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ABSTRACT

Imaging mass spectrometry (IMS) has recently established it-

self in the field of “spatial metabolomics.” Merging the sensi-

tivity and fast screening of high-throughput mass spectrome-

try with spatial and temporal chemical information, IMS visu-

alizes the production, location, and distribution of metabo-

lites in intact biological models. Since metabolite profiling

and morphological features are combined in single images,

IMS offers an unmatched chemical detail on complex biologi-

cal and microbiological systems. Thus, IMS-type “spatial me-

tabolomics” emerges as a powerful and complementary ap-

proach to genomics, transcriptomics, and classical metabo-

lomics studies. In this review, we summarize the current

state-of-the-art IMS methods with a strong focus on desorp-

tion electrospray ionization (DESI)-IMS. DESI‑IMS utilizes the

original principle of electrospray ionization, but in this case

solvent droplets are rastered and desorbed directly on the

sample surface. The rapid and minimally destructive DESI‑IMS

chemical screening is achieved at ambient conditions and en-

ables the accurate view of molecules in tissues at the µm-scale

resolution. DESI‑IMS analysis does not require complex sam-

ple preparation and allows repeated measurements on sam-

ples from different biological sources, including microorgan-

isms, plants, and animals. Thanks to its easy workflow and

versatility, DESI‑IMS has successfully been applied to many

different research fields, such as clinical analysis, cancer re-

search, environmental sciences, microbiology, chemical ecol-

ogy, and drug discovery. Herein we discuss the present appli-

cations of DESI‑IMS in natural product research.

Imaging the Unimaginable: Desorption Electrospray Ionization –
Imaging Mass Spectrometry (DESI‑IMS) in Natural Product Research
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Introduction
During the last 50 years, natural product research has benefited
from the rapid advancement of MS (mass spectrometry) instru-
mentation, which enabled highly sensitive analysis of biological
samples [1]. New MS ionization sources such as ESI [2] and MALDI
[3] have revolutionized analytical chemistry, leading their inven-
tors to receive the Nobel Prize in Chemistry in 2002. These “soft”
ionization techniques enable the direct observation of natural
compounds as intact ions and forever transformed MS from a
niche tool of analytical chemistry to a ubiquitous technique uti-
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lized in life sciences research. Coupled to GC (gas chromatogra-
phy) and LC (liquid chromatography), hyphenated MS instru-
ments are now established worldwide as indispensable tools for
high-throughput workflows. Being the most sensitive and the
most powerful method, LC‑MS nowadays represents the back-
bone of targeted and untargeted metabolomics approaches to
detect and elucidate extremely low-abundance metabolites oc-
curring in any type of biomass used in natural product research
[4]. However, MS does not provide any information concerning
the spatial and temporal distribution of metabolites in a biological
sample. IMS complements traditional metabolomics and chemical



ABBREVIATIONS

BOT borderline ovarian tumors

CMC carboxymethyl cellulose

DESI desorption electrospray ionization

DMBA 7,12-Dimethylbenz[a]anthracene

ESI electrospray ionization

HGSC high-grade serous carcinoma

IMS imaging mass spectrometry

LAESI laser ablation electrospray ionization

MALDI matrix assisted laser desorption/ionization

m/z mass-to-charge ratio

nano-DESI nano desorption electrospray ionization

PTFE polytetrafluoroethylen

SIMS secondary ion mass spectrometry

VLCFA very long chain fatty acid
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analyses by combining the qualitative and quantitative molecular
information with spatiotemporal information, providing the capa-
bility to map specific molecules to 2D or 3D coordinates of the
original sample [5].

IMS started developing more than two decades ago as the
high-resolution frontier of material science and biology [3,6, 7],
and later gained large popularity in peptide and protein analyses,
particularly in medicine and cancer diagnostics [8–11]. As of to-
day, IMS has established itself as a highly efficient and reliable tool
in capturing the image of both large and small molecules in vari-
ous life science disciplines. IMS techniques combine the specifici-
ty, selectivity and sensitivity of MSwith spatially resolved chemical
information [3]. The ionization source or sampling probe is ras-
tered across the sample surface to induce desorption of organic
compounds into the gas phase, where they get ionized and differ-
entiated through their m/z [12]. This process is repeated sequen-
tially over the whole sample until the mass spectra associated with
every position on the sample are acquired. The ions of interest are
then displayed in different colors and superimposed on the sam-
pleʼs picture, correlating with the natural distribution and the
abundance of each m/z ion throughout the sample. The higher
the abundance of the molecular ion at a certain raster position,
the greater the intensity of color that is displayed [13]. IMS does
not require traditional sample extraction, which not only saves
time and a tedious procedure but also eliminates problems (e.g.,
the production of artifacts). Moreover, depending on the type of
IMS application, analysis of volatile and nonvolatile compounds
may be achieved at the same time [14]. An IMS dataset contains
a picture for each detected analyte [15]. IMS provides an untar-
geted in situ analysis of molecular species from complex samples
to single cells, and from biological macromolecules to small me-
tabolites, where metabolic signatures can be correlated with the
histological and morphological features [16]. It provides scientists
“molecular eyes” or “molecular microscopes” for analyzing the
surface, tissue, and even cellular and subcellular metabolomes
[5] as well as studying the dynamics and biological functions of
metabolites of interests in a given organism. By providing a simpli-
fied analytical workflow and a chemical specificity at the morpho-
logical level that was never possible before, IMS is now emerging
as a revolutionary field at the interface between chemistry and
(micro)biology. Not surprisingly, the IMS approach has been em-
ployed in over 100 microbiological studies since its first use in this
field in the early 2000s [12]. Currently, it is being successfully ap-
plied to several areas including biomarker identification, tissue
specific biosynthetic processes, microbe-microbe and host-mi-
crobe interactions, functional ecology, drug discovery, and chem-
ical ecology.

