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A seismic refraction profile across Langeland (Denmark) obtained from land stations recording airgun shots 

allowed to resolve upper crustal velocities to a depth of 8 km. The profile traverses the proposed Caledonian 

Deformation Front and the Ringkoebing-Fyn High. The Ringkoebing-Fyn High is about 10 km wide and the top 

basement lies less than 2 km below the surface. Basement velocities as high as 6.4 km/s, at depths between 6 and 8 km, 

can be best explained by impositions changes between adjoi~g basement units to the north and south. South of the 

Ringkoebing-Fyn High another high velocity basement unit is encountered and most probably represents a basement 

affected by the Caledonian orogeny. Along this profile on Langeland the positions of the Caledonian Deformation 

Front and the northern limit of the Zechstein deposits coincide. 

In~tion 

In June/July 1984 seismic measurements were 
carried out in southwestern Sweden, Denmark and 
northernmost F.R. Germany to study the Earth’s 
crust in the transition zone between the Baltic 
Shield and Variscan Europe. This survey was part 
of the European Geotraverse (EGT) Project 
(Mueller and Banda, 1983; Galson and Mueller, 
1986) and was named EUGENO-S (from 
European GEotraverse Northern Segment- 
Southern Part). Within EUGENO-S, explosions 
and airgun shots were recorded on six profiles 
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crossing the major tectonic lineaments. First re- 
sults and the details of the field operation are 
given by Flueh and Berthelsen (1986), Bialas 
(1987), Gregersen et al. (1987), Moeller (1987), 
EUGENO-S Working Group (1988), Green et al. 
(1988), and Kioerboe (1988). Profile 1 of the 
EUGENO-S survey starts in the southwest in 
Schleswig-Holstein and runs in a northeastern di- 
rection across Sealand onto the Baltic Shield in 
southwestern Sweden (Fig. 1). In this paper we 
describe the results of a detailed investigation of 
the part of this profile that traverses the 
Ringkoebing-Fyn High (RFH) on the island of 
Langeland. 

As shown in Fig. 2, seventeen recording instru- 
ments were deployed on Langeland and recorded 
airgun shots fired along an approximately 100 km 
long line parallel to the coast of the island. Due to 
the limited energy of the airgun shots, the high 
noise level, and the strong absorption within the 
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Fig. 1. Structural map of Denmark and surrounding regions (modified from EUGENO-S Working Group, 1988). STZ = Sorgenfrei 

Tomquist Zone; ND3 = Norwegian Danish Basin; RFH = Ringkoebing-Fyn High; CDF = Caledonian Deformation Front. The 

Ringkoebing-Fyn High comprises the Hohnsiand (HI?), the Grinsted (GS), the Glamsbjerg (GLB), and the Moen Blocks (MB). 

Exploratory wells (GR = Grinsted; Ri = Ringe; GI = Glamsbjerg; Ill, 2 = Roedby 1 and 2) mentioned in the text. The receiver 

locations along profile 1 are marked by a stippled line. 

sediments, signals could only be detected to maxi- 
mum distances of 35 km, thus providing only 
info~ation on sedimentary layers, basement and 
upper crust. Nevertheless, the high multiplicity of 

the observed phases (up to 5 fold) allows for a 
detailed analysis of lateral variations within the 
basement. 

Georogieal setting 

The Ringkoebing-Fyn High in southern Den- 
mark consists of a number of elevated basement 
blocks, reaching 1 to 2 km below the surface (Fig. 
1). The snubbing-Fyn High is bounded by two 

deep sedimentary basins in the south and north. 
To the north, within the Norwegian Danish Basin 
(NDB) Mesozoic sequences (mainly Triassic sedi- 
ments), reach a maximum thickness of more than 
8 km (Bertelsen, 1980; Michelsen and Andersen, 
1981). They are underlain by tilted Cambro- 
Silurian sediments, which have been encountered 
in deep wells in Jutland (Libo~ussen et al., 1987). 
The Norwegian-Danish Basin is bounded to the 
north and east by the Sorgenfrei Tomquist Zone 
(EUGENO-S Working Group, 1988). 

