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Abstract
There has been increasing interest in algae-based bioassessment, particularly, trait-
based approaches are increasingly suggested. However, the main drivers, especially 
the contribution of hydrological variables, of species composition, trait composition, 
and beta diversity of algae communities are less studied. To link species and trait com‐
position to multiple factors (i.e., hydrological variables, local environmental variables, 
and spatial factors) that potentially control species occurrence/abundance and to de‐
termine their relative roles in shaping species composition, trait composition, and beta 
diversities of pelagic algae communities, samples were collected from a German low‐
land catchment, where a well-proven ecohydrological modeling enabled to predict 
long-term discharges at each sampling site. Both trait and species composition showed 
significant correlations with hydrological, environmental, and spatial variables, and 
variation partitioning revealed that the hydrological and local environmental variables 
outperformed spatial variables. A higher variation of trait composition (57.0%) than 
species composition (37.5%) could be explained by abiotic factors. Mantel tests 
showed that both species and trait-based beta diversities were mostly related to hy‐
drological and environmental heterogeneity with hydrological contributing more than 
environmental variables, while purely spatial impact was less important. Our findings 
revealed the relative importance of hydrological variables in shaping pelagic algae 
community and their spatial patterns of beta diversities, emphasizing the need to in‐
clude hydrological variables in long-term biomonitoring campaigns and biodiversity 
conservation or restoration. A key implication for biodiversity conservation was that 
maintaining the instream flow regime and keeping various habitats among rivers are of 
vital importance. However, further investigations at multispatial and temporal scales 
are greatly needed.
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1  | INTRODUCTION

Although rivers cover only 0.8% of the landmasses on the earth, they 
contain more than 6% of global species and are thus invaluable for 
biodiversity and ecosystem services (Altermatt, Seymour, & Martinez, 
2013). They also act as conveyor belts of biodiversity information by 
dictating dispersal pathways (Deiner, Fronhofer, Mächler, Walser, & 
Altermatt, 2016), and thus, river ecosystems are a biodiversity hotspot. 
With arising from human-mediated fast global change, water quality 
was degraded and the use of aquatic organisms in bioassessments be‐
came common in last decades. Studying the river organisms in relation 
to abiotic factors and identifying spatial patterns of biodiversity as well 
as their driving mechanisms have become a major trend of commu‐
nity ecology as basis for prioritizing global and regional conservation 
efforts (Myers, Mittermeier, Mittermeier, da Fonseca, & Kent, 2000; 
Wang, Pan, Soininen, Heino, & Shen, 2016). As the major primary pro‐
ducer, algae are increasingly being used as reliable environmental indi‐
cators in streams and rivers globally, especially in the context of recent 
international water framework directive policies such as EU Water 
Framework Directive (WFD; Hering et al., 2006; Lange, Townsend, & 
Matthaei, 2016; Wu et al., 2017) because they strongly respond to en‐
vironmental changes (Larras et al., 2017; Stevenson, Pan, & van Dam, 
2010; Wang, Li, et al., 2016).

The relationships between river algae and abiotic factors have 
been studied with a long history. Nevertheless, previous studies and 
biomonitoring campaigns focused mostly on local environmental vari‐
ables such as nutrients (Kelly & Whitton, 1995; Lange, Liess, Piggott, 
Townsend, & Matthaei, 2011), pH, temperature (Çelekli, Öztürk, & 
Kapı, 2014; Wu, Schmalz, & Fohrer, 2011), and recently also spatial 
factors (Heino & MykrÄ, 2008; Rezende, Santos, Henke-Oliveira, & 
Gonçalves, 2014; Tang, Niu, & Dudgeon, 2013; Tang, Wu, Li, Fu, & Cai, 
2013; Wu, Cai, & Fohrer, 2014). By comparison, little attention has 
been paid to hydrological factors such as flow regime (Qu, Wu, Guse, 
& Fohrer, 2018), although many studies have shown that riverine algal 
communities are linked to flow velocity and discharge (Biggs, Smith, & 
Duncan, 1999; Jowett & Biggs, 1997; Munn, Frey, & Tesoriero, 2010; 
Riseng, Wiley, & Stevenson, 2004; Wu et al., 2010) and catchment 
wetness (Wu et al., 2016). Yet, a profound understanding on the inter‐
action of hydrological variables and river organisms, specifically algae, 
is still missing.

