
The Raspberry Pi: A Platform for Replicable Performance

Benchmarks?

Holger Knoche
hkn@informatik.uni-kiel.de

University of Kiel

Holger Eichelberger
eichelberger@sse.uni-hildesheim.de

University of Hildesheim

Abstract

Replicating results of performance benchmarks can be
difficult. A common problem is that researchers often
do not have access to identical hardware and software
setups.

Modern single-board computers like the Raspberry
Pi are standardized, cheap, and powerful enough to
run many benchmarks, although probably not at the
same performance level as desktop or server hardware.
In this paper, we use the MooBench micro-benchmark
to investigate to what extent Raspberry Pi is suited
as a platform for replicable performance benchmarks.
We report on our approach to set up and run the
experiments as well as the experience that we made.

1 Introduction

Replicability, i.e. the ability to be repeated by other
researchers with consistent results, is of fundamental
importance for every scientific experiment [4]. How-
ever, replicating an experiment can be very diffi-
cult. In the case of software performance benchmarks,
recreating an identical execution environment poses
great challenges. In particular, obtaining identical
hardware often proves to be impracticable.

In the previous work of one of the authors [6],
an attempt was made to replicate benchmark results
of SPASS-meter [2], a flexible resource monitoring
framework. The goal of the replication was to inves-
tigate performance issues in SPASS-meter identified
by the MooBench benchmark [5]. Although several
opportunities for improvements were identified during
the experiments, the goal of replicating the original re-
sults was not achieved despite significant efforts. Our
hypothesis is that this is due to the researchers being
unable to identically recreate the original execution
environment, as they neither had access to identical
hardware nor to the same software environment.

In this paper, we investigate to what extent the
use of modern single-board computers, here the Rasp-
berry Pi1 platform, can improve replicability. As the
term implies, these computers consist only of a sin-
gle board of circuitry, containing the CPU, memory,
GPU, network interface, and controllers for periph-
erals including USB devices. Except for the storage

1https://www.raspberrypi.org/

card, the hardware cannot be changed, and only spe-
cific models are available. This high degree of stan-
dardization, combined with its low price, makes the
Raspberry Pi an interesting option for replicable per-
formance experiments. Since a full-featured Linux dis-
tribution (“Raspbian”) and important infrastructure
components like a Java VM are also available, many
experiments should be easily portable.

The remainder of this paper is structured as fol-
lows. In Section 2, we describe our experimental ap-
proach for investigating the suitability of the Rasp-
berry Pi as a platform for replicable performance
benchmarks. Experimental results are presented and
discussed in Section 3. Section 4 concludes the paper
and sketches opportunities for future work.

2 Experimental Setup

In order to assess the viability of the Raspberry
Pi platform, we designed an experiment based on
MooBench similar to [6] for several Raspberry devices.
The devices, the setup of a master installation image,
and the experimental procedure are described below.

We obtained two Raspberry Pi 3 devices with same
specification (referred to as D1 and D2) as a set with
an 8 GB SanDisk SD card supplied by the same vendor
(element14) within a time frame of two weeks. The
intention was to have two devices that are as identical
as possible. To evaluate whether a probably different
production lot affects replication, we bought a third
device (D3) with same specifications a few months
later from a different vendor (Allied Electronics).

We set up a single master installation image2 suit-
able for the three devices including all required soft-
ware. As operating system, we used Raspbian Jessie
Lite, which does not contain potentially influencing
services such as a graphical user interface, a virus
scanner or automated updates. For preparing the
master image, we installed the original image on one of
the SD cards, enabled SSH for controlling the bench-
marks, set up the network and updated the packages
to the most recent state as of August 2017. Further-
more, we installed the required software packages, in
particular, Oracle JDK 1.8.0u144 for the armhf plat-

2Installation image, experimental results and analysis scripts
are available at https://doi.org/10.5281/zenodo.1003075

https://www.raspberrypi.org/
https://doi.org/10.5281/zenodo.1003075

form, which provides a just-in-time compiler. For
the benchmarks, we installed two copies of MooBench
with 512MB JVM heap, one for Kieker [1] and one for
SPASS-meter (including an ARM version of its native
library). Finally, we tested and archived the image so
that running it on the remaining devices just required
changing the static IP address.