Early IMS techniques, such as SIMS and MALDI, require the
sample to be ionized at high vacuum. SIMS was first reported by
Castaing and Soldzian in 1962 [17] and is the oldest IMS tech-
nique. Under high vacuum, a beam of high energy primary ions is
focused onto the sample, physically perturbing the surface by a
process known as “sputtering” [18], generating secondary ions,
which are analyzed by the mass spectrometer [19]. One type of
SIMS experiment called dynamic SIMS uses a continuous beam of
primary ions to ablate the surface of the sample, allowing 3D as
well as 2D imaging experiments [20,21]. The primary advantage
of SIMS is spatial resolution, as the ion beam can be focused down
to 50 nm, enabling imaging on a subcellular level [22]. SIMS‑IMS
has been applied to the subcellular localization of biomarkers
and metallo-drugs in cancer cells [23,24], as well as antibiotics in
individual bacteria [25]. SIMS imaging has also been used to study
nitrogen fixation in microbial communities [26] and marine inver-
tebrates [27], as well as carbon flux in terrestrial worms [28]. As a
result of the high-energy beam of ions, SIMS typically exhibits
hard ionization, producing many fragments instead of molecular
ions, potentially leading to the loss of information.

The well-established technique of MALDI‑MS has a characteris-
tically soft ionization, which produces a high ratio of molecular-
to-fragment ions. MALDI imaging was first reported by Caprioli
et al. [8], who mapped certain peptides and proteins in various
coated tissue sections or blotted imprint of the sections [8]. In a
typical MALDI‑IMS experiment, the sample is coated or co-crystal-
ized with a light-absorbent matrix and irradiated with a pulse from
a UV or IR laser. The matrix absorbs the radiation, transferring en-
ergy to the sample and aiding in ionization [29]. MALDI has several
disadvantages, including high chemical noise in the low mass
range (< 300m/z) originating from the matrix components that
may suppress crucial small molecule ions and the requirement
for the sample to be mounted on a conductive surface. The laser
desorption/ionization process also destroys the sample during
MALDI‑IMS. However, in comparison to several other IMS
techniques discussed below, MALDI‑IMS has superior spatial reso-
lution (from > 5 µm up to > 100 µm) [12]. Other advantages of
MALDI‑IMS include the wide mass range (from 300m/z up to
> 5000m/z) with which it can operate, good tolerance of varia-
tions in sample geometry, and a wide variety of established proto-
cols for imaging, especially of microbial colonies [30]. With selec-
tion of a proper matrix, many types and sizes of compounds, rang-
ing from proteins to lipids, peptides or secondary metabolites,
can be visualized [12]. MALDI‑IMS is the most established and
most frequently used IMS technique in natural product research.
Mainly led by the Dorrestein group at UC San Diego (USA),
MALDI‑IMS has been used in many excellent studies, for example,
in identification of the biosynthetic origin of natural products
Parrot D et al. Imaging the Unimaginable:… Planta Med



from a bacterium-sponge symbiont [31], mechanisms of coral as-
sociated bacterium to protect its host from pathogenic fungi [32],
and in examination of complex molecular interplays including
suppression, enhanced production, biotransformation, and other
metabolic exchanges in polymicrobial co-cultures [33]. MALDI
imaging has been widely applied to natural product research, ex-
amining the spatial distribution of compounds in plants [34–39],
bacteria [40,41], cyanobacteria [31,42], and various marine in-
vertebrates [31,42–46].