In addition to species composition, ecologists have recently 
started investigating trait composition as it reflects the functional 
adaption of organisms to its environment (McGill, Enquist, Weiher, 
& Westoby, 2006; Soininen, Jamoneau, Rosebery, & Passy, 2016; 
Wang, Liu, Zhan, Yang, & Wu, 2017). Usually, traits are divided into 
two types: ecological traits (related to habitat preferences, such as 
pH, oxygen and temperature tolerance, and tolerance to organic 
pollution.) and biological traits (e.g., life history, physiological, be‐
havioral, and morphological characteristics, such as reproductive 
strategies, motility, cell size, and life form). In comparison with tradi‐
tional taxonomic indices, biological traits show greater consistency 
in their responses across temporal and spatial scales (Menezes, 
Baird, & Soares, 2010; Soininen et al., 2016) and furthermore give 

important insights into the mechanisms driving the community 
and ecosystem processes along the gradients of influential factors 
(Litchman & Klausmeier, 2008). Traits can furthermore serve to dis‐
entangle multiple interacting influential factors (Baattrup-Pedersen, 
Göthe, Riis, & O’Hare, 2016; Lange, Townsend, & Matthaei, 2014). 
Trait-based approaches have been used for different purposes in 
terrestrial plants (Grime, 1979; Tilman, 1980) and macroinverte‐
brate (Menezes et al., 2010), but only very recently been consid‐
ered for freshwater algae (Lange et al., 2016; McGill et al., 2006; 
Tapolczai, Bouchez, Stenger-Kovács, Padisák, & Rimet, 2016), par‐
ticularly in phytoplankton studies (Colina, Calliari, Carballo, & Kruk, 
2016; Padisák, Crossetti, & Naselli-Flores, 2009; Reynolds, Huszar, 
Kruk, Naselli-Flores, & Melo, 2002; Thomas, Kremer, & Litchman, 
2016). Recent studies have shown the advantages of applying traits 
for biomonitoring of freshwater ecosystems and for biodiversity 
conservation (Di Battista, Fortuna, & Maturo, 2016; Lange et al., 
2011; Litchman & Klausmeier, 2008; McGill et al., 2006; Menezes 
et al., 2010; Soininen et al., 2016). For instance, Soininen et al. 
(2016) concluded from a large-scale study that trait distributions 
are driven primarily by the local environmental condition and less 
dependent on the spatial location, which makes them better suited 
for researches on global environmental change. However, the com‐
parisons between species and trait composition in relation to abiotic 
factors at catchment scale, in particular multiple stressors, are still 
poorly documented.

Rivers are widely affected by a mixture of stressors caused by 
anthropogenic activities (Hering et al., 2015). Generally, they include 
flow regime alteration, diffuse, and point sources. For example, flow 
diversion due to dam construction can disrupt the river’s natural con‐
nectivity and impede the cycling of organic matter, sediments, and 
nutrients from up- to downstream (Wu, Cai, & Fohrer, 2012). In addi‐
tion, global land use and climate change pose additional stressors for 
rivers. The patterns of species composition in biological communities 
are governed by both local and spatial processes (Curry & Baird, 2015). 
Dispersal limitation creates spatial structure in assemblage composi‐
tion because the probability of successful movement between loca‐
tions is negatively related to the geographical distance between them. 
Spatial variables such as altitude or geographical location can play 
important and confounding roles determining the presence, absence, 
and abundance of the algal species and consequently influence the 
algae-based bioassessment (Wu et al., 2014). One previous view of 
algae distributions was that they were ubiquitous and could disperse 
everywhere due to the immense population sizes, especially over a 
long time period (Fenchel & Finlay, 2004). If this theory was right, the 
similar algae species should be found at all places with similar environ‐
mental conditions, which was usually not the case leading to a large 
portion of variation explained by spatial factors (Smucker & Vis, 2011; 
Soininen, Paavola, & Muotka, 2004). Thus, it is difficult to determine 
whether an absent species is due to the unallowable environmental 
conditions or it has not dispersed to that location. Studying spatial 
geographical influences on algal composition is therefore a fundamen‐
tal step in describing ecological patterns, making biomonitoring more 
robust, which is essential for sustainable management (Smucker & 
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Vis, 2011). Nevertheless, the current biomonitoring using algae often 
focuses on the local environmental conditions with seldom regarding 
processes operating at larger spatial scales.