First tests revealed storage space problems
when running Kieker with MooBench. By default,
MooBench executes 2,000,000 calls of a test method
with a recursion depth of 10, iterates the test 10 times
and collects the response time in log files. As base-
line, MooBench executes the test without any instru-
mentation and then applies the respective monitoring
framework in given configurations. However, the trace
files produced by Kieker using the default MooBench
setup exceeded the storage capacity of the SD cards.
Therefore, we used a setup for Kieker with a recursion
depth of 5 and 1,000,000 calls in 10 iterations.

Our experimental procedure for a single device in-
cludes 1) installing the master image to the respective
device, 2) connecting the device via local network to
a control computer, 3) starting the benchmark as a
background process via SSH from the control com-
puter for SPASS-meter and Kieker with a break of at
least 5 minutes, and 4) collecting the raw MooBench
results on the control computer. To simulate a repli-
cation setup, the authors executed this procedure on
the respective devices in their local environment. For
analyzing the overall results, we exchanged the col-
lected data and performed an analysis (cf. Section 3).
If an analysis of observed effects was needed, we re-
executed individual runs with a slightly different hard-
ware setup, e.g., using a different SD card or an exter-
nal USB harddrive instead of the original SD card.

3 Experimental Results

For analyzing the raw results, we rely on the R anal-
ysis scripts provided with MooBench. These scripts
aggregate 1,000 raw observations of all runs to one av-
erage data point and plot illustrative runtime graphs.
We modified the original scripts to obtain descriptive
statistics for the raw and the aggregated time series
for both the complete time series and the second half
where the executing JVM is expected to have reached
a steady state. We start with the individual results for
Kieker and SPASS-meter and then present an overar-
ching analysis of the obtained measurements.

Kieker is a resource monitoring framework, which
particularly aims at persisting obtained runtime mea-
sures as fast as possible for later offline analyses. Us-
ing MooBench, we measured Kieker in three configu-
rations: 1) deactivated probe, 2) activated probe with
no logging, and 3) activated probe with file system
logging. While the first two configurations have very
little overhead, writing the collected traces to the file
system causes massive response time fluctuations. An
obvious hypothesis is that the bandwidth to the inter-

Number of method executions

0
20

0
40

0
60

0
80

0
10

00

 0 250000 500000 750000 1000000

Mean response time of ...

FS logging
No logging

Deactivated Probe
No instrumentation

M
ea

n
re

sp
on

se
 ti

m
e

(µ
s)

Figure 1: Response times for Kieker on D1.

Number of method executions

0
20

0
40

0
60

0
80

0
10

00

 0 500000 1000000 1500000 2000000

Mean response time of ...

SPASSmeter ASM
SPASSmeter Javassist

No instrumentation

M
ea

n
re

sp
on

se
 ti

m
e

(µ
s)

Figure 2: Response times for SPASS-meter on D2.

nal SD card is limited. To examine this hypothesis, we
equipped the devices with an external USB harddrive,
copied MooBench to the external disk and re-executed
the benchmark there. Figure 1 shows the aggregated
response times on D1. Although the response time is
still fluctuating for file system logging, the external
hard drive reduced the mean (raw) response time by
79% and the standard deviation even by 96%. Simi-
larly, a run with a faster SD card showed that already
this change can cut the response times in half.

SPASS-meter is a resource monitoring framework
which performs online aggregation of the observed
measures according to a user-defined configuration.
As in [6], we measured SPASS-meter with all sup-
ported resources and instrumentation framework, i.e.,
Javassist and ASM. Figure 2 illustrates the collected
benchmark data for D1. Across the devices, the ag-
gregated time series look rather similar, indicating a
mean response time of around 160µs, a slight increase
of the response time during the experiments and two
humps between 1,500,000 and 2,000,000 test execu-
tions. We also checked the effect of an external USB
harddrive: On D1, the mean response time improved
around 8% (standard deviation by 87%), which is rea-
sonable as SPASS-meter does not perform extensive
file system operations. In the results for all devices
even with external harddrive, slope and humps per-
sisted.

We now focus on the comparison of the second
half (stable state) raw time series for the three ana-
lyzed devices. Following [3], we report the time series

2

Experiment D1 D2 D3
95% CI σ 95% CI σ 95% CI σ

Baseline (SD card) [1.6;1.6] 0.2 [1.6;1.6] 0.8 [1.6;1.6] 0.3
SPASS-meter (SD card) [180.3; 180.4] 45.8 [148.8;148.9] 45.1 [159.0;159.0] 39.7
SPASS-meter (USB-HDD) [164.8; 164.8] 44.1 [156.4;156.4] 46.4 [164.8;164.8] 43.9
Kieker (SD card) [555.0;684.5] 73,893.1 [498.7;635.1] 77,779.6 [504.8;642.1] 78,353.5
Kieker (USB-HDD) [120.8;126.4] 3,193.7 [109.6;114.2] 2,612.1 [110.8;115.7] 2,809.4

Table 1: Summary of raw stable state response times as confidence intervals (CI) and standard deviation (σ).

characteristics in terms of (symmetric) confidence in-
tervals and standard deviation. Table 1 summarizes
the results for the three devices in terms of baseline
(taken from the SPASS-meter experiments, similar for
Kieker), SPASS-meter (Javassist instrumentation, in-
ternal SD card vs. USB harddrive) and Kieker (file
system logging, internal SD card vs. USB harddrive).
As the response time is measured by MooBench in
terms of nanoseconds, which is typically rather impre-
cise on Java (some technical reports state fluctuations
of about 400ns for Linux), we state the results with
one significant decimal place.

The response time measures for the baseline on all
three devices is very similar, i.e., we found identical
95% confidence intervals and only minor differences
in standard deviation. The confidence intervals of
the response times for SPASS-meter are rather nar-
row (maximum spread of 0.1 µs) and differ across the
devices in a range of only 32 µs. The experiments
with external USB harddrive lead to slightly higher re-
sponse times (except for D1) and even to overlapping
confidence intervals. Mean and median values of the
response times differ by at most 3 µs and the variance
is around one third of the mean response time. Com-
pared with the results for standard hardware in [6],
the mean response time on a Pi 3 device drops by fac-
tor 10 and the standard deviation is up to two magni-
tudes higher. The file system intensive benchmarks of
Kieker lead to significantly higher variance and wider
confidence intervals. Running the Kieker benchmarks
on the devices with external USB harddrive signifi-
cantly improves the response time and stabilizes the
results: The response time confidence intervals on all
devices are similar, tighter (spread of less than 5µs)
and also have lower variance (still about 24 times the
mean response time).

4 Conclusions and Future Work

Replication of performance experiments is a difficult
task. In this paper, we analyzed whether the Rasp-
berry Pi platform as a modern, cheap, single-board
computer can be a suitable for replicable technical
experiments. Setting up and distributing the instal-
lation of performance experiments among different Pi
devices is rather straightforward. The obtained re-
sponse time results indicate good replication capabil-
ities, in particular regarding the CIs of the observed

response times and their partial overlap. For SPASS-
meter, we even identified similar characteristics in all
aggregated time series (slope and humps). However,
the results of experiments with intensive file system
activities lead to (extremely) high variances. As a
mitigation, an external harddrive can be used. Then,
in addition to the Pi platform, a specification the stor-
age media is needed for successful replication.

We conclude that the Raspberry Pi platform is a
promising candidate to achieve replicable performance
experiments. Possibly, the next Raspberry genera-
tion will ease such experiments by providing a faster
storage interface and more memory. For explaining
the identified peculiarities such as the slope or the
variances, more detailed experiments are needed. In
future work, we aim at investigating how entire ex-
periments can be packaged in a replicable manner, for
instance, using the Docker infrastructure which is also
available for the Raspberry platform.

References

[1] A. van Hoorn, J. Waller, and W. Hasselbring.
“Kieker: A Framework for Application Perfor-
mance Monitoring and Dynamic Software Anal-
ysis”. In: International Conference on Perfor-
mance Engineering (ICPE ’12). 2012.

[2] H. Eichelberger and K. Schmid. “Flexible Re-
source Monitoring of Java Programs”. In: Journal
of Systems and Software 93 (2014).

[3] T. Hoefler and R. Belli. “Scientific Benchmark-
ing of Parallel Computing Systems: Twelve ways
to tell the masses when reporting performance
results”. In: International Conference on Super-
computing (SC’15). 2015.

[4] J. T. Leek and R. D. Pang. “Opinion: Repro-
ducible research can still be wrong: Adopting a
prevention approach”. In: Proceedings of the Na-
tional Academy of Sciences 112.6 (2015).

[5] J. Waller, N. C. Ehmke, and W. Hasselbring. “In-
cluding Performance Benchmarks into Continu-
ous Integration to Enable DevOps”. In: Software
Engineering Notes 40.2 (2015).

[6] H. Eichelberger, A. Sass, and K. Schmid. “From
Reproducibility Problems to Improvements: A
Journey”. In: Symposium on Software Perfor-
mance (SSP ’16). 2016.

3

	Introduction
	Experimental Setup
	Experimental Results
	Conclusions and Future Work

