
Reporting of Performance Tests
in a Continuous Integration

Environment

Master’s Thesis

Alexander Barbie

February 8, 2018

Kiel University

Department of Computer Science

Software Engineering Group

Advised by: Prof. Dr. Wilhelm Hasselbring
M.Sc. Christian Wulf

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel, 8. Februar 2018

iii

Abstract

Software engineering becomes a more and more continuous development process. The com-
plexity of software products and its code increases and even minor changes of a single team
member can affect the whole product. Although a program’s performance is an important
quality criteria there is no proper framework to test performance. The existing frameworks
perform benchmarks, yet no performance tests. A performance test compares a benchmark’s
score against a predefined assertions for the score. The microbenchmarking framework
Java Microbenchmarking Harness (JMH) allows developers to write microbenchmarks for
the programming language Java. In order to report performance tests in a continuous
integration environment, we enhance the performance testing framework RadarGun. The
framework RadarGun runs performance tests via JMH and compares them against user
defined assertions. We enhanced the pipe-and-filter architecture of RadarGun. Therefore,
we split the execution filter of RadarGun to report each performance test one by one,
instead of reporting the results after all benchmarks were run. Hence, a user gets a progress
monitor in real time, when executing his performance tests with RadarGun.

Additionally, we developed two plugins that integrate RadarGun and report the results.
One plugin was developed for the continuous integration environment Jenkins. This plugin
includes RadarGun as post build step, to report the results by RadarGun. When including
our post build step in a build-pipeline configuration, a build fails, if a performance tests
score does not meet the required lower or upper bound of a corresponding assertion.
The results are visualized for each single build and in a build history. The build history
plots for each performance tests the results in a chart. Furthermore, performance tests are
comparable, if they were measured for the same run mode and timeunit. This plugin is
named RadarGun-Reporting and is hosted in Jenkins’ repository on GitHub.

The second plugin was developed for the integrated development platform Eclipse. De-
velopers can run performance tests manually. Therefor, we provide a launch configuration
and a view, similar to the unit testing framework JUnit. Finally, we demonstrate by an
example how to write performance tests and execute them with RadarGun.

v

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Document Structure . 4

2 Goals 7
2.1 G1: Improve the Performance Testing Framework RadarGun 7
2.2 G2: Develop a Jenkins Plugin to Execute and Visualize RadarGun 8
2.3 G3: Develop an Eclipse Plugin to Execute and Visualize RadarGun 8
2.4 G4: Write Performance Tests for Kieker . 8
2.5 G5: Feasibility Evaluation . 8

3 Foundations and Technologies 11
3.1 Foundations . 11

3.1.1 Performance Influences in Java Programs 11
3.1.2 Handling Performance Influences by Microbenchmarking 12
3.1.3 Defining a Performance Test . 14
3.1.4 Analyzing Performance Tests Statistically 15

3.2 Utilized Technologies . 19
3.2.1 The Integrated Development Environment Eclipse 19
3.2.2 The Java Benchmarking Harness (JMH) 19
3.2.3 The Pipe-and-Filter Framework TeeTime 21
3.2.4 The Monitoring Framework Kieker . 21
3.2.5 The Performance Testing Framework RadarGun 21
3.2.6 The Continuous Integration Environment Jenkins 23
3.2.7 The Javascript Plotting Framework CanvasPlot 24

4 Enhancing the Performance Testing Framework RadarGun 27
4.1 Improving the Pipe-And-Filter Architecture 27
4.2 Separating Performance Test Configurations from Benchmark Configurations 30
4.3 Creating an Import/Export Model for Performance Test Results 31
4.4 Supporting Progress Monitoring . 38

5 Reporting Performance Tests in Jenkins 41
5.1 Understanding the Stapling of Pages in Jenkins 41
5.2 Understanding the Rendering of Objects in Jenkins 44
5.3 Providing a Build Pipeline Step . 46

vii

Contents

5.4 Configuring a Build Pipeline . 49
5.5 Reporting a Single Build . 51
5.6 Reporting a Build History . 52

6 Reporting Performance Tests in Eclipse 55
6.1 Understanding the Eclipse Rich-Client-Platform 55
6.2 Providing a RadarGun Launch Configuration in Eclipse 56
6.3 Reporting Performance Test Results in Eclipse 58
6.4 Visualizing Performance Test Results in Eclipse 59

7 Application Example of RadarGun 61
7.1 Understanding the Benchmark Configuration by JMH 61
7.2 Defining Performance Tests in RadarGun . 63
7.3 Writing Performance Tests for the Kieker Framework 63

8 Feasibility Evaluation 67
8.1 Evaluating the Machine Identification . 68

8.1.1 Methodology and Test Scenarios . 68
8.1.2 Results and Discussion . 69
8.1.3 Threats to Validity . 69

8.2 Evaluating the Progress Monitoring . 70
8.2.1 Methodology and Test Scenarios . 70
8.2.2 Results and Discussion . 71
8.2.3 Threats to Validity . 80

8.3 Evaluating the Visualizing of a Build History 81
8.3.1 Methodology and Test Scenarios . 81
8.3.2 Results and Discussion . 82
8.3.3 Threats to Validity . 85

9 Related Work 89

10 Conclusions and Future Work 91

Bibliography 97

Appendix 101

viii

Chapter 1

Introduction

Software engineering becomes a more and more continuous development process. The
complexity of software products and its code increase and even minor changes of a
single team member can affect the whole product. To avoid integration failures, different
approaches were proposed over the past two decades. Although Booch [9] has already
named and proposed Continuous Integration (CI) in 1995, it took over one decade to get
reasonable acceptance for common paradigms for CI. In 2006 Martin Fowler introduced
this paradigms for CI in his paper ’Continuous Integration’ [17]. Continuous integration is
a development practice helping software engineers to develop software and updates bit
by bit. Usually, each team member integrates his bit of work at least daily. Thus, there are
multiple integrations daily. To detect errors as fast as possible, each integration is verified
by an automated build, including different functionality tests. If a developer changes a
method and the new code does not pass the functionality tests, the developer receive a
quick feedback with the corresponding errors. Hence, in CI it is crucial to provide many
different tests to verify as many functions as possible. If the system merely performs trivial
tests, there is only a nominal validity in the whole build process. Hence, an extensively
automatic testing is an essential feature in CI. In essence, CI helps to optimize the software
engineering process and reduces integration problems [17].

While functionality tests are already covered by continuous integration environments,
performance tests are not. In 1991 a first standard (ISO9126) for software quality was
established by the International Organization for Standardization (ISO). This standard was
refined to ISO/IEC25010 [26] and an overview is given in Figure 1.1. Eight categories
and 31 sub-categories are defined to evaluate the quality of software. These standards are
provided in a generic way and are not very detailed. Nevertheless, they help developers
to consider miscellaneous factors to enhance their products. As shown in Figure 1.1, a
program’s performance is a quality factor. Especially, time behavior and resource utilization
are still not covered properly by CI environments. Time behavior can be, e.g., execution
times, throughput, or response time. In this master’s thesis we focus on execution times
in the context of the programming language Java. Java is processed in Java bytecode and
executed by the Java Virtual Machine (JVM). There are different factors that influence a
Java program’s performance, e.g., garbage collection and the Just-In-Time (JIT) compiler,
which recompiles and optimizes the Java bytecode at runtime. The optimization process
is based on gained knowledge about the execution behavior. Hence, the performance of
program sections can differ significantly from run to run [23]. To measure the performance

1

1. Introduction

Functional
Siutability

• Functional
Completeness

• Functional
Correcteness

• Function
Appropiateness

Performance
Efficiancy

• Time Behaviour

• Resource
Utilization

• Capacity

• Co-existence

• Interoperability

• Appropriate
Recognizability

• Learnability

• Operability

• User Error
Protection

• User Interface
Aesthethics

• Accessbility

• Maturity

• Availability

• Fault Tolerance

• Recoverability

• Confidentiality

• Integrity

• Non-repudiation

• Authenticity

• Accountability

• Modularity

• Reuseability

• Analysability

• Modifiability

• Testability

• Adaptability

• Installability

• Replaceability

Software Product
Quality

Compatibility Usability Reliability Security Maintainability Portability

Figure 1.1. ISO/IEC 25010 standards for software quality [25]

of program functions there are different solutions. A trivial approach is to place timestamps
before and after the execution of a program section and compute the difference of both end
and start to obtain the runtime. In Section 3.1.2 we describe the disadvantages and pitfalls
of this and further approaches to benchmark runtime. To measure performance properly,
we utilize the microbenchmarking framework Java-Microbenchmarking-Harness (JMH) to
define benchmarks. However, benchmarking alone is still not sufficient for performance
testing. A benchmark becomes a performance test, if and only if it is compared against
predefined assertions. Due to the different runtime of program sections from run to run, this
assertions are intervals, e.g., time intervals with lower and upper bounds for the runtime.
Thus, we utilize the performance testing framework RadarGun [21], which is based on JMH
for running microbenchmarks and supports an automatically result comparison against
predefined and hardware dependent assertions for the runtime.

Since we are in the context of Java, we utilize Jenkins as CI system (see Section 3.2.6).
The advantage of Jenkins over other CI systems, e.g., Bamboo, is that Jenkins is community
driven under the Creative Commons Attribution Share-Alike license and everyone can
easily install custom plugins. Our Jenkins system uses JUnit [31] as unit testing framework.
JUnit verifies the correctness of a process and its result. To test for the correct results, JUnit
uses predefined assertions. If the result does not meet the assertion, either the assertion
is wrong or the tested method. However, there still is no tool in Jenkins for automatic
performance testing.

With this master’s thesis we make the following contributions: First, we enhance the
performance testing framework RadarGun, e.g., to allow a statistically rigorous analysis
of the measurements as suggest by Georges, Buytaert, and Eeckhout [18]. Second, we
introduce the enhanced RadarGun into the continuous integration system Jenkins to
automatically execute and visualize performance tests. Third, we introduce RadarGun to

2

1.1. Motivation

the IDE Eclipse and thus, enable software engineers to do performance testing during the
development process on a local machine. Finally, we demonstrate how to write performance
tests for two different frameworks.

1.1 Motivation

Among the correct execution of a program, its performance is an important factor. With the
growth of programs and services, loading and process times can increase. For example, if a
developer changes a method and builds, unknowingly, a bottle-neck that slows down the
entire program by 10 %, this should be highlighted during the build process. To address
this issue, different frameworks were developed (discussed in Chapter 9). However, none of
these frameworks is a proper performance testing framework. Although they all measure
the runtime, they often still ignore program influences, e.g., the JIT compiler. Hence, there
is a threat to the validity of these measurements. Additionally, there are no possibilities to
define assertions to compare the result against each other. Moreover, all these frameworks
have in common that they do not involve the hardware on which performance tests are
executed. However, the hardware is a crucial factor for the performance of an application.
Operations can be handled differently on different hardware and faster CPUs manage
instructions in less time than slower CPUs.

In 2017, a performance testing framework named RadarGun [21] was developed at the
University of Kiel. This performance testing framework is open-source and freely available.
Henning, Wulf, and Hasselbring [21] define requirements for a performance testing tool:
(1) Automatically and repeatedly execute the JVM and the program section of interest.
(2) Automatically aggregate measurements to a single, representative measurement score,

e.g., the minimum, the median, the maximum, or the average.
(3) Automatically differentiate between different machines on which the measurements

are collected.
(4) Use assertions to check whether the measurement score is within a time interval.
The first prototype performs hardware-dependent benchmarks and compares them against
predefined assertions. Thus, we use the potential of RadarGun to integrate it into an
continuous integration environment and help software engineers to create products with
a better quality management. Nevertheless, this prototype has to be enhanced. Although
RadarGun is built upon a Pipe-And-Filter architecture by utilizing the Pipe-And-Filter
framework TeeTime (see Section 3.2.3), the execution of benchmarks blocks the whole
process until all benchmarks have finished. Only after all benchmarks finished, they are
compared against the predefined assertions. Hence, there is no proper progress monitoring.
Thus, we enhance the architecture of RadarGun to break up the blockade and run and
report each performance test one by one. Thereby, the CI system is able to abort the build
process and report the feedback to the developer immediately after a performance test has
failed. To increase the validity of the performance tests, we also implement a statistically
rigorous analysis, which is suggested by Georges, Buytaert, and Eeckhout [18], into the

3

1. Introduction

result comparisons made by RadarGun. Therefor, we compute a confidence interval to a
predefined confidence level for each result and compare the predefined assertions against
this confidence interval. If a confidence interval undercuts or exceeds the lower or upper
bounds of an assertion, the performance test has failed. Thereby, we handle outliers, and
consequently limit the change of good and bad coincidence.

The advantage of using performance tests in automated builds in CI systems is the
storage of builds and the regularly restarting automatic build process. We collect a history
of all performance tests for all builds and are able to detect performance issues in a specific
build. Thereby, a performance trend of our product can be easily visualized. RadarGun
is executable by Jenkins and also by developers via a console. However, it solely exports
performance tests results measuring the average runtime per execution. A visualization
is missing entirely. Hence, we need to enhance this tool to be able to applicate it in a CI
environment. Consequently, we face the additional requirements
(5) Visualize the test results in a CI environment.
(6) Group performance tests in the visualization.
(7) Visualize performance tests with different run modes and measured timeunites.
(8) A possibility to manually execute and visualize performance tests.
Thus, we require tools that can utilize RadarGun, execute performance tests, and report
the results in a CI environment. An overview of our envisioned approach can be seen in
Figure 1.2. The enhanced RadarGun framework can be used in two different stages of the
development process. On the one hand, software engineers are able to run performance
tests manually. On the other hand, CI servers can run performance tests automatically
during the build process. Software engineers receive an output containing the performed
tests and results. In CI environments we obtain a history of builds and visualized re-
sults. Additionally, the comparison of performance tests and builds can be done in CI
environments.

1.2 Document Structure

The goals of this master’s thesis are presented in Chapter 2. We aim to improve the perfor-
mance testing framework RadarGun to a JUnit like framework for hardware-dependent
performance testing. In Chapter 3, we present foundations and technologies related to our
work. The enhancement of the performance testing framework RadarGun is accompanied
in Chapter 4. To allow the usage of RadarGun in a CI environment we create tools that are
usable in Jenkins and Eclipse. Therefor, we develop a Jenkins plugin that utilized Radar-
Gun to report and visualize performance tests as described in Chapter 5. Additionally,
the framework RadarGun is integrated into an Eclipse plugin to report and visualize the
results of RadarGun during runtime in Eclipse as described in Chapter 6. In Chapter 7
we demonstrate by an example how to write performance tests properly. We focus on a
detailed evaluation of our framework. In Chapter 8 we present and discuss our feasibility
evaluation. Finally, we discuss the related work to our approach in Chapter 9 and give a

4

1.2. Document Structure

User Machine Server Machine

Visualize in
Jenkins Plugin

Jenkins

run manually
automatic

testing

CanvasPlot

Number of tests: xxx
Successful: xxx

Errors: xxx

Failure: xxx

Eclipse Plugin

Results

Tests

RadarGun (using TeeTime)

JMH Benchmarks

Visualize in
Eclipse

Figure 1.2. An overview of our approach to execute and visualize performance tests in a CI environ-
ment

conclusion and features for future work in Chapter 10.

5

Chapter 2

Goals

Although, there are different benchmarking tools to analyze Java programs and visualize
these results in a CI system, e.g., Jenkins (see Section 3.2.6), none of these tools tests the
performance of Java programs hardware-dependent, as described in Chapter 9. Since the
hardware a program is executed on affects the program’s performance, this is a crucial
factor in performance testing. Henning, Wulf, and Hasselbring [21] define requirements
for a performance testing tool, here we extend these requirements to report performance
tests in a continuous integration environment, see Section 1.1. Additionally, we enhance
the parts, which are not well-implemented by Henning, Wulf, and Hasselbring [21].

2.1 G1: Improve the Performance Testing Framework Radar-
Gun

We enhance the performance testing framework RadarGun to satisfy the requirements
couched by Henning, Wulf, and Hasselbring [21]. Therefor, we improve its internal ar-
chitecture to extend the output by RadarGun. This improvement contains (1) an export
model for serialization and deserialization of results, (2) a statistically rigorous analysis
of performance test results, (3) a progress monitoring in real time, (4) and the separation
of performance test configurations from benchmark configurations. This improvement
of RadarGun’s architecture is needed, since it executes all benchmarks before reporting
the single results. Thus, a progress monitoring in real time is not possible. Furthermore,
the performance test configuration and the exported data can not be divided from the
benchmark configuration. Thus, we split up the benchmark execution stage to report a
benchmark’s result before executing the next one. To increase the validity of performance
tests, we add a statistically analysis to the comparator stage. This prevents the test from
failing, if 1 out of 100 execution does not meet the asserted time, due to a process that
corrupts the runtime. Furthermore, a statistically rigorous analysis reduces the possibility
that an automatic testing system or a user draws wrong conclusions from the results of a
performance test.

7

2. Goals

2.2 G2: Develop a Jenkins Plugin to Execute and Visualize
RadarGun

Due to the evolution of programs managed in CI environments, the utilized data structures
and changed program code can influence the runtime of these programs. Developers
want to see whether a new data structure’s efficiency performs better, worse or same as
before. Thus, we develop a plugin to utilize RadarGun for automatic performance testing
in the CI environment Jenkins. We utilizes Jenkins’ User Interfaces (UI) to report and
visualize performance tests. The reports can be shown for single builds or a set of builds.
Furthermore, a history of all performance tests for all builds will be bundled into one
overview page for each project. Additionally, this feature allows to compare equivalent
tests on different versions of a program.

2.3 G3: Develop an Eclipse Plugin to Execute and Visualize
RadarGun

RadarGun lacks of a comfortable way to be used in the development process. So far, all
tests have to be run in a console or from within the IDE by providing a dedicated Main
class. To allow the usage of RadarGun in the development process of software engineers,
we develop a plugin for Eclipse that visualizes the reported test results similar to its unit
test plugin JUnit. Therefore, we include an extra view for RadarGun in Eclipse and support
the configuration of custom launches. The results will be reported and visualized in real
time.

2.4 G4: Write Performance Tests for Kieker

In The Performance Testing Framework RadarGun the performance test framework RadarGun
was proposed and evaluated with performance tests for the Pipe-And-Filter Framework
TeeTime. To evaluate a second framework, that is, to increase the external validity, we
write performance tests for the monitoring framework Kieker and execute them with
RadarGun. Since Kieker already utilizes the monitoring overhead benchmarking framework
“Performance Benchmarking of Application Monitoring Frameworks” [54], we will compare
our results with the results reported by “Performance Benchmarking of Application
Monitoring Frameworks”.

2.5 G5: Feasibility Evaluation

After reaching the first three goals, we introduced the performance testing framework
RadarGun to a CI environment for automatic testing and the IDE Eclipse for manually

8

2.5. G5: Feasibility Evaluation

testing. Thus, we have to ensure that our integration of the different tools works correctly.
Due to a lack of possibilities to automatically test our approach, we conduct a feasibility
study to show our environment works correctly. This evaluation is performed on at least
two different systems.

9

Chapter 3

Foundations and Technologies

In the following, we introduce the theoretical and technical background required to
understand our approach for reporting performance tests in a continuous integration
environment. We utilize a composition of different frameworks, which solve subtasks,
in the CI environment. The theoretical background is introduced in Section 3.1. The
frameworks we utilize are introduced in Section 3.2.

3.1 Foundations

As described in Section 1.1, our entire development environment is situated in the context
of the programming language Java. Although, various categories in Figure 1.1 are already
covered by automatic testing in a CI environments, performance testing is not. Especially,
time behavior and resource utilization are still not covered properly. Time behavior can
be, e.g., execution times, throughput, or response time. In this master’s thesis we focus on
execution times. To report performance tests, the performance tests have to be executed
first. Due to different influences, the performance of Java programs can differ from run
to run. In the following, we introduce some core aspect we have to consider to measure
performance properly. Subsequently, we discuss how to avoid some pitfalls in performance
testing and how to analyze the results of performance tests.

3.1.1 Performance Influences in Java Programs

One factor that influences a program’s performance is the hardware the program is executed
on. The heart piece of each computer system is the Central Processing Unit (CPU). A CPU
can execute solely a few specific instructions, which are called assembly or binary code.
Thus, all applications must be translated into these instructions before a CPU is able
execute them [44]. Since writing binary or assembly code can be quite laborious, different
programming languages were developed, allowing us writing code similar to giving orders
in our natural language. The programming language Java is taking advantage of the
platform independence of scripting languages and the better performance of compiled
languages. Applications are compiled into an assembly language, the Java bytecode. This
Java bytecode is then interpreted by the Java Virtual Machine (JVM) giving it the advantage
of an interpreted language [44].

11

3. Foundations and Technologies

Just-in-Time Compilation (JIT) [44] is part of the JVM and compiles Java bytecode into
machine code at run time after the application has started. Hence, methods are not compiled
until the first time they are called. The JVM maintains a call count for each method that is
called and increments it every time the method is called. Until its call count does not exceed
a specific threshold for JIT compilation, the method is interpreted but not compiled by the
JVM. Frequently used methods are compiled soon after the application and JVM started.
Afterwards, the call count will be reseted and the procedure starts from the beginning.
Reaching the threshold again leads to a recompilation with further optimizations of the
method. Less-used methods are compiled later or are sometimes never compiled [24]. Thus,
Java benefits on the one hand from the platform independence of interpreted languages,
on the other hand of the performance of compiled languages. All in all, the JIT compilation
helps to balance startup times and long term performance. Due to Oaks [44], the compiler
influences the performance of a JVM most.

Warm-up Time defines the time the JVM needs, e.g. for class loading and bytecode
interpretation. Starting the JVM the first time leads to possibly thousands of method calls.
Compiling all of these methods can significantly affect startup time. Lion et al. [41] found
that this class loading and bytecode interpretation is a recurring overhead and can be
a performance bottleneck. Notice that most of the JIT compilation is performed in the
warm-up phase.

Garbage Collection is the automatic memory management done by Java. This is one of
the advantages of Java over other programming languages like C or C++. Garbage Collection
(GC) describes the process of reclaiming memory occupied by objects that are no longer
in use by the application. The GC identifies which objects are in use and which are not
and reclaims the memory of the unused method by deleting it. An object is in use, if some
part of an application still maintains a pointer to that object. An object that is no longer
referenced by any part of the application is unused [47].

Heap Size represents the size of a repository that collects referenced objects, unused
objects, and free memory. Unused objects are ready for garbage collection. This heap size
can be specified manually. On the one hand, for a large heap size full garbage collection is
slower. On the other hand, it occurs less frequently. If the heap size is small, full garbage
collection is faster, but occurs more frequently.

3.1.2 Handling Performance Influences by Microbenchmarking

Benchmarking is used to compare and analyze the results or processes of program execution
based on specified measurement criteria. If we measure, e.g., the runtime of a program,
we receive the time elapsed from start to end of the execution. This leads to a metric
allowing us to compare the execution times of a program. Due to many influences possibly

12

3.1. Foundations

corrupting the runtime of an application, we do not want to measure the execution time
of an application as a whole, but the execution time of single methods. Hence, we intend
to use microbenchmarks. Microbenchmarking is used to measure the runtime of small
segments of code, although the size of these small segments is not defined clearly.

Java allows to measure runtime in a trivial way. In the following, we discuss two
different approaches to measure the runtime with Java and explain why they do not
measure runtime exactly. For this purpose, we generate pseudo random numbers with the
Random class provided by Java and measure the execution time of the function generating
this random numbers.

1 final Random random = new Random();

2 final long start = System.nanoTime();

3 random.nextInt();

4 final long end = System.nanoTime();

5 System.out.println(end - start);

Listing 3.1. A first approach to measure execution time.