The purpose of this study was to assess the influence of differ‐
ent factors (e.g., hydrological variables, local environmental variables, 
and spatial factors) on shaping species composition, trait composition, 
and beta diversities of riverine pelagic algae communities in a German 
lowland catchment (Figure 1). We had two main questions for this re‐
search: (i) How much do hydrological variables contribute to variations 
of species and trait compositions compare to local environmental and 
spatial variables? (ii) What are the major drivers of the species, trait 
composition, and beta diversities of pelagic algae communities? The 
hypotheses were that (i) hydrological, environmental, and spatial vari‐
ables interacted to determine species composition, trait composition, 
and beta diversity of pelagic algae, (ii) hydrological variables would be 
a key driver of species composition, trait composition, and beta diver‐
sity, (iii) trait distributions are less dependent on historic (i.e., spatial) 
variables than species composition.

2  | MATERIALS AND METHODS

2.1 | Description of the study area

The Treene catchment with a basin area of 481 km2 is located in 
northern Germany as a part of a lowland area (Figure 1). Sandy, 

loamy, and peat soils are characteristic for this area. Land use is 
dominated by agriculture and pasture. Around 50% of the area 
is covered by arable land and ~30% by winter pasture (Guse, 
Pfannerstill, & Fohrer, 2015). The major tributaries are Bondenau 
(Bo), Kielstau (Ki), Bollingstedter Au (Bo), Jerrisbek (Je), Juebek (Ju), 
and Sankermarker See (Sa). It is in a temperate climate zone, in‐
fluenced by marine climate, with mild temperature and high pre‐
cipitation in winter, and the maximum elevation gradient is 76 m. 
There are several lakes (top three from size: Sueden See: 0.64 km2, 
Sankermarker See: 0.56 km2, and Winderatter See: 0.24 km2) in the 
catchment, mainly located in the upstream areas of the river. As a 
nested subcatchment of the Treene, the Kielstau catchment (50 km2; 
Figure 1) has been appointed to an UNESCO Ecohydrological 
Demonstration Site in the year 2010 (Fohrer & Schmalz, 2012). The 
Soltfeld gauging station (at the outlet of the Kielstau catchment) 
and Treia gauging station (at the outlet of Treene catchment) are a 
part of the official gauging network of the Federal State Schleswig-
Holstein (Figure 1b). In addition, four more spatially distributed hy‐
drological stations with continuous daily discharge time series were 
used for this study as shown in Figure 1b. The Treene catchment 
was selected because of the reliability of the well-proven hydrologi‐
cal SWAT model (Guse, Kail, et al., 2015; Guse, Pfannerstill, et al., 
2015), which enables to simulate long-term discharges at different 
sampling sites. These conditions, which are rare in previous studies, 
are ideal to apply and test our hypotheses.

F IGURE  1 The location of six hydrological stations and sampling sites of the Treene catchment (b) in Schleswig-Holstein state (a) of Germany. 
Subbasins of Treene as derived by the ecohydrological model SWAT (Soil and Water Assessment Tool) are shown too
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2.2 | Sampling methods and primary procedures

Field surveys were carried out in the mainstream and its tributaries 
in December 2014. We visited 59 sampling sites and abbreviated the 
sites according to each subbasin they were located in. Pelagic algae 
were collected using plankton net with a mesh size of 20 μm. A known 
volume of water (10–30 L, depending on site) was filtered and fixed 
immediately by neutral Lugol’s solution. Algae samples were concen‐
trated to 25 ml for further processing after natural sedimentation in 
the laboratory.

Simultaneously, at each sampling point, water temperature (WT), 
pH, electric conductivity (EC), and dissolved oxygen (DO) of the surface 
water were measured in situ using Portable Meter (WTM Multi 340i 
and WTW Cond 330i, Germany). Besides, river width, depth, and ve‐
locity were surveyed at the sampling points (velocity—using FlowSens 
Single Axis Electromagnetic Flow Meter, Hydrometrie, Germany).

Concurrently, water samples were taken in two precleaned plastic 
bottles (500 ml each) for water chemistry measurement in the labora‐
tory. In the laboratory, water samples were partially filtrated through 
GF/F glass microfiber filter (Whatmann 1825-047) for measurements 
of phosphate-phosphorus (PO4-P), ammonium-nitrogen (NH4-N), 
nitrate-nitrogen (NO3-N), nitrite-nitrogen (NO2-N), chloride (Cl

−), and 
sulfate (SO2−

4
) according to the standard methods DEV (Deutsche 

Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung). 
The concentrations of total phosphorus (TP) were measured with 
unfiltrated water samples. PO4-P and TP were measured using the 
ammonium molybdate spectrophotometric method (at 880 nm; DIN 
1189). We used Nessler’s reagent colorimetric method (DIN 38 406-
E5-1) to measure NH4-N concentrations at 690 nm. NO3-N, NO2-N, 
Cl−, and (SO2−

