is nonpositive, κ ≤ 0. In this case, the unique singular point z* is convergence unstable. However, if 
n ≥ 4 and κ > 0, there could be up to three singular points zL, zM, and zR satisfying 0 < zL < zM < zR < 1 such that zL 
and zR are convergence unstable and zM is convergence stable.

Computer simulations. We performed individual-based simulations for a population composed of NT indi-
viduals, using NumPy version 1.11.1. Starting with a population monomorphic for a probability z = z0 of playing 
rewarding cooperation, we track the evolution of the phenotypic distribution as mutations of small effect contin-
uously arise. Each individual j = 1, …, NT is characterized by its probability zj. The average payoff of individual j 
is given by π φ= ∑ + −=

− z c z d{ (1 ) }j k
n

k j k j k0
1  where the payoff sequences ck and dk are respectively given by Eqs (1) 

and (2), and φk is the probability that exactly k out of n − 1 of j’s neighbors choose action RC. Technically, φk is the 
probability mass function of a Poisson binomial distribution with parameters …

−
z z z, , ,j j jn1 2 1

, where 


j  repre-
sents the -th neighbor of individual j, and 



z j  its phenotype. For simplicity, we approximate φk by the probability 
mass function of a binomial random variable with parameters n and = ∑ −=

−




p z n/( 1)n
j1

1 ; such approximation 
to the true probability mass function is very accurate when the probabilities 



z j  are close to each other. We update 
the population via a death-birth Moran process, i.e., we (i) randomly select one individual to die and one of its 
neighbors to give birth, and (ii) fill the vacated breeding spot with probability proportional to the average payoff. 
More specifically, assuming that j is chosen to die, its -th neighbor is given a probability π



wexp( )j  of replacing j, 
where w is the intensity of selection and π



j  is the payoff of the -th neighbor of j. The vacated breeding spot is 
filled with the same phenotypic value as the parent with probability 1 − μ and with a mutated phenotypic value 
with probability μ. If mutation occurs, the mutated phenotypic value is given by the parent value plus a small 
perturbation sampled from a normal distribution with mean zero and standard deviation ν. The resulting pheno-
types are truncated so that they are numbers between 0 and 1. The previous procedure is repeated for a sufficiently 
large number of time steps.

We simulated two models of spatial population structure: a square lattice with periodic boundary conditions 
(i.e., a type of transitive graph with k = 4) of NT = 400 nodes, and a well-mixed population of NT = 400 individuals 
where a given focal individual is assigned four randomly chosen other individuals as neighbors each time step. 
Other parameter values used were: w = 10, μ = 0.01, ν = 0.005.
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