South of the Ringkoebing-Fyn High in the 
North German Lowlands the Mesozoic sequences 
in Sc~es~g-Holstein vary in thickness between 5 
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Fig. 2. Detailed location map of the area under investigation. The airgun shots (AGS) are numbered according to the time of day 
they were fired. A-A’ denotes the reflection profile 80-112/l. 

and 12 km (Ziegler, 1982; Best et al., 1983). They Polish CaIedonides, which was inferred from core 

are underlain by a several kilometers thick se- studies of exploratory wells in the North Sea and 

quence of Devonian and Carboniferous sediments south of the Ringkoebing-Fyn High on land (Frost 

(Ziegler, 1984), that rest upon a Caledonian et al, 1981; Ziegler, 1982; Liboriussen et al., 1987), 

metamorphosed and deformed basement. The is indicated as the CaIedonian Deformation Front 

northern Iimit of the so-called North German- (CDF) in Fig. 1. It was one of the purposes of this 
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investigation to see if the Caledonian basement 

has a distinct seismic signature which could help 

to delineate its northernmost position in this area. 

The Ringkoebing-Fyn High, first described by 

Sorgenfrei and Buch (1964) consists of a series of 

elevated basement blocks, extending from the 

North Sea across Denmark into the Baltic Sea. 

Individual blocks are separated by N-S trending 

grabens or troughs, such as the Brande Trough in 

Jutland between the Grinsted and Glamsbjerg 

Blocks. Precambrian basement has been drilled at 

1600 m in the Grinsted and at 840 m in the 

Glamsbjerg wells (Larsen, 1971; for location see 

Fig. 1 and 2). The blocks were uplifted relative to 

the adjoining basins in Late Carboniferous-Early 

Permian times. Throughout the literature different 

sets of contours for the Ringkoebing-Fyn High 

are seen. Some of them are based on the limits of 

the Zechstein transgression (cf. Bertelsen, 1980) 

while others are deduced from the associated grav- 

ity high (20-40 mGa1 Bouguer anomaly; 

EUGENO-S Working Group, 1988). Following 

the second approach, we have adopted the con- 

tours as shown by Michelsen (1978) see Fig. 1. 

For a full treatment of the geology and the 

tectonic development of this area the reader is 

referred to EUGENO-S Working Group (1988). 

Field work 

The seismic measurements were carried out on 

June 18/19th, 1984. The position of the recording 

stations and the locations of the airgun shots are 

shown in Fig. 2. Altogether 17 MARS 66 instru- 

ments (Berckhemer, 1970) were operated on Lan- 

geland, while other instruments, not considered 

here, were at the same time deployed to the east 

on Sealand. The airgun shots were fired from 

aboard the R.V. “Poseidon”, which sailed for 12 

hours from north to south starting in Kattegat, 

through Store Belt into the Bay of Kiel. 

The ship’s speed was 5 knots; shots were fired 

every 2 min, thus achieving a shot spacing of 300 

m. In total, 4 airguns of 8 litres each were fired 

simultaneously at a depth of 10 m. The shotbreaks 

were controlled by a radio time signal, identical to 

the time signal used by the land stations. For 

security reasons the airguns could not be con- 

tinously operated in the southern part, causing a 

gap of 25 km in the shooting line between SP 2244 

and SP 114. Besides the airgun shots, the stations 

also recorded two explosions. One explosion was 

fired in the Bay of Kiel (SP 1) and was observed 

to distances of 40 to 80 km, while the other shot 

SP3) was fired on Sealand (for locations see Fig. 

1) and observed from 100 to 150 km. 