4
) were measured by an ion chromatography method 

(DIN 38 405-D19). Dissolved inorganic nitrogen (DIN) was defined as 
the sum of NO2-N, NO3-N, and NH4-N. Total suspended solids (TSS) 
were measured according to standard operating procedure for total 
suspended solid analysis (US Environmental Protection Agency, 1997). 
Inorganic carbon (IC), dissolved total carbon (DTC), and dissolved or‐
ganic carbon (DOC) were measured with a DIMA-TOC-100 total or‐
ganic carbon analyzer, according to infrared spectroscopy method 
(Dimatec Analysentechnik GmbH, Germany).

2.3 | Algae preparation and identification

For the soft algae (nondiatom) identification, algae were counted with 
optical microscope (Nikon Eclipse E200-LED, Germany) at ×400 mag‐
nifications in a Fuchs–Rosenthal chamber. The counting unit was indi‐
vidual (unicell), and at least, 300 units were counted for each sample. 
Taxonomic identification of species was carried out according to Hu 
and Wei (2006), Burchardt (2014).

To identify diatoms, permanent diatom slides were prepared 
after oxidizing the organic material by hydrogen peroxide method 
(30% H2O2 solution) and mounted on slides using Naphrax (Northern 
Biological supplies Ltd., UK, R1 = 1.74). A minimum of 300 valves 
was counted for each sample using a Zeiss Axioskop microscope at 
1,000× under oil immersion. Diatoms were identified to the lowest 

taxonomic level possible (mainly species level) according to following 
key books (Bey & Ector, 2013; Lange-Bertalot, 2000a, 2000b, 2005, 
2007; Round, Crawford, & Mann, 1990; Simonsen, 1987), Hofmann 
(Hofmann, Werum, & Lange-Bertalot, 2011), and Bak (Bąk et al., 
2012). Algae densities were expressed as cells/L.

2.4 | Biotic datasets

We used both traditional taxonomic composition and a functional per‐
spective based on species traits composition.

1.	 Species composition (Sp): inclusion of all observed 327 algal 
species with their relative abundances.

2.	 Trait composition (Tr): We assigned 327 algal species to different 
functional traits: cell sizes (pico, nano, micro, meso, macro, and 
large), guilds (low profile, high profile, motile, and planktonic guild), 
life form (colonial, filamentous, flagellate, and unicellular), ecomor‐
phology (combination between cell sizes and guilds + life form), ni‐
trogen fixation species, reproductive strategies (fission and 
fragmentation), and spore formation (no spore, akinetes, oospores, 
and zygospores) (Appendix S1). Traits with medians of 0 were elimi‐
nated because they would prevent the further statistical analyses, 
and thus, 44 traits were retained for final Tr dataset.

3.	 Beta diversities (ß): To calculate the pairwise dissimilarities, we 
used the Bray–Curtis similarity index on Sp and Tr separately (i.e., 
SpßBRAY and TrßBRAY), as this index takes into account differences in 
abundances and emphasizes dominant species/trait (Magurran, 
2004). Similarly, we also employed Jaccard similarity index on Sp 
and Tr, respectively (i.e., SpßJACC and TrßJACC).

2.5 | Abiotic datasets

Three abiotic datasets were formed.

1.	 Hydrological variables (Hv): Except for in situ measured width, 
water depth, and flow velocity at the sampling point, long-term 
flow discharges (2010–2016) of each sampling site were simu‐
lated by the ecohydrological SWAT model (Soil and Water 
Assessment Tool; Arnold, Srinivasan, Muttiah, & Williams, 1998). 
The SWAT model is a semidistributed model which provides 
daily outputs of a large set of hydrological variables for each 
subbasin. In this case study, the Treene catchment was subdi‐
vided into 108 subbasins (Figure 1), which also covered the 
tributaries of the Treene (Guse, Reusser, & Fohrer, 2014). Thus, 
the spatially distributed model results consider the spatial het‐
erogeneity in the catchment. Three input maps were implemented 
in the SWAT model setup: a digital elevation model, a land use 
map, and a soil map (Guse, Pfannerstill, et al., 2015). To obtain 
reliable spatially distributed model results, a multisite calibration 
approach was selected and six hydrological stations were included 
in the calibration procedure with the aim to obtain good model 
results for all stations (Guse, Pfannerstill, et al., 2015). We used 
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TABLE  1 Summary of hydrological (Hv), environmental (Ev), and spatial (Sv) variables with their codes and descriptions in this study

