Refactoring Kieker’s 1/O Infrastructure to Improve Scalability and

Extensibility

Holger Knoche
Kiel University, Software Engineering Group
24118 Kiel, Germany
hkn@informatik.uni-kiel.de

Abstract

Kieker supports several technologies for transferring
monitoring records, including highly scalable messa-
ging solutions. However, Kieker’s current I/O infra-
structure is primarily built for point-to-point connec-
tions, making it difficult to leverage the scalability of
these solutions.

In this paper, we report on how we refactored
Kieker’s I/O infrastructure to make better use of scal-
able messaging, improving extensibility along the way.

1 Introduction

Large software installations, especially those built on
microservices, steadily produce large amounts of mo-
nitoring data. In order to process this data, the mo-
nitoring infrastructure needs to scale as well. A fun-
damental building block of such infrastructures are
scalable messaging solutions, such as RabbitMQ! or
Apache Kafka.? Using these solutions, it is possible
to transparently distribute the load over a potentially
large group of processing nodes, thus providing the
required scalability.

However, to fully leverage the potential of these so-
lutions, certain conditions must hold. In particular, a
message producer must not assume that two messages
will be processed by the same consumer. As a conse-
quence, all messages must be self-contained, i.e. they
must be processable without knowledge of any previ-
ous messages. Furthermore, sending and receiving a
message may incur considerable overhead. Therefore,
sending large numbers of small messages should be
avoided.

Due to its extensible architecture, Kieker [1] sup-
ports numerous technologies for transferring monito-
ring data, including messaging solutions. However,
several parts of Kieker’s I/O infrastructure have been
designed with point-to-point connections in mind.
This is particularly true for the data formats and
transfer protocols. For instance, the default binary
data format uses string tables to avoid transferring
string values redundantly. However, the string ta-
ble entries are sent separately from the data. There-

Thttp://www.rabbitmq.com/
®http://kafka.apache.org/

fore, decoding the data is impossible without addi-
tional knowledge, thus violating the self-containment
requirement. In addition, the interfaces are designed
for processing one monitoring record at a time, which
may lead to an unneccessary high number of messages
being sent.

In this paper, we describe how we refactored
Kieker’s I/O infrastructure to make better use of mes-
saging solutions, thus paving the way for scalable mo-
nitoring based on Kieker. We furthermore highlight
how these refactorings also led to an improvement of
Kieker’s extensibility. The remainder of this paper is
structured as follows. In Section 2, we describe the
situation before the refactoring in further detail. Sec-
tion 3 presents the refactorings that were applied. A
short performance evaluation is presented in Section 4,
and Section 5 concludes the paper.

2 Situation Before Refactoring

Currently, Kieker’s I/O infrastructure consists of two
separate parts, namely readers and writers, which are
contained in different components. While all readers
are contained in the kieker-analysis component, all
writers are part of the kieker-monitoring compo-
nent. Dependencies between these two components
are discouraged. Especially the kieker-monitoring
component is supposed to have as few dependencies
as possible since it is installed on the system to be
monitored.

For each medium to write monitoring records to,
a reader-writer pair is required. Writers are derived
from the AbstractMonitoringWriter class, which re-
quires the concrete writer to implement a method to
write a single monitoring record. Unlike writers, rea-
ders are part of Kieker’s configurable pipes-and-filters
architecture and thus a bit more complex. They are
derived from AbstractReaderPlugin, which requires
them to implement a read method. In addition, rea-
ders define an output port to which the read moni-
toring records are delivered for further processing by
other filters.

The choice of the data format as well as the trans-
port protocol are left to the developer of the reader-
writer pair. Most writers (and thus also the accom-

http://www.rabbitmq.com/
http://kafka.apache.org/

panying readers) use the String-based representation
of the monitoring records (e.g., the filesystem writers)
or the default fixed-length binary encoding provided
by the monitoring records themselves (e.g., the TCP
writer). Few writers such as the JMS writer use their
own means of serializing and deserializing the moni-
toring records.