As can be seen from Fig. 2, the distances be- 

tween the airgun shots and the receivers range 

from 7 to 80 km, thus information about the 

uppermost velocity field to a depth of 2-3 km is 

not available from these data. Also, clear signals 

could only be recorded successfully to a maximum 

distance of 35 km. Therefore only information 

concerning a depth range of 2-10 km can be 

gained from the refraction data. However, ad- 

ditional constraints on the shallow structure are 

available from several commercial reflection pro- 

files, such as the reflection line 80-I 12/l. the 

location of which is shown in Fig. 2. This profile 

was recorded by Prakla-Seismos AC in 1980 for 

Dansk Boreselskab A/S (Msersk Olie and Gas 

A/S) and has now been released to the Danish 

public domain. 

The reflection line 80-112/l is about 80 km 

long and runs approximately N-S close to the 

coast of Langeland (Fig. 2). The reflection section 

is shown together with an interpretive cross-sec- 

tion in Fig. 3. It represents a 48-fold stack, the 

cdp-spacing is 12.5 m. Conventional processing, 

such as debubbling, deconvolution, filtering and 

velocity analysis was applied to the data. The 

recording length is 4 s, although only within the 

first 2 s are clear reflections visible. The interpre- 

tation, as shown in the bottom of Fig. 3, is based 

on correlations to the nearest boreholes (Glamsb- 

jerg, Ringe and Roedby shown in Figs. 1 and 2 

and summarized in the Well Data Summary Sheets 

(Vol. 2, 1981) of the Geological Survey of Den- 

mark), the interval velocities and the general 

knowledge of the sedimentary layers (Ziegler, 1982, 

1984). Three to four major sequences can be re- 

cognized from the reflection section. Reflection A 

marks the top Danian near the base of the Ter- 

tiary at a depth between 0.1 s in the north and 0.4 

s in the south. Reflection B between 0.4 and 0.7 s 

(0.4 to 0.8 km) corresponds to the base of the 
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Fig. 3. top: reflection line 80-112/1, for location see Fig. 2; bottom: interpretative section of the data above; for discussion see text. 
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Fig. 4. Record section from Station 4-north, vertical component, a. Trace-normalized section, bandpass filtered 4-16 Hz. b. 

AGC-scaled (2 s) section, bandpass filtered 4-16 Hz. c. Slant-stack with with 50 slants between 3.5 and 10 k m / s  over 5 traces and a 

semblence cutoff below 0.25. d. ECG-section using 3 traces and a window of 120 ms. The reduction velocity is 6 km/s .  

~ ~.~,).~ ~.~ ~ 

' 1 / 1 1 '  i r } }  

: ' i  i i , l ' L  

11 

¸ 

21  31 41  

d 

D I S T A N C E  (km) 

Fig. 5. Record section from Station 11-north. a -d  as in Fig. 4. 



SElSMIC INVESTIGATIONS OF RINGKOEBING-FVN HIGH 35 

chalks (Lower Cretaceous). The top Triassic is 

also seen as a prominent reflection (C) and shows 
a number of faults in the middle part of the line. 

The Triassic is further subdivided by reflection D 

which delineates the Top Oerslev formation (Up- 
per Lower Triassic). In the southern part the top 
Zechstein reflection (E) is evident above the base- 
ment (F). It is highly disturbed between km 50 
and 65, where a small salt diapir and further north 
two distinct faults are seen. The rise of the diapir 
has affected the layers above, and the basement 
reflection below the diapir is also less clear. There 
may be faults in the basement here, connected to 
the development of the salt structure. The Zech- 
stein pinches out against the basement at km 50. 
There is no clear evidence for a Caledonian de- 
formed basement from this data set. However, the 
normal faults between km 50 and km 60 may be 
indicative for the position of the Caledonian De- 
formation Front. 