Variables

Code Unit Description Mean Min Max

Hv Hydrological variables

Hv01 m3/s Discharge at the sample day 2.27 0.01 18.30

Hv12 – Skewness of 3 days’ ahead discharge (including the 
sampling day)

0.32 −1.73 1.73

Hv13 – Skewness of 3 days’ ahead discharge (excluding the 
sampling day)

0.90 −1.69 1.73

Hv20 – Skewness of 7 days’ ahead discharge (including the 
sampling day)

0.95 −0.22 2.44

Hv21 – Skewness of 7 days’ ahead discharge (excluding the 
sampling day)

0.84 −1.58 2.64

Hv36 – Skewness of 30 days’ ahead discharge (including 
the sampling day)

1.14 −0.31 3.28

Hv40 D Low flood pulse count in the past 14 days 4.71 0.00 14.00

Hv45 D High flood pulse count in the past 30 days 4.31 0.00 12.00

Hv54 – Rate of change (i.e., slope) in the last 3 days before 
the sampling day

0.18 −0.01 1.50

Hv55 – Rate of change (i.e., slope) in the last 7 days before 
the sampling day

−0.04 −0.31 0.09

VELO m/s Flow velocity at the sampling point 0.98 0.00 10.24

Ev Environmental variables

WT °C Water temperature 5.69 0.20 8.40

PH – pH 7.49 6.74 9.73

DO mg/L Dissolved oxygen 9.49 4.61 12.30

TP mg/L Total phosphorus 0.22 0.06 0.63

PO4 mg/L Orthophosphate-phosphorus (PO4-P) 0.08 0.01 0.34

NH4 mg/L Ammonium-nitrogen (NH4-N) 0.31 0.03 1.43

NO3 mg/L Nitrate-nitrogen (NO3-N) 3.55 1.03 8.43

NO2 mg/L Nitrite-nitrogen (NO2-N) 0.02 0.00 0.05

CL mg/L Chloride (Cl−) 24.92 14.20 41.70

SO4 mg/L Sulfate ((SO2−

4
) ) 31.82 12.90 73.10

TSP mg/L Total suspended particulates 12.08 2.60 46.28

DTC mg/L Dissolved total carbon 41.59 25.60 70.40

DOC mg/L Dissolved organic carbon 10.45 −0.15 29.50

AGRL % Agricultural Land-Generic (%) 51.83 15.04 79.65

FRSD % Deciduous forest (%) 2.23 0.01 9.89

FRSE % Evergreen forest (%) 1.02 0.02 9.02

FRST % Forests mixed (%) 2.46 0.00 13.47

FR % Forest in total (%) 5.71 0.86 15.13

RNGE % Rangeland (%) 0.70 0.00 4.33

UIDU % Industrial (%) 4.20 2.98 8.41

URLD – Residential-Low Density 0.43 0.00 3.98

UR – Residential in total 5.65 1.75 12.26

WATR % Water (%) 1.71 0.62 5.42

WETL % Wetlands (%) 1.01 0.00 7.19

WPAS % Winter pasture (%) 29.18 7.22 70.97

(Continues)
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Variables

Code Unit Description Mean Min Max

Sv Spatial variables

X N Latitude 54.64 54.51 54.74

Y E Longitude 9.43 9.27 9.67

PCNM1 – Principal coordinates of neighborhood matrix1 0.00 −0.14 0.23

PCNM3 – Principal coordinates of neighborhood matrix3 0.00 −0.29 0.24

PCNM6 – Principal coordinates of neighborhood matrix6 0.00 −0.34 0.26

PCNM7 – Principal coordinates of neighborhood matrix7 0.00 −0.31 0.28

PCNM10 – Principal coordinates of neighborhood matrix10 0.00 −0.33 0.26

PCNM11 – Principal coordinates of neighborhood matrix11 0.00 −0.24 0.55

Variables indicating significant multicollinearity (with variance inflation factor >10 and Spearman correlation coefficient ≥0.75) are excluded. For spatial 
variables, only the variables after forward selection are shown here (see also Table 2).