In contrast to SIMS and MALDI, which operate under vacuum,
recent IMS applications are embracing techniques that can be
performed at ambient conditions with as little sample preparation
as possible, such as LAESI‑IMS and DESI‑IMS. LAESI-IMS, invented
by Nemes and Vertes and first described in 2007 [47], combines a
mid-IR laser with an electrospray source. The sample is ablated by
the laser, and the resulting cloud of particles is ionized as it passes
through the electrospray plume [48]. The primary advantages of
LAESI‑IMS are that non-flat samples may be analyzed and that
very little sample preparation is required [49]. Since the laser abla-
tion removes a layer of the sample with each pulse, LAESI‑IMS may
be used for 3D as well as 2D sample analysis [50]. One key limita-
tion of LAESI‑IMS is that the sample needs to be rich in water in
order to absorb energy sufficient for ablation from the laser pulse
[47]. As LAESI‑IMS physically removes layers of the sample during
ablation, it is not suitable for analyses in which the sample needs
to be analyzed repeatedly (e.g., for a time course study). Applica-
tions of LAESI in natural product research include the investigation
of bacterial biofilms [51,52] and in the imaging of living plant tis-
sues [50,53,54]. Combining LAESI‑IMS analysis with bioassay has
been shown to be a powerful tool for drug discovery [55].

Compared to other IMS techniques, DESI‑IMS presents several
advantages that render it well suited for natural products chemis-
try. Because SIMS‑IMS and MALDI‑IMS are both performed under
vacuum, the samples must usually be freeze-dried before the
analysis, making these techniques incompatible with living tissue.
DESI differs from SIMS, MALDI, and LAESI in that it is considered a
minimally destructive ionization method, allowing samples to be
repeatedly analyzed in a time course experiment. The relatively
limited sample preparation required for DESI‑IMS analysis com-
bined with minimally destructive sampling of living tissue enable
DESI‑IMS to fill a niche inaccessible by other IMS methodologies.
These properties make DESI‑IMS a potent tool for the investiga-
tion of microbe-microbe and host-microbe interactions. In this re-
view, we focus on DESI‑IMS technique, discussing the principles of
the ionization mechanism, instrument optimization, sample prep-
aration, and current applications in natural products chemistry,
including terrestrial or marine microorganisms, plants, and ani-
mals, and finally its wide use in medical biochemistry and clinical
research.
DESI‑IMS
In 2004, DESI was introduced as a novel ESI technique by Cooksʼ
group at Purdue University (USA) [56]. DESI relies on a soft ioniza-
tion technique similar to ESI in LC‑MS, which delivers mass spectra
with very low fragmentation in either positive or negative ioniza-
tion mode. The simple workflow and the ease with which a DESI
Parrot D et al. Imaging the Unimaginable:… Planta Med
source can be connected to existing mass spectrometers contrib-
ute to rising popularity of DESI in different fields of analytical
chemistry. One of the main advantages in comparison to other
IMS techniques is that DESI does not require extensive sample
preparation such as matrix fixation in MALDI‑IMS, resulting in a
simplified analytical procedure for a rapid spatial and temporal
identification of chemicals in intact biological samples, all under
ambient conditions [56,57]. DESI‑IMS can be applied to investi-
gate highly complex sample surfaces, from polymeric materials
to biological tissues and even fluids [58], allowing for the detec-
tion and semi-quantification of a variety of polar or non-polar
small molecules [56,59–61].

Chemical and physical aspects
of the ionization mechanism

In DESI, high-velocity ionized solvent droplets desorb the analytes
of interest directly from the sample surface, where compounds
are solvated in a thin film. To achieve the chemical desorption, sol-
vents are electro-sprayed under high voltage through an emitter
capillary producing charged “primary” droplets, which are nebu-
lized and then directed toward the sample. Metabolites located
on the sample surface are in this way desorbed into gaseous “sec-
ondary” droplets delivering molecular ions entering the MS inlet
where m/z values are measured [62,63] (▶ Fig. 1). Depending on
the polarity of the metabolite of interest, different spray solvents
from the DESI source can be used for imaging. For the analysis of
both polar and non-polar compounds, standard solvents such as
MeOH or ACN are frequently used, usually with the addition of
2–5% H2O, but different solvent compositions have been em-
ployed according to the specific needs and application type [64,
65]. Overall, DESI‑IMS has been shown to have a high degree of
tolerance toward salt adducts formation and ionization suppres-
sion [66]. Interestingly, while the electrodynamics of droplets for-
mation from the liquid ESI cone-jet have been thoroughly studied
[67], the physical mechanism responsible for progeny droplet for-
mation and impact at the sample surface during the DESI event is
still elusive and not completely understood. Due to the high-pres-
sure environment and the high kinetic energy of the molecules
produced in DESI [58], the desorption process does not seem to
depend on the physical particle sputtering mechanisms that gov-
ern gas ion collisions techniques such as SIMS [18,58,68,69]. In-
stead, several studies on ion-surface scattering processes in
vacuum suggest that, during DESI, the molecules from surfaces
may be ionized and released following a mechanisms known as
“chemical sputtering” [70,71]. Fluid dynamics studies that simu-
lated the electrochemical desorption mechanisms of DESI hypoth-
esized that stochastic momentum-transfer events are the major
forces leading to the formation of analyte-containing droplets
[63,72]. These results also highlight the strong dependence on
the contact angle and surface wettability of the materials as some
of the major variables that govern the DESI process and that even-
tually affect the way metabolites are picked up from the surfaces
and analyzed [72]. A modified version of DESI is nano-DESI, in
which the microscale solvent extraction and desorption are
achieved using two separate capillaries surrounding the sample
in a “liquid bridge” [73,74]. Notably, nano-DESI is most suitable
for direct sampling and IMS chemical profiling of small-scale wet



▶ Fig. 1 Graphic representation of the DESI‑IMS workflow. a The
ionization mechanism and desorption event are achieved directly at
the sample surface to deliver molecular images (adapted from
Takáts et al., 2004) [56]. b Relative intensities observed for multi-
ple ions (m/z) represented with different colors in various biological
systems (i.e., polymicrobial culture, plant and animal, respectively).
Sensitive parameters, which strongly affect the resolution include
the geometry between the DESI components (x, y, z axis), such as
the distance of the sample surface to the sprayer tip (d1) and to the
MS inlet (d2).
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surfaces that would suffer ablation from the strong nebulizing gas
of DESI such as living microbial colonies in agar media and associ-
ated biofilms [74–76].

DESI instrumental parameters and geometry

Due to the sensitive intrinsic properties, optimization of different
parameters prior to DESI analysis is routinely required in order to
obtain the best desorption and ionization of metabolites in the
sample and the highest reproducibility between experiments.
The correct adjustment of these parameters will strongly influ-
ence the outcome of the analysis and the final imaging resolution.
Among the most critical parameters are the electrospray solvent
flow rate (e.g., 0.1–5 µL/min) and voltage (1–8 kV), and the over-
all geometry of the DESI system, particularly the distance of sam-
ple surface to the DESI spray nozzle tip (d1) and to the MS-inlet
(d2), as well as their respective incident and collection degree an-
gles (α and β) [58,77,78] (▶ Fig. 1). Common application guide-
lines of the instrument recommend utilizing a geometry configu-
ration with larger tip-to-surface distances (d1 = 5–8mm), smaller
incident angles (α = 20–50°), and higher voltages (3–8 kV) for
small molecules such as lipids or aromatic hydrocarbons, and
opposite range of settings (d1 = 1–2mm; α = 60–90°, 1–4 kV) for
larger molecules, such as proteins or nucleic acids [58]. Solvent
flow rate and sprayer distance from the sample surface influence
the quality of the analysis as they affect droplet sizes and their
speed. At 2 µL/min solvent flow rate and 1130 kPa nebulizing gas
pressure, droplets have been measured to have an average diam-
eter of 2–4 µm and an impact velocity of 120m/s [63]. High neb-
ulizing flow rates are generally preferred as they produce smaller
and faster droplets, which increase the desolvation efficiency.
However, the upper limit is reached when droplets generated are
too small andmay evaporate before reaching the surface resulting
in a lack of signal. Thus, given each geometry setup, the relation-
ship between solvent and gas flow rates will strongly determine
the final imaging resolution [77]. A typical spatial resolution can
range between 50 and 200 µm, with an average resolution of
40–60 µm [79] and the highest resolution reported at 35 µm dur-
ing phospholipid analysis in mouse brain tissue in 2012 [79–81].
Increased resolution can be achieved by nano-DESI thanks to
nano-spray ability to deliver droplets at lower velocity (4m/s),
allowing a gentle deposition of charged reagents with minimal
splashing and a spatial imaging to < 12 µm [73,82].

Sample preparation

DESI‑IMS has been successfully applied in several areas ranging
from clinical medical research to pharmacology, and from natural
product chemistry to chemical ecology. According to the applica-
tion and the nature of the biological tissue, sample preparation
may differ. DESI analysis is usually restricted to flat and preferably
hard surfaces. Samples with smooth and regular surfaces can be
usually analyzed directly with no sample preparation. In case of
non-flat surfaces (for instance animal organs and tissues), cryo-
sections can be prepared following commonly established IMS
protocols [83]. In case of plants, preparation of DESI samples can
be achieved in different ways. Flowers and leaves are often prob-
lematic as they present soft, irregular, and very absorbent sur-
faces, which may result in low or instable signal during imaging.
In addition, most land plants contain wax cuticles on their leaf sur-
face that are highly hydrophobic and can be difficult to penetrate
by spraying solvents. As an alternative to direct analysis on plant
surfaces, indirect sample analysis can be performed via “imprint-
ing” of metabolites for instance on glass slides. However, ablation
of metabolites deposited on the glass surface may occur rapidly,
resulting in a loss of signal intensity over repeated measurements.
Sorbent materials such as porous PTFE or TLC (thin-layer chroma-
tography) silica plates appear more suitable for indirect tissue
analysis by sample imprinting. Both PTFE and TLC plates have
good absorbing properties that retain metabolites from the plants
until desorption with DESI and have been applied for the imprint-
ing of various plant organs and tissues [70–72,83]. TLC is a cheap-
er solution with similar performance to PTFE, but overall PTFE is
currently reported as the best solution for DESI‑IMS analysis of
plant materials in terms of both reproducibility and quantitative
ability [81,85–87].

Data analysis

The datasets produced by DESI spatial mass scanning typically
contain a large set of information and thus requires intensive
Parrot D et al. Imaging the Unimaginable:… Planta Med



post-acquisition analysis for data extraction, visualization, and in-
terpretation. In this respect, developments in bioinformatics tools
such as machine learning algorithms allows for advanced high-
throughput data analysis [88]. For instance, deep learning and un-
supervised neural network based methods have been successfully
applied for the analysis of complex dataset from 3D‑DESI‑MS of
tumor tissue, allowing for high dimensionality reduction and data
clustering normally not achievable by classical linear methods
[89]. Recently, a collaborative initiative sponsored by EMBL (Euro-
pean Molecular Biology Laboratory) in the framework of the Euro-
pean Research Program Horizon 2020 tackled the need for high-
throughput analysis of high dimensionality data from MALDI and
DESI‑IMS and developed an open-source method that is available
to test in its beta uploading using the MetaSpace cloud-server
(http://metaspace2020.eu/). A similar project has been undertak-
en by the community of OpenMSI (https://openmsi.nersc.gov),
which provides a high-performance web-based platform for the
storage and management of IMS data, including tools for visual-
ization and statistical analysis [90].
Applications of DESI‑IMS in
Natural Product Research
Application of DESI‑IMS on microorganisms

Since 2008, DESI‑IMS has been successfully applied for chemical
profiling of metabolites located on surfaces and/or internal tis-
sues, studying single or mixed microbial cultures and chemical
interactions between them (▶ Table 1). However, the use of
DESI‑IMS on soft and irregular surfaces (such as agar media) is still
a challenge today because the strong nebulizing gas of DESI can
provoke an aperture in some cultures. Indeed, direct IMS of living
colonies has mostly been accomplished by nano-DESI‑IMS, more
suitable method to imaging wet surface, on living communities
such as Shewanella oneidensis, Bacillus subtilis, Streptomyces coeli-
color, Mycobacterium smegmatis, and Pseudomonas aeruginosa for
investigation of various chemical families (e.g., lipopeptides,
rhamnolipids, quinolones, phenazines, glycopeptidolipids) [74].
However, analysis of B. subtilis by DESI‑IMS or by nano-DESI‑IMS
has revealed, in both cases, the presence of surfactin-type lipo-
peptides.

One of the first applications of DESI‑IMS directly on bacterial
cultures aimed at identification of bacterial species based on their
chemistry and particularly on the basis of their lipid constituents
[91,92]. For example, the cyclic lipopeptide surfactin C15, a well-
known metabolite produced by Bacillus sp., was observed on agar
plates, permitting the taxonomical identification of B. subtilis di-
rectly on Petri dish [91]. DESI‑IMS was also employed to analyze
lipid composition on 16 bacterial samples to distinguish bacterial
species and even subspecies using bacterial samples suspended in
70% EtOH. Chemotaxonomical identification of the bacterial spe-
cies was based on the distribution of several major classes of lip-
ids, including phosphotidylethanolamines, phosphotidylglycerols,
and lysophospholipids, in positive and negative ionization modes.
This lipidomic-type approach allowed the taxonomical character-
ization of several bacterial species including Staphylococcus au-
Parrot D et al. Imaging the Unimaginable:… Planta Med
reus, Escherichia coli, B. subtilis, and Salmonella sp. [92]. The lip-
idomic analysis of bacterial strains by DESI‑IMS enabled the differ-
entiation of Gram-positive and Gram-negative bacteria [92], pro-
viding new opportunities for microbiological research.

DESI‑IMS has also been used for analyzing natural products
(primary and secondary metabolites) directly from bacterial and/
or fungal cultures. For instance, metal scavenging siderophores
were imaged directly from agar culture of Streptomyces wadaya-
mensis [93], whereas several new polyhydroxyanthraquinones
were identified as quorum sensing inhibitors in the guttate-form-
ing Penicillium restrictum [94], an endophytic fungus isolated from
the stems of a milk thistle, Silybum marianum (L.) Gaertn (Astera-
ceae). The DESI‑IMS study showed that the polyhydroxyanthra-
quinones were produced by fungal mycelia and were expressed
differentially over time. Also, the potent quorum sensing inhib-
itory polyhydroxyanthraquinones were observed to be concen-
trated at the fungal surface, whereas less potent compounds were
diffused through the culture medium [94], illustrating the power
of DESI‑IMS to determine the spatiotemporal distribution as well
as the specific production of natural products. Further investiga-
tion of bacterial central carbon metabolism performed by Jackson
et al. [95] on E. coli allowed the detection of 13 out of 17 selected
central carbon metabolites (i.e., metabolites involved in the inte-
gration of pathways of transport and oxidation of main carbon
source inside the cell). Similarly, DESI‑IMS was shown to be an ef-
fective method to understand chemical interactions/exchanges
(e.g., antagonistic fungal interactions [96,97], fungal/bacterial in-
teractions [98], or metabolic exchange between bacterial species
[99] directly). The interaction of micro- and macroorganisms with
other organisms often relies on the production of secondary me-
tabolites. Specific metabolite exchanges such as two lactones de-
rivative (T39 butenolide and harzianolide), one hexaketide metab-
olite (sorbicillinol), and an unknown metabolite (m/z [M + H]+

319.1) were revealed during the co-culturing of the commercially
relevant phytopathogenic fungus Moniliophthora roreri (causing
fungal cacao pest) and the fungal biocontrol agent Trichoderma
harzianum [96]. Likewise, the production of phomopsinone A (α-
pyrone derivatives) and T-2 toxin (mycotoxin) was shown during
the co-culture of fungus Fusarium sp. and fungus Clohesyomyces
aquaticus [97]. A proteobacterium, Burkholderia seminalis isolated
from Saccharum officinarum L. (Poaceae) roots, was shown to in-
hibit the growth of multiple cacao pathogens by the production
of rhamnolipids, and other unidentified metabolites [98].
DESI‑IMS imaging of B. subtilis and S. coelicolor co-culture has
highlighted the ability of B. subtilis to silence antibiotic production
(in particular the production of benzo isochromane quinone
polyketide actinorhodin) in S. coelicolor, giving B. subtilis a fitness
advantage over S. coelicolor [99]. Such studies employing
DESI‑IMS do not only provide a better understanding for microbial
interactions, but also offer new ecological perspectives–for exam-
ple, the ability T. harzianum or B. seminalis to act as biocontrol
agent against M. roreri and other cacao pathogens, respectively.
Chemical imaging of microbial co-cultures has potential to be
used as a tool for the discovery and the localization of new
bioactive metabolites generated by the co-microorganisms.
Those co-microorganisms modulate the activation or the sup-
pression of specific metabolite production.
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▶ Fig. 2 Application of DESI‑IMS in our laboratory at GEOMAR for
surface chemical imaging of marine plants from the Baltic Sea.
a Direct surface analysis of a seagrass and (b) metabolite localiza-
tion and relative abundance ofm/z ion 233 [M + H]+, achieved using
a rapid scanning on glass imprints at 200 µm resolution (covered
area approximately 12mm2).

Reviews
Plant-pathogen interactions have also been analyzed by DESI‑IMS,
linking plant responses to microbial pathogens as reported by
Tata et al. [100]. Plants represent an important source of nutrients
but very few studies on plant pathosystems (i.e., ecosystems de-
fined by parasitism) are available. DESI‑IMS was used to study the
fluctuations of glycoalkaloids in sprouted potatolices infected by
the fungal phytopathogen Pythium ultimum. After eight days of in-
fection, it was observed that metabolic pathways were affected by
the phytopathogen to increase or decrease the levels of in total
12 glycoalkaloids [100]. Therein, the DESI‑IMS study permitted to
determine the plant metabolic changes on the production of gly-
coalkaloid after infection by the fungal phytopathogen and dem-
onstrated its useful application in plant pathosystems.

In summary, DESI‑IMS has so far been used on microorganisms
for (i) taxonomical identification of species, (ii) production and
spatiotemporal distribution of (surface) metabolites, (iii) identify-
ing metabolic exchanges between bacterial species, (iv) antago-
nistic fungal/fungal and fungal/bacterial interactions, and (v) elu-
cidation of metabolic responses of plants to pathogenic infections
(▶ Table 1). These studies open up new perspectives in (micro)bi-
ology, and in the understanding of biological systems from a
chemical angle.

Application of DESI‑IMS on macroorganisms

Several examples of DESI‑IMS analyses have been reported on
macroorganisms, including analyses on plants, algae, and fish
(▶ Table 2).

With regard to plants, DESI‑IMS has principally been applied on
the imprints of leaves [81,84,85,101,102], flowers and petals
[84,101,102], fruits [103], and seeds [104] (▶ Table 2). The cu-
ticle of plants is dominated by metabolites such as fatty acids with
aliphatic tails longer than 22 carbons. These VLCFAs represent a
physical morphological barrier in leaves and petals, presenting an
obstacle for DESI‑IMS analysis. To overcome this difficulty, a ter-
nary solvent system, CHCl3-ACN‑H2O (1 :1 :0.04), was developed
and used to analyze the cuticle itself as well as the subcuticular
metabolites directly by DESI‑IMS [102]. The leaves and petals of
Hypericum perforatum L. (Clusiaceae) were analyzed in several
studies [64,70,81,82,85], in which the detection and localization
of several metabolites were reported. The phloroglucinol deriva-
tive hyperforin was shown to be localized in the translucent
glands, while hypericin (an anthraquinone derivative) was present
in the dark glands. A number of other phloroglucinol, flavonoid,
and anthraquinone derivatives known from Hypericum sp. (adhy-
perforin, pseudohypericin, protopseudohypericin, protohypericin,
rutin, quercetin, phloroglucinol), as well as VLCFAs, were detected
by indirect analysis (imprints) [81] or direct analysis using a ter-
nary solvent system and/or after surface extraction by CHCl3
[102]. Similarly, the distribution of leaf metabolites of Datura stra-
monium L. (Solanaceae) was analyzed, revealing the presence of
the major tropane alkaloids atropine and scopolamine. Both com-
pounds were located principally in the leaf ribs and veins, suggest-
ing their transport within the plant [81].

Similar approaches were also performed on other plants, such
as Papaver somniferum L. (Papaveraceae) [81], Catharanthus roseus
(L.) G.Don (Apocynaceae) [84], Hordeum vulgare L. (Poaceae)
[101], Cercidiphyllum japonicum Siebold & Zucc (Cercidiphylla-
ceae), Liquidambar styraciflua L. (Hamamelidaceae), Ostrya virgin-
iana K.Koch (Corylaceae) [85], Lotus japonicus (Regel) K.Larsen
(Leguminosae), Manihot esculenta Crantz (Euphorbiaceae) [87],
Ginkgo biloba L. (Ginkgoaceae) [104], and strawberry (Fragaria x
ananassa Duch. [Rosaceae]) [103], indicating the capability of
DESI‑IMS to map various classes of metabolites (e.g., terpenoid in-
dole alkaloids, hydroxynitrile glucosides) on various plant organs
(▶ Table 2). The spatial and temporal distribution of rohitukine, a
chromone alkaloid with anti-inflammatory, anticancer, and immu-
nomodulatory activities, was imaged during the seed develop-
ment of Dysoxylum binectariferum Hook.f. (Meliaceae). Rohikutine
accumulation was shown to be more important during seed de-
velopment and its increase was specifically located in the embryo,
cotyledons, and to a lesser extent in the seed coat [104]. DESI‑IMS
studies on leaves, flowers, or seeds were performed to determine
metabolite distribution at a specific time or during various plant
developmental stages.

DESI‑IMS has also been used to study molecular distribution of
bioactive natural products in marine organisms, such as seaweeds
(▶ Table 2). The DESI‑IMS analysis of the tropical red seaweed
Callophycus serratus revealed the presence of the macrocyclic
halogenated-benzoates, bromophycolide A and B on the surface
of the alga [105]. Both compounds inhibit the growth of Lindra
thalassiae, a marine fungus that infects diverse hosts ranging from
brown algae to seagrasses. The natural concentrations of these
two metabolites were shown to be more than sufficient to display
an antifungal activity in the algal surface patches, suggesting the
importance of secondary metabolites for chemically mediated
biological processes [105]. The compounds were observed also
within internal algal tissue by DESI‑IMS. The fact that bromophy-
colides are not homogenously distributed on the algal surface but
associated with distinct patches could be due to the presence of
tissue damage, indicating the chemical defense of C. serratus to
fungal infection. Seaweeds and corals often occur in close
proximity in the same environment. As coral reefs are declining
globally, seaweeds are commonly replacing corals. However, the
mechanism of the increasing coral-algal interactions is poorly
understood. Andras et al. [106] employed DESI‑IMS to visualize
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and quantify neurymenolide A, an unusual cyclophane derivative
isolated from the red alga Phacelocarpus neurymenioides. Neury-
menolide A is an allelopathic agent occurring on the surface of
the live alga that damages the coral Porites rus by direct contact
with the alga. This study elegantly shows the potential of DESI‑IMS
in chemical ecology studies. In our laboratory, we have been ap-
plying DESI‑IMS to Baltic Sea plants and seaweeds to determine
their surface metabolome, in combination with classical metabo-
lomics approaches (▶ Fig. 2).

There is only one study that has reported the use of DESI‑IMS
on the whole body zebrafish (Danio rerio) by cryosectioning [43].
This study aimed at localizing the accumulation of a mildly toxic
ionic liquid AMMOENG 130 in zebrafish tissues, after exposure of
the zebrafish to varying concentrations of this liquid. The ionic
liquids are found in large quantities in detergents and softeners,
and are potentially toxic. In particular, AMMOENG 130 was found
to be very toxic against D. rerio (i.e., more toxic than 13 out of
15 common ionic liquids). DESI‑IMS experiment on D. rerio re-
vealed the accumulation of this toxin in the respiratory and ner-
vous system of the fish, suggesting that it is potentially a neuro-
toxin. Consequently, DESI‑IMS analysis of macroorganisms opens
new avenues in other research fields such as ecotoxicology for
biomonitoring of toxic compounds.

Application of DESI‑IMS in medicine
and clinical research

Similar to MALDI‑IMS, the dominant application area of DESI‑IMS
is medical research, where it enables a rapid and accurate method
to visualize biomarkers in biological tissues. In particular, DESI‑IMS
has been demonstrated to be very efficient in lipid composition
analysis. Lipids play key roles in various cytological processes and
in cell signaling; hence, the analysis of lipid composition in biolog-
ical tissues is crucial to support morphological investigations, di-
agnosis, and characterization of pathophysiological processes
such as neurodegenerative and cardiovascular diseases, as well as
neoplastic processes. Tissue profiling of lymphoma, gliomas, gas-
tric, liver, prostate, and breast cancer have all showed how drastic
change in lipid composition can be used as biomarkers. DESI‑IMS
has been applied in medical research as reported by at least five
publications in 2017 and more than 14 publications since 2007
(▶ Table 3). Selected examples are described below to illustrate
medical aspects of DESI‑IMS applications.

Eberlin et al. [107] used lipidomic data as biomarkers to rapidly
classify 36 human gliomas including oligodendroglioma, astrocy-
toma, and oligostrocytoma at different histologic grades and var-
ied tumor cell concentrations. The combination of DESI‑IMS, mul-
tivariate analysis, and machine learning was applied to recognize
glioma subtypes and grade on the basis of the World Health Or-
ganization tumor classification system. The analysis resulted in a
recognition capability of greater than 99% and a cross-validation
of more than 97% based on 128 peaks for the subtype, 123 peaks
for the grade, and 136 peaks for the concentration. Furthermore,
small molecule analysis (Krebs cycle intermediates metabolites
and carbohydrates) combined with lipid composition was used to
distinguish prostate cancer from normal tissues and to improve
the accuracy of prostate cancer identification [108]. These models
permitted the differentiation of prostate cancer from benign
specimens with nearly 90% accuracy per patient. Glucose/citrate
ratio, in parallel to lipids composition, could also be used to accu-
rately monitor the occurrence of prostate cancer [108]. In the ma-
jority of cancer diagnoses by DESI‑IMS, lipid composition was of
key importance to distinguish tumor tissues from normal tissues
(▶ Table 3) [108]. DESI‑IMS was used to record the spatial inten-
sity distribution of a drug, clozapine, directly from histological
sections of brain, lung, kidney, and testis [60], in addition to can-
cer diagnosis applications. In another study, Miyamoto et al. [109]
combined microscopy, MALDI‑IMS and nano-DESI to reveal
changes in glucose metabolism and the accumulation of sphingo-
myelin metabolites in the glomeruli of the diabetic mice fed with
high-fat diet. This shows the great potential of the technique in
various areas of medical research, including metabolic disorders.

On the whole, DESI‑IMS has been successfully applied in vari-
ous research fields including microbiology, ecotoxicology, ecol-
ogy, forensics, embryology, chemistry, and medicine, presenting
a fast, easy, and reliable direct/indirect analysis of biological sam-
ples. DESI‑IMS has found applications in other research fields–for
instance, in astrophysics to detect and identify the spatial distribu-
tion of organic compounds on meteoritesʼ surface [110] indicat-
ing its potential in so many other disciplines.
Conclusions and Future Perspectives
IMS techniques have already opened new avenues in several areas
of life sciences, including medicine, microbiology, and natural
product chemistry. The IMS surpasses all existing molecular anal-
ysis methods (i.e., genomics, transcriptomics and metabolomics)
by giving crucial and simultaneous spatial information on mole-
cules. Therefore, various IMS techniques with different ionization
modes and workflows are being adopted by scientists to address
questions presented by spatial metabolomics on various biologi-
cal systems. However, all IMS techniques have drawbacks and lim-
itations in instrumentation, sample preparation, metabolites an-
notation, resolution, and data analysis. Considering their ever-in-
creasing popularity, it is foreseeable that the IMS techniques will
rapidly improve to move forward and find even more applications
in life and medical sciences, and potentially in industry. Specifi-
cally, IMS techniques will bring metabolomics research to a para-
digm shift and completely change the way how we interrogate
biological systems and provide new approaches in drug discovery
and medicine. With future developments, IMS has the power to
transform our ability to interrogate natural processes for example,
better understanding host-microbe and microbe-microbe inter-
action, biosynthesis of natural products, chemical ecology, viru-
lence factors, and disease states. Continuous improvement will
be crucial for the advancement of IMS and its contribution in our
understanding of life and metabolic processes.
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