Processing of the refraction data 

All land stations were equipped with a three- 
component seismometer. The recordings were dig- 
itized with a sampling interval of 2 ms. A frequency 
analysis led to subsequent bandpass filtering of 
4-16 Hz to improve the signal-to-noise ratio. For 
display, all record sections were reduced at 6 
km/s, and examples are shown in Figs. 4a and 5a. 
It is commonly observed on the record sections 
that the first arrivals drop below the average noise 
level at distances between 25 and 37 km. The 
apparent velocities of the first arrivals vary be- 
tween 3 and 7 km/s, indicating strong lateral 
inhomogeneities. High amplitude surface waves 
dominate in the later parts of the record sections 
at shorter distances. Therefore, on trace-normal- 
ized record sections the first arrivals appear rather 
weak. However, they are much stronger if AGC- 
scaling is applied (Figs. 4b and 5b). For further 
enhancement of the signals and to help with the 
correlation we have applied velocity filters. Since 
with a shot spacing of 300 m or less there is no 
spatial aliasing below 10 Hz, we can apply whole 
wavefield slant stacks and local slant stacks in the 
delay time-slowness (r--p) domain, using the al- 
gorithms described by Jokat (1986), and shown by 

Jokat and Flueh (1987). Examples of the slant 
stacks are shown in Figs. 4c and 5c. In the Slant 

Stacks some high amplitude later arrivals occur. 
They are caused by low velocity/high amplitude 
surface waves, which do not meet the spatial aliaz- 
ing limit. Additional information is available from 
the “Energy Controlled Gain” sections (ECG, 
Bittner et al., 1987), as shown in Figs. 4d and 5d. 

The horizontal components and consequently 
the S-wave data are not considered here, since 
they were contaminated with noise to such a high 
level that they did not yield any useful informa- 
tion. In addition, S waves may not have been 
efficiently generated at the sea bottom or deeper 
interfaces. 

Interpretation 

All record sections were processed as described 
above, and are collected in Bialas (1987). The 
arrival times we have picked are summarized in 
the traveltime diagram in Fig. 6. The apparent 
velocities range from 3.9 to 7.5 km/s, with inter- 
cept times between 0.2 and 2.6 s. Up to three 
traveltime branches can be identified at individual 
stations. The first branch shows velocities ranging 
from 3.9 to 4.9 km/s, and correspond to waves 
being refracted through the Triassic sequences, 
and in the southern part also through the post- 
Caledonian-Palaeozoic formations. The next 
branch has velocities between 4.9 and 6.0 km/s 
and are refracted waves from the upper basement. 
The third traveltime branch is only observed at a 
few stations at larger offsets, and their apparent 
velocities are rather scattered, varying between 6.0 
and 7.5 km/s. This phase corresponds to waves 
being refracted through a high velocity layer at a 
depth of 6-8 km. 

The interpretation was done by forward model- 
ing of the observed traveltimes using the raytrac- 
ing algorithm described by Luetgert (1988). The 
lateral offset between the stations and the shoot- 
ing line is between 7 and 10 km, thus an offset 
split-spread is recorded for every station. During 
modelling, the stations were projected onto the 
shooting line, and a flat segment about 5 km wide 
was introduced into the model around the station 
to account for the lateral offset. This proved to be 
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Fig. 6. Traveltime diagram of all arrivals picked. The locations of the stations that sucessfully recorded airgun shots are projected 

onto the line and marked by arrows on the bottom. The numbers on the traveltime curves correspond to the station numbers. 

a suitable approach, since only minor structural 
variations are expected along the strike of the 
Ringkoebing-Fyn High, compared to the lateral 
variations across the structure. A starting model 
was generated using both the reflection and re- 
fraction data. Theoretical amplitudes were also 
calculated to prove that the arrivals under consid- 
eration 
seen in 

tions only one phase is interpreted and thus no 
amplitude ratios are obtained for further refine- 
ment of the model, they are not included here. 

Reflection line 80-112/l provided structural 
and velocity control for the sedimentary section, 
and the layer intercept times of the refraction data 
were depth converted to constrain the sub-sedi- 

have significant amplitudes and can be mentary structure. Iterative changes of the 
the noisy data. Since in most record sec- boundaries and velocities led to the final model 
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Fig. 7. Velocity contours of the final model, vertical exaggeration 2 : 1. The heavy line delineates the basement. 



SEISMIC INVESTIGATIONS OF RINGKOEBING-FYN HIGH 37 

\ d 

6 

8 
70 80 90 100 

N DISTANCE [km1 S 
Fig. 8. Record section (top) with calculated traveltimes overlain (middle) and raypaths through the model (bottom) for Station 
11-south. The record sections are reduced with 6 km/s. The distance labels on the record sections refer to the shot-receiver distance, 

whereas those on the model refer to Figs, 3,6, and 7. 

that fits all observed traveltimes to within 0.2 s. 
The final two-dimensional velocity model is shown 
in Fig. 7. Two examples of the raypaths through 
the model and a comparison of the calculated 
traveltimes with the observed seismograms are 
shown in Figs. 8 and 9. 

As shown in the model in Fig. 7, there is 
considerable lateral velocity variation along the 
profile. This is clearly indicated by the traveltime 
diagram in Fig. 6 and was also evident from the 
record-sections obtained from the explosions at 
SPl and SP3 (Gregersen et al., 1987). From SPl 
the first arrivals show a pronounced distortion 
when crossing the northern part of Langeland. 
Here the arrivals are about 0.6 s early compared to 
the southern part of the line. In Fig. 10 the record 
section is shown together with the raypaths and 
calculated traveltimes. The relatively small re- 
maining misfit may be due to the fact that SPl is 

offset from the line. A similar picture is obtained 
from the record section from SP3. The PMP shows 
a rather complex pattern on northern Langeland. 
In the north, there are at least two possible ampli- 
tudes to pick as the P,P (at 2.0 and 2.5 reduced 
time at 300 km, see Fig. 10). The model indicates 
that the later phase be identified as the PMP, since 
the upper crustal velocity variations will comect 
them to the largest amplitudes further south. This 
is shown in Fig. 10, where the record section and 
the raypaths and calculated traveltimes of a hypo- 
thetical PIMP phase from a flat lying Moho are 
shown. 

Discussion 

The model for the upper crust along a line 
across the Ringkoebing-Fyn High on Langeland 
is constrained by the observations of airgun shots 



38 J. BlALAS ET AL 

6 
--6.L--__ I- -- -C ‘6.4 . _ 

6 

I i I , 

20 30 

N DISTANCE [km] S 
Fig. 9. Record section, traveltimes and raypaths for Station 4-south. Other details as in Figure 8. 

and two explosives, matching rather well the ob- 
served arrival times. It also fits the observed grav- 
ity field, which shows a pronounced high along 
the strike of the Ringkoebing-Fyn High and a 
minor high in the southern part of Langeland 
(Saxov, 1976). The main features of the velocity 
field in the basement are the two areas of higher 
velocities. The northern one, centered near 30 km 
is about 10 km wide with velocities as high as 6.4 
km/s at depths between 6 and 8 km. The top of 
the basement is at a depth of less than 2 km. 
However, it is much wider compared to the base- 
ment seen on the reflection line (Fig. 3). This 
indicates the general decrease of the width of the 
basement high from west to east (see Fig. 1). The 
model suggests that the high velocities are asym- 
metrically distributed within this area, but one 
should keep in mind that the lateral resolution is 
less than 3 km (the average station spacing). 

The second zone of relatively high basement 
velocities falls between km 50 and km 65 of the 

model, where velocities are up to 0.6 km/s higher 
compared to the adjoining area in the north, espe- 
cially at shallow depth. In this area the reflection 
line 80-112/l shows a number of faults reaching 
into the basement and a small salt diapir on top of 
a fault. The Zechstein deposits terminate at the 
northern rim of the high velocity block. It also 
coincides with the assumed position of the Cale- 
donian Deformation Front as tentatively shown in 
Fig. 1. It is thus very tempting to relate this 
high-velocity zone to the Caledonian orogeny, dur- 
ing which high grade rnet~o~~c rocks or basic 
intrusives have been brought close to the surface. 

Earlier interpretations of the crustal structure 
across Langeland (Moeller, 1987; EUGENO-S 
Working Group, 1988) only utilized the record 
sections from the two explosions. In the interpre- 
tation shown by Moeller (1987) the basement 
velocities of the Ringkoebing-Fyn High are higher 
compared to the adjoining basement in the south 
but remain constant further north. A major dis- 
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Fig. 10. Left: Record section, traveltimes and raypaths for the P,P-phase from SP3 (northern Sealand); right: Record section, 
traveltimes and raypaths for the Pg-phase from SPl (Bay of Kiel). Other details as in Fig. 8. 

continuity dipping from a depth of 5 km in the 
south to 10 km in the north of Langeland sep- 

arates the upper crust from the middle crust. This 
discontinuity could not be constrained from the 
~rgunshot record sections. In addition a small 
high velocity “plume” is encountered at middle to 
lower crustal depth. The interpretation of the 
EUGENO-S Working Group (1988) shows a broad 
zone of high basement velocities at the northern 

end of Langeland. The Moho depth is at 33 km in 
both interpretations. However, in the interpreta- 

tion by Moeller (1987) the Moho deepens to the 
southwest, whereas the EUGENO-S Working 
Group (1988) suggests that the Moho is more 
shallow both north and south of the Ringkoebing- 
Fyn High. 

None of the two interpretations took the airgun 
shots into account. Consequently, they did not 
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resolve the details of the upper crustal structure as 

shown here. The main structure of the model, the 

two high-velocity blocks sandwiched in between 

blocks of lower velocities and the general increase 

of basement depth to the south are well con- 

strained by the multifold airgun-shot observations. 

could actually be even more narrow and resemble 

a fault zone separating two distinct basement units. 

Unfortunately we are unable to show how this 

zone extends at greater depth and how it is related 

to the crustal thinning that occurs south of the 

Ringkoebing-Fyn High. Hopefully future seismic 

work can resolve this question. 

Conclusions 
Acknowledgements 

The seismic investigations across the Ringkoeb- 

ing-Fyn High on Langeland provided a detailed 

velocity model for the upper crust between 2 and 

8 km depth. The Ringkoebing-Fyn High in the 

northern part of Langeland is about 10 km wide 

and reaches to less than 2 km below the surface. 

In its center the velocities are about 0.5 km/s 

higher compared to the adjoining basement veloci- 

ties north and south of the high. This velocity 

variation can only be accounted for by a change in 

chemical-mineralogical composition. A lo-20 km 

wide larvikitic intrusion of Permian age has been 

suggested to subcrop in the basement surface of 

the Glamsbjerg Block on Fyn (Holmsen, 1958). 

The interpretation of profile 5 of the EUGENO-S 

lines also shows rather high velocities of 6.3 to 6.4 

km/s at depths between 6 and 10 km in that 

region (EUGENO-S Working Group, 1988; 

Kioerboe, 1988). Thus, a similar or a basic intru- 

sion may be responsible for observed velocities of 

the Ringkoebing-Fyn High on Langeland. 

A second zone of increased basement velocities 

is found in the southern part of Langeland. This 

area corresponds to the northern limit of the 

Zechstein deposits and the basement underneath 

is seen to be block faulted. However, the top 

Zechstein may be an erosional surface. It is very 

tempting to relate this zone and the normal faults 

to later movements around the Caledonian Defor- 

mation Front. If one follows this idea, the position 

of the Caledonian Deformation Front (see Fig. 1) 

as previously outlined by EUGENO-S Working 

Group (1988) is in its correct position. The normal 

faults would indicate Late Carboniferous and 

younger reactivation of the Caledonian Deforma- 

tion Front. 

The transition from the low- to high-velocity 

basement is very narrow (> 5 km). Keeping in the 

lateral resolution of the seismic data in mind, it 
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