TABLE  1  (Continued)

Trait composition (Tr) Species composition (Sp)

Variables AdjR2Cum F p Variables AdjR2Cum F p

Hv*** Hv***

Hv21 0.23 17.88 .001 Hv21 0.15 11.29 .001

Hv40 0.35 12.20 .001 Hv40 0.22 6.36 .001

Hv55 0.39 4.53 .004 Hv55 0.25 2.83 .008

Hv45 0.42 3.93 .011 Hv45 0.28 3.35 .003

Hv36 0.44 2.75 .031 Hv36 0.29 2.07 .036

Ev*** Ev***

PO4 0.14 10.17 .001 SO4 0.06 4.45 .001

TP 0.33 16.93 .001 UR 0.10 3.55 .001

SO4 0.36 3.93 .003 WPAS 0.13 2.98 .001

PH 0.39 3.46 .004 WATR 0.15 2.44 .005

WT 0.41 3.39 .005 PO4 0.17 2.33 .008

DTC 0.44 3.25 .011 TP 0.22 4.53 .001

WPAS 0.46 3.76 .003 PH 0.24 2.51 .004

FRST 0.48 2.35 .040 DTC 0.26 2.37 .003

NO2 0.49 2.29 .043 WT 0.28 2.08 .009

NH4 0.29 1.83 .024

FRST 0.30 1.66 .037

Sv*** Sv*

PCNM6 0.09 6.84 .001 PCNM6 0.05 4.02 .001

PCNM7 0.17 6.56 .001 PCNM7 0.08 2.86 .004

PCNM3 0.22 4.52 .003 PCNM3 0.10 2.59 .016

PCNM10 0.25 3.29 .020 PCNM10 0.12 2.24 .008

X 0.28 2.74 .036 X 0.14 2.26 .010

PCNM11 0.30 2.54 .039 PCNM1 0.17 2.78 .002

Y 0.32 2.79 .023

The selected variables are in the order in which they were selected in the forward selection procedure. 
AdjR2Cum (cumulative adjusted R2), F, and p values are shown. All selected variables show no signifi‐
cant multicollinearity (with variance inflation factor VIF < 10, by vif.cca function in R package vegan). 
Codes of variables are as in Table 1. Significance was expressed as *p < .05, **p < .01, ***p < .001 (by 
anova function in R package vegan).

TABLE  2 Results of forward selection 
of hydrological variables (Hv), 
environmental variables (Ev), and spatial 
variables (Sv) for trait (Tr) and species (Sp) 
composition, respectively
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a calibration period from 2001 to 2005 and validated the model 
from 2006 to 2016 for discharge. As the measurements at one 
hydrological station ended in 2014, only five stations were used 
in the model validation. To assess the model performance, three 
typical performance measures namely Nash–Sutcliffe efficiency 
(NSE), percent bias (PBIAS), and the root mean square error 
deviation (RSR) were used. The modeled discharge shows a 
good matching with the measured data, in particular under con‐
sideration of the multisite approach with joint model performance 
estimation for six hydrological stations (for details see Guse, 
Kail, et al. 2015; Guse, Pfannerstill, et al., 2015). Based on the 
well-performing model, daily model results for the investigation 
period of this study were provided for all subbasins with sam‐
pling points. In order to obtain reliable results, always the next 
subbasin outlet was used for each sampling point under con‐
sideration of the river network. Then, we calculated the different 
hydrological indices according to Olden and Poff (Olden & Poff, 
2003), which mainly included magnitude of flow events, frequency 
of flow events, rate of change in flow events, and in situ mea‐
surement (details see Appendix S2). Finally, 11 hydrological 
variables were selected after excluding the ones with significant 
multicollinearity (Table 1, Appendices S2 and S3).

2.	 Environmental variables (Ev): Ev includes in situ and laboratory-
measured physicochemical variables (see above). Furthermore, land 
use data were obtained from Schleswig-Holstein State Bureau of 
Surveying and Geo-information (LVERMGEO-SH, 2012). Land use 
analysis was performed via GIS processing. Watershed area up‐
stream from each sampling site was determined, and land use 
within this area was considered as the land use affecting the sam‐
pling site. A total of 25 variables were retained after excluding the 
ones with significant multicollinearity (Table 1, Appendix S4).