The current infrastructure has some flaws, which
became apparent during the development of reader-
writer pairs for the Advanced Message Queueing Pro-
tocol (AMQP) used by RabbitMQ, and for Apache
Kafka. These pairs were supposed to use the de-
fault binary format, which, as previously noted, avoids
sending character strings redundantly by means of
string tables. However, the existing mechanism for
synchronizing the string tables between record pro-
ducer and record consumer turned out to be unsuit-
able for the intended use case. This mechanism works
as follows. Omnce a new string is encountered by a
writer, a special StringRegistryRecord is sent to the
reader before the actual monitoring record, contain-
ing the string and the assigned numeric ID. The reader
then updates its string table accordingly and is able to
decode the record. While this mechanism works rea-
sonably well with point-to-point connections, it does
not work in message-based settings as it assumes that
all records are processed by the same consumer.

A second flaw that became apparent was that there
is currently no support for sending multiple moni-
toring records as a single chunk of data. Messages
usually entail considerably more metadata than, for
instance, a network packet. Therefore, sending one
record per message can lead to a significant amount
of avoidable overhead.

The third flaw encountered during the development
results from the distribution of reader-writer pairs
over two components. Such pairs usually require client
libraries for the underlying technology, which are ex-
clusively used by the reader and the writer. But since
these are placed in separate components, the client
libraries must be declared as project dependencies,
leading to a high number of such dependencies. A
similar issue exists for test cases. Readers and wri-
ters are usually tested together; however, there is no
appropriate location for such tests.

3 Applied Refactorings

In order to address the previously described flaws, we
refactored Kieker’s I/O infrastructure as follows. The
primary goals of the refactoring were (i) to introduce
a reusable and flexible chunking mechanism, which
allows to package a set of monitoring records together
with the required metadata, and (ii) to restructure the
I/0O infrastructure in a way that reader-writer pairs
can be co-located in a separate component together
with their specific dependencies and tests.

For the first goal, we introduced the notion of a
collector on the monitoring side. A collector takes

Kieker-monitoring 2] Kieker-analysis 2]
AbstractMonitoringWriter AbstractReaderPlugin
writeMonitoringRecord(record) Iy
7y
ChunkingCollector 7~~~ ~|_GenericReaderPlugin
I
[— | T
I
I
|
i

Kieker-common g]
«interface» «interface»
IRawDataProcessor IMonitoringRecordDeserializer

)] [yrecords |

«interface»
IMonitoringRecordSerializer
| ecords(records, buffer) |

«interface» . «interface»
IRawDataWriter IRawDataReader
writeData (buffer, offset, length

A A

i i

I I

T T

! kieker-concrete-io ! =]
Concretewriter [e ConcreteReader

I

TestCases | | Specific |
! |Dependencies!

Figure 1: I/O infrastructure after refactoring

the place of the writer in the current state and is
therefore derived from AbstractMonitoringWriter.
The collector stores each incoming record in a queue,
which is inspected by a separate thread in regular in-
tervals. Once this thread detects that the queue con-
tains enough records to fill a chunk or that the records
have exceeded a given wait time, it removes the record
from the queue and passes them to a serializer.

Serializers are the second new concept introduced
by the refactoring. Since many client libraries op-
erate on binary data such as byte arrays and byte
buffers, we decided to restrict the responsibility of
the writer to actually writing the raw data, and to
provide reusable serializers for different data formats.
For transferring monitoring records and metadata, we
created an extensible container format capable of stor-
ing data in different formats. The default data format
is based on the existing binary format, however, the
string tables are generated individually for each chunk
and packaged together with the record data. After the
records have been serialized, the collector passes the
raw binary data to the actual writer.

On the analysis side, a similar structure was cre-
ated. Like the writer, the actual reader is only respon-
sible for receiving the raw binary data and passing
them to the further processing stages. The decod-
ing process is orchestrated by a generic reader plugin,
which deserializes the raw data using a deserializer
and feeds the decoded records into Kieker’s pipes-and-
filters architecture.

In order to avoid unnecessary technical depen-
dencies between the components, all participants of
the process operate only on interfaces located in the
kieker-common component. As evident from Fig-
ure 1, the concrete readers and writers can now be eas-
ily put into separate components together with their
specific dependencies and tests, thus also achieving
the second goal of the refactoring.

4 Performance Evaluation

Since major changes were made to Kieker’s I/0 in-
frastructure in the course of the refactoring, we inves-

Configuration 95% CI (in us) | o

Baseline [106.0;106.2] 21.0
Current infrastructure [152.8;152.9] 28.3
Collector (no bypass) [163.3;163.6] 64.9
Collector (bypass) [141.5;141.6] 40.3

Table 1: Response times measured by MooBench

tigated whether these changes led to significant per-
formance changes. In particular, we were interested
whether the reduced overhead due to fewer messages
would make up for the additional complexity intro-
duced by the collector and the (de)serializers. We
investigated the following evaluation questions:

EQ1 Does the refactoring have a (negative) perfor-
mance impact on the monitored application?

EQ2 To what extent does the chunking affect the
overall resource consumption when using a mes-
saging technology?

For investigating the first evaluation question, we cre-
ated “null” writers for both the old and the new infra-
structure which serialized incoming records, but dis-
carding the serialized data afterwards. We then used
the MooBench [2] benchmark to measure the moni-
toring overhead observable to the monitored applica-
tion. The benchmark was run on a Raspberry Pi 3
running at 1.2 GHz using Raspbian Jessie Lite and
Oracle JDK 1.8.0ul44 for the armhf platform.

Since the monitored application and the actual
writers were decoupled from each other by a queue
in a previous refactoring [3], we did not expect no-
ticeable changes. Surprisingly, as shown in Table 1,
the benchmark revealed a slightly higher overhead for
the new, collector-based infrastructure. As this ad-
ditional overhead could be removed by bypassing the
first queue and delivering the monitoring records di-
rectly to the collector, we assume that it was caused by
synchronization issues due to the two involved queues,
as it also occurred on a desktop machine. Thus, we
conclude that the refactoring does not have a negative
performance impact on the monitored application.

For investigating the second evaluation question,
we created a reader-writer pair for AMQP for both
the current and new, collector-based infrastructure.
Each writer was then put into a test rig which issued
monitoring records at a constant rate r. During a
run, the test rig determined the amount of CPU time
consumed by it once per second using the Java Man-
agement Extensions (JMX). The network throughput
was measured using the dstat tool. As this tool mea-
sures the network load of the entire system, we only
activated the SSH daemon on the Raspberry Pi, which
accounted only for a few hundred bytes per second of
network load during our tests. The respective readers
were connected to a CountingFilter to make sure
that the expected number of records were received.

Chunk 95% CI CPU 95% CI net
size in CPU sec. / sec. in KiB

Old writer [0.612;0.620] [1,913.7;1,914.2]
1 [0.768;0.780] | [2,706.4;2,710.3]

16 [0.460;0.477] [684.2:684.3]

32 [0.273;0.275] [639.9;640.1]

128 [0.340;0.356] [593.8;594.2)

1024 [0.338;0.352] [577.3;581.1]

Table 2: CPU and network utilization for » = 10000
records per second

The test rig was again deployed on the Raspberry
Pi, which has a 100 MBit ethernet connection. In
order to make sure that the writer would be able
to run at its full capacity, the message broker and
the reader were deployed on significantly more pow-
erful machines (an Intel Core i7-3770K with 16 GB of
RAM and an Intel Core i7-4500U with 8 GB RAM,
both with Gigabit network interfaces) connected to
the same Gigabit ethernet switch.

As obvious from the results shown in Table 2, the
network as well as the CPU utilization were reduced
significantly compared to the current state if an ap-
propriate chunk size was chosen. Notably, the CPU
consumption increased after reaching a low at a chunk
size of 32, an observation which we reserve for our fu-
ture work.

5 Conclusions and Future Work

In this paper, we have presented our refactoring of
Kieker’s I/O infrastructure to make better use of
scalable messaging, improving writer performance for
such situations along the way. Furthermore, we
achieved our goal of restructuring the infrastructure
for better extensibility.

In our future work, we intend to further inves-
tigate the dependency between chunk size, resource
consumption and record frequency, and to develop a
dynamically scalable monitoring infrastructure based
on the foundations created by our refactoring.

References

[1] A. van Hoorn, J. Waller, and W. Hasselbring.
“Kieker: A Framework for Application Perfor-
mance Monitoring and Dynamic Software Analy-
sis”. In: Proceedings of the 3rd International Con-
ference on Performance Engineering. 2012.

[2] J. Waller, N. C. Ehmke, and W. Hasselbring. “In-
cluding Performance Benchmarks into Continu-
ous Integration to Enable DevOps”. In: Software
Engineering Notes 40.2 (2015).

[3] H. Strubel and C. Wulf. “Refactoring Kieker’s
Monitoring Component to Further Reduce the
Runtime Overhead”. In: Proceedings of the 7th
Symposium on Software Performance. 2016.

	Introduction
	Situation Before Refactoring
	Applied Refactorings
	Performance Evaluation
	Conclusions and Future Work