A first naive approach is shown in Listing 3.1. We just put timestamps before (Line 1)
and after (line 4) the random number has been generated (Line 3). The difference of end
and start (Line 5) represents the time past between both timestamps. Taking account of
Section 3.1.1, we can not ensure that this measured execution time represents the real
execution time. For example the execution could have taken more time, due to the warm-up
of the JVM. This approach considers none of the performance influence we describe in
Section 3.1.1. A machine’s background processes can always decelerate a method. However,
there are even worse negative factors, since there is no warm-up time for the JVM. Thus,
the JIT compiler does not optimize the method and following the Java bytecode, yet not
the machine code, is interpreted. Since the executing machine code is faster than executing
Java bytecode, this impairs the performance of any method. Consider Listing 3.2 which
shows an improved measurement approach.

The measurement is outsourced into a separate method (Line 3) which can be executed
several times to warm-up the JVM. Furthermore, the loop generates random numbers
100.000 times (Line 6´ 8). Consequently, there are many more measurements than in the
first approach in Listing 3.1. This reduces random factors that impair the method. However,
the JIT compiler could still optimize the generation of a random number, e.g. by generating
some random numbers inline without iterating the loop 100.000 times. This distorts the
comparing metric, since all the iterations do not necessarily take 100.000 times longer than
one iteration.

13

3. Foundations and Technologies

1 final Random random = new Random();

2
3 void testPerformanceRandom() {

4 final long start = System.nanoTime();

5
6 for(int i = 0; i < 100000; i++) {

7 random.nextInt();

8 }

9
10 final long end = System.nanoTime();

11 System.out.println(end - start);

12 }

Listing 3.2. A better approach to measure execution time.

The key disadvantage of the second approach is the lack of isolation between methods
with the same purpose, yet different implementations. If we want to compare the random
number generation with two different implementation of this method (e.g., Random and
SecureRandom) and we run them one after another, than one of the methods could leave
garbage and an active GC distorts the whole measurement. This problem is solvable with
a sophisticated thread management. Therefore, we use the open-source framework Java
Microbenchmarking Harness (JMH) (see Section 3.2.2) that considers all this problems
by running benchmarks in separate threads. However, we still have to consider this and
other pitfalls, if we aim to test performance of an application correctly. We demonstrate in
Chapter 7 by an example how to write a performance test properly.

3.1.3 Defining a Performance Test

We already mentioned in Chapter 1 that benchmarks are no proper performance tests.
Benchmarks are performed to measure the execution time of methods, neither more, nor
less. To judge whether a method performs well or not, we require a reference point to
compare the given results with. When performing such benchmarks, we intuitively compare
the measured time with a time we expect for this method to run. This comparison we do
in our minds. Hence, we generate the result whether a execution performed as expected or
not, ourself and not computer that executes the benchmark. Moreover, other developers
do not know which execution time we expect for benchmark, if we do not communicate
this time. Therefor, we define that a performance test needs an assertion for the execution
time a benchmark has to meet. Whether the benchmark meets this assertion or not, decides
whether the benchmark was successful or has failed.

Since, a benchmark’s performance can always differ from run to run [23], we need a
metric that gives us evidence, if a benchmark performed well or not. Two good metrics

14

3.1. Foundations

are throughput and execution time per task. When measuring the throughput, we want to
know how often a task can be executed in a given time. Measuring the execution time per
task is the exact opposite of measuring the throughput. Measuring the execution time per
task computes how much time a task needs for one single execution. However, there are
more metrics to measure performance. Nevertheless, all of them have in common that they
can be evaluated by a cardinal scale. Unlike functional tests, the assertion can not be a
single value the test’s output can be tested against. We mentioned and discussed different
performance influences in Section 3.1.1. By properly avoiding performance influences the
deviation of single method executions from the mean of all executions does not vary too
much. However, a method can return prematurely, due to an invalid argument exception,
e.g., by code changes. Thus, it takes less time (or more executions) than usually. Vice versa,
a new and slower mechanism can suddenly impair the whole method. Thus, the assertion
for a runtime should specify an expected lower and upper bound. Therefore, we retain that
a assertion for performance testing is a closed interval with lower and upper bounds on
the metric we are measuring.

When testing the execution time per task of a method with a given assertion, the time unit,
which we decide for, is important for the comparison and comprehensibility. If we measure
a task’s average runtime in milliseconds, yet compare it against the assertion interval given
in seconds, this can lead to wrong conclusions. Due to rounding errors, it is possible that
we corrupt our measurements this way. Vice versa, if we measure the time in seconds
and define assertions in milliseconds, for example the interval [123456.789, 987654.321],
the computer can convert the units and compare them. However, we can not compare the
results intuitively. Instead we must convert this values ourself, since a comparison of two
different units is more complicated and fault-prone. Therefor, we retain that the time unit
we measure is exactly the same unit the assertions are defined for.

A crucial factor for the runtime and number of computations is the hardware a com-
putation is performed on. A faster CPU executes more operations in less time and thus,
a benchmark performs better. Vice versa, a benchmark performs worse on a slower CPU.
Thus, performance tests have to consider the hardware they are performed on and hence
are always hardware-dependent.

In summary, a performance test is a benchmark whose result is compared against an
hardware-dependent assertion. Assertions are intervals with a lower and upper bound and
are defined for exactly the same unit which the benchmark is defined for.

3.1.4 Analyzing Performance Tests Statistically

To reduce the drawing of incorrect conclusions from performance test results, a statistically
rigorous data analysis of the results is recommend by Georges, Buytaert, and Eeckhout
[18]. The goal is to eliminate wrong conclusions from the measured data as good as
possible. Therefore, we classify errors in the measured data in two main groups: systematic
errors and random errors. Within the scope of performance testing systematic errors occur
on mistakes in the design of benchmarks. This leads a bias into the measurements, which

15

3. Foundations and Technologies

can corrupt the accuracy of the results. Furthermore, these errors can not be eliminated
by the statistically analysis, since it is up to the benchmark writer to control and prevent
systematic errors [18]. The errors which benchmark writers are unable to control or prevent
are random errors. These errors are unpredictable and non-deterministic [18]. Since they can
corrupt performance tests in way to increase or decrease the measured runtime, they are
unbiased. In Section 3.1.1 we describe some sources that influence a program’s performance.
Although, we describe in Section 3.1.2 how to handle performance influence by proper
microbenchmarking, it is not always possible to prevent outliers, due to unexpected events
in the system the tests are performed on. Hence, outliers need to be evaluated whether they
are a result of an unexpected external event. In this case they may corrupt the data and
thus need to be handled. Georges, Buytaert, and Eeckhout [18]"[...] advocate discarding
outliers and applying statistically rigorous data analysis to the remaining measurements".

Since we can not discard outliers in our measurements (see Section 3.2.2), we require
a proper statistical model to handle unpredictable random errors. For this purpose, we
use confidence intervals to draw better conclusions from the measurements. A confidence
interval is a statistical interval estimator that is computed from the measured data. These
intervals are closely related to statistical significance testing. If a corresponding hypothesis
test is performed, the significance level is the probability of rejecting the null hypothesis
when it is true. For example, a null hypothesis implies there is no difference between a
population mean and a sample mean. If the null hypothesis is rejected, there is a significant
difference between both means. The confidence level is the complement of the level of
significance. A confidence level says, if the same population is sampled on numerous
occasions and interval estimates are made on each occasion, the null hypothesis is accepted
with the given level of confidence. E.g., a 95% confidence level reflects a level of significance
of 5%. Thus, if the null hypothesis is not reject, the resulting intervals would bracket the
true population parameter in approximately 95% of the cases.

Note that the desired level of confidence is set by the tester and not by the measured
data. We use confidence intervals to draw better conclusions from performance tests. Since
we do not execute an infinity number of measurements, we do not know the true mean of
a method’s performance. Thus we have to estimate, whether our measured mean is near
the true mean or not. This estimation is done by confidence intervals. In the following, we
give a mathematical introduction to confidence intervals and how they are estimated.

Estimating the confidence interval

The definition of confidence intervals is based on [27]. We are given a random experiment
E(χ , (Wθ)θPΘ) with sample space χ = (X1, ..., Xn) Ď Rd, X1, . . . , Xn are random variables,
and a family of probability measures (Wθ)θPΘ = (PX

θ)θPΘ. Let Θ be the parameter space,
which holds the unknown parameters on which the distribution of X depends. For any
experiment outcome ω, X(ω) is referred to as the data. In the following, we will identify the
observed samples x Pχ as its realization. (PX

θ)θPΘ is a family of probability distributions.
Further, let P(Θ) be a power set of Θ.

16

3.1. Foundations

Now we want to specify the experiment. First, let χ1 Ďχ , χ1 Ă R be our sample and
θ = (µ, σ2

0) P Θ Ă RˆR holding the unknown mean µ of χ and for the moment assumed
to be known variance σ2

0 . The random variables Xi Pχ1 are independent and identically
N (µ, σ2

0)-distributed. For each µ we are using the two-tailed Gaussian test, to test if the
null hypothesis H0µ = {µ} and the alternative hypothesis H1µ = {b : b ­= µ} satisfy

Φµ(x) =


1,

√
n¨|xn´µ|√

σ2
0

ą u α
2

0,
√

n¨|xn´µ|√
σ2

0
ď u α

2

.

For any xi P χ1 the mean xn of all the measurements is defined as

xn =
1
n

n

∑
i=1

xi .

Since we are given a test with significance level α P (0, 1), one has

1´ α = W(µ,σ2
0)
({x : Φµ(x) = 0}) = W(µ,σ2

0)
({x : |xn ´ µ| ď

√
σ2

0
n

u α
2
}) .

Hence, we define

c1(x) = xn ´

√
σ2

0
n

u α
2

and c2(x) = xn +

√
σ2

0
n

u α
2

. (3.1)

and get for any µ P R :

W(µ,σ2
0)
({x : c1(x) ď µ ď c2(x)}) = 1´ α .

By consequence, any unknown value of µ is located with a probability of 1´ α in the interval
[c1(x), c2(x)]. Notice that the values for u α

2
in general are obtained from a precomputed

table for Gaussian distributed values like in [50].

Since we do not know the true mean and variance of our performance tests, one has
to exchange the Gaussian two-tailed test with the two-tailed t-test. Again, the random
variables Xi Pχ1, 1 ď i ď n, are independent and identically N (µ, σ2)-distributed. In
this case the variance σ is unknown. The null hypothesis is, again, given as H0 and the
alternative hypothesis as H1. To determine a confidence interval, H0 and H1 must satisfy

Ψµ(x) =


1,

√
n¨|xn´µ|√

1
n´1 ∑n

i=1(xn´µ)
ą f (tn´1, α

2)

0,
√

n¨|xn´µ|√
1

n´1 ∑n
i=1(xn´µ)

ď f (tn´1, α
2)

.

17

3. Foundations and Technologies

Thus, one has
c11(x) = xn ´

√
∑n

i=1(x´ xn)2

n(n´ 1)
f (tn´1,

α

2
) ,

c12(x) = xn +

√
∑n

i=1(x´ xn)2

n(n´ 1)
f (tn´1,

α

2
) ,

(3.2)

whereas one has for any µ P R and any σ2 ą 0:

W(µ,σ2
0)
({x : c11(x) ď µ ď c12(x)}) = 1´ α .

Notice that the values for f (tn´1, α
2) in general are obtained from a precomputed table for

Student’s t-distributed values like in [50].

Example for calculating a confidence interval

After introducing the confidence interval mathematically, we now translate theory into
practice. When using a common probability measure Pr[c1 ď µ ď c2) = 1´ α for an
unknown mean µ and the variance σ, one has exactly the definition used by Georges,
Buytaert, and Eeckhout [18]. µ and σ are unknown, because we neither know the true mean
of a method’s performance nor the standard deviation. Thus, we have to estimate, whether
our measured mean and standard deviation are in range of µ and σ or not. Georges,
Buytaert, and Eeckhout [18] distinguish in their method to calculate confidence interval
between the sizes of a given sample. If a sample’s size is n ě 30, they assume a Gaussian
distribution of the data, due to the central limit theory. Then the confidence interval can be
estimated by Equation 3.1. In case of n ă 30 they assume a Student’s t-distribution and
the confidence intervals can be calculated by Equation 3.2. Since the microbenchmarking
framework JMH (see Section 3.2.2) exclusively uses the Student’s t-test and hence the
t-distribution to compute confidence intervals [48], we can solely give an example using
Equation 3.2.

We are given a sample of 30 executions of a performance test (the sample’s size
is n = 30) and the average runtime xn = 24.378 ns (nanoseconds), standard deviation
σ = 1.228 ns, and we define a confidence level γ = 0.95. Hence, one has the level of
significance α = 1´ γ = 0.05. Then one has the following confidence interval for the
confidence level γ:

c1 = xn ´ f (tn´1,
α

2
) ¨

σ√
n
= 24.378´ f (29, 0.025) ¨

1.228√
30

« 24.378´ 1.699 ¨ 0.224

« 23.997 ,

18

3.2. Utilized Technologies

c2 = xn + f (tn´1,
α

2
) ¨

σ√
n
= 24.378 + f (29, 0.025) ¨

1.228√
30

« 24.378 + 1.699 ¨ 0.224

« 24.759 .

By conclusion, the true mean of the performance test’s runtime is with a probability of
95% within the confidence interval [23.997, 24.759]. Notice that we obtained the value
f (tn´1, α

2) = 1.699 from the precomputed table for the Student’s t-distribution in [50] with
confidence level γ = 0.95 and n´ 1 = 29 degrees of freedom.

3.2 Utilized Technologies

In this master’s thesis, we report performance tests in a CI environment build upon
infrastructure in the programming language Java. Thus, we assume a good knowledge of
Java. In the follow, we briefly introduce the utilized frameworks.

3.2.1 The Integrated Development Environment Eclipse

Eclipse [16] is an IDE released in 2001 by, in the present known as, the Eclipse Foundation
and is one of the most used Java IDEs. The Eclipse software development kit (SDK) is free
and open-source software, released under the terms of the Eclipse Public License [16]. It
is operating cross platforms, e.g., Linux, macOS, Solaris, and Windows. A selectable base
workspace and an extensible plugin system allows to customize the environment. Although
Eclipse is mostly written in Java and is mostly used to develop applications in Java, it may
also be used to develop applications in other programming languages, e.g., C, C++, PHP
and Erlang. Its run-time system is based on Equinox [42]. Equinox is an implementation
of the OSGi R51 core framework specification [42]. With the release of version 4.2, called
Juno, Eclipse was restructured to allow the development of custom client applications. We
introduce the Eclipse Rich-Client-Platform in Section 6.1. The old IDE was migrated into
an compatibility layer to allow old plugins to still run on new Eclipse versions. This is
described in more detail in Section 6.1.

3.2.2 The Java Benchmarking Harness (JMH)

In Section 3.1.2 we mentioned different pitfalls in microbenchmarking. The open-source
framework Java Benchmarking Harness (JMH) [45] is part of the open-source framework
OpenJDK and is a Java harness for building and running benchmarks. Different modes
like throughput and time per task can be measured. It supports a granularity of time in
nano-, micro-, milli-, and seconds. Due to its annotation based concept, the customization
for performance benchmarking is very flexible. Developers can, e.g., specify the number

1https://www.osgi.org

19

https://www.osgi.org

3. Foundations and Technologies

of separated execution environments, the number of executions, the run mode and the
measured time unit. After performing a benchmark different statistics are computed and
attached to the run results. We utilize the build-in method to compute the confidence
intervals, which we described in Section 3.1.4. JMH utilizes the library Apache Commons
Math [1] to calculate confidence intervals from the measurements. Notice that JMH uses
the Student’s t-distribution2 to compute confidence intervals for a given confidence level.
Furthermore, it does not eliminate outliers before computing the confidence interval. By
default a confidence level of 99, 9% is reported by JMH. However, obtain the confidence
interval for every confidence level we pass to JMH.

1 @Warmup(iterations=5)

2 @Measurement(iterations=50)

3 @Fork(2)

4 @BenchmarkMode(Mode.AverageTime)

5 @OutputTimeUnit(TimeUnit.NANOSECONDS)

6 @State(Scope.Benchmark)

7 @Thread(1)

8 public class PerformanceTester {

9
10 private final Random random = new Random();

11 private final SecureRandom secureRandom = new SecureRandom();

12
13 @Benchmark

14 public void testPerformanceRandom(BlackHole blackHole) {

15 blackHole.consume(random.nextInt());

16 }

17
18 @Benchmark

19 public void testPerformanceSecureRandom(BlackHole blackHole) {

20 blackHole.consume(secureRandom.nextInt());

21 }

22 }

Listing 3.3. Configuring a benchmark with JMH

In Listing 3.3 we introduce JMH to our previous example of benchmarking the generation
of random numbers. This setup considers some warm-up iterations (line 1) and a number
of measurements to perform (Line 2). Further, the random number generation is integrated
into methods we perform benchmarks on. Each annotation @Benchmark (Line 12&17) defines

2http://hg.openjdk.java.net/code-tools/jmh/file/25d8b2695bac/jmh-core/src/main/java/org/openjdk/jmh/util/

AbstractStatistics.java

20

http://hg.openjdk.java.net/code-tools/jmh/file/25d8b2695bac/jmh-core/src/main/java/org/openjdk/jmh/util/AbstractStatistics.java
http://hg.openjdk.java.net/code-tools/jmh/file/25d8b2695bac/jmh-core/src/main/java/org/openjdk/jmh/util/AbstractStatistics.java

3.2. Utilized Technologies

a benchmark to perform. Notice that unlike the Random3 class the class SecureRandom4

generates cryptographically secure random numbers. Furthermore, it is important to
consume the computed random numbers. Otherwise, the JVM possibly optimizes the
random number generation based on the observation that the benchmark code does not
make use of these [51]. Thus, JMH provides an object named Blackhole, which is used
when it is not convenient to return a single object from a benchmark method [45]. In
Section 7.3 we describe how to write benchmarks by an example we use for our feasibility
evaluation in Chapter 8.

3.2.3 The Pipe-and-Filter Framework TeeTime

The Pipe-and-Filter (P&F) framework TeeTime [57] was developed at the University of
Kiel. It is a framework to support the development of applications based on this style of
architecture, e.g., applications processing streams of data. Users can create custom stages
(filters), pipes, ports and whole configurations in an easy way. Additionally, it contains many
primitive and composite ready-to-use stages. Teetime supports the possible performance
improvement of P&F architectures, since it allows a single-threaded execution, with no
overhead, or a multi-threaded execution, with minimal overhead [56]. The architecture of
the abstract and generic filters makes it easy to implement our own stages and to connect
them with other filters, in a type-safe way. Stages support incoming and outgoing ports.
Pipes connect an outgoing port of one stage with the incoming port of a following stage. A
configuration defines which filters are connected. In Section 3.2.5 we describe a framework
we use for performance testing which is based on TeeTime.

3.2.4 The Monitoring Framework Kieker

The Kieker Monitoring Framework [22] was developed at the University of Kiel and is
a framework for monitoring and analyzing the runtime behavior software systems. To
monitor already compiled applications, Kieker uses aspect-oriented programming [37]
in its configurations. The monitored data is persisted in files containing probes. A key
requirement for Kieker is a preferably small overhead. Therefor, a performance testing tool
for the overhead was introduced by Waller [54] named MooBench. Since Kieker is actively
used and continuously developed, we write performance tests to test its performance
automatically with RadarGun. We evaluate RadarGun by using performance tests for
Kieker in Chapter 7.

3.2.5 The Performance Testing Framework RadarGun

The performance testing framework RadarGun [20] was developed in a student research
project by Henning [19] at the University of Kiel. The testing mechanisms are based

3https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
4https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html

21

https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html

3. Foundations and Technologies

on microbenchmarking with JMH. After performing microbenchmarks, the results are
compared with predefined assertions regarding to a time interval the test should be
performed in. The key advantage over other frameworks is the hardware-dependent
performance testing. RadarGun allows the configuration, in YAML files, of hardware-
dependent assertions and automatically detects the hardware the tests are performed
on. The assertions have a similar purpose like in JUnit and consist of a lower and upper
bound for the average runtime. If the performance test’s average runtime does not meet
the time interval given in the assertion, the test fails. The results are exported including
the performance test’s name, the average runtime, the assertion interval, and whether
the test finished successfully or has failed, to CSV files. The test results are importable
and can be plotted by external tools. In [19] the Jenkins plugin [13] visualizes the test
results in a line plot, including lower and upper bounds. As shown in Figure 3.1 RadarGun

Benchmark
Runner DistributorResults

Comparator

Results
Printer

CSV Exporter

Exit on Fail Stage

Figure 3.1. The architecture of the performance testing framework RadarGun [19]

is based on a P&F architecture. This architecture is realized with the P&F framework
TeeTime (see Section 3.2.3). The Benchmark Runner stage executes all tests, before it passes
the results further to the Results Comparator stage. This stage looks up the assertions
for each performance test and compares the results with the assertions. Subsequently, a
complete test result for each performance test is created and written in multiple outputs
files, regarding the overall result, whether it has failed or not. Hence, no proper progress
monitor can be shown.

Although Henning, Wulf, and Hasselbring [21] argue that RadarGun’s performance
test configurations are separated from the benchmark configurations, this is not well-
implemented. Performance test are configured in a text file using the data format standard
YAML [6]. In Listing 3.4 we show an example configuration. This file can contain several
different configurations. Each configuration is separated by — (line 1), followed by three pa-
rameters. The Identifier (line 2) takes one of the possible identification strategies presents
in Table 3.1. Since the performance tests are hardware-dependent, this identification is
required. Identifiers such as the MacAddressIdentifier, require specific parameters, which
are defined in Parameters (line 3), e.g., [’aa:bb:cc:dd:ee:ff’]. Since these parameters are

22

3.2. Utilized Technologies

Table 3.1. Usable machine identifiers in performance test configurations.

Machine Identifier Required Parameter(s)

NetworkAddressIdentifier [IP or host name]

MacAddressIdentifier [Mac Address]

WindowsComputernameIdentifier [Windows computer name]

WildcardIdentifier []

DismissIdentifier []

defined in an array, more than one parameter can be set. Hence, performance tests can be
defined for several machines. Performance tests are defined as a list in tests (line 4´ 7).
Notice, that the benchmark’s name is its full qualified name and each benchmark starts
in a separate line and is tab-indented. Assertions are described by closed intervals [lower
bound, upper bound].

1 ---

2 identifier: WildcardIdentifier

3 parameters: []

4 tests:

5 java.example.benchmarkA: [15, 17]

6 java.example.benchmarkB: [19, 21]

7 java.example.benchmarkC: [14, 16]

Listing 3.4. A performance test configuration for RadarGun

3.2.6 The Continuous Integration Environment Jenkins

The main goal of this master’s thesis is to support the quality management in a continuous
integrate environment. Continuous integration is a development practice [17] helping
software engineers to develop software. An overview of the process of CI is illustrated
in Figure 3.2. Developers add their source code to a source control system, e.g. GIT. The
commit triggers an automatic build process. While building the software, functional testing
starts automatically, to verify the correctness of a method and its result. If a test fails, the
whole build process stops. After the build and testing process, developers receive a result,
whether the build has failed or finished successfully. If the build has failed, the developer
receives an E-Mail containing the test results. In 2004 Sun Microsystems published Hudson
[46], an extensible continuous integration server. Jenkins is a fork of the CI tool Hudson
and an open-source platform [53]. The advantage of Jenkins over other CI systems, e.g.
Bamboo, is that Jenkins is community driven under the Creative Commons Attribution

23

3. Foundations and Technologies

S
o
u
rce

C
o
n
tro
l

A
u
to
m
at
ic

Te
st
in
g

Development

Build

commit

triggered on
commit

test

report
results

Figure 3.2. Workflow in CI

Share-Alike license and everyone can easily add custom plugins. It is built upon a plugin
architecture and allows the installation of custom plugins. Thus, each CI environment
customizable and configured as one desires. Due to its architecture, Jenkins is usable by
developers that write products in different programming languages than Java, e.g., C++, C,
Ruby etc.. The community of Jenkins is the largest in the context of CI environments and
continuously enhances Jenkins [53]. Daily new features, bugs fixes, and plugin updates are
released. In Chapter 5 we describe how we utilize Jenkins for performance testing.

3.2.7 The Javascript Plotting Framework CanvasPlot

The plotting framework CanvasPlot [29] is build upon the plotting framework D3 [10],
which is a JavaScript library for producing dynamic, interactive data visualizations in
web browsers and makes use of the SVG, HTML5, and CSS standards. Using CanvasPlot,
one can choose between scatter, time series, vector time series, and group plots. The key
advantage why we use this framework is the feature that allows one to zoom-in and
zoom-out. This way, the visualized data can be expanded or limited in the web-browser as
desired, without changing any parameters. Additionally, data can be inserted or removed
dynamically. In Figure 3.3 a time series plot with two data sets is shown.

24

3.2. Utilized Technologies

Figure 3.3. Example of a time series plot using CanvasPlot (source: [29])

25

Chapter 4

Enhancing the Performance Testing
Framework RadarGun

While exploring RadarGun’s prototype [20], we experienced some issues that impair the
usability of this performance testing tool. First of all, performance tests are reported only
after all benchmarks were executed, instead of performing the benchmark, testing it against
the assertions, and reporting each performance test one after another. Hence, we do not
receive the reports in real time and thus there is no proper progress monitoring. Secondly,
the export writer is a built-in parser using the data format CSV and exports solely the
fields that are hard coded into the parser. We are unable to report results different from
the average runtime. Furthermore, the results of performance tests can not be properly
reconstruct from the exported data, due to the missing informations regarding the run
mode and measured time unit. However, when visualizing the results the run mode and
measured time unit are important to interpret a performance test’s result correctly (see
Section 3.1.3). Thirdly, the configuration of performance tests is not completely uncoupled
from the benchmark’s configuration that is done in the Java classes. Since this separation
is intended by Henning, Wulf, and Hasselbring [21], the configuration mechanism needs
some improvements, e.g., to indicate the time unit and run mode a performance test is
defined for. Finally, one single unexpected event during a benchmark run may corrupts
the whole test result, since a statistically analysis is missing. Thus, it does not take care of
outliers that influence the final results too much.

In the following, we enhance RadarGun by improving these four aspects. To enhance
RadarGun, we follow the design principle separation of concerns. By abstracting the
different tasks in different parts of RadarGun, we achieve a refined modularization.

4.1 Improving the Pipe-And-Filter Architecture

RadarGun’s entire architecture is build upon a P&F architecture utilizing the generic
P&F framework TeeTime (see Section 3.2.3). In Figure 3.1 the architecture of RadarGun’s
prototype is shown. Since the Benchmark Runner stage blocks the process until all bench-
marks are performed, this restrains RadarGun’s potential to be applied in the development
process by software engineers. If and only if all benchmarks finished, the data is analyzed
and reported in the following stages. Hence, a proper progress monitoring is missing.

27

4. Enhancing the Performance Testing Framework RadarGun

B
en

ch
m

ar
k

D
is

tr
ib

ut
or

A
ss

er
tio

n
A

pp
en

de
r

R
ec

or
d

C
re

at
or

R
ec

or
d

D
is

tr
ib

ut
or

Em
pt

y
R

es
ul

t C
re

at
or

R
es

ul
t M

er
ge

r

Pr
og

re
ss

 M
es

sa
ge

C

re
at

or

B
en

ch
m

ar
k

R
un

ne
r

So
ck

et
 W

rit
er

Pr
og

re
ss

 P
rin

te
r

C
SV

 E
xp

or
te

r

XM
L

Ex
po

rt
er

JS
O

N
 E

xp
or

te
r

Ex
it

on
 F

ai
l

Te
st

 R
es

ul
t A

gg
re

ga
to

r
R

ec
or

d
C

ol
le

ct
or

R
es

ul
t C

om
pa

ra
to

r

R
es

ul
t D

is
tr

ib
ut

or

Pr
og

re
ss

 M
es

sa
ge

D

is
tr

ib
ut

or

Figure 4.1. RadarGun’s improved P&F architecture28

4.1. Improving the Pipe-And-Filter Architecture

In Figure 4.1 we illustrate how we split up RadarGun’s P&F configuration. The stages
with dashed borders are optional and can be included to the execution configuration via
parameters on start up. All other stages are essential for the proper passing of benchmarks
and performance test results. RadarGun’s initial P&F configuration builds an execution
pipeline consisting of four filters: (a) retrieve the list of benchmarks provided by JMH,
(b) execute all benchmarks, (c) compare the results with assertions afterwards, (d) and
report all results at once subsequently. Consequently, these filters do a lot of different
computations at once. These filters are still part of our architecture and are visualized in
gray. Nevertheless, the idea and potential of P&F is to abstract the architecture of programs
to produce a high modularity [56]. When splitting the Benchmark Runner stage, we abstract
the steps of having a list of benchmarks and executing them all, before reporting the
results. Thus, we create the Benchmark Distributor stage. This stage contains the list of
all benchmarks found by JMH. Instead of passing the whole list at once, we pass each
entry one by one. To separate a performance test’s configuration from the benchmark’s
configuration, we enrich a benchmark with its corresponding assertion before the bench-
mark is performed. Therefor, we utilize a container object named Record that temporarily
holds all the data that is passed from stage to stage. Following, the Benchmark Distributor

passes each benchmark from the list of benchmarks to the Record Creator stage one by
one. For each passed benchmark this stage creates a Record object containing its name.
Afterwards, the Record is passed to the stage Assertion Appender. If an Assertion exists
for the passed benchmark, the Assertion is appended to the Record. If no Assertion exists
for a benchmark, this benchmark is still be executed. However, the benchmark can not be
compared against an Assertion and thus, the performance test fails in the end. Assertions
are looked up in the configuration file based on the benchmarks’ names. If the performance
test’s configuration differs from the benchmark’s configuration, the Benchmark Runner stage
that executes the passed benchmark, reconfigures the benchmark options to the run mode
and timeunit passed in the assertion. When finished, the results are saved as RunResult

in the Record. Since JMH computes some statistics for each result, we can utilize these
computed statistics to obtain the confidence interval for the confidence level predefined in
the assertions (see Section 3.2.2). From these results the Result Comparator stage creates
the final TestResult object, which includes whether the test finished successfully or failed.
All test results are collected in the Record Collector stage. After all performance tests
finished, the Record Collector stage forwards the collected TestResults to the stage Test

Result Aggregator. Here all performance test results are aggregated to one single object
that is exported as XML file and represents the entire session of executed performance
tests. Notice that there is no stage to start a statistically analysis of the performance test
run, since JMH already contains all the methods to calculate confidence intervals from
the results. This statistics are part of the RunResult object contained by the Record. The
confidence level is important in the Test Result Comparator stage. A performance test is
successful, if and only if the confidence interval is within the given assertion’s lower and
upper bound. Each performance test result is then exported in the data format that is

29

4. Enhancing the Performance Testing Framework RadarGun

specified in the parameters by the user.
In summary, we obtain a P&F configuration as shown in Figure 4.1. However, we did

not mention all the stages we include in the splitting process of stages, e.g., the stages
Record Distributor and Result Distributor. To implement a proper progress monitoring,
we include the stage Record Distributor to pass the benchmarks, which are about to be
executed to all stages that are in charge to report the progress. When passing a Record, the
monitoring stage reports which performance test is about to be executed. For example,
when a benchmark is about to be executed, the stage Progress Message Creator creates
and passes an object named Progress Message with the parameter Started and an object of
the type EmptyTestResult. This object solely contains the name of the benchmark that is
about to be executed and is only created to report that a benchmark’s execution started.
We describe the progress monitoring in more detail in Section 4.4. After all stages that are
to the Record Distributor stage reported the progress, the Record is passed to Benchmark

Runner stage which executes the benchmark. To distribute the results, we include the
Result Distributor stage, whose only job is to receive a Record containing a TestResult

and distribute it to all stages that are connected to one of the distributor’s output ports.
For example, all stages that export data are connected to the stage Result Distributor.

Additionally, we integrate a Transmission Control Protocol (TCP) stage named Socket

Write to export the results via a TCP connection. This stage represents a server sending data
to connected clients in a non-blocking way. If the parameter -tcp-output is set, RadarGun
waits for an incoming connection by a TCP client. This stage communicates via Progress

Message objects. This Progress Message is sent (1) right after a client has connected, (2) when
a benchmark is chosen to be executed, (3) when the performance test finishes, (4) and finally
when all performance tests are finished. The first Progress Message after a TCP client has
connected, contains a list with all benchmark that are about to be executed. Thereby, the
connected client receives a progress status and can produce a custom progress monitoring.
This stages are implemented, especially, to establish a data transfer link between our Eclipse
plugin and RadarGun (see Section 6.3).

4.2 Separating Performance Test Configurations from Bench-
mark Configurations

In Section 3.1.3 we emphasize the difference between performance tests and benchmarks.
Benchmarks are a part of performance tests. However, without assertions to be compared
against, benchmarks do not represent a complete performance test. To isolate the benchmark
execution done by JMH from the testing done by RadarGun, we separate the configuration
of performance tests from the benchmarks’ configuration written in Java classes. Thus, the
whole configuration of performance tests is assembled in a configuration file imported
by RadarGun and not inside the written benchmarks. Thereby, developers do not need to
recompile the benchmarks. Nevertheless, they can still configure a different run mode or

30

4.3. Creating an Import/Export Model for Performance Test Results

measured time unit. Although, the idea of separating performance test configurations from
benchmark configurations is mentioned in Henning, Wulf, and Hasselbring [21], it is not
well-implemented. Solely the assertions can be defined, but neither the run mode, nor the
time unit, nor the confidence level.

In Listing 3.4 an example performance test configuration for RadarGun’s prototype
is illustrated. We define configurations in a text file in the data format YAML [6]. On
start up, configurations are imported via the parameter -cp-assertions, which takes the
classpath to the configuration file. Notice that this parameter also handles a list of comma
separated entries and thus we are able to import several configuration files. We modify the
performance test configuration by adding two additional fields to the array. As shown in
Listing 4.1,

1 ---

2 identifier: WildcardIdentifier

3 parameters: []

4 tests:

5 teetime.benchmark.Port2PortBenchmark: [35, 45, ’ns/op’, 95]

6 teetime.benchmark.Port2PortWithTermInstanceofCheckBenchmark: [18, 26,

’ns/op’, 95]

7 teetime.benchmark.Port2PortWithTermReferenceCheckBenchmark: [15, 20,

’ns/op’, 95]

Listing 4.1. A RadarGun configuration including the run mode and confidence level.

the new array represents [lower bound, upper bound, timeunit/per operation (or vice

versa), confidence level]. Hence, we instantly see for each benchmark which assertion
is used, which run mode is set, and which time unit is measured. Furthermore, one does
not need to recompile the benchmarks, when adjusting the run mode or measured time
unit. For example, let us assume a benchmark is configured to measure the number of
operations per nanoseconds (ops/ns), yet the performance test is configured to measure
ns/op. As a consequence, the Benchmark Runner stage (see Figure 4.1) changes the mode
and time unit of the corresponding benchmark to the required mode and time unit defined
in the performance test’s configuration. This happens autonomously, before a benchmark
is about to be executed.

4.3 Creating an Import/Export Model for Performance Test
Results

RadarGun’s prototype (see Section 3.2.5) allows merely the export of a test’s name, its score,
the predefined assertion, and whether the test was successful or has failed. Although, the

31

4. Enhancing the Performance Testing Framework RadarGun

configuration reader uses an open-source YAML parser, named SnakeYAML1, to import
the performance test configurations, the export writer is custom-tailored and restricted to
export only a few fields in the data format CSV. To allow more customization and improve
the usability, we universalize the import/export strategy and include Jackson [15], a JSON
processor framework for Java, for all exports and imports. Internally Jackson processes all
data as JSON objects, yet it can export and import the data in up to 9 other data formats,
e.g., CSV, XML, YAML, ect.. In order to use Jackson, we add annotations, provided by
Jackson, to the Plain-Old-Java-Objects (POJOs) we aim to export. The framework serializes
and deserializes objects by references to the annotated fields and names. Built-in mappers
deserialize the objects from files or serializes the data to write it to files. This way we
provide an interface to export the performance tests in different data formats. Thereby,
software engineers, which are using our tool, are able to import the performance test
result in the standard data format they require for further processing. In the following,
we demonstrate how we create our model of TestResults to make it exportable with
Jackson. In Figure 4.2 we give an overview of the TestResult creation model used by
RadarGun. The interface TestResult contains all the methods that are accessible for devel-

TestResult Model

TestExceedsBoundsResultTestNotExecutedResult

TestUndercutsBoundsResultTestWithoutAssertionResult

extends

EmptyTestResult

+hasFailed() : boolean
+isInBounds() : boolean

<<Interface>>
TestResult

-assertion : Assertion
-benchmark : String
-confidenceLevel : double
-max : double
-mean : double
-min : double
-score : double

AbstractTestResult

TestInBoundsResult

+create(Record record) : TestResult

TestResultFactorycreates

implements

Visual Paradigm Standard Edition(alexanderbarbie(University of Kiel))

Figure 4.2. The model of RadarGun for the creation of TestResult objects.

opers. Notice that we do not display the getter and setter methods used for the attributes

1www.snakeyaml.org/

32

www.snakeyaml.org/

4.3. Creating an Import/Export Model for Performance Test Results

shown in the AbstractTestResult class. The abstract class AbstractTestResult implements
the interface and is generalized by the classes EmptyTestResult, TestExceedsBoundsResult,
TestInBoundsResult, TestUndercutsBounds, TestNotExecutedResult, and TestWithoutBounds.
All classes that inherit from AbstractTestResult implement the methods isInBounds() and
hasFailed(). However, the only TestResult object that returns True when calling the method
isInBounds() is the class TestInBoundsResult. All TestResults, except EmptyTestResult,
are created in the stage Result Comparator using the factory pattern implemented in
TestResultFactory. This factory creates these objects depending on the data a Record con-
tains. An overview of which object is created in which case is given in Table 4.1. In summary,
we categorize the test results in three categories:
(1) Failed, if the test result exceeds or undercuts the bounds;
(2) No Result, if a benchmark was not performed or contains an empty result;
(3) Successful, if the test result is within the bounds.
EmptyTestResult objects are solely created by the stage Empty Result Creator. This objects
represent a dummy test result for progress monitoring and solely contain a performance
test’s name. This object is required to report the benchmark that is about to be executed.
When objects are serialized to persist performance test results in files, for example XML files,

Table 4.1. Overview of which concrete TestResult object is produced by the factory.

Produced TestResult Case

TestNotExecutedResult The score of a test is NaN.

TestWithoutAssertionResult No assertion is appended to the Record.

TestExceedsBoundsResult The confidence interval exceeds the upper bounds
of the assertion.

TestUncercutsBoundsResult The confidence interval undercuts the lower bounds
of the assertion.

TestInBoundsResult The test performed successfully.

the output looks like in Listing 4.2. The header (Line 1) represents the object TestResult
and contains its concrete implementation saved in the field type (see Table 4.1). Notice
that the prototype of RadarGun [20] exports assertions, too. However, we add annotations
to the POJO Assertion to export the run mode and measured timeunit as timeunit and
the confidence level as confidenceLevel. Hence, the fields are serialized like in Lines 2´ 7.
Furthermore, we add the fields confidenceInterval (Lines 9´ 12), max (Line 13), mean (Line
14), and min (Line 15) to the serialization model. Although the fields benchmark (Line
8), score (Line 16), wasSuccesful (Line 17), and hasFailed (Line 18) are already exported
by RadarGun’s prototype. However, we annotate these fields for export. Notice that the
field confidenceInterval is an array of the type double[] and thus each entry is named
confidenceInterval, too.

33

4. Enhancing the Performance Testing Framework RadarGun

1 <TestResult type="TestInBoundsResult">

2 <assertion>

3 <lowerBound>15.0</lowerBound>

4 <upperBound>17.0</upperBound>

5 <timeunit>ns/op</timeunit>

6 <confidenceLevel>0.95</confidenceLevel>

7 </assertion>

8 <benchmark>teetime.benchmark.Port2PortBenchmark.queue</benchmark>

9 <confidenceInterval>

10 <confidenceInterval>16.250478935663516</confidenceInterval>

11 <confidenceInterval>16.424796507032468</confidenceInterval>

12 </confidenceInterval>

13 <max>16.62222454799239</max>

14 <mean>16.337637721347992</mean>

15 <min>16.035154771665955</min>

16 <score>16.337637721347992</score>

17 <wasSuccessful>true</wasSuccessful>

18 <hasFailed>false</hasFailed>

19 </TestResult>

Listing 4.2. Serialization of the POJO TestInBoundsResult

By including RadarGun into any framework, this framework can access the model
to deserialize data from files exported by RadarGun. In Listing 4.3 we use the interface
POJO TestResult to define the fields to export with Jackson. Only a few annotations are
required to configure the whole output. In the following, we describe which annotation
in Listing 4.3, Listing 4.4, and Listing 4.5 generate which output in Listing 4.2. By using
@JsonRootName("TestResult") (Line 1 in Listing 4.3), we define the root element. Since
TestResult is an interface and thus, can not be instantiated, a concrete type from Table 4.1
is passed as subtype. These subtypes are passed as the value type to the root element. The
value of type corresponds to the class name of the concrete type and is configured via the
annotation JsonTypeInfo(...) (Line 2). Each subtype is declared in the list of subtypes. This
list is created by @JsonSubTypes(...) and each subtype is defined by @JsonSubTypes(...)

(Lines 3´ 9). @JsonPropertyOrder({...}) sets the order in which the elements are exported
in. Since Jackson automatically uses getter and setter methods for the annotated variables,
we do not need to annotate or even define these getters and setters, expect for the data
we aim to export without declaring and annotating a concrete field. In Lines 19 ´ 24
two methods are annotated with @JsonGetter(...). By using this annotation, the fields
<hasFailed>...</hasFailed> and <isInBounds>...</isInBounds> are exported, e.g., Lines
17 ´ 18 in Listing 4.2, although there are not any fields failed or succesful declared.
Thus, @JsonGetter(...) allows us to export the methods hasFailed and isInBounds without

34

4.3. Creating an Import/Export Model for Performance Test Results

saving this values to a field. However, the classes that implement the interface TestResult

have to implement this methods.

1 @JsonRootName("TestResult")

2 @JsonTypeInfo(use = JsonTypeInfo.Id.NAME, include =

JsonTypeInfo.As.PROPERTY, property = "type")

3 @JsonSubTypes({@JsonSubTypes.Type(value = TestExceedsBoundsResult.class,

name = "TestExceedsBoundsResult"),

4 @JsonSubTypes.Type(value = TestInBoundsResult.class, name =

"TestInBoundsResult"),

5 @JsonSubTypes.Type(value = TestNotExecutedResult.class, name =

"TestNotExecutedResult"),

6 @JsonSubTypes.Type(value = TestUndercutsBoundsResult.class, name =

"TestUndercutsBoundsResult"),

7 @JsonSubTypes.Type(value = TestWithoutAssertionResult.class, name =

"TestWithoutAssertionResult"),

8 @JsonSubTypes.Type(value = EmptyTestResult.class, name =

"EmptyTestResult") })

9 @JsonPropertyOrder({ "type", "assertion", "benchmark",

"confidenceInterval", "max", "mean", "min", "score", "wasSuccessful"

})

10 public interface TestResult {

11
12 public Assertion getAssertion();

13 public String getBenchmark();

14 public double[] getConfidenceInterval();

15 public double getMean();

16 public double getMin();

17 public double getMax();

18 public double getScore();

19
20 @JsonGetter("hasFailed")

21 public boolean hasFailed();

22
23 @JsonGetter("wasSuccessful")

24 public boolean wasSuccesfull();

25 }

Listing 4.3. Jackson annotations in the POJO TestResult.

Except for the fields hasFailed and isInBounds all exported fields are declared in the ab-
stract class AbstractTestResult. In Listing 4.4 the POJO with the annotations to export fields

35

4. Enhancing the Performance Testing Framework RadarGun

is shown. Each exportable field is annotated by @JsonProperty(...). This property contains
the name the field has on serialization. The classes that generalize the AbstractTestResult

and are declared as subtypes in TestResult, are annotated by @JsonTypeName(...), e.g.,
Line 1 in Listing 4.5. Objects deserializable on import by annotating its class’ constructor
with @JsonCreator (Line 8). This constructor receives and binds the fields, declared by
@JsonProperty(...), to variables (Line 9) which is usable by the framework, later. Addition-
ally, these classes implement the methods hasFailed (Lines 14´ 16) and isInBounds (Lines
19´ 21) which are annotated with @JsonGetter in Listing 4.3.

1 public abstract class AbstractTestResult implements TestResult {

2 @JsonProperty("assertion")

3 private final Assertion assertion;

4
5 @JsonProperty("benchmark")

6 private final String benchmark;

7
8 @JsonProperty("confidenceInterval")

9 private final double[] confidenceInterval;

10
11 @JsonProperty("max")

12 private final double max;

13
14 @JsonProperty("mean")

15 private final double mean;

16
17 @JsonProperty("min")

18 private final double min;

19
20 @JsonProperty("score")

21 private final double score;

22 [...]

23 }

Listing 4.4. Jackson annotations in the POJO AbstractTestResult.

All in all, we created a model to export and import the performance tests done by Radar-
Gun. Supplementary to the model of TestResults, all classes contained in the package
de.cau.se.radarun.shared, e.g. Assertion and ProgressMessage, are serializable and dese-
rializable by Jackson. Thus, we provide an interface to process performance test results
by external tools. Furthermore, we provide an interface to import the data in different
data formats, since Jackson supports up to 9 data formats, e.g., CSV, JSON, XML, YAML

36

4.3. Creating an Import/Export Model for Performance Test Results

etc.. However, RadarGun still exports the performance tests only in the data formats XML,
JSON, and CSV.

1 @JsonTypeName(value = "TestInBoundsResult")

2 public class TestInBoundsResult extends AbstractTestResult {

3
4 public TestInBoundsResult(Record record) {

5 super(record);

6 }

7
8 @JsonCreator

9 public TestInBoundsResult(@JsonProperty("assertion") final Assertion

assertion, @JsonProperty("benchmark") final String benchmark,

@JsonProperty("max") final double max, @JsonProperty("mean") final

double mean, @JsonProperty("min") final double min,

@JsonProperty("confidenceInterval") final double[] confidenceInterval,

@JsonProperty("score") final double score) {

10 super(assertion, benchmark, max, mean, min, confidenceInterval, score);

11 }

12
13 @Override

14 public boolean hasFailed() {

15 return false;

16 }

17
18 @Override

19 public boolean isInBounds() {

20 return true;

21 }

22 }

Listing 4.5. Jackson annotations in the POJO TestInBoundsResult.

37

4. Enhancing the Performance Testing Framework RadarGun

4.4 Supporting Progress Monitoring

Due to the improved architecture, RadarGun supports different types of progress monitor-
ing. External tools, e.g. Jenkins and Eclipse, can utilize the results exported by RadarGun for
progress monitoring. Furthermore, RadarGun produces three kinds of progress monitoring
on its own, accessible in a console. In the following, we describe this progress monitoring
provided by RadarGun. The prototyp of RadarGun uses the stage Result Printer to print
all performance test results to a console at once, after all performance tests finished. For
each performance test there are three possible outcomes:

(1) Failed, (2) No Result, (3) or Successful.
The improved architecture enables RadarGun to report performance tests one by one

and thus, a progress monitoring in real time. One type is generated by TeeTime that logs,
as shown in Listing 4.6, the stages it creates (Lines 1´ 2) and the connected outgoing and
incoming ports (Line 4) on start up. When the producer stage Benchmark Distributor starts
to pass each benchmark one by one, a start up message is logged (Line 6). This progress is
already monitored in the prototype of RadarGun [20].

1 13:28:55.871 [main] DEBUG

radargun.lib.teetime.stage.basic.distributor.Distributor:Distributor-1

- numOpenedInputPorts (inc): 1

2 13:28:55.873 [main] DEBUG

radargun.benchmarks.centralindex.RecordCreatorStage:RecordCreatorStage-0

- numOpenedInputPorts (inc): 1

3 [...]

4 13:28:55.960 [main] DEBUG

radargun.lib.teetime.framework.scheduling.pushpullmodel.A3PipeInstantiation

- Connected (unsynch)

radargun.lib.teetime.framework.OutputPort@197d671 and

radargun.lib.teetime.framework.InputPort@402e37bc

5 [...]

6 13:28:55.968 [Thread for BenchmarkDistributor-0] DEBUG

radargun.benchmarks.BenchmarkDistributor - Executing runnable stage...

Listing 4.6. Progress monitoring by TeeTime on start up.

The progress monitoring we add, reflects the status of the performance tests. An example
log for three performance tests is shown in Listing 4.7. Each log starts with the current time
the log was created and which is then followed by the status and further informations. On
start up, RadarGun reports the status [START UP] followed by the number of benchmarks
that were found by JMH (Line 1). Before a benchmark is executed, RadarGun logs the
status [STARTING] followed by the name of the benchmark that is about be performed
(Line 2). After this benchmark finished, the status [FINISHED] followed by the performance

38

4.4. Supporting Progress Monitoring

test’s result is logged (Line 3). This result contains the score, the computed confidence
interval for the predefined confidence level, and the predefined assertion. Performance
tests can still finish with one of three possible results Failed (Line 3), No Result (Line
5), or Successful (Line 7). When all performance tests finished "[SHUTDOWN] Finished all

performance tests" (Line 8) is logged and RadarGun stops.

1 14:18:08 [START UP] Found 3 benchmarks.

2 14:18:08 [STARTING] teetime.benchmark.Port2PortBenchmark.queue is running

now

3 14:18:30 [FINISHED] teetime.benchmark.Port2PortBenchmark.queue [FAILED]

Score: 17.473846460811227 CL: 0.95 CI: [17.260543850863304,

17.68714907075915] (Bounds: [15.0, 17.0])

4 14:18:30 [STARTING]

teetime.benchmark.Port2PortWithTermInstanceofCheckBenchmark.queue is

running now

5 14:18:51 [FINISHED]

teetime.benchmark.Port2PortWithTermInstanceofCheckBenchmark.queue [NO

RESULT] Score: NaN CL: 0.95 CI: [NaN, NaN] (Bounds: [19.0, 21.0])

6 14:18:51 [STARTING]

teetime.benchmark.Port2PortWithTermReferenceCheckBenchmark.queue is

running now

7 14:19:11 [FINISHED]

teetime.benchmark.Port2PortWithTermReferenceCheckBenchmark.queue

[SUCCESSFULL] Score: 15.654463695356986 CL: 0.95 CI:

[15.540353056806708, 15.768574333907264] (Bounds: [14.0, 16.0])

8 14:19:11 [SHUTDOWN] Finished all performance tests

Listing 4.7. Progress monitoring in the console by RadarGun.

To generate this progress monitoring, three stages (see Figure 4.1) are necessary. Before
executing a benchmark, the stage Empty Message Creator passes a Record that contains an
EmptyTestResult object. This Record is processed by the Progress Message Creator stage,
which creates a Progress Message object that is reported by the stage Progress Printer,
afterwards. The Progress Printer receives the number of performance tests to print it on
start up. When this stage terminates it logs the shutdown status.

The third type of progress monitoring is generated by JMH, if the parameter -jmh-output
is set on start up. JMH then produces a log as shown in Listing 4.8. It logs the benchmark
and its configuration that is about to be started (Lines 1´ 8), the currently executed fork
(Line 11), the warmup iterations (Lines 12´ 14), all single benchmark executions (Lines
15´ 18), and the results (Lines 20´ 23). When the benchmark finishes, its overall results
are logged in a compact overview (Lines 27´ 29). Notice that JMH by default always prints
a confidence interval of 99, 9% (Line 23).

39

4. Enhancing the Performance Testing Framework RadarGun

In summary, we allow developers to track the execution of benchmarks and performance
tests in detail. The output by RadarGun and by JMH can be turned off and on via parameters
on start up, independent from each other.

1 [...]

2 # Warmup: 5 iterations, 1 s each

3 # Measurement: 15 iterations, 1 s each

4 # Timeout: 10 min per iteration

5 # Threads: 2 threads (1 group; 1x "add", 1x "remove" in each group), will

synchronize iterations

6 # Benchmark mode: Average time, time/op

7 # Benchmark: teetime.benchmark.Port2PortBenchmark.queue

8 # Parameters: (capacity = 1024)

9
10 # Run progress: 0,00% complete, ETA 00:00:20

11 # Fork: 1 of 1

12 # Warmup Iteration 1: 16,959 ns/op

13 # Warmup Iteration 2: 17,254 ns/op

14 [...]

15 Iteration 1: 16,427 ns/op

16 add: 16,405 ns/op

17 remove: 16,449 ns/op

18 [...]

19
20 Result "teetime.benchmark.Port2PortBenchmark.queue":

21 16,338 ˘(99.9%) 0,168 ns/op [Average]

22 (min, avg, max) = (16,035, 16,338, 16,622), stdev = 0,157

23 CI (99.9%): [16,169, 16,506] (assumes normal distribution)

24 [...]

25 # Run complete. Total time: 00:00:20

26
27 Benchmark (capacity) Mode Cnt Score Error Units

28 Port2PortBenchmark.queue 1024 avgt 15 16,338 ˘ 0,168 ns/op

29 [...]

Listing 4.8. Progress monitoring in the console by JMH.

40

Chapter 5

Reporting Performance Tests in Jenkins

Introducing the performance testing framework RadarGun [21] to Jenkins [33] and thus,
reporting performance tests in a CI environment is the main goal of this master’s thesis (see
Chapter 2). Hence, we develop a plugin to make RadarGun part of the build process and to
visualize the performance tests in Jenkins. Jenkins already provides a plot plugin, named
Plot Plugin [13] that is able to plot the data produced by RadarGun. This plugin was used
by Henning, Wulf, and Hasselbring [21] to visualize the output of RadarGun’s prototype in
their evaluation. However, this plugin is unable to dynamically react to inputs. To visualize
the results a plot has to be configured for each performance test separately. Hence, if we
miss to add a performance test’s plot to the configuration, it is not visualized. Additionally,
plots in Plot Plugin are configured as post build step in a job’s build configuration. Thus,
the data format to visualize is predefined for all builds. For example, if a performance
test’s measured time unit or run mode has changed between two builds, then this plugin
can not distinguish between these two units. Thus, it is unable to visualize the data
correctly and draws both performance tests in the same plot. Furthermore, the number of
visualized results is predefined in the configuration. One can decide whether all or only a
limited number of builds is shown. However, it is not possible to limit the viewed results
dynamically.

When reporting performance tests, we expect an overview of all performance tests and
their results. Since RadarGun only executes performance tests and exports the results, we
develop a plugin that reports and visualizes the data in Jenkins. This plugin creates a build
history containing all performance test results. The plots are generated dynamically and
are not a part of the job configuration. Additionally, we can zoom in and out to adjust the
number of the viewed results in each plot, as described in Section 3.2.7. In the following, we
describe how performance tests are reported, gathered, and visualized in Jenkins. Therefor,
we create a post build step that imports the data reported by RadarGun.

5.1 Understanding the Stapling of Pages in Jenkins

Jenkins is written in the programming language Java and thus, is a set of Java classes,
which model the concepts of a build system [52]. Some classes exactly model the purpose
they are named after, e.g., Job and Run. A Job is a particular task in our build process,
such as compiling the source code and running unit tests [53]. A Run object represents the

41

5. Reporting Performance Tests in Jenkins

current build that is executed. Additionally, there are classes and interfaces that model
different build process steps, such as performing a build, e.g., Maven to perform a Maven
build. The root object is Jenkins. All other model objects are subordinates to the root. To
extend Jenkins’ model objects, extension points are provided.

To use Jenkins, users access Jenkins via a browser. Therefor, Java objects are bound
to URLs by the HTTP request handling engine Stapler [36]. The root object Jenkins is
instantiated as a singleton object and is bound to the context root URL, e.g., "/". All other
object are bound according to their reachability from this root object and define an URL
subspace. Thus, the framework "staples" all children to the parent object, by creating an
URL hierarchy. To recursively determine how to process any given URL, the framework
uses reflection [35].

Let us demonstrate how Stapler processes URLs by means of the following example
URL:

http://domain.de/jenkins/job/exampleJob/7/radargun/packagename/testname/

_______________________/_____________/\/_______/__________/_______/

| | | | | |

Jenkins root Job Run BuildAction Package Test

Stapler assign for the corresponding object hierarchy an URL subspace as shown in
Figure 5.1. Jenkins’ root element is bound to the URL http://domain.de/jenkins/. When

Jenkins
(root)

...

exampleJobJob x Job y

Run 1 Run 7

radargunBuildAction x

Package xpackagename

perftestperftestx perftesty

http://domain.de/jenkins/

...

exampleJob/... ...

... 7/

radargun/...

...packagename/

perftestperftestx/ perftest/

doIndex(...)

index.jellyObject hierarchy URL space

Figure 5.1. Stapler assigns URL subspaces with regards to the object hierarchy.

42

5.1. Understanding the Stapling of Pages in Jenkins

processing the path segment /job/exampleJob/ there are different ways how Stapler could
process this URL segment:

• A method getJob(String job) is defined on the Jenkins object. Then Stapler passes
the parameter exampleJob to this method. The object returned, has a method named
doIndex(...). This method gets called and renders the response.

• A method getDynamic(String urlspace) is defined on the Jenkins object. Then Sta-
pler passes the parameter /job/exampleJob/ to this method. Jenkins looks up in
its list of objects, whether the URL subspace of any object equals the URL space
/job/exampleJob/. The returned object has a method named doIndex(...). This
method gets called and renders the response.

We use the latter approach in our plugin, to process URLs and render the returned
object. Nevertheless, there are further possibilities how this URL could be processed,
depending on the implementation of methods on objects. However, the URL path segment
/7/radargun/packagename/testname/ is still left. If a job with the name exampleJob exists,
Stapler uses the getDynamic(...) method to obtain the Run object with the build number
7. If RadarGun is configured as post build step for this job, the getDymanic(...) method
is called to look up a Build object with the path segment /radargun/. If this objects exists,
the getDymanic(...) method is executed to look up a package bound to the URL space
packagename/. If this package exists and it contains a PerformanceTestResult object bound to
the name testname, than its doIndex(...) method is called and the object gets rendered. This
URL can be processed recursively by defining the mathematical function evaluate(node, url)
[32], too. The evaluation process looks like in the following:

evaluate(<root object>, "/job/exampleJob/7/radargun/packagename/testname")

Ñ evaluate(<root object>.getJob("exampleJob"), "/7/radargun/packagename/testname")

Ñ evaluate(<exampleJob object>, "/7/radargun/packagename/testname")

Ñ evaluate(<exampleJob object>.getDynamic(7), "/radargun/packagename/testname")

Ñ evaluate(<Run number 7>, "/radargun/packagename/testname")

Ñ evaluate(<Run number 7>.getDynamic("radargun"), "/packagename/testname")

Ñ evaluate(<RadarGun build action>, "/packagename/testname")

Ñ evaluate(<RadarGun build action>.getDynamic(packagename"), "/testname")

Ñ evaluate(<packagename object>, "/testname")

Ñ evaluate(<packagename object>.getDynamic("testname"), "")

Ñ evaluate(<testname object>, "")

Ñ <testname object>.doIndex(...)

43

5. Reporting Performance Tests in Jenkins

5.2 Understanding the Rendering of Objects in Jenkins

Jenkins uses a simple UI pattern. On the left hand side of the page, see Box #1 in Figure 5.2, a
sidepanel that contains menus with several navigable links and command links, helps users
to navigate through Jenkins [34]. The content of this links is then shown in the main panel
(see Box #2). To contribute to the UI and bind objects to URLs via Stapler, we implement

Figure 5.2. Jenkins’ UI front page

the interface Action in our model objects. Implementing this interface in a model object,
creates an additional URL subspace to the parent’s model object. Actions define at least
three methods, which are required to render objects: (1) an icon, (2) the display name of the
object, (3) and the URL subspace the object is bound to. The menu shown in Box #1 changes
depending on the model object that is currently rendered. For a Job a different menu is
displayed than for a single Run. As described in Section 5.1, the method doIndex(...) is
returned to render the object. Stapler is able to render the template formats Jelly [2] and
Groovy1. In our plugin we use Jelly to write templates. Jelly is a Java and XML based scripting
and processing engine [2], which accesses Java methods and renders HTML output. Tem-

1http://groovy-lang.org

44

http://groovy-lang.org

5.2. Understanding the Rendering of Objects in Jenkins

plates are placed in the source folder src/main/resources/packagestructure/objectname/.
By default the doIndex(...) method renders the file index.jelly. A Jelly file is an XML
documents that gets parsed into a script. The advantage of using Jelly scripts over Groovy
script is that by using Jelly XML elements can be bound to Java code. Hence, we implement
a dynamic processing of our data, yet use a familiar syntax. Jelly files are tied directly to
classes and hence, we are able call methods on those classes. By including the XML Schema
jelly:stapler (Line 2 in Listing 5.1) we are able to write and include views. Such a view
we include to our rendering, is the current build’s menu (Line 4). The view that renders
this menu is written in the sidepanel.jelly file. Since the content depends on the action
that is rendered, the view is bound to an Action object. Similar to Java’s keyword this,
which references the current object, the it keyword in Jelly files references the object it is
tied to. To call Java code, we use the dollar sign and curly-braces, e.g., ${it.run}, which
calls the method getRun() in the tied Java class.

1 <?jelly escape-by-default=’true’?>

2 <j:jelly xmlns:j="jelly:core" xmlns:st="jelly:stapler"

xmlns:l="/lib/layout" xmlns:g="glide">

3 <l:layout>

4 <st:include it="${it.run}" page="sidepanel.jelly" />

5 <l:main-panel>

6 <h1>RadarGun Performance Tests</h1>

7 <h2>${%benchmark(it.displayName, it.run.number)}</h2>

8 <table>

9 <tr>

10 <td>${%status}</td>

11 <td>${it.wasSuccessful()}</td>

12 </tr>

13 <tr>

14 <td>${%units}</td>

15 <td>${it.testResult.assertion.timeunit}</td>

16 </tr>

17 [...]

18 </table>

19 </l:main-panel>

20 </l:layout>

21 </j:jelly>

Listing 5.1. A Jelly script to render the results of a performance test.

The main content is written between the tags <l:main-panel>...</l:main-panel> (Line
5 and Line 19). To layout templates, we use HTML standard elements. We add the ti-

45

5. Reporting Performance Tests in Jenkins

tle (Line 6) and subtitle (Line 7) at the top of the content panel. The performance test
results are displayed in a table (Lines 8´ 18). Each row consists of two columns. The
first column contains the label, the second contains the corresponding performance test
result data field. We annotate labels by ${%xyz}, which is a placeholder to allow an in-
ternationalization depending on the language configured in Jenkins. Therefor, we cre-
ate the files index.properties and index_de.properties. The first property file contains
the default values for the labels. If index_de.properties exists and Jenkins’ configured
language is German, the labels are replaced by the values defined in that file. Addi-
tionally, it is possible to define a label and pass one or more values as parameter(s).
Thereby, the value can be placed anywhere in the label’s output. In Line 7 we pass a
benchmark name and the build number to the label $%benchmark(...). The output is
rendered as ’Performance Test: BenchmarkName for Build #Number’. The second column
contains the data retrieved from the tied Java class. We can call a getter method, such as
$it.isInBounds() in Line 11 or use $it.testResult.assertion.timeunit (Line 15), which is
equal to this.getTestResult().getAssertion().getTimeunit()).

How this Jelly script is rendered for a performance test is shown in Figure 5.6. Since we
only report performance tests, all our renderings consist of the included sidepanel, a title
and subtitle in the header, and a table to display the data. The renderings that plot the data
additionally include the D3 based Javascript library CanvasPlot [29] to visualize the data.

5.3 Providing a Build Pipeline Step

Jenkins’ object model is extensible and thus, provides different extension points that are
accessible via interfaces. Job objects model a project to combine and connect different steps
in a build. Together they form a build pipeline, e.g., Ñ pull the project source code from
Git Ñ compile it with Maven Ñ run unit tests Ñ report the results afterwards. Loosely
speaking, build steps can be categorized in build and post build steps. Since Jenkins
provides a build step interface that is able to execute shell scripts, we use this shell script
interface to execute RadarGun and to run performance tests during the build process.
Hence, we do not develop a custom build step to add the execution of RadarGun to the
build pipeline. However, the performance test results exported by RadarGun are still not
imported in Jenkins. Hence, we define a post build step that is executed every time a build
finishes. By utilizing the extension point Publisher, we create a post build step to process
a task after a build completes. A Recorder is a kind of Publisher, yet additionally collects
statistics from the build. Furthermore, by extending an object of the type Recorder, we are
able to mark builds as was successful, has failed, or contains no results. This ensures that
builds are marked according to their results, before notifications are sent to developers
via Notifiers. Due to the newly established pipeline configuration provided by the Blue
Ocean plugin and UI, we wrap the execution of our Publisher object into a Step object that
starts the post build step on execution.

Our Recorder extension is named RadarGunPublisher (Line 1). Each RadarGunPublisher

46

5.3. Providing a Build Pipeline Step

is bound to a Run object that represents the current build (Line 3). The constructor (Line
6) is annotated with @DataBoundConstructor (Line 5). This annotation signalizes that this
constructor takes the parameters one may defines for the post build step. Since we do
not provide any configurable parameters, the constructor is empty. When performing this
post build step, the method perform(...) (Line 9´ 23) is called. This method takes, among
other parameters, the current run and the workspace a Job belongs to. Thus, we read the
data that was exported by RadarGun during the previous build step. This data is imported
as an Action object, named RadarGunBuildAction (Line 11), and added to the current build
(Line 12). The object RadarGunBuildAction is important to report the performance test result.
Since, this object implements the interface Action, it allocates an URL subspace to report a
single build. We discuss this in detail in Section 5.5. Depending on the number of missing
results and failed tests the build is either marked as FAILURE (Line 16), UNSTABLE (Line 18),
or SUCCESS (Line 20). The RadarGunPublisher is used as post build step. However, it is still
not addable to the build pipeline. To be selectable, Jenkins provides extension points for
Descriptor objects. Thus RadarGunPublisher contains an inner class DescriptorImpl that
extends BuildStepDescriptor<Publisher> (Line 32). The @Extension annotation lets Jenkins
know that this is a plugin extension of the Jenkins core. The DescriptorImpl class represents
a configurable object for the RadarGunPublisher.

1 public class RadarGunPublisher extends Recorder implements

SimpleBuildStep {

2
3 private Run<?, ?> run;

4
5 @DataBoundConstructor

6 public RadarGunPublisher() { }

7
8 @Override

9 public void perform(Run<?, ?> run, FilePath workspace, Launcher

launcher, TaskListener listener) throws InterruptedException,

IOException {

10 this.run = run;

11 RadarGunBuildAction buildAction = new RadarGunBuildAction(run,

workspace);

12 run.addAction(buildAction);

13
14 if (buildAction != null) {

15 if(buildAction.getNumberOfErrorTests() > 0) {

16 run.setResult(Result.FAILURE);

47

5. Reporting Performance Tests in Jenkins

17 } else if(buildAction.getNumberOfFailedTests() > 0) {

18 run.setResult(Result.UNSTABLE);

19 } else {

20 run.setResult(Result.SUCCESS);

21 }

22 }

23 }

24
25 @Override

26 public DescriptorImpl getDescriptor() {

27 return (DescriptorImpl) super.getDescriptor();

28 }

29
30 [...]

31 @Extension

32 public static final class DescriptorImpl extends

BuildStepDescriptor<Publisher> {

33
34 public DescriptorImpl() {

35 load();

36 }

37
38 public boolean isApplicable(Class<? extends AbstractProject>

aClass) {

39 return true;

40 }

41
42 public String getDisplayName() {

43 return "Report Performance Test Results (RadarGun)";

44 }

45
46 @Override

47 public boolean configure(StaplerRequest req, JSONObject formData)

throws FormException {

48 save();

49 return super.configure(req, formData);

50 }

51 }

52 }

Listing 5.2. Create a post build step to import performance test results by utilizing the
extension point Publisher.

48

5.4. Configuring a Build Pipeline

When RadarGunPublisher calls its getDescriptor() method, a DescriptorImpl object is re-
turned. This object defines the displayed name (Lines 13´ 15) and persists configured
parameters (Lines 17´ 21). As mentioned previously, we do not configure anything for this
post build step.

In summary, by utilizing the Publisher extension point, we are able record performance
tests done by RadarGun as post build step. Thereby, we provide an option to the configura-
tion of Jobs. This option is either selectable via the button Add Post Build Action, shown
in Figure 5.3, or by including it in the pipeline configuration as described in Section 5.4.
When adding our plugin as post build step, new links are added to the UI of the jobs.

Figure 5.3. Add RadarGun as post build step to a job.

Thereby, our plugin then reports single builds, as described in Section 5.5. Additionally, it
presents a history of all builds, as described in Section 5.6.

5.4 Configuring a Build Pipeline

There are several ways to configure build pipelines for jobs in Jenkins. A newly established
way is to configure pipelines using the integrated Blue Ocean UI. This plugin uses text
files to configure build pipelines for jobs. We either can write a configuration file or use
the UI to connect several steps to a build pipeline. When saving the configuration in the
UI, a configuration file is created automatically in the job’s repository. In the following,
we demonstrate how to configure a project to utilize RadarGun to execute and report
performance tests. Since the configuration via the UI creates a configuration file and vice
versa, we describe the connection of build steps by reference to Figure 5.4. The parameters
we set for each build step are described by reference to Listing 5.3.

First of all, we create a Git multipipeline job in Jenkins, which links to a Git repository
containing our performance test and pulls the performance tests from the repository when
starting the build. In Figure 5.4 this step is represented by start. After the repository
has been pulled, the project has to be built in order to retrieve all performance test. This
build step is a shell script step that starts a Maven build. It is important to compile the
performance tests with JMH before starting RadarGun, to receive the latest compiled
benchmarks and performance test configuration. The step Run RadarGun (Lines 9´ 13) is a
shell script step. As shown in Listing 5.3, this step executes Java with several parameters
(Line 11). First we declare the classpath to RadarGun, which is located in our plugin’s lib

49

5. Reporting Performance Tests in Jenkins

folder, and afterwards the classpath to the performance tests. Secondly, we declare the
main class to execute. The parameter -cp-asertions declares the path to the performance
test configuration files. Notice that we do not declare an export path to the test result, since
Jenkins uses the default export path /target/radargun-reports/ defined by RadarGun.

Figure 5.4. Jenkins Pipeline Configuration in the BlueOcean UI.

1 pipeline {

2 agent any

3 stages {

4 stage(’Build Project’) {

5 steps {

6 sh ’mvn clean package -DskipTests’

7 }

8 }

9 stage(’Run RadarGun’) {

10 steps {

11 sh ’java -Djmh.ignoreLock=true -cp

${JENKINS_HOME}/plugins/radargun/WEB-INF/lib/radargun-
2.0.0-SNAPSHOT.jar:${WORKSPACE}/target/benchmarks.jar
radargun.RadarGun --cp-assertions

assertions/se-jenkins.yaml’

12 }

13 }

14 stage(’Report Performance Tests’) {

15 steps {

16 radargunreporting()

17 }

18 }

19 }

20 }

Listing 5.3. A configuration file that includes RadarGun in the build process.

The last step is labeled as Report Performance Tests (Line 14) and includes the post build

50

5.5. Reporting a Single Build

step named radargunreporting (Line 16). This step executes the post build step we defined
in Section 5.3. This step imports the performance test created by RadarGun and creates the
model objects to persist and render the performance test results in Jenkins’ UI.

5.5 Reporting a Single Build

In Section 5.4 we create a build pipeline to build a job named teetime-benchmark. Its build
pipeline contains a build step to start the performance testing using a shell script and a
post build step to import the results by the RadarGunPublisher. After the performance tests
finished, the post build step imports the file from FullTestResults.xml, which is exported
to RadarGun’s default output path. Each post build step creates a RadarGunBuildAction

object that represents the collection of test results in a build and binds this object to the
run. Each imported performance test result creates a PerformanceTestResult object that
utilizes the extension point Action to create an URL subspace for each performance test
result. Performance test results from the same package are merged to a PackageResult

object, which implements the Action interface and creates an URL subspace, too.

Figure 5.5. Overview page for all performance tests in a single build

Each build that includes our post build step, provides a link to the RadarGunBuildAction

object (Box #1 in Figure 5.5), which represents an overview page of all performance test
results. This URL subspace is rendered by a Jelly script, as described in Section 5.2. Box #2
shows the page’s title including the build number. A result bar at the page’s head (Box #3)
visualizes how many tests were executed and how many finished successful, have failed, or
contained no results. Performance tests that finished successfully, are visualized in green.
Failed performance tests are visualized in yellow. Performance tests containing no results
are visualized in red. Performance tests that had failed or contained no results, are presented
at the top and reference to the results’ details (Box #4). They are not categorized by its
package names. A package overview is shown in Box #5. This overview shows how many
tests are in the different packages and what their results are. Package results are represented
similar to the items on the overview page. Packages are not displayed in a hierarchical,

51

5. Reporting Performance Tests in Jenkins

but in a flattened way. When clicking on a package, only those performance tests are
listed which contain to that specific package. By clicking on a performance tests name, we

Figure 5.6. Details of a performance tests

navigate to the results for this performance test in detail. In Figure 5.6 we illustrate a single
result output for the performance test Port2PortWithTermInstanceofCheckBenchmark.queue
in Build #13. Box #1 presents the results in a table as show in the Jelly script in Listing 5.1.

5.6 Reporting a Build History

Each build is a model object and attached to a job. When including RadarGun as post build
step, each run contains the recorded performance tests. We iterate over all builds to create
a history of all performance tests for all builds. As shown in Figure 5.7, this history can
be navigated through the menu on the sidepanel (Box #1). A build history is created for a
job (Box #4), whereas the overview of single builds can be navigated through the list of all
builds in Box #2. The overview page collects and displays all packages in the corresponding
project that contains the performance tests (Box #3). Different from the package results
of single builds, the package result of our history contains aggregated performance test
results. Furthermore, in this package we are able to compare the performance test results in
plots, as shown in Figure 5.8. If we click on the checkbox (Box #2), the plot appears in Box
#1. Performance tests are aggregated to the same performance test, if and only if the names,
the run mode and the measured time unit are equal. If two performance tests equal in name,
yet differ in the time unit or run mode, they are aggregated separately (see Box #3). Two
Performance tests are only compared with each other, if the units are equal, e.g., ns/op. For
example, the performance tests Port2PortWithTermInstanceofCheckBenchmark in Figure 5.8
represents the aggregated results of the test Port2PortWithTermInstanceofCheckBenchmark.
By clicking on it, we receive an overview of all builds. This overview is shown in Figure 5.9.
The plot is displayed in Box #1. The scores for the specific performance test are visualized

52

5.6. Reporting a Build History

Figure 5.7. Package overview for the build history

Figure 5.8. Comparing the results of two different performance tests

as blue plot and the assertions’ lower and upper bounds are visualized in gray. The list of
the performance test results for each build is sorted by the build number in descending
order (Box #2). By clicking on the performance test, we visualize the test results for a
specific build as shown in Figure 5.6.

53

5. Reporting Performance Tests in Jenkins

Figure 5.9. A performance test’s build history presents a list of results for each build.

54

Chapter 6

Reporting Performance Tests in Eclipse

The IDE Eclipse [16] is one of the most used tools for Java development. We aim to support
software engineers during the development process. Therefor, we introduce RadarGun into
the Eclipse environment by providing a plugin, which reports performance tests done by
RadarGun, in an Eclipse view.

6.1 Understanding the Eclipse Rich-Client-Platform

New Eclipse versions are released by the Eclipse Foundation annually. By releasing Eclipse
4.2, named Juno, the entire platform architecture was restructured. Before Juno, the Eclipse
platform was designed to serve as an open tools platform. Since the release of Juno, the
major API and architecture break allows users to build custom client application. Solely
a minimal set of core plugins is needed to build a rich client application. This set of core
plugins is known as the Eclipse Rich Client Platform (RCP). Rich client applications are
still based on a dynamic plugin model. Furthermore, the UI is built using the same toolkits
and extension points. However, the layout and functionality of the workbench is under
control of the plugin developer and thus is customizable [40]. Hence, the Eclipse 4.x API
allows to integrate independent software components. For these components most of the
data processing occurs on the client side, which is the Eclipse 4.x core.

The IDE Eclipse is reimplemented on top of the Eclipse 4.x API and runs in a legacy
mode. This legacy mode is called compatibility mode. Plugins developed for Eclipse 3.x still
run on Eclipse 4.x platforms, yet in the compatibility mode. As illustrated in Figure 6.1,
the Eclipse 3.x API implementation uses the Eclipse 4.x API and provides the Eclipse
3.x Interface that is used by Eclipse 3.x API based plugins. Plugins developed using the
Eclipse 3.x API, utilize and define extension points in the configuration file plugin.xml. The
compatibility layer converts the relevant extension point information into an application
model. By including the package org.eclipse.platform in a project, the file LegacyIDE.e4xmi

is included, which defines the initial window and some model Addons of the Eclipse 3.x
IDE [38]. In Eclipse 4.x the Eclipse Modeling Framework (EMF) allows to store the model
content via the EMF persistence framework that provides an XML Metadata Interchange
(XMI) or XML persistence provider. By default EMF uses XMI, which is a standard for
exchanging metadata information via XML [39]. Thus, new elements are configured in an
e4xmi file instead of the plugin.xml, which still points to the e4xmi file. However, not all

55

6. Reporting Performance Tests in Eclipse

Figure 6.1. The Eclipse 3.x API still works in the Eclipse 4.x runtime via the compatibility layer
(source: Lars Vogel [38])

programming concepts of Eclipse 4 work using the compatibility layer. New programming
concepts of Eclipse 4, such as dependency injection, merely work for model objects that are
declared in an XMI file, e.g., parts, handlers, and commands.

Although the Eclipse platform team plans to support the compatibility layer for an
unlimited period of time [38], we implement as many parts as possible using the Eclipse
4.x API. The concept of the application model and dependency injection makes our plugin
code more concise and flexible. Additionally, we are able to utilize the event service and
the extensible Eclipse context hierarchy that provides better ways to communicate within
our application. Furthermore, we are more independent of changes in new Eclipse versions.
Therefor, we use a fragment.e4xmi file to contribute model elements to the legacy model
application and try to avoid the Singleton objects of the Eclipse platform, e.g., Platform
or PlatformUI. To design the RadarGun view we use the Standard Widget Toolkit (SWT)
[14]. SWT is an open source widget toolkit for Java and is used in Eclipse to provide
portable access to the UI facilities of the operating systems on which Eclipse is running [14].
Nevertheless, not all parts can be implemented purely using the Eclipse 4.x API. Parts, such
as the launch configurations in Section 6.2, can not be implemented without the extension
point org.eclipse.debug.core.launchConfigurationTypes, which is solely configurable in
the plugin.xml file. In the following, we mark the parts that are implemented using the
Eclipse 3.x API.

6.2 Providing a RadarGun Launch Configuration in Eclipse

One of the parts we are unable to implement using the Eclipse 4.x API, is the launch
configuration to execute RadarGun in Eclipse. We still have to utilize the extension points
org.eclipse.debug.core.launchConfigurationTypes, org.eclipse.debug.ui.launchShortcuts,
and org.eclipse.debug.ui.launchConfigurationTabGroups in the plugin.xml file. These ex-

56

6.2. Providing a RadarGun Launch Configuration in Eclipse

tension points provide two ways to execute RadarGun. One way is to execute a launch
shortcut, which is accessible via Right click on project Ñ Run As Ñ RadarGun Performance
Tests. This shortcut consists of three different components. In order to always execute the
latest benchmarks, a default Maven launch configuration is created for the project one
aims to execute. This configuration compiles the benchmarks. The second component is
the RadarGun launch configuration that executes RadarGun and thus, executes the perfor-
mance tests. The third component is a group launch configuration that merges the Maven
and the RadarGun launch configurations to one launch configuration that executes the
contained elements one after another, in a blocking way. Otherwise, RadarGun could start
while the benchmarks still compile. Another way is to simply start the RadarGun launch

Figure 6.2. RadarGun launch configuration

configuration via the launch configuration menu. In the launch configuration menu we are
able to modify the parameters RadarGun is executed with. Such a launch configuration
is shown in Figure 6.2. A launch configuration contains the workspace of the project this
configuration is created for and the location to the assertions. This locations are mandatory
to launch RadarGun. The file panel to select the workspace and the assertion location
are elements using the Eclipse 3.x API. Optional parameters can be turned on or off via
checkboxes and radio buttons. The parameter -tcp-output is set internally by default and
can not be turned off by the user. This parameter is mandatory to exchange data between
RadarGun and the Eclipse view that visualizes the results. We describe this data exchange

57

6. Reporting Performance Tests in Eclipse

in Section 6.3.

6.3 Reporting Performance Test Results in Eclipse

The reporting of performance tests in Eclipse is the most challenging part of our plugin.
RadarGun is indented to be used for automatic testing in a CI environment and hence
to export performance test results to files. Applications can import these files and report
the data, afterwards. Due to the missing progress monitoring in RadarGun’s prototype
[20], a progress monitoring in external tools is not possible using the prototype. That is
why, we enhance RadarGun in Chapter 4 to report a progress monitoring in real time (see
Section 4.4). A trivial approach to exchange data is to use a file listener that triggers an
event to read the file every time a new files was created. This listener triggers an event for
a newly created file, yet this file mays not contains any data or not the complete output.
Consequently, the imported performance test results were flawed. To exchange performance
test results properly, we implement a Server/Client pattern and exchange messages via an
unilateral connection from RadarGun to Eclipse. Thereby, we receive the results correctly
and can visualize them.

To establish a connection between RadarGun and Eclipse different steps have to be
handled. Since Eclipse starts RadarGun in a VM and passes the classespaths as parameter,
we add a launch listener that triggers a start up event on RadarGun’s launch. Therefor,
we implement the interface LaunchListeners provided by Eclipse. If the listener triggers a
start up event, a client, which connects to RadarGun, starts. If RadarGun is started with the
parameter -tcp-output, a semaphore blocks the performance test execution until a client
connects. After a client is connected, the performance tests are executed. Subsequently,
each ProgressMessage (described in Section 4.4) is passed to the SocketWriter stage that
sends the data to all connected clients. Clients receive the data and handle them. First, the
messages are deserialized to TestResults. Afterwards, each TestResult is sent to the view,
which visualizes the result in the Eclipse GUI.

To communicate between the different parts of our plugin, we utilize the built-in
EventBroker provided by Eclipse via dependency injection. This broker implements a
publish-subscribe pattern and thereby, we implement loosely coupled parts. The used
publish-subscribe pattern is illustrated in Figure 6.3. We create a domain RADARGUN/ that
contains three subdomains: (1) LaunchConfig, (2) Client, (3) and Data. Objects can sub-
scribe to event topics with regards to these subdomains and publish or receive events.
The data format of events is predefined. Since not all objects can use the dependency
injection, we provide an interface named RadarGunEventHandler. Thereby, we allow parts,
which can not use dependency injection, to publish events for our RadarGun plugin.
On termination all parts unsubscribe all topics. The subdomain LAUNCHCONFIG has two
event topics, namely STARTED and FINISHED. The launch listener triggers STARTED to notify
the subscribers that RadarGun launches and triggers FINISHED, if RadarGun terminates.
The object PerformanceTestRunSession subscribes the whole topic RADARGUN/LAUNCHCONFIG/*.

58

6.4. Visualizing Performance Test Results in Eclipse

Topic: RADARGUN/LAUNCHCONFIG/*

Topic: RADARGUN/CLIENT/*

Topic:
RADARGUN/DATA

/*

RadarGun
Event Handler

 Client

Eclipse
Event Broker

Run Session

Result View

Figure 6.3. Utilizing the event broker to use the publish subscribe pattern.

PerformanceTestRunSession creates or terminates a client depending on whether RadarGun
starts or terminates. If RadarGun starts, the event STARTED triggers. The event CLOSED trig-
gers after the client was terminated. To prevent several parallel launches, only one client
at a time is running. Additional launches get discarded. A client publishes two events
topics: INIT and UPDATE. Both event topics contain a ProgressMessage sent by RadarGun.
INIT is published by a client, if a ProgressMessage is flagged as Begin. Then the message
represents a list containing all performance tests. An Update event triggers, if the progress
messages flag is Started or Finished and the client forwards the TestResult object. The
view subscribes the topic RadarGun/DATA/* and processes the received events. In Section 6.4
we describe how the GUI handles ProgressMessages.

6.4 Visualizing Performance Test Results in Eclipse

The RadarGun view in Eclipse opens automatically, if the start up event is triggered. The
view in Figure 6.4 is implemented as part using the Eclipse 4.x API and thus, utilizes
dependency injection to subscribe for the topic RADARGUN/DATA/* after construction. When
receiving the event RADARGUN/DATA/INIT, which contains a list of performance tests, these
performance tests’ names are added to the table, without the score and assertion. The
performance test that is currently executed displays Running in the field named Score.
The event RADARGUN/DATA/UPDATE triggers, if a progress message’s flag is Stared or Finished.
Then the client forwards the TestResult object and updates the GUI’s content depending on

59

6. Reporting Performance Tests in Eclipse

whether the TestResult is an instance of EmptyTestResult or one of the others in Table 4.1.
For an EmptyTestResult the assertion of the corresponding performance test is updated.
Otherwise, the Score field is updated from Running to the performance test’s score.

Running or failed performance tests are marked in yellow. Successfully finished per-
formance tests are marked in green. Performance tests having no results are marked in
red. The progress bar is updated dynamically. The differently colored sections visualize the
different results. The GUI is built using solely SWT and JFace1 elements. Thereby, the view
accesses the UI facilities of the operating systems on which Eclipse is running. Thus, the
view’s style harmonizes with the other parts of the Eclipse IDE.

Figure 6.4. RadarGun view visualizing three failed performance tests. Their actual result values are
all below the lower bounds.

1http://www.vogella.com/tutorials/EclipseJFace/article.html

60

http://www.vogella.com/tutorials/EclipseJFace/article.html

Chapter 7

Application Example of RadarGun

We enhance the performance test framework RadarGun in Chapter 4 and develope two tools
to execute performance tests in a CI environment and an IDE. The prototype of RadarGun
was evaluated by Henning, Wulf, and Hasselbring [21] with different microbenchmarks
for the P&F framework TeeTime. In our feasibility evaluation in Chapter 8, we rerun the
tests with TeeTime using our enhanced RadarGun version. However, to evaluate a second
framework, that is, to increase the external validity, we write performance tests for the
monitoring framework Kieker (see Section 3.2.4) and execute them with RadarGun to
accomplish Goal 4 in Chapter 2. Therefor, we introduce how to configure benchmarks
using JMH and how to define performance test configurations in RadarGun. Finally, we
illustrate how to write a performance test for the Kieker framework.

7.1 Understanding the Benchmark Configuration by JMH

Similar to functional tests in JUnit, performance tests in RadarGun are defined in Java
classes. However, the annotations to configure a benchmark are provided by JMH. The
methods to test are annotated by @Benchmark. Sometimes benchmarks need initialized
objects before they are executable. However, if this initialization is not part of the method,
it must not be measured and thus should be outsourced from the performance test. Such
objects are called "state" objects. Using JMH, these state objects are declared in special state
classes, which are annotated with @State. To initialize state objects before passing them to
benchmarks, we annotate state methods with @Setup and @TearDown. The @Setup ensures
that this method is called to setup the state object, before it is passed to the benchmark
method. The @TearDown annotation ensures that this method is called to clean up the state
object, after the benchmark has been executed. On execution, an instance of that state class
is then provided as parameter to the benchmark method. State objects can be reused across
multiple calls to benchmark methods. Table 7.1 shows and describes which scopes are
provided for state objects by the Scope class in JMH. Similar to JUnit, it is also possible to
use parameterized tests by declaring the parameters with the @Param annotation in a state
class.

In addition to the annotations that are used to setup a benchmark, JMH provides
annotations to refine the measurements. In Section 3.1.1 we describe different influences
that may corrupt the measurements of program executions. To handle these influences, we

61

7. Application Example of RadarGun

Table 7.1. Configurable scopes using JMH

Scope. Where state object can be reused

Thread For each thread running the benchmark its own
instance of the state object is created.

Group For each each thread group running the benchmark
its own instance of the state object is created.

Benchmark All threads running the benchmark share the same
state object.

adjust the benchmark execution. The annotation @Fork declares the number of separated
execution environments. Warmup cycles provide the opportunity to the JVM to optimize
the code before the measurement starts.The number of warmup iterations is defined
by @Warmup. @Measurement defines the number of benchmark measurements in each fork.
As described in Section 3.1.3, there are different metrics to measure the performance of
benchmarks. JMH offers five different benchmark modes, which are selectable using the
annotation @BenchmarkMode. Table 7.2 shows and describes which constants are provided
by the class Mode to configure which run mode. The output’s time unit can be defined

Table 7.2. Run modes to configure benchmark using JMH

Run Mode What is measured

Throughput The number of times a benchmark method was exe-
cuted in a given timeunit.

Average Time The average time it takes for the benchmark method
to execute once.

Sample Time How long time it takes for the benchmark method
to execute.

Single Shot Time How long time a single benchmark method execu-
tion takes to run.

All Measures all of the above.

via @OutputTimeUnit. The class Timeunit provides the following constants: (1) NANOSECONDS,
(2) MICROSECONDS, (3) MILLISECONDS, (4) SECONDS, (5) MINUTES, (6) and HOURS. JMH is able
to measure multi-threaded benchmarks. With the annotation @Thread, we declare how
many threads are used for the execution of benchmarks. We demonstrate how to write a
benchmark in Section 7.3.

62

7.2. Defining Performance Tests in RadarGun

7.2 Defining Performance Tests in RadarGun

We present the enhanced performance test configuration for RadarGun in Section 4.2.
Since one of our goals is to evaluate our tools by using performance tests in Kieker, see
Chapter 2, we demonstrate how to write a new performance test configuration for Kieker.
In Chapter 8 we execute this performance tests on an external Jenkins server and on a local
machine hosting Jenkins. The external machine uses the WildcardIdentifier and thus the
parameter field is an empty array []. For the performance tests on our local machine we
use MacAddressIdentifier as Identifier (Line 2) and hence we put our MAC-Address in
the parameter array [’00:50:b6:45:f0:e0’] (Line 3). Performance tests are defined in a list
written in the data format YAML. All elements in the list tests (Line 4) are tab-indented
(Line 5´ 7). Each performance test represents the full qualified name of the Java class
representing the benchmark. For each declared performance test an array, consisting of
exactly four elements, is set. This array is interpretable as [lower bound, upper bound,

timeunit/per operation (or vice versa), confidence level]. We set the run mode and
timeunit to ns/op and use a confidence level of 95%. Notice, that we determine the upper
and lower bounds by some sample runs of the benchmarks. Therefor, we used our Eclipse
plugin in Chapter 6. Since we do not know how fast the MonitoringController performs in
general, we need these runs to find an first interval for each performance test.

1 ---

2 identifier: WildcardIdentifier

3 parameters: [’00:50:b6:45:f0:e0’]

4 tests:

5 kieker.dumpwriter.benchmark.BlockOnFailedInsertBehavior: [480, 560,

’ns/op’, 95]

6 kieker.dumpwriter.benchmark.CountOnFailedInsertBehavior: [300, 350,

’ns/op’, 95]

7 kieker.dumpwriter.benchmark.DoNotInsertBehavior: [60, 68, ’ns/op’, 95]

Listing 7.1. A Kieker performance test configuration

7.3 Writing Performance Tests for the Kieker Framework

In the follow, we write a benchmark for the performance test kieker.dumpwriter.benchmark.
BlockOnFailedInsertBehavior. This performance tests is written to test the monitoring
controller used by Kieker. A MonitoringController has five strategies1 to write data to a
queue. As shown in Figure 7.1, a queue is shared between two threads. The application

1https://github.com/kieker-monitoring/kieker/blob/stable/kieker-monitoring/src/kieker/monitoring/core/controller/

WriterController.java

63

https://github.com/kieker-monitoring/kieker/blob/stable/kieker-monitoring/src/kieker/monitoring/core/controller/WriterController.java
https://github.com/kieker-monitoring/kieker/blob/stable/kieker-monitoring/src/kieker/monitoring/core/controller/WriterController.java

7. Application Example of RadarGun

thread writes monitoring probes to the queue via the MonitoringController. A writer
thread reads the entries from the queue. The monitoring controller has five strategies
to write the probes to the queue. We use a DumpWriter to read the queue. If the queue
is blocked, due to the reading of the DumpWriter, the DumpWriter is too slow. Since the
method, which reads a probe and is supposed to write it, does not contain any logic2 this
DumpWriter can not block the queue. Consequently, a queue is never full and blocks only, if
the operation system, which executes the benchmark, does not schedule both threads fairly.

In our performance test the benchmark, represents the probe and the execution of this
benchmark the application thread. Consequently, we measure the minimal overhead that is
caused by creating a probe and write it to a queue. The written benchmark is presented
in Listing 7.2. Although this strategies could be easily parametrized via @Param(...) (Line
12), we have to write three separate benchmarks. Otherwise we receive the score over
all three parametrized executions and not three performance tests. JMH executes the
parametrization one after another without writing three separate benchmarks to the list of
benchmarks used by RadarGun. Thus, we can not write assertions for this parametrization.
Consequently, we can not run performance tests for this parametrization. We configure
three forks for the benchmark kieker.dumpwriter.benchmark.BlockOnFailedInsertBehavior

(Line 4). Each fork runs five warmup iterations (Line 5) and 30 measurements (Line 6). The
benchmark measures the average time per execution in nanoseconds (Line 2). To run a
benchmark, the state object MonitoringController is configured in the setup (Lines 14´ 21).
JMH executes the benchmark in a single thread (Line 7).

queue

Probe

Monitoring Controller

Writer

Application thread Writer thread

Figure 7.1. We test the minimal overhead of Kieker’s monitoring controller.

2https://github.com/kieker-monitoring/kieker/blob/stable/kieker-monitoring/src/kieker/monitoring/writer/dump/

DumpWriter.java

64

https://github.com/kieker-monitoring/kieker/blob/stable/kieker-monitoring/src/kieker/monitoring/writer/dump/DumpWriter.java
https://github.com/kieker-monitoring/kieker/blob/stable/kieker-monitoring/src/kieker/monitoring/writer/dump/DumpWriter.java

7.3. Writing Performance Tests for the Kieker Framework

1 @State(Scope.Thread)

2 @BenchmarkMode(Mode.AverageTime)

3 @OutputTimeUnit(TimeUnit.NANOSECONDS)

4 @Fork(3)

5 @Warmup(iterations = 5)

6 @Measurement(iterations = 30)

7 @Thread(1)

8 public class BlockOnFailedInsertBehavior {

9
10 private MonitoringController monCtrl;

11 // @Param({"1","2","3","4","5"})

12 private int queueBehavior = 1;

13
14 @Setup

15 public void initConfiguration() {

16 Configuration configuration =

ConfigurationFactory.createSingletonConfiguration();

17 configuration.setProperty(ConfigurationFactory.WRITER_CLASSNAME,

"kieker.monitoring.writer.dump.DumpWriter");

18 String key = kieker.monitoring.core.controller.WriterController.
PREFIX+kieker.monitoring.core.controller.WriterController.
RECORD_QUEUE_INSERT_BEHAVIOR;

19 configuration.setProperty(key, queueBehavior); // <-- varying parameter

20 this.monCtrl = MonitoringController.createInstance(configuration);

21 }

22
23 @Benchmark

24 public void benchmark() {

25 EmptyRecord record = new EmptyRecord();

26 monCtrl.newMonitoringRecord(record);

27 }

28 }

29 }

Listing 7.2. Benchmark for the performance test BlockOnFailedInsertBehavior used by Kieker.

65

Chapter 8

Feasibility Evaluation

Due to the lack of automatic tests to evaluate the results and the visualization, we evaluate
(1) the enhanced performance testing framework RadarGun, (2) the RadarGun plugin
for Jenkins, (3) and the RadarGun plugin for Eclipse, in a feasibility evaluation. From
Henning, Wulf, and Hasselbring [21] we inherit the scenarios that were used to evaluate
RadarGun’s prototype. However, these scenarios do not cover all functions we implemented
to utilize RadarGun in a continuous integration environment. That is why, we expand
the evaluation and evaluate additional features. Our experimental setup is illustrated
in Figure 8.1. To increase the validity of our evaluation, we run the evaluation on two

PC

MBP

TeeTime

Kieker

RadarGun

Eclipse

Jenkins

Progress Monitoring

in bounds

exceeds upper bound

undercuts lower bound

Visualizing A Build History

visualize a plot

visualize group of plots

do not visualize
two plots with different

units

indentify machinesMachine Identification

Computer Systems Performance Test
Projects

Tools to Evaluate Functionality to Evaluate Test Scenarios

Figure 8.1. Overview of the methodology used for the feasibility evaluation

different environments. The system specifications are shown in Table 8.1. On both systems
Eclipse Oxygen is installed. Jenkins runs in a Docker1 container and uses the latest Jenkins
Long-Term-Support2 (LTS) version, which is version 1.89.3.

1https://www.docker.com/what-docker
2https://jenkins.io/download/lts/

67

https://www.docker.com/what-docker
https://jenkins.io/download/lts/

8. Feasibility Evaluation

Table 8.1. The specifications of the computer systems we used in the evaluation.

MacBook Pro 15” (MBP) Desktop PC (PC)

2,4 GHz Intel Core i5 3,2 GHz Intel Core i5

8 GB 1067 MHz DDR3 8 GB 1600 MHz DDR3

Intel HD Graphics 288 MB NVIDIA GeForce GTX 750 TI 2GB

macOS High Sierra Windows 10 (Edu)

Eclipse Oxygen (1.a) Eclipse Oxygen (1.a)

Jenkins LTS (1.89.3) Jenkins LTS (1.89.3)

Since Henning, Wulf, and Hasselbring [21] use performance tests written for the P&F
framework TeeTime to evaluate RadarGun’s prototype, we repeat this evaluation on each
of our systems for our enhanced RadarGun version. Instead of execution only a single
benchmark as Henning, Wulf, and Hasselbring [21] did, we execute all three performance
tests provided by TeeTime. To increase the external validity, we additionally conduct this
evaluation for the three performance tests we write for the monitoring framework Kieker
in Chapter 7. On each system we evaluate the enhanced performance testing framework
RadarGun, the Eclipse plugin, and the Jenkins plugin. Both plugins utilize RadarGun to
execute and report performance tests.

In this feasibility evaluation we simulate scenarios that cover different cases. These
scenarios test the different tools and functions we presented in this master’s thesis. To
present the results in an oversee-able way, the scenarios are categorized in three categories:
(1) Machine identification, (2) Progress Monitoring, (3) and build history visualization in
Jenkins. In the following, we describe each category in detail.

8.1 Evaluating the Machine Identification

RadarGun executes hardware-dependent performance tests. To map the assertions to a
corresponding benchmark correctly, machine identifiers are used. These machine identifiers
are presented in Table 3.1.

8.1.1 Methodology and Test Scenarios

We evaluate whether all machine identifiers identify the correct machine or not. This
complements the feasibility evaluation by Henning, Wulf, and Hasselbring [21]. Since
this function was never evaluated, we evaluate whether all identifiers bind the assertions
to the benchmarks correctly or not. If one of the identifiers does not work, then the
performance tests are not compared against assertions. Else our plugins reports the test

68

8.1. Evaluating the Machine Identification

results compared against the identified assertions. Thus, the machine identification is
evaluated while evaluating our tools. Notice that the WildcardIdentifier always returns
true. Performance test configurations, which use that identifier, return always the list
of configured performance tests. Exactly the opposite does the DissmissIdentfier. This
identifier returns false for all performance test configurations. Consequently, we do not
evaluate both identifiers. We use the performance test configuration which is shown in
Listing 4.1 to evaluate TeeTime. The performance test configuration of Kieker is shown in
Listing 7.1. However, we modify the machine identifies and the corresponding parameters
for the system that use these configurations.

MI1: MacAddressIdentifer is used The assertions of the performance tests in Jenkins
are bound to a Mac-Address. Thus the configurations uses the MacAddressIdentifer and
contains the Mac-Addresse of the corresponding Docker container as parameter(s).

For a correct behavior, we expect that on both systems Jenkins visualizes for each
performance tests, the corresponding assertions and the result status Successful, Failed,
or No Result.

MI2: WindowsComputernameIdentifer is used Our PC uses the WindowsComputernameIdentifier

to execute the performance tests in Eclipse. The computer name is given as parameter.
For a correct behavior, we expect that the Eclipse view shows three performance tests

for TeeTime and three performance tests for Kieker. These tests contain the corresponding
assertions we defined for the PC.

MI3: NetworkAddressIdentifer is used The NetworkAddressIdentifier is used by our
MBP in Eclipse. The network address is given as parameter.

For a correct behavior, we expect that the Eclipse view shows three performance tests
for TeeTime and three performance tests for Kieker. These tests contain the corresponding
assertions we defined for the MBP.

8.1.2 Results and Discussion

While evaluating our tools, we used the different identifiers provided by RadarGun to con-
figure the performance tests for the different systems and tools. To identify the system cor-
rectly, we fixed bugs in the two Identifiers MacAddressIdentifier and WindowsComputername-

Identifier. Afterwards, all identifiers properly identified the corresponding system and
the assertions were bound to the benchmarks correctly.

8.1.3 Threats to Validity

We evaluated our Jenkins plugin on two different local systems. To increase the validity of
our results our plugin should be tested in another environment with different hardware,

69

8. Feasibility Evaluation

e.g., on the Jenkins server of the Software Engineering Group at the University of Kiel. Our
performance testing framework is not feasible for cloud systems. Cloud systems allocate
resources dynamically and we are not able detect or consider this during performance
testing. Since the machine identifiers request parameters and merely compare them against
system variables they can access, unit tests should be used to test these identifiers.

8.2 Evaluating the Progress Monitoring

The progress monitoring is implemented to report the results of performance tests in
real time. When executing RadarGun, or one of the plugins that utilize RadarGun, differ-
ent notifications and visualizations are generated. Using RadarGun we receive for each
performance test a notification right before the corresponding benchmark is about to be
executed. After a benchmark was executed, we receive the benchmark’s result and whether
the performance test was successful or not. Since reporting the result Successful, Failed,
or No Result (see Section 4.3) is done at the end of each benchmark execution, we evaluate
whether each stage in RadarGun works correctly or not. The exporting stage is evaluated
when reporting the results in Jenkins. The SocketWriter stage, which reports the results
via a TCP connection to our Eclipse plugin, is evaluated by the Eclipse plugin.

8.2.1 Methodology and Test Scenarios

To evaluate our enhanced RadarGun, we repeat the test scenarios used by Henning, Wulf,
and Hasselbring [21]. However, the result comparison differs from RadarGun’s prototype,
due to the confidence intervals that were introduced to RadarGun.

S1: The score is within bounds A performance test result is within the bounds, if and
only if the whole confidence interval is within the assertion’s lower and upper bound.

For a correct behavior, we expect that RadarGun produces a console output, which
confirms that the performance test was successful. In Eclipse we expect that the performance
test is colored in green. In Jenkins we expect that the build finished with the status Success.
Notice that a build only finishes with the status Success, if the results of all performance
tests are within the corresponding bounds.

S2: The score is lower than the lower bound A performance test result undercuts the
lower bounds, if the confidence intervals undercuts the assertion’s lower bound.

For a correct behavior, we expect that RadarGun produces a console output, which
confirms that the performance test has failed. In Eclipse we expect that the performance
test is colored in yellow. In Jenkins we expect that the build finished with the status Failure.
Notice that a build finishes with the status Failure, if at least one performance tests result
was not within the corresponding bounds.

70

8.2. Evaluating the Progress Monitoring

S3: The score is greater than the upper bound A performance test result exceeds the
assertion’s upper bound, if the confidence interval exceeds the assertion’s upper bound.

For a correct behavior, we expect that RadarGun produces a console output, which
confirms that the performance test has failed. In Eclipse we expect that the performance
test is colored in yellow. In Jenkins we expect that the build finished with the status Failure.
Notice that a build finishes with the status Failure, if at least one performance tests result
was not within the corresponding bounds.

To evaluate the progress monitoring provided by RadarGun, without using our plugins,
we execute RadarGun for TeeTime and Kieker in a console. Therefor, we use the command:

java -cp RadarGun/target/radargun-2.0.0-SNAPSHOT.jar:teetime-benchmark-

performance-testing/target/benchmarks.jar radargun.RadarGun -cp-assertions

assertions/assertions.yaml -jmh-output .

In Eclipse we use our plugin for each project once. The result view shows the progress in
real time for each performance test. In Jenkins our plugin uses the pipeline configuration
file shown in Listing 5.3. Therefor, we create two Jobs. One job imports the Git repository
of the TeeTime benchmarks3. The other job imports the Gitlab repository of the Kieker
benchmarks4. The results are visualized for each job after a build finished.

In the following, we measure for each performance test the number nanoseconds per
operation (ns/op).

8.2.2 Results and Discussion

We divide the presentation of our results into three subsections, for each tool one subsection.
First, We present the results executed on the MBP. Afterwards, the results obtained on
our PC are presented. To avoid too much redundancy, we present the MBP’s results for
TeeTime and the PC’s results for Kieker. If the results differ from each other, we report
them for both systems. However, the missing results are presented in the Appendix. All
executions measured the number of nanoseconds per operation (ns/op).

Progress Monitoring in RadarGun

We executed RadarGun on our MBP using a console. RadarGun finds the assertions
in the file assertions/assertions.yaml and properly binds them to the corresponding
benchmarks. On execution we received the progress log shown in Listing 8.1. First, all stages
are initialized (Lines 1´ 3), as described in Section 4.4. On start up all three benchmarks
were found and reported by the corresponding progress message (Line 4). The first executed
performance test was Port2PortBenchmark (Line 5). This benchmark’s score was 124.00 (Line
7). Since the asserted interval was [15.0, 19.0] (Line 7), the benchmark’s result exceeded the

3https://build.se.informatik.uni-kiel.de/teetime/teetime-benchmark.git
4https://build.se.informatik.uni-kiel.de/kieker/kieker-performance-tests.git

71

https://build.se.informatik.uni-kiel.de/teetime/teetime-benchmark.git
https://build.se.informatik.uni-kiel.de/kieker/kieker-performance-tests.git

8. Feasibility Evaluation

assertion’s upper bound. Thus, the benchmark failed, which was reported by RadarGun
correctly (Line 7). Consequently, Scenario S2 is shown for RadarGun. For the second
performance test, namely Port2PortWithTermInstanceofCheckBenchmark, RadarGun reports
the start (Line 8) and that the performance test finished successfully (Line 10). The score
was 15.63 and the confidence interval for the confidence level 0.95 was « [15.19, 16.07]. Thus,
the confidence interval is within the bounds and Scenario S1 is accomplished. The third
performance test to execute was Port2PortWithTermReferenceCheckBenchmark (Line 11). This
performance test failed (Line 13), since it undercut the assertion’s lower bound. Its score
was 17.98, yet the assertion was [18.0, 20.0]. Thus, RadarGun successfully accomplished
Scenario S3 for the TeeTime performance tests.

1 19:38:52.773 [main] DEBUG

radargun.lib.teetime.stage.basic.distributor.Distributor:Distributor-0

- numOpenedInputPorts (inc): 1

2 19:38:53.391 [main] DEBUG

radargun.lib.teetime.stage.basic.distributor.Distributor:Distributor-1

- numOpenedInputPorts (inc): 1

3 [...]

4 19:38:53.492 [START UP] Found 3 benchmarks.

5 19:38:53.495 [STARTING] teetime.benchmark.Port2PortBenchmark is running

now

6 [...]

7 19:39:14.434 [FINISHED] teetime.benchmark.Port2PortBenchmark [FAILED]

Score: 124.00638708349331 CL: 0.95 CI: [121.21520524285819,

126.79756892412843] (Bounds: [15.0, 19.0]) ns/op

8 19:39:14.435 [STARTING]

teetime.benchmark.Port2PortWithTermInstanceofCheckBenchmark is

running now

9 [...]

10 19:39:35.099 [FINISHED]

teetime.benchmark.Port2PortWithTermInstanceofCheckBenchmark

[SUCCESSFULL] Score: 15.63788229611647 CL: 0.95 CI:

[15.198543895212682, 16.077220697020255] (Bounds: [13.0, 17.0]) ns/op

11 19:39:35.099 [STARTING]

teetime.benchmark.Port2PortWithTermReferenceCheckBenchmark is running

now

12 [...]

13 19:39:55.769 [FINISHED]

teetime.benchmark.Port2PortWithTermReferenceCheckBenchmark [FAILED]

Score: 17.985656328996914 CL: 0.95 CI: [17.837935676755137,

18.13337698123869] (Bounds: [18.0, 20.0]) ns/op

72

8.2. Evaluating the Progress Monitoring

14 19:39:55.769 [SHUTDOWN] Finished all performance tests

Listing 8.1. Reported progress by RadarGun on executing performance tests for TeeTime
on our MBP

Due to its similarity, we relinquish to report the results we obtained on our PC in this
section, yet the missing results are presented in Listing 1. In the following, we report the
progress monitoring by RadarGun for the performance tests in Kieker on our PC.

Listing 8.2 shows that RadarGun found the assertions in the file assertions/assertions.yaml

and properly bound them to the corresponding benchmarks. First, all stages are initialized
(Line 1´ 3), as described in Section 4.4. On start up all three benchmarks were found and
reported by the corresponding progress message (Line 4). The first executed performance
test was BlockOnFailedInsertBehavior (Line 5). The benchmark’s score was 329.44 (Line 7).
Since the asserted interval was [480.0, 560.0] (Line 7), the benchmark’s score undercut the
assertion’s upper bound. Thus, the benchmark failed, which was reported by RadarGun
correctly (Line 7). Consequently, Scenario S3 is shown for RadarGun executed on the PC.
For the second performance test, named CountOnFailedInsertBehavior, RadarGun reports
the start (Line 8) and that the performance test failed (Line 10). The score was 332.95
and the confidence interval for the confidence level 0.95 was « [331.75, 334.15] (Line 10).
Although the score was within the assertion’s bounds ([322.0, 332.0]), the performance test
failed. The confidence interval exceeded the assertion’s upper bound. Thus, the Scenario S2
is accomplished. The third performance test to execute was DoNotInsertBehavior (Line 11).
This performance test finished successfully (Line 13), since the score and the confidence in-
terval are within the assertion’s bounds. Its score was 37.08 and its assertion was [35.0, 40.0].
Thus, RadarGun successfully accomplished Scenario S1 for the Kieker performance tests.

1 15:51:26.678 [main] DEBUG

radargun.lib.teetime.stage.basic.distributor.Distributor:Distributor-0

- numOpenedInputPorts (inc): 1

2 15:51:26.990 [main] DEBUG

radargun.lib.teetime.stage.basic.distributor.Distributor:Distributor-1

- numOpenedInputPorts (inc): 1

3 [...]

4 15:51:27.171 [START UP] Found 3 benchmarks.

5 15:51:27.317 [STARTING]

kieker.dumpwriter.benchmark.BlockOnFailedInsertBehavior is running now

6 [...]

7 15:51:48.169 [FINISHED]

kieker.dumpwriter.benchmark.BlockOnFailedInsertBehavior [FAILED]

Score: 329.44060131618085 CL: 0.95 CI: [328.19397304312554,

330.68722958923615] (Bounds: [480.0, 560.0]) ns/op

8 15:51:48.180 [STARTING]

73

8. Feasibility Evaluation

kieker.dumpwriter.benchmark.CountOnFailedInsertBehavior is running now

9 [...]

10 15:52:08.793 [FINISHED]

kieker.dumpwriter.benchmark.CountOnFailedInsertBehavior [FAILED]

Score: 332.95550983887625 CL: 0.95 CI: [331.7533883547323,

334.1576313230202] (Bounds: [350.0, 400.0]) ns/op

11 15:52:08.794 [STARTING] kieker.dumpwriter.benchmark.DoNotInsertBehavior

is running now

12 [...]

13 15:52:29.235 [FINISHED] kieker.dumpwriter.benchmark.DoNotInsertBehavior

[SUCCESSFULL] Score: 37.085234391494666 CL: 0.95 CI:

[37.01250715748098, 37.15796162550835] (Bounds: [35.0, 40.0]) ns/op

14 15:52:29.238 [SHUTDOWN] Finished all performance tests

Listing 8.2. Reported progress by RadarGun on executing TeeTime performance tests on
our PC

Again, we relinquish to report the progress monitoring of RadarGun executed on our MBP,
due to the similarity of the logs. Nevertheless, we present the missing results in Listing 2.

All in all, the console output is in accordance with our expectations. We proofed
that our enhanced version of RadarGun reports the results in real time. Additionally, it
provides more information than its prototype. Furthermore, we do identify the machines
correctly. However, RadarGun should report the identified machine and the properly
mapped assertions and benchmarks. Currently, a software engineer, who did not write the
performance test, can not be sure, whether the machine was identified correctly or not.

Progress Monitoring in Eclipse

Figure 8.2 shows the results for TeeTime’s performance tests in Eclipse executed on our
MBP. The view, which is provided by our Eclipse plugin, received at start up the three
benchmarks. The currently executed benchmark Port2PortWithTermReferenceCheckBench-

mark is marked as Running in the Score field. The performance tests Port2PortWithTerm-

InstanceofCheckBenchmark finished successfully and thus, is colored in green. The perfor-
mance test Port2PortBenchmark has failed, since it undercuts its assertion’s lower bound.
Hence, this performance test is colored in yellow. Notice, that performance tests, which
are currently executed, are colored in yellow, too. The result bar shows that 67% of the
performance tests were completed. Hence, the result bar works correctly. After all per-
formance tests were completed, our view looked like in Figure 8.4. The performance test
Port2PortWithTermInstanceofCheckBenchmark, which was marked as Running in Figure 8.4,
exceeded the assertions upper bound. Thus, this performance test has failed and is colored
in yellow. Consequently, we proofed that all three scenarios worked correctly for TeeTime
using our Eclipse plugin on the MBP. The corresponding result on our PC are shown in
Figure A.2.

74

8.2. Evaluating the Progress Monitoring

Figure 8.2. On our MBP two of three performance tests for TeeTime have finished and one is still
running.

Figure 8.3. All performance tests for TeeTime have finished on our MBP.

Figure 8.4 shows the results for the Kieker performance tests in Eclipse on our PC. The
view, which is provided by our Eclipse plugin, received at start up three benchmarks. The
currently executed benchmark DoNotInsertBehavior is marked as Running. The other two
performance tests already finished. The performance test BlockOnFailedInsertBehavior

undercut its assertion’s lower bound and hence, has failed. Thus, it is correctly colored
in yellow. Although the score of the performance test CountOnFailedInsertBehavior is
within its assertion’s bounds, it has failed. The corresponding confidence level was not
within the assertions bounds. Consequently, this performance tests is colored correctly.
The result bar shows that 67% of the performance tests were completed. After all per-
formance tests were completed, our view looked like in Figure 8.4. The performance
test kieker.dumpwriter.benchmark.DoNotInsertBehavior, which was marked as Running in

75

8. Feasibility Evaluation

Figure 8.4. On our PC two of three performance tests for Kieker have finished and one is still running.

Figure 8.4, finished successfully. The score 37.09 is within the corresponding bounds [35, 40]
and thus, is colored in green. The corresponding result on our MBP are shown in Figure A.1.

Figure 8.5. All performance tests finished on our PC.

76

8.2. Evaluating the Progress Monitoring

In summary, the execution and visualization of performance tests in our Eclipse plugin
is in accordance with our expectations. The progress was shown in real time. Due to the
coloring, we easily see how a performance test performed. The GUI fits in the IDE on both
operating systems.

Nevertheless, this plugin needs improvements. When starting two performance tests in
parallel, Eclipse throws exceptions we did not handle properly. Due to the exceptions, the
process does not quite automatically and one has to abort it manually. Moreover, when
executing a second performance test session, without closing the view of the previous
session, both views receive the data sent by RadarGun. Additionally, the view is still shown
after Eclipse was restarted, yet empty. The colors are too bright and the currently running
benchmark should be distinguishable from the failed performance tests. If a performances
test’s score is within the bounds, yet the confidence level is not within the bounds, then a
software engineer can only guess the reason why the test failed. Thus, the GUI needs to
provide more details of the performance test results.

Progress Monitoring in Jenkins

Jenkins’ progress monitoring is a time approximation that depends on the runtime of the
previous builds. If the previous build took two minutes to build the job, then the progress
bar shows that 50% of the build have finished after one minute. However, RadarGun prints
the progress to Jenkins’ console. Apart from that, we report the performance test results
for each build after the build finished.

Figure 8.6 shows the performance tests results for build number 39 in the job performance-

testing-eval-mac. This job builds a branch that Jenkins pulled from Git for the evaluation
of TeeTime on our MBP.

Figure 8.6. A build’s performance tests were all successful.

The progress bar in Box #1 indicates that all performance test have finished successfully,
since it is fully colored in green. However, the collection of all failed performance tests in

77

8. Feasibility Evaluation

Box #2 lists all contained performance tests. This is a bug in an if-statement and thus, this
table will display always all performance tests. The package result in the package overview
(Box #3) shows three successful performance tests. Thus, the build finished with the status
SUCCESS. Consequently, we proofed Scenario S1 for our jenkins plugin on the MBP.

Figure 8.7 shows the performance tests results for build number 41 Each build contains

Figure 8.7. Each build contains an overview page for the performance test results.

a menu entry named RadarGun results (Box #1). This link references to the result page
that was created by our Jenkins plugin. The result bar (Box #2) shows that 2 of 3 tests
failed and one finished successfully. However, in Box #3 three test are listed as failed.
As mentioned before, this is a bug. To see the detailed results of a failed performance
test, we click on the test Port2PortWithTermInstanceofCheckBenchmark in Box #3. This link
references to the detailed performance test results, as shown in Figure 8.8. Otherwise,
one has to navigate through the package results first. The performance test has a score of
95.68 and the assertion was [86, 100]. Since the confidence interval [90.83, 100.52] exceeds
the assertion’s upper bound, the performance test has failed. Since the performance test
teetime.benchmark.Port2PortBenchmark undercut its assertion’s lower bound, this perfor-
mance test failed, too. Thus, the build finished with the status FAILURE. Consequently, we
proofed Scenario S2 and S3 for our Jenkins plugin.

All in all, the performance test result visualization for TeeTime in a single build in
Jenkins is in accordance with our expectations. We proofed that our Jenkins plugin imported
and visualized the reported data by RadarGun correctly.

As shown in Figure 8.9 the build 66 finished successfully with the status SUCCESS for Kieker
executed on our PC. The status bar is fully colored in green (Box #2). The build results
are referenced by the link "RadarGun results" (Box #1). Since all performance tests finished

78

8.2. Evaluating the Progress Monitoring

Figure 8.8. Performance test results for the build number 41 of the job Teetime-benchmarks.

successfully, the displayed table in Box #3 contains a bug. By clicking on Box #4 we a
navigated to the package overview page. Consequently, we proofed Scenario S1 for the
Jenkins plugin on our PC.

Figure 8.9. A build finished successfully.

In Figure 8.10 the package overview page for the package kieker.dumpwriter.benchmark

is shown. This is the only package that contains performance tests for Kieker. In build 57
the performance test DoNotInsertBehavior has failed, since its score (677.36) exceeds the
corresponding assertion’s bounds ([390, 560]). The other two tests finished successfully. Due
to the failed performance test, the build finished with the status FAILURE. Consequently, we
have shown Scenario S2 for the Jenkins plugin on our PC.

79

8. Feasibility Evaluation

Figure 8.10. A package’s performance test result overview page.

All in all, the performance test result visualization for Kieker in a single build in Jenkins
is in accordance with our expectations. We proofed that our Jenkins plugin imports and
visualized the reported data by RadarGun. However, this visualization still contains a bug
in the collection of failed performance tests. The colors of the performance tests in the
package overview in Figure 8.10 are too bold. Thus, the links are only readable with an
enormous effort. In general, the page layouts should be beautified.

8.2.3 Threats to Validity

Currently, a software engineer, who did not write the performance test, can not be sure
whether the machine was identified correctly or not. Although we test in this feasibility
evaluation whether RadarGun’s performance testing is working correctly or not, the
correctness of RadarGun can be tested with unit tests. The P&F framework TeeTime
provides an internal Domain-Specific-Language (DSL) to test the stages in unit test. Thus,
an automatic unit testing can replace the feasibility evaluation. This way a CI system could
build and automatically test RadarGun.

Our Eclipse plugin is missing a proper exception handling. Hence, we can not guarantee
this plugin runs stable on all systems.

Jenkins does not report the machines the performance tests were executed on. If the
results were executed on two different nodes, they are may visualized in the same job.

80

8.3. Evaluating the Visualizing of a Build History

8.3 Evaluating the Visualizing of a Build History

This master’s thesis main goal is to report performance tests in a continuous integration
environment. In Chapter 5 we develop a plugin to utilize RadarGun in Jenkins and report
the results. We describe three requirements for this plugin in Section 1.1. In the following,
we evaluate, whether our Jenkins plugin satisfies this requirements or not.

8.3.1 Methodology and Test Scenarios

To evaluate these requirements, we simulate the following three scenarios.

R1: Visualize the build history for a performance test To visualize a build history, we
have at least two builds. We navigate to a performance test in the build history.

For a correct behavior, we expect that a performance tests is plotted in a chart. Addi-
tionally, each single build is presented in a table.

R2: Visualize a group of performance tests In the performance test overview of the build
history we compare two performance tests by plotting them.

For a correct behavior, we expect that two performance tests are plotted in the same
chart.

R3: Performance tests that were executed with two different run modes can not be
compared We execute the benchmark Port2PortBenchmark using the changed units ops/ns.
Afterwards, we navigate to the build history.

For a correct behavior, we expect that this performance test is aggregated as two separate
tests. If the visualization works correctly, four tests are presented. Furthermore, we can not
compare the two different Port2PortBenchmark performance tests, due to the different units.
A pop-up message indicates that the units are different, if we try to compare them.

We repeat the methodology used by Henning, Wulf, and Hasselbring [21] to evaluate
RadarGun’s prototype and run 20 executions for TeeTime and for Kieker. First, we perform
ten executions for Scenario S1. Afterwards, one execution for Scenario S2, followed by
six executions for Scenario S1 again. Thereafter, one execution for Scenario S3 follows.
At the end, we execute Scenario S1 two times. To simulate deviations in performance,
we intentionally decelerate the benchmarks by using JMH’s blackhole5. It burns CPU
cycles according to the given workload value, in our case by a value of 50. To decelerate a
performance test to show Scenario S2, we use the value 100 in the blackhole. To accelerate
a performance test to show Scenario S3, we remove the blackhole.

The benchmark configurations in TeeTime and Kieker are different. In TeeTime each
benchmark is configured, similar to the evaluation by Henning [19], with one fork, three

5org.openjdk.jmh.infra.Blackhole.consumeCPU(longtokens)

81

org.openjdk.jmh.infra.Blackhole.consumeCPU(long tokens)

8. Feasibility Evaluation

warm-up iterations and nine measurements. However, in Kieker we use three forks, ten
warm-iterations and 30 measurements. This way we evaluate the impact of the hardware
and the computed confidence intervals.

8.3.2 Results and Discussion

We executed 20 builds in Jenkins on each system for Teetime and Kieker. The results for
TeeTime on the MBP are shown in Figure 8.11. In Figure 8.12 we show the results on our
PC.

Figure 8.11. The visualized build history of the performance test Port2PortBenchmark on our MBP

Notice that the build 42 and 43 in Figure 8.12 are missing. We removed both builds, due to
a background process that was started by our anti-virus program on our PC during both
builds.

On both systems we executed 23 builds to determine the upper and lower bounds
for each performance test. Hence, build 24 is the first build we present. The plots look
similar to the results presented by Henning, Wulf, and Hasselbring [21]. We decelerated the
build 34 to test scenario S2. As expected, the score exceeded the corresponding assertion’s
upper bound on both systems. Analogue, the build 41 undercuts the lower bound on both
systems. This build was accelerated to test scenario S3. Furthermore, all builds a listed in a

82

8.3. Evaluating the Visualizing of a Build History

Figure 8.12. The visualized build history of the performance test Port2PortBenchmark on our PC

table. For both systems the results are as excepted. Consequently, we proofed the Scenario
R1 for TeeTime on both systems.

However, the results for Kieker are not as expected. Different from the benchmark
configurations for Teetime, we configured three forks with each executing 30 measurements.
Figure 8.13 shows that the results of the performance test DoNotInsertBehavior significantly
deviate from each other. The builds 19, 22, 23, 24, and 26 undercut the bounds, although we
did not accelerate the benchmark. Furthermore, build number 21 exceeded the upper bound,
although we did not decelerate the benchmark. The deviation of the fastest and slowest
performance test run is approximately 800 ns/op. Due to the deviation, the confidence
intervals of almost every run exceeded or undercut the bounds. However, this is not
displayed in this overview. Notice that Figure 8.15a displays 1970 at the origin of coordinates.
This is a bug. On the contrary, the builds on our PC were stable. The results of the
performance test DoNotInsertBehavior executed on our PC are shown in Figure 8.14. Build
57 exceeded the upper bound, since we slowed down the benchmark. Although we did not
accelerate the benchmark in the builds 58, 59, 60, 61, 65, and 65, they do not significantly
deviate from the accelerated benchmark in build 64. Nevertheless, the performance tests
executed on our PC caused less deviation than on the MBP. Hence, we assume that the
MBP’s hardware is to slow to handle all the executions and additionally the interfering

83

8. Feasibility Evaluation

Figure 8.13. Compare three performance tests that implement a different strategy.

Figure 8.14. Compare three performance tests that implement a different strategy.

events, e.g., caused by the operation system (OS). Due to the execution time, the OS’
scheduler may interrupts the performance test execution for a short period of time to run
another process. Some executions benefit from the scheduling, whereas others detriment
from the scheduling. Furthermore, we assume that we used to few CPU burns on the PC.
Thus, we were not able to proof Scenario R1 for Kieker on both system, due to a faulty
experimental setup.

84

8.3. Evaluating the Visualizing of a Build History

In Figure 8.15a we compare the performance tests CountOnFailedInsertBehavior and
BlockOnFailedInsertBehavior, which were executed in an extra build on the MBP, to each
other. Both performance tests deviated in the execution times from run to run. Whereas, the
execution times of the same performance tests executed on the PC, shown in Figure 8.15b,
did not significantly deviate from each other.

The performance tests are plotted as expected. A performance tests gets plotted by
clicking on the corresponding checkbox, as we describe in Section 5.6. Thus, we showed
that our plugins fulfill the Scenario R2.

We performed an additional build in TeeTime and changed the run mode and run unit of
the benchmark Port2PortBenchmark to measure the number of operations per nanosecond
(ops/ns). As shown in Figure 8.16, both tests are separately listed (Box #3). Thus, our
aggregation mechanism distinguished between different units correctly. Additionally, a
pop-up window displayed the message "You can only compare performance tests for the same
units" (Box #1) when we tryed to compare both tests (Box #2). Consequently, we proofed
Scenario R3 on both systems.

In summary, the visualized build history of performance tests by our Jenkins plugin is
in accordance with our expectations. Again, the visualizations should be beautified.

8.3.3 Threats to Validity

We evaluated our Jenkins plugin on two different local systems. To increase the validity of
our results our plugin should be tested another environment with different hardware, e.g.,
on the Jenkins server of the Software Engineering Group at the University of Kiel. Since
Jenkins builds could be performed on different nodes, our plugin may fails to visualize
the results with regards to the used nodes. RadarGun detects different nodes, yet the
visualization does not. Furthermore, the build history for projects, which contain far more
performance tests, should be evaluated. The Scenario R1 for Kieker should be repeated in
another environment.

85

8. Feasibility Evaluation

(a) Comparing two performance tests executed on the MBP.

(b) Comparing two performance tests executed on the PC.

Figure 8.15. Comparing two performance tests for TeeTime that implement a different strategy.

86

8.3. Evaluating the Visualizing of a Build History

Figure 8.16. Get a pop-up message on trying to compare tests with different units.

87

Chapter 9

Related Work

We combine several frameworks to enhance and integrate a performance testing framework
into a CI environment. A crucial factor for this framework is the free licensing and
development possibilities in further research. Hence, we studied open source frameworks,
instead of developing all tools from the scratch.

The number of different system for continuous integration is growing since it was
proposed the first time by Fowler and Foemmel [17]. The most popular systems are Bamboo
[4], Hudson [46], and Jenkins [33]. Bamboo is a commercial CI system by Atlassian [4] and
is connectible with all the other products by Atlassian. Hudson was found by employees of
Sun Microsystems, which left the company after the acquisition by Oracle. Today, Hudson
is developed by the Eclipse Foundation and is licensed under the Eclipse Public License [46].
The former developers of Hudson continued on their own, after a dispute with Oracle about
the direction of Hudson and created a fork of Hudson called Jenkins. Jenkins is licensed
under the MIT-license and open source [33]. The open source plugin Daley and Nielsen [13]
visualizes given data in different graphs. However, this plugin plots data in a statically way
and users are unable to interact with this data dynamically. Furthermore, each plot has to
be configured as post build step in Jenkins. Johanson [29] developed a JavaScript plotting
library based on D3.js [10] for visualizing large data sets. This library is named CanvasPlot
[29] and was developed to visualize interactive plots of OceanTEA [30]. Johanson et al. [30]
developed OceanTea, to interactively explore and analyze climate-relevant time series data,
gathered by Ocean observation systems. The advantage over other frameworks is that we
are able to dynamically zoom-in or zoom-out in the plots.

In advance of the decision for our approach, we studied several Java frameworks that
are claiming to be performance test frameworks. One of these frameworks we studied
is JMeter [3] by the Apache Software Foundation [3]. JMeter is designed to load test
functional behavior and measure performance [3]. Thus, JMeter is not a framework to
execute performance tests that succeed or fail with regards to their runtime. One promising
framework is ContiPerf2 by Bergmann [7] that extends JUnit tests and measures runtimes
of these tests. Users are able to define limits, such as max and average, for runtimes and
also a confidence level the measurements have to meet. The disadvantage of ContiPerf2 is
the lack of hardware-depending assertions for tests. The frameworks JUnitPerformance
[12] and JUnitBenchmarks [11] also are extensions for JUnit. Both tools are benchmarking
frameworks and do not meet our requirements for a testing framework. Furthermore, the
developers of JUnitBenchmarks Carrot Search Lab [11] marked their tool as deprecated

89

9. Related Work

[11] in favor of the mircobenchmarking framework Java Microbenchmarking Harness by Java
Microbenchmarking Harness.

Since various factors affect the performance of Java, it is not trivial to benchmark. The
given Java application and its input affect the performance, so do the virtual machine and
the garbage collector, and many other factors [23] [8]. Georges, Buytaert, and Eeckhout [18]
evaluate up to 50 different papers with regards to the methodologies of Java performance
test. As a result, Georges, Buytaert, and Eeckhout [18] point out the importance of statis-
tically rigorous data analysis for dealing with non-determinism. Some problems of the
surveyed methodologies are the way to report the results, the way to iterate the benchmarks,
and the reproducibility of the experiments. It makes a difference whether the average or
the maximum runtime is presented. Further, some iterate the benchmark multiple times
within a single VM invocation, while others consider multiple VM invocations and iterate
a single benchmark execution. There are many more aspects that can lead to incorrect
conclusion when interpret the results of a performance test. As a consequence, we focus
especially on the methodologies we use in our framework.

At the University of Kiel different tools we developed to measure performance. One of
these tools is Monitoring Overhead Benchmark (MooBench) by Waller [54]. MooBench has
been developed to measure and quantify the overhead of monitoring frameworks, such as
Kieker [22]. Furthermore, MooBench is applicable in a continuous integration environment
[55]. However, this tool measures performance benchmarks, yet no performance tests [55].
Another tool to measure performance is the tool Regression Benchmarking Execution
Environment (RBEE) developed by Moebius and Hasselbring [43]. This tool claims to have
benchmarking capabilities for detecting performance regressions of Java-based software
and is applicable in a continuous integration environment [43]. However, we were not able
to install and use it, since it is still under development. Furthermore, this tool does mesaure
performance, yet does not test performance. A third tool that was developed to measure
performance is RadarGun [20] by Henning, Wulf, and Hasselbring [21]. RadarGun was
developed in in a student’s research project by [19]. RadarGun utilizes JMH to execute
and measure micro-benchmarks. The results are compared against predefined assertion,
which are defined for specific hardware. If the result is within the bounds of the given
assertion’s, RadarGun reports that the performance test finished successfully. Otherwise,
RadarGun reports that the test has failed or contains no results. Thus, this tool meets
our requirements for performance tests. We enhanced this framework, as described in
Chapter 4, to report a progress monitoring in real time and to report data in a continuous
integration environment.

90

Chapter 10

Conclusions and Future Work

We enhanced the performance testing framework RadarGun [21] in Chapter 4. Additionally,
we developed two plugins to execute and visualize the performance tests executed by
RadarGun. One plugin was developed for the CI environment Jenkins [33], which is
described in Chapter 5. The second plugin was developed for the IDE Eclipse [16] and is
described in Chapter 6. The performance testing framework RadarGun utilized the P&F
framework TeeTime. Hence, its whole architecture is built upon pipes and filters. Though,
RadarGun was not fully exploiting the potential of a P&F architecture. The Benchmark

Runner stage (see Figure 3.1) blocked the process until all benchmarks were executed.
If and only if all benchmark were finished, the data was reported. Hence, no progress
monitoring was possible. Furthermore, the assertions for each benchmark were looked up
and compared in the same stage, after all benchmarks finished. This is contrary to the idea
of separating a performance test’s configuration from the benchmark’s configuration in
Java. Thus, we split up the stages Benchmark Runner and Result Comparator by abstracting
their super tasks into stages that solely conduct one single task. The improved architecture
is shown in Figure 4.1. As a consequence, we now receive a progress monitor during
execution. Additionally, developers configure the run mode, the measured timeunit, and
the confidence level via the performance test configuration file. Thus, the benchmarks do
not have to be recompiled to execute them in another run mode or measured time unit.
Supplementary to the CSV exporting, developers can chose further export formats, such
as JSON or XML. Therefor, we introduced a model using the annotations provided by
Jackson, a JSON processor framework for Java. As a consequence, RadarGun exports (1) the
performance test name, (2) the corresponding assertion, (3) the score, (4) the corresponding
confidence interval, (5) the average, mininum, and maximum values, (6) and whether the
performance test finished successful, did fail or has no result. Frameworks that include
RadarGun are able to import the data and utilize RadarGun’s model objects to report and
visualize the performance test results.

As described in Chapter 5, we developed a plugin for automatic testing in the continu-
ous integration environment Jenkins. This plugin provides a post build step to report the
performance test results for each build. Additionally, a build history visualizes the results
for each performance test in each build. Thereby, we are able to compare different perfor-
mance tests in the same chart. This post build steps imports the data that was exported by
RadarGun in a previous build step. Imported performance tests are part of Jenkins’ object
model and thus, define an URL subspace. The data is rendered by the framework Stapler

91

10. Conclusions and Future Work

[36]. The labels in this renderings are internationalized, e.g., in English and German. To
plot the data, we included the visualization framework CanvasPlot, based on Javascript
and the framework D3 [10]. This framework allows us to plot the performance test results
dynamically and to zoom in or out in each plot.

In Chapter 6, we developed a plugin to manually execute performance test in the
integrated development environment Eclipse [16]. We developed this plugin using the
Eclipse 4.x API. The Eclipse 4.x API provides features, such as dependency injection and
an event broker. The event broker allows to use the publish-subscribe pattern in Eclipse
components. Since the Eclipse IDE is running in the compatibility mode, we still had to use
the Eclipse 3.x API at some occasions. In Eclipse we defined a launch configurations and a
shortcut to launch RadarGun and visualize the test results. The shortcut enables us to start
RadarGun via the "Run As" right-click menu in Eclipse. Using this shortcut, a default group
launch configuration for a given project is built automatically, if no default configuration
was found. A group launch configuration consists at least of one Maven configuration
to build the performance tests and of a RadarGun launch configuration to launch the
RadarGun framework. All components utilize the built-in event broker to subscribe to
specific events. A launch listener notifies the subscribers that RadarGun was launched.
Afterwards, a client, which connects with RadarGun via TCP, starts. This connection is an
unilateral connection between RadarGun and the Eclipse plugin. Each performance tests is
sent via TCP to Eclipse and visualized in the subscribed GUI. The GUI shows the progress
of the running performance tests and the results. Furthermore, we are able to jump into the
the code of a benchmark, by double-clicking on the performance test’s name in the GUI.

We evaluated our tools in a feasibility evaluation and presented the result in Chapter 8.
To increase the external validity, we conducted the evaluation on two different system. One
system was a MacBook Pro using the operation system MacOS High Sierra and was named
MBP in our evaluation. The second system is named PC and runs the operation system
Windows 10 Education. The specifications are shown in Table 8.1. On both systems we
executed performance tests for the P&F framework TeeTime [57] and the monitoring frame-
working Kieker [22]. The performance tests in TeeTime were already used to evaluation
RadarGun’s prototype by Henning, Wulf, and Hasselbring [21]. In Chapter 7 we showed by
an example how to write performance tests for Kieker. Both projects were used to evaluated
RadarGun, the Jenkins plugin and the Eclipse plugin. Thereby, we focused on the machine
identification, the newly implemented progress monitoring. In Jenkins we evaluated the
visualization of a build history for performance tests. To evaluate these functions, we
simulated several test scenarios. We present a brief overview of the evaluation’s setup in
Figure 8.1.

Since the machine identification was not evaluated by Henning, Wulf, and Hassel-
bring [21], we evaluated the machine identification provided by RadarGun’s prototype,
first. The identifiers MacAddressIdentifer and WindowsComputernameIdentifier contained
bugs, which we fixed and evaluated again. To identify the Jenkins instances, we used
the MacAddressIdentifer. In Eclipse our MBP used the NetworkAddressIdentifier. Our PC

92

used the WindowsComputernameIdentifier in Eclipse. All systems were correctly identified.
Thus, the machine identification was successfully evaluated. The progress monitoring by
RadarGun reported as well for TeeTime (see Listing 8.1) as for Kieker (see Listing 8.2) all
results on both system correctly. Thus, we showed that RadarGun’s progress monitoring is
working.

We successfully showed the progress monitoring in Eclipse, too. Nevertheless, when
starting a performance tests while another one is still executing, Eclipse throws exceptions
we did not handle properly. Furthermore, a view, which visualized the finished performance
tests, does no close when a new performance test run session starts. Hence, two or more
views visualize the results. The colors, which are used to mark the performance test
according to their results, are to bright. Moreover, a currently running performance tests
can not be properly distinguished from a failed performance tests, since both are colored
in yellow.

In Jenkins we used 20 builds to evaluate the reports for a single build and for a build
history. Therefor, we used the methodology used by “RadarGun: Toward a Performance
Testing Framework”. Build 11 was decelerated to exceed the corresponding assertion’s
upper bounds. To undercut the lower bounds, we accelerated Build 18. For TeeTime we
showed results similar to the results for RadarGun’s prototype on both systems [21].
However, we executed three forks, five warm-up iterations and 30 measurements for Kieker
benchmarks. Thus, we executed more measurements than for TeeTime and the results
differ significantly. On the MBP the performance tests deviated from run to run by up to
800 ns/op. Consequently, most of the performance tests have failed, although the score was
within the corresponding assertion’s bounds. The reason was the confidence interval, which
exceeded or undercut the bounds. We guess that the MBP’s hardware is not fast enough to
execute the performance tests before the scheduler interrupts the process. On the better
hardware of our PC we did not measure this large deviation between builds. Nevertheless,
we proofed that each build reports the performance test results. Furthermore, we showed
that the build history visualizes aggregated performance tests correctly. Performance tests
that are equal in name, yet differ in the run mode or timeunit, are aggregated separately. We
demonstrated that two or more performance tests are comparable, if and only if the units
are equal. If the units differ, a pop-up message indicates the difference. Furthermore, we
illustrated that the build history for each build plots the data correctly. However, we found
some bugs in the visualization, e.g., an faulty if-statement that returns all performance
tests, instead of all test that have failed. This bug causes that a build’s performance tests
are all displayed in the table for failed performance tests. We fixed that bug after the
evaluation was finished. Similar to our Eclipse plugin, the colors that are used to mark
whether a performance tests finished successfully, has failed, or had no results, are to bold.
The visualization of the reports should be beautified in general. All in all, the feasibility
evaluation was in accordance with our expectations.

The feasibility evaluation emphasizes some features that would improve our tools. In a

93

10. Conclusions and Future Work

future work, the progress monitoring by RadarGun should report the system that was
identified on start up. Due to the enhanced architecture of RadarGun, stages solely conduct
single tasks. This stages can be evaluated by unit tests. TeeTime provides an internal DSL
to write unit tests for the stages. This way RadarGun can be continuously developed
and automatically build and tested using Jenkins or another CI system. Additionally, the
test result model can be replaced by Enum values, since the methods hasFailed() and
isInBounds() are redundant. We solely require the type of the class to mark a performance
test as was successful, has failed or contains no results.

Especially the Eclipse plugin requires some major improvements. A proper exception
handling could prevent the run from crashing, when several performance test run session
are started in parallel. If an exception is still thrown, the user receives a quick feedback
where and why the exception was thrown. Hence, a proper exception handling could
improve the user experience with our tool. Since the colors are to bright, the view should
be beautified. Furthermore, a failed performance tests can be colored in yellow, although
the score is within the corresponding assertion’s bounds. This performance test then failed,
since the confidence interval was not within the bounds. However, the confidence interval is
not presented. Thus, the performance test results should be presented in detail by clicking
on a performance test. This way a user can comprehend the results. The coloring of a
performance test, which is currently executed, should be removed. To prevent the user from
defining faulty performance test configurations, a configuration GUI for performance tests
should be implemented. This GUI could contain a drop down menu to select an identifier.
Corresponding to the selected identifier the possible parameters could be presented in
a selected dropdown menu, too. Afterwards, a menu presents all benchmarks that are
found in the project the configuration is defined for. For each benchmark the user sets
the values in fields for the lower bound, upper bound, run mode/timeunit (or vice versa),
and the confidence level. As a consequence, we would prevent users from defining faulty
performance tests. We mentioned before that we still use the Eclipse 3.x API at some
occasions, e.g., the panels to select the project and the assertions in the launch configuration.
The panels could easily be ported to the Eclipse 4.x API, by writing custom panels using
the SWT API. Thereby, the launch configurations remain the last parts that use the Eclipse
3.x API. If the developers of Eclipse Foundation ever port the launch configuration to the
Eclipse 4.x API, then the whole plugin uses the latest API.

The Jenkins plugin primarily has to be beatified. The colors and table styles do not
appeal to us. The plot library CanvasPlot - A JavaScript Plotting Library Based on D3.js
for Visualizing Large Data Sets [29] needs improvements. Whether the score, the average,
maximum, or minimal values are shown should be selectable by the user. Furthermore, the
confidence intervals should be visualized as background areas to the plot. Thereby, users
easily see why a performance test may has failed, although the score is within the bounds.

To be accessible for other users, our tools should be published on different sites. Our
Eclipse plugin could be published via an Eclipse update site. For our Jenkins plugin we use
the Jenkins plugin platform. However, we received the invitation to the Jenkins repository

94

after we conducted our feasibility evaluation and thus, were unable evaluate our plugin on
the Jenkins server of the Software Engineering Group at the University of Kiel. Nevertheless,
our Jenkins plugin can be downloaded from the Jenkins repository on GitHub [5].

RadarGun’s prototype1 is already published on Sonatype2, which is a default repository
for Apache Maven and other build systems. Maven uses a groupid and an artifactid to
identify dependencies. We changed the groupid from our enhanced RadarGun version from
de.soeren-henning to de.cau.se. The artifactid represents the name of a tool. In Table 10.1
we present our used groupids and artifactids. Only the last part is the artifactid of the
tools. The previous part the groupid. Thereby, the tools can be published and maintained by

Table 10.1. The Maven groupids and artifactids of our tools

Tool Artifact ID

RadarGun de.cau.se.radargun

RadarGun Eclipse Plugin de.cau.se.eclipse.radargun

RadarGun Jenkins Plugin de.cau.se.jenkins.radargun

members of the Software Engineering Group of the University of Kiel. If a developer aims
to add a feature or plugin, this can be easily published under that groupid. Furthermore,
this would help to maintain our plugins for Eclipse and Jenkins. Both plugins still include
RadarGun as library and hence, they always require the latest jar-file. If RadarGun gets
an update that solely effects RadarGun and not the visualization in Jenkins or Eclipse,
these plugins still have to be updated. If RadarGun is published with such an groupid on
Sonytype or another public Maven repository, our plugins could include RadarGun as
Maven dependency.

Finally, we recommend to integrate RadarGun as plugin in IntelliJ IDEA [28] and the
NetBeans IDE [49]. Both IDEs are widely used by developers.

1https://oss.sonatype.org/content/repositories/snapshots/de/soeren-henning/radargun/
2http://central.sonatype.org

95

https://oss.sonatype.org/content/repositories/snapshots/de/soeren-henning/radargun/
http://central.sonatype.org

Bibliography

[1] Apache Software Foundation. Commons Math: The Apache Commons Mathematics
Library. url: http://commons.apache.org/proper/commons-math/ (visited on 02/01/2018) (cited
on page 20).

[2] Apache Software Foundation. Jelly. url: http://commons.apache.org/proper/commons-jelly/

(visited on 01/20/2018) (cited on pages 44, 45).

[3] Apache Software Foundation. JMeter. 1998. url: http://jmeter.apache.org (visited on
06/13/2017) (cited on page 89).

[4] Atlassian. Bamboo - Continuous Integration, Deployment & Release Management. 2007.
url: https://de.atlassian.com/software/bamboo (visited on 06/13/2017) (cited on page 89).

[5] A. Barbie. RadarGun Reporting - Reporting Performance Tests in a Continuous Integra-
tion Environment. url: https://github.com/jenkinsci/radargun-reporting-plugin (visited on
02/07/2018) (cited on page 95).

[6] O. Ben-Kiki and C. Evans. Ingy. YAML Ain’t Markup Language (YAML) version 1.2.
2009. url: URl:%20http://www.yaml.org/spec/1.2/spec.html (visited on 01/07/2018) (cited on
pages 22, 31).

[7] V. Bergmann. ContiPerf - a Java Library for Measuring Performance. 2010. url: http:

//databene.org/contiperf.html (visited on 08/02/2017) (cited on page 89).

[8] S. M. Blackburn et al. “The DaCapo Benchmarks: Java Benchmarking Development
and Analysis”. In: Proceedings of the OOPSLA. 2004 (cited on page 90).

[9] G. Booch. Object solutions: managing the object-oriented project. Addison Wesley Long-
man Publishing Co., Inc., 1995 (cited on page 1).

[10] M. Bostock et al. D3 - Data-Driven Documents. 2011. url: https://d3js.org (visited on
12/29/2017) (cited on pages 24, 89, 92).

[11] Carrot Search Lab. Junitbenchmarks. 2013. url: http : / / labs . carrotsearch . com / junit -

benchmarks-integration.html (visited on 06/13/2017) (cited on pages 89, 90).

[12] M. Clark. JUnitPerf - Performance Testing for JUnit. 2008. url: https://github.com/clarkware/
junitperf (visited on 06/13/2017) (cited on page 89).

[13] N. Daley and E. Nielsen. Plot Plugin. 2008. url: https://plugins.jenkins.io/plot (visited
on 06/12/2017) (cited on pages 22, 41, 89).

[14] Eclipse Foundation. SWT: The Standard Widget Toolkit. url: https://www.eclipse.org/swt/
(visited on 01/25/2018) (cited on page 56).

97

http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-jelly/
http://jmeter.apache.org
https://de.atlassian.com/software/bamboo
https://github.com/jenkinsci/radargun-reporting-plugin
URl:%20http://www.yaml.org/spec/1.2/spec.html
http://databene.org/contiperf.html
http://databene.org/contiperf.html
https://d3js.org
http://labs.carrotsearch.com/junit-benchmarks-integration.html
http://labs.carrotsearch.com/junit-benchmarks-integration.html
https://github.com/clarkware/junitperf
https://github.com/clarkware/junitperf
https://plugins.jenkins.io/plot
https://www.eclipse.org/swt/

Bibliography

[15] FasterXML. Jackson. url: http://wiki.fasterxml.com/JacksonHome (visited on 12/29/2017)
(cited on page 32).

[16] E. Foundation. Eclipse IDE. url: https://www.eclipse.org/ (visited on 01/04/2017) (cited
on pages 19, 55, 91, 92).

[17] M. Fowler and M. Foemmel. Continuous Integration. 2006. url: https://www.thoughtworks.
com/continuous-integration (visited on 06/18/2017) (cited on pages 1, 23, 89).

[18] A. Georges, D. Buytaert, and L. Eeckhout. “Statistically Rigorous Java Performance
Evaluation”. In: Proceedings of the OOPSLA. 2007 (cited on pages 2, 3, 15, 16, 18, 90).

[19] S. Henning. “Performance Testing Support in a Continuous Integration Infrastruc-
ture”. Student research project. Institut für Informatik, 2017. url: http://eprints.uni-

kiel.de/38837/ (cited on pages 21, 22, 81, 90).

[20] S. Henning. The Performance Testing Framework RadarGun. 2017. url: https://github.com/
SoerenHenning/RadarGun (visited on 08/01/2017) (cited on pages 8, 21, 27, 33, 38, 58, 90).

[21] S. Henning, C. Wulf, and W. Hasselbring. “RadarGun: Toward a Performance Testing
Framework”. In: Symposium on Software Performance 2017 (SSP ’17). 2017. url: http:

//eprints.uni-kiel.de/40364/ (cited on pages 2, 3, 7, 22, 27, 31, 41, 61, 67, 68, 70, 81, 82,
90–93).

[22] A. van Hoorn, J. Waller, and W. Hasselbring. “Kieker: A Framework for Application
Performance Monitoring and Dynamic Software Analysis”. In: Proceedings of the 3rd
joint ACM/SPEC International Conference on Performance Engineering (ICPE 2012). ACM,
2012, pages 247–248. url: http://eprints.uni-kiel.de/14418/ (cited on pages 21, 90, 92).

[23] V. Horký et al. “DOs and DON’Ts of Conducting Performance Measurements in
Java”. In: Proceedings of the ICPE. 2015 (cited on pages 1, 14, 90).

[24] IBM Knowledge Center. JIT Compiler Overview. 2017. url: https://www.ibm.com/support/

knowledgecenter/en/SSYKE2_7.0.0/com.ibm.java.zos.70.doc/diag/understanding/jit_overview.html

(visited on 07/03/2017) (cited on page 12).

[25] International Organization for Standardization. Iso/iec 25010. 2014. url: http://iso25000.
com/index.php/en/iso-25000-standards/iso-25010 (visited on 06/18/2017) (cited on page 2).

[26] International Organization for Standardization. “Systems and software engineering –
Systems and software Quality Requirements and Evaluation (SQuaRE) – Guide to
SQuaRE”. In: ISO/IEC 25000:2014 (2014) (cited on page 1).

[27] A. Irle. Wahrscheinlichkeitstheorie und Statistik: Grundlagen-Resultate-Anwendungen.
Springer-Verlag, 2005 (cited on page 16).

[28] JetBrains. IntelliJ IDEA. url: http://www.jetbrains.com/idea (visited on 12/29/2017) (cited
on page 95).

[29] A. Johanson. CanvasPlot - A JavaScript Plotting Library Based on D3.js for Visualiz-
ing Large Data Sets. 2016. url: https://a- johanson.github.io/canvas- plot/ (visited on
06/13/2017) (cited on pages 24, 25, 46, 89, 94).

98

http://wiki.fasterxml.com/JacksonHome
https://www.eclipse.org/
https://www.thoughtworks.com/continuous-integration
https://www.thoughtworks.com/continuous-integration
http://eprints.uni-kiel.de/38837/
http://eprints.uni-kiel.de/38837/
https://github.com/SoerenHenning/RadarGun
https://github.com/SoerenHenning/RadarGun
http://eprints.uni-kiel.de/40364/
http://eprints.uni-kiel.de/40364/
http://eprints.uni-kiel.de/14418/
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_7.0.0/com.ibm.java.zos.70.doc/diag/understanding/jit_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_7.0.0/com.ibm.java.zos.70.doc/diag/understanding/jit_overview.html
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://www.jetbrains.com/idea
https://a-johanson.github.io/canvas-plot/

Bibliography

[30] A. Johanson et al. “OceanTEA: Exploring Ocean-Derived Climate Data Using Mi-
croservices”. In: Proceedings of the Sixth International Workshop on Climate Informatics
(CI 2016). 2016, pages 25–28. url: http://eprints.uni-kiel.de/34758/ (cited on page 89).

[31] JUnit: Unit Testing Framework. url: http://junit.org/junit5/ (visited on 02/01/2018)
(cited on page 2).

[32] K. Kawaguchi. Evaluation of URL: Reference. url: http://stapler.kohsuke.org/reference.html
(visited on 01/25/2018) (cited on page 43).

[33] K. Kawaguchi. Jenkins. 2011. url: https://jenkins.io (visited on 06/12/2017) (cited on
pages 41, 89, 91).

[34] K. Kawaguchi. Jenkins Wiki - Action and its Family of Subtypes. 2017. url: https://wiki.
jenkins.io/display/JENKINS/Action+and+its+family+of+subtypes (visited on 01/20/2018) (cited
on page 44).

[35] K. Kawaguchi. Jenkins Wiki - Architecture. 2016. url: https://wiki.jenkins.io/display/

JENKINS/Architecture (visited on 01/20/2018) (cited on page 42).

[36] K. Kawaguchi. Stapler. 2006. url: http://stapler.kohsuke.org (visited on 01/20/2018)
(cited on pages 42–44, 91, 92).

[37] G. Kiczales et al. “Aspect-oriented Programming”. In: ECOOP’97—Object-oriented
programming (1997), pages 220–242 (cited on page 21).

[38] Lars Vogel. Eclipse 4 Migration Guide. url: http://www.vogella.com/tutorials/Eclipse4MigrationGuide/
article.html (visited on 01/24/2018) (cited on pages 55, 56).

[39] Lars Vogel. Eclipse Modeling Framework. url: http://www.vogella.com/tutorials/EclipseEMFPersistence/
article.html (visited on 01/24/2018) (cited on page 55).

[40] Lars Vogel. Eclipse - Rich Client Platform. url: https://wiki.eclipse.org/Rich_Client_Platform
(visited on 01/24/2018) (cited on page 55).

[41] D. Lion et al. “Don’t Get Caught in the Cold, Warm-up Your JVM: Understand
and Eliminate JVM Warm-up Overhead in Data-Parallel Systems.” In: OSDI. 2016,
pages 383–400 (cited on page 12).

[42] J. McAffer, P. VanderLei, and S. Archer. Equinox and osgi: the power behind eclipse.
Addison-Wesley Professional, 2009 (cited on page 19).

[43] A. Moebius and W. Hasselbring. “Employing Open Source Software for RBEE Re-
gression Benchmarking Execution Environment”. In: 2. Kieler Open Source Business
Konferenz. Volume TR_1609. Technical Reports of the Department of Computer Sci-
ence at Kiel University, 2016. url: http://eprints.uni-kiel.de/35408/ (cited on page 90).

[44] S. Oaks. Java Performance: The Definitive Guide: Getting the Most Out of Your Code. "
O’Reilly Media, Inc.", 2014 (cited on pages 11, 12).

[45] OpenJDK. Java Microbenchmarking Harness. 2017. url: http://openjdk.java.net/projects/

code-tools/jmh (visited on 06/12/2017) (cited on pages 19, 21, 90).

99

http://eprints.uni-kiel.de/34758/
http://junit.org/junit5/
http://stapler.kohsuke.org/reference.html
https://jenkins.io
https://wiki.jenkins.io/display/JENKINS/Action+and+its+family+of+subtypes
https://wiki.jenkins.io/display/JENKINS/Action+and+its+family+of+subtypes
https://wiki.jenkins.io/display/JENKINS/Architecture
https://wiki.jenkins.io/display/JENKINS/Architecture
http://stapler.kohsuke.org
http://www.vogella.com/tutorials/Eclipse4MigrationGuide/article.html
http://www.vogella.com/tutorials/Eclipse4MigrationGuide/article.html
http://www.vogella.com/tutorials/EclipseEMFPersistence/article.html
http://www.vogella.com/tutorials/EclipseEMFPersistence/article.html
https://wiki.eclipse.org/Rich_Client_Platform
http://eprints.uni-kiel.de/35408/
http://openjdk.java.net/projects/code-tools/jmh
http://openjdk.java.net/projects/code-tools/jmh

Bibliography

[46] Oracle. Hudson - Extensible Continuous Integration Server. 2008. url: http://hudson-ci.org
(visited on 06/13/2017) (cited on pages 23, 89).

[47] Oracle. Java Garbage Collection Basics. 2017. url: http : / / www . oracle . com / webfolder /

technetwork/tutorials/obe/java/gc01/index.html (visited on 07/03/2017) (cited on page 12).

[48] Oracle. JMH - Source code of AbstractStatistics.java. url: http://hg.openjdk.java.net/code-

tools/jmh/file/fbe1b55eadf8/jmh-core/src/main/java/org/openjdk/jmh/util/AbstractStatistics.java

(visited on 01/04/2017) (cited on page 18).

[49] Oracle. NetBeans IDE. url: http : / / netbeans . org (visited on 12/29/2017) (cited on
page 95).

[50] L. Papula. “Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler”.
In: Vieweg+ Teubner 10 (2009) (cited on pages 17–19).

[51] J. Ponge. Avoiding Benchmarking Pitfalls on the JVM. Technical report. Java Magazine,
2014 (cited on page 21).

[52] D. Simpson. Extending Jenkins. Packt Publisher Ltd, 2015 (cited on page 41).

[53] J. F. Smart. Jenkins: The Definitive Guide: Continuous Integration for the Masses. " O’Reilly
Media, Inc.", 2011 (cited on pages 23, 24, 41).

[54] J. Waller. “Performance Benchmarking of Application Monitoring Frameworks”.
Doctoral thesis/PhD. Faculty of Engineering, Kiel University, 2014. url: http://eprints.
uni-kiel.de/26979/ (cited on pages 8, 21, 90).

[55] J. Waller, N. C. Ehmke, and W. Hasselbring. “Including Performance Benchmarks into
Continuous Integration to Enable DevOps”. In: ACM SIGSOFT Software Engineering
Notes 40.2 (2015), pages 1–4. url: http://eprints.uni-kiel.de/28433/ (cited on page 90).

[56] C. Wulf, W. Hasselbring, and J. Ohlemacher. “Parallel and Generic Pipe-and-Filter
Architectures with TeeTime”. In: International Conference on Software Architecture (ICSA)
2017. 2017 (cited on pages 21, 29).

[57] C. Wulf and N. Tavares de Sousa. TeeTime - The Next-generation Pipe-and-Filter Frame-
work for Java. Last visited: 13.06.2017." 2015. url: http://teetime.sf.net/ (cited on
pages 21, 92).

100

http://hudson-ci.org
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://hg.openjdk.java.net/code-tools/jmh/file/fbe1b55eadf8/jmh-core/src/main/java/org/openjdk/jmh/util/AbstractStatistics.java
http://hg.openjdk.java.net/code-tools/jmh/file/fbe1b55eadf8/jmh-core/src/main/java/org/openjdk/jmh/util/AbstractStatistics.java
http://netbeans.org
http://eprints.uni-kiel.de/26979/
http://eprints.uni-kiel.de/26979/
http://eprints.uni-kiel.de/28433/
http://teetime.sf.net/

Appendix

Feasibility Evaluation Results

Progress Monitoring Results in RadarGun

The progress monitoring of RadarGun on the MBP and the PC.

1 12:54:06.777 [main] DEBUG

radargun.lib.teetime.stage.basic.distributor.Distributor:Distributor-0

- numOpenedInputPorts (inc): 1

2 [...]

3 12:54:08.116 [START UP] Found 3 benchmarks.

4 12:54:08.119 [STARTING] teetime.benchmark.Port2PortBenchmark is running

now

5 [...]

6 12:54:29.762 [FINISHED] teetime.benchmark.Port2PortBenchmark [FAILED]

Score: 19.525826346909735 CL: 0.95 CI: [19.158227918217456,

19.893424775602014] (Bounds: [35.0, 45.0]) ns/op

7 12:54:29.763 [STARTING]

teetime.benchmark.Port2PortWithTermInstanceofCheckBenchmark is

running now

8 [...]

9 12:54:50.471 [FINISHED]

teetime.benchmark.Port2PortWithTermInstanceofCheckBenchmark [FAILED]

Score: 34.82793388739904 CL: 0.95 CI: [34.26032241267795,

35.39554536212013] (Bounds: [18.0, 26.0]) ns/op

10 12:54:50.472 [STARTING]

teetime.benchmark.Port2PortWithTermReferenceCheckBenchmark is running

now

11 [...]

12 12:55:11.223 [FINISHED]

teetime.benchmark.Port2PortWithTermReferenceCheckBenchmark

[SUCCESSFULL] Score: 17.255597568401072 CL: 0.95 CI:

[16.74379099137456, 17.767404145427584] (Bounds: [15.0, 20.0]) ns/op

13 12:55:11.224 [SHUTDOWN] Finished all performance tests

Listing 1. Reported progress by RadarGun on executing TeeTime performance tests on our
PC

101

. Appendix

1 08:23:48.905 [main] DEBUG

radargun.lib.teetime.stage.basic.distributor.Distributor:Distributor-0

- numOpenedInputPorts (inc): 1

2 08:23:49.532 [main] DEBUG

radargun.lib.teetime.stage.basic.distributor.Distributor:Distributor-1

- numOpenedInputPorts (inc): 1

3 [...]

4 08:23:49.636 [START UP] Found 3 benchmarks.

5 08:23:49.640 [STARTING]

kieker.dumpwriter.benchmark.BlockOnFailedInsertBehavior is running now

6 [...]

7 08:24:02.512 [FINISHED]

kieker.dumpwriter.benchmark.BlockOnFailedInsertBehavior [FAILED]

Score: 474.9080053378 CL: 0.95 CI: [445.467832656009,

504.34817801959093] (Bounds: [500.0, 550.0]) ns/op

8 08:24:02.513 [STARTING]

kieker.dumpwriter.benchmark.CountOnFailedInsertBehavior is running now

9 [...]

10 08:24:23.200 [FINISHED]

kieker.dumpwriter.benchmark.CountOnFailedInsertBehavior [FAILED]

Score: 488.7567529431356 CL: 0.95 CI: [471.6159780513123,

505.8975278349589] (Bounds: [450.0, 500.0]) ns/op

11 08:24:23.200 [STARTING] kieker.dumpwriter.benchmark.DoNotInsertBehavior

is running now

12 [...]

13 08:24:43.888 [FINISHED] kieker.dumpwriter.benchmark.DoNotInsertBehavior

[SUCCESSFULL] Score: 61.66413406812639 CL: 0.95 CI:

[61.199985504547485, 62.12828263170529] (Bounds: [60.0, 70.0]) ns/op

14 08:24:43.889 [SHUTDOWN] Finished all performance tests

Listing 2. Reported progress by RadarGun on executing Kieker performance tests on our
MBP

102

Progress Monitoring in Eclipse

The results of the performance tests executed with our Eclipse plugin on the MBP and the
PC

(a) One benchmark is still running.

(b) All benchmarks finished.

Figure A.1. Execution Kieker performance test using our Eclipse plugin on our MBP.

103

. Appendix

(a) One benchmark is still running.

(b) All benchmarks finished.

Figure A.2. Execution TeeTime performance test using our Eclipse plugin on our PC.

104

Performance Test Build Overview in Jenkins

The performance tests results executed and visualized by our Jenkins plugin on the MBP
and the PC.

(a) Comparing two performance tests executed on the MBP.

(b) Comparing two performance tests executed on the PC.

Figure A.3. Comparing two performance tests that implement a different strategy.

105

	1 Introduction
	1.1 Motivation
	1.2 Document Structure

	2 Goals
	2.1 G1: Improve the Performance Testing Framework RadarGun
	2.2 G2: Develop a Jenkins Plugin to Execute and Visualize RadarGun
	2.3 G3: Develop an Eclipse Plugin to Execute and Visualize RadarGun
	2.4 G4: Write Performance Tests for Kieker
	2.5 G5: Feasibility Evaluation

	3 Foundations and Technologies
	3.1 Foundations
	3.1.1 Performance Influences in Java Programs
	3.1.2 Handling Performance Influences by Microbenchmarking
	3.1.3 Defining a Performance Test
	3.1.4 Analyzing Performance Tests Statistically
	Estimating the confidence interval
	Example for calculating a confidence interval

	3.2 Utilized Technologies
	3.2.1 The Integrated Development Environment Eclipse
	3.2.2 The Java Benchmarking Harness (JMH)
	3.2.3 The Pipe-and-Filter Framework TeeTime
	3.2.4 The Monitoring Framework Kieker
	3.2.5 The Performance Testing Framework RadarGun
	3.2.6 The Continuous Integration Environment Jenkins
	3.2.7 The Javascript Plotting Framework CanvasPlot

	4 Enhancing the Performance Testing Framework RadarGun
	4.1 Improving the Pipe-And-Filter Architecture
	4.2 Separating Performance Test Configurations from Benchmark Configurations
	4.3 Creating an Import/Export Model for Performance Test Results
	4.4 Supporting Progress Monitoring

	5 Reporting Performance Tests in Jenkins
	5.1 Understanding the Stapling of Pages in Jenkins
	5.2 Understanding the Rendering of Objects in Jenkins
	5.3 Providing a Build Pipeline Step
	5.4 Configuring a Build Pipeline
	5.5 Reporting a Single Build
	5.6 Reporting a Build History

	6 Reporting Performance Tests in Eclipse
	6.1 Understanding the Eclipse Rich-Client-Platform
	6.2 Providing a RadarGun Launch Configuration in Eclipse
	6.3 Reporting Performance Test Results in Eclipse
	6.4 Visualizing Performance Test Results in Eclipse

	7 Application Example of RadarGun
	7.1 Understanding the Benchmark Configuration by JMH
	7.2 Defining Performance Tests in RadarGun
	7.3 Writing Performance Tests for the Kieker Framework

	8 Feasibility Evaluation
	8.1 Evaluating the Machine Identification
	8.1.1 Methodology and Test Scenarios
	8.1.2 Results and Discussion
	8.1.3 Threats to Validity

	8.2 Evaluating the Progress Monitoring
	8.2.1 Methodology and Test Scenarios
	8.2.2 Results and Discussion
	Progress Monitoring in RadarGun
	Progress Monitoring in Eclipse
	Progress Monitoring in Jenkins

	8.2.3 Threats to Validity

	8.3 Evaluating the Visualizing of a Build History
	8.3.1 Methodology and Test Scenarios
	8.3.2 Results and Discussion
	8.3.3 Threats to Validity

	9 Related Work
	10 Conclusions and Future Work
	Bibliography
	Appendix