3.	 Spatial variables (Sv): Except for the coordinates (X: latitude, Y: lon‐
gitude), Moran’s eigenvector maps were used to generate spatial 
variables representing geographical positions and dispersal across 
the rivers. This method is a powerful approach able to detect spatial 
structures of varying scale in response to data and more flexible 
than other eigenvector-based approaches for irregular sampling 
design (Tang, Niu, et al., 2013; Tang, Wu, et al., 2013), as the case 
in our study. In brief, this method proceeds as follows: (i) a geo‐
graphical distance matrix as Euclidean distance between each pair 
of sampling sites was calculated using the earth.dist function in the 
package fossil in R (version 3.3.2). (ii) Principal coordinates of neigh‐
borhood matrix (PCNM) analysis based on the geographical dis‐
tance was used to compute spatial variables (i.e., historic factors) 
representing geographical positions through the pcnm function in R 
package vegan (version 2.4-2). The generated eigenvectors were 
considered as spatial variables (i.e., PCNMs), which could reflect 
unmeasured broadscale variation in the modern environment or 
historic factors, for example, natural dispersal-generated patterns 
demonstrating internal local-scale dispersal dynamics or regional-
scale migration history (Svenning, Baktoft, & Balslev, 2009). PCNMs 
with large eigenvalues and small code represent broadscale spatial 
pattern, while the smaller eigenvalues with large code represent 

fine-scale patterns. PCNMs are commonly used to describe species 
dispersal processes (Curry & Baird, 2015). Usually, only PCNMs 
with positive eigenvalues are retained as spatial explanatory varia‐
bles (Tang, Niu, et al., 2013; Tang, Wu, et al., 2013). Among the 58 
PCNMs generated, eigenvalues of PCNM components 1–37 were 
positive, and thus, 39 variables (including X, Y) were used in the 
following analyses (Table 1, Appendix S5).

2.6 | Data analysis

All analyses were performed with the R software (version 3.3.2, R 
Development Core Team 2017).

To explore the potential impacts of hydrological variables on trait 
and species compositions (question i), the following preliminary data 
analyses were conducted. Firstly, trait and species composition with 
relative abundance (0–100%) were Hellinger-transformed (using func‐
tion decosdtand in R package vegan), respectively, in order to reduce 
the weight of abundant species/trait while preserves Euclidean dis‐
tances between samples in the multidimensional space. Secondly, 
the variables in abiotic datasets (Hv, Ev, and Sv) with significant mul‐
ticollinearity (with variance inflation factor >10 and Spearman’s rank 
correlation coefficient |r| ≥ .75) were excluded (details see also above). 
A preliminary detrended correspondence analysis (DCA, using func‐
tion decorana in R package vegan) on the Hellinger-transformed trait 
and species data produced a longest gradient length of 2.03 and 4.82 
along the first axis, suggesting that redundancy analysis (RDA) and ca‐
nonical correspondence analysis (CCA) were appropriate for Tr and Sp, 
respectively (Lepš & Šmilauer, 2003). We performed RDA using the rda 
function and CCA using cca function and tested the significance using 
the anova function. Only if it was significant, a forward selection could 
be proceeded to get a parsimonious model with two stopping crite‐
ria: significance level and the adjusted coefficient of determination 
(Adj R2) of the global model (Blanchet, Legendre, & Borcard, 2008). 
Forward selection was performed by the forward.sel function in R 
package packfor. The selected variables were then used as explanatory 
variables for the following variation partitioning analysis using varpart 
function R package vegan (version 2.4-2).

Next, we ran Mantel tests in order to examine the changes in trait 
and species composition along hydrological, environmental, and spatial 
gradients (question ii). The Mantel test has been utilized as a distance-
based approach to study community beta diversities in relation to 
distance matrices (Teittinen, Kallajoki, Meier, Stigzelius, & Soininen, 
2016; Wang et al., 2012). The significance of this distance–decay re‐
lationship, which measures how dissimilarity decays with increasing 
distance between pairwise sites, was determined using Mantel test 
with 9,999 permutations. In brief, the Mantel statistic r (range −1 to 
1) is a correlation between two dissimilarities or distance matrices. We 
first constructed dissimilarity matrices for biotic data (i.e., beta diver‐
sities, SpßBRAY, TrßBRAY, SpßJACC, and TrßJACC, for details see above) and 
Euclidean distances separately for the hydrological, environmental, 
and spatial variables (i.e., Hvdis, Evdis, and Svdis). In addition to sim‐
ple Mantel tests using two matrices, we used partial Mantel tests to 
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tease apart the pure effects of hydrological, environmental, and spatial 
variables on biotic matrices, and the significance was assessed using 
9,999 permutations, as described above. Mantel and partial Mantel 
tests were run using functions mantel and mantel.partial, respectively, 
in R package vegan (version 2.4-2).

