Naturally acidified habitat selects for ocean acidification–tolerant mussels.

Thomsen, Jörn, Stapp, Laura S., Haynert, Kristin, Schade, Hanna, Danelli, Maria, Lannig, Gisela, Wegner, K. Mathias and Melzner, Frank (2017) Naturally acidified habitat selects for ocean acidification–tolerant mussels. Open Access Science Advances, 3 (4). e1602411. DOI 10.1126/sciadv.1602411.

[thumbnail of Thomsen etal 2017 SciAdv.pdf]
Preview
Text
Thomsen etal 2017 SciAdv.pdf - Published Version
Available under License Creative Commons: Attribution-Noncommercial 4.0.

Download (926kB) | Preview

Supplementary data:

Abstract

Ocean acidification severely affects bivalves, especially their larval stages. Consequently, the fate of this ecologically and economically important group depends on the capacity and rate of evolutionary adaptation to altered ocean carbonate chemistry. We document successful settlement of wild mussel larvae (Mytilus edulis) in a periodically CO2-enriched habitat. The larval fitness of the population originating from the CO2-enriched habitat was compared to the response of a population from a nonenriched habitat in a common garden experiment. The high CO2–adapted population showed higher fitness under elevated Pco2 (partial pressure of CO2) than the non-adapted cohort, demonstrating, for the first time, an evolutionary response of a natural mussel population to ocean acidification. To assess the rate of adaptation, we performed a selection experiment over three generations. CO2 tolerance differed substantially between the families within the F1 generation, and survival was drastically decreased in the highest, yet realistic, Pco2 treatment. Selection of CO2-tolerant F1 animals resulted in higher calcification performance of F2 larvae during early shell formation but did not improve overall survival. Our results thus reveal significant short-term selective responses of traits directly affected by ocean acidification and long-term adaptation potential in a key bivalve species. Because immediate response to selection did not directly translate into increased fitness, multigenerational studies need to take into consideration the multivariate nature of selection acting in natural habitats. Combinations of short-term selection with long-term adaptation in populations from CO2-enriched versus nonenriched natural habitats represent promising approaches for estimating adaptive potential of organisms facing global change.

Document Type: Article
Keywords: Mytilus edulis; larvae; calcification; multi-generation; population comparison; adaptation
Research affiliation: OceanRep > GEOMAR > FB3 Marine Ecology > FB3-EV Marine Evolutionary Ecology
OceanRep > GEOMAR > FB1 Ocean Circulation and Climate Dynamics > FB1-P-OZ Paleo-Oceanography
OceanRep > GEOMAR > FB3 Marine Ecology > FB3-EOE-B Experimental Ecology - Benthic Ecology
HGF-AWI
Refereed: Yes
Open Access Journal?: Yes
Publisher: AAAS (American Association for the Advancement of Science)
Projects: KIMOCC, BIOACID, PACES
Expeditions/Models/Experiments:
Date Deposited: 05 Jan 2018 09:10
Last Modified: 06 Feb 2020 09:03
URI: https://oceanrep.geomar.de/id/eprint/41187

Actions (login required)

View Item View Item