3  | RESULTS

3.1 | Variability of abiotic factors

During the sampling period, river reaches of the study area (Figure 1) 
varied widely in water quality and habitat characteristics and the 
main abiotic variables are summarized in Table 1. For example, water 
temperature (WT) ranged from 0.20 to 8.40°C (mean: 5.69°C), pH 
ranged from 6.74 to 9.73 (mean: 7.49), total phosphorus (TP) aver‐
aged 0.22 mg/L (0.06–0.63 mg/L), and ammonium-nitrogen (NH4-N) 
ranged from 0.03 to 1.43 mg/L (mean: 0.31 mg/L), while total sus‐
pended particulates (TSP) averaged 12.08 mg/L (2.60–46.28 mg/L). 
Land use in the catchment was mainly open canopy and dominated by 
high agricultural land of 51.83% (15.04–79.65%), while forest cover 
was low (mean coverage was 5.71% ranging from 0.86 to 15.13%). 
Due to a heavy rainfall event during the sampling period, hydrologi‐
cal variables varied greatly among the sampling sites. For instance, 
flow velocity (VELO) ranged from 0 to 10.24 m/s with an average 
of 0.98 m/s, discharge (Hv01) ranged from 0.01 to 18.30 m3/s with 
a mean of 2.27 m3/s, while skewness of flows (Hv12, Hv13, Hv20, 
Hv21, and Hv36), low flood pulse count (Hv40), high flood pulse count 
(Hv45), and change rates of flows (Hv54 and Hv55) also showed 
large ranges (for details see Table 1). In addition, the spatial variables 
showed a small variation with latitude ranging from 54.51 to 54.74°N 
and longitude from 9.27 to 9.67°E, which was due to the relative small 
catchment of Treene (481 km2).

3.2 | Drivers of traits and species composition

In the RDA analysis for trait composition (Tr), hydrological (Hv), en‐
vironmental (Ev), and spatial variables (Sv) all showed significant re‐
lationships with trait composition (by anova function in R package 
vegan, Table 2). Five Hv, nine Ev, and seven Sv variables were se‐
lected by forward selection. According to variation partitioning analy‐
sis, the three sets could explain 57.0% variation of trait composition 
(Figure 2a). The pure effects of Hv (3.7%) and Ev (6.0%) accounted for 
larger parts than the pure effect of Sv (1.5%), while the joint effect of 
Hv, Ev, and Sv was the largest with 22.2%.

Similarly, in the CCA analysis for species composition (Sp), Hv, Ev, and 
Sv all showed significant relationships with species composition (by anova 
function in R package vegan) and five Hv, 11 Ev, and six Sv variables were 
selected by forward selection (Table 2). Variation partitioning indicated 
that the three sets explained only 37.5% variation of species composi‐
tion. The variation purely explained by Hv, Ev, and Sv was 3.6%, 7.0%, 
and 1.7%, respectively, while the shared fraction was 9.9% (Figure 2b).

In general, the joint contribution by Hv and Ev (Hv*Ev) (Tr: 15.4%, 
Sp: 9.5%) was higher than those by Hv*Sv (Tr: 2.7%, Sp: 2.0%) and 
Ev*Sv (Tr: 5.5%, Sp: 3.7%) (Figure 2). The unexplained fraction of trait 
composition (43.0%) was lower than for species composition (62.5%) 
(Figure 2). However, the variation partitioning (Figure 2) showed that 
both trait and species composition were less dependent on spatial fac‐
tors, rejecting our third hypothesis.

3.3 | Main drivers of traits and species-based beta 
diversities

Mantel tests showed that trait dissimilarities (i.e., beta diversi‐
ties) based on both Bray–Curtis and Jaccard indices (TrßBRAY and 
TrßJACC) increased significantly with hydrological (Hvdis), environ‐
mental (Evdis), and spatial distances (Svdis) (Figure 3, Table 3). The 

F IGURE  2 Contributions of the hydrological (Hv), environmental (Ev), and spatial variables (Sv) to the variances in trait (a) and species 
composition (b). Each diagram represents a given biological variation partitioned into the pure effects of Hv, Ev, and Sv (i.e., when removing 
the variations caused by other two factors), interaction between any two variables (Hv*Ev, Hv*Sv, and Ev*Sv), interaction of all three factors 
(indicated by red circle), and unexplained variation (total variation = 100). The geometric areas of circles were proportional to the respective 
percentages of explained variation. More details on the selected variables are shown in Table 2
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relationships between trait dissimilarities (TrßBRAY and TrßJACC) and 
hydrological distances (Hvdis) were consistently stronger than the re‐
lationships with environmental distances (Evdis), while the weakest 
relationships were with spatial distances (Svdis) (Figure 3). Based on 
partial Mantel tests, the pure effects of hydrological and environmen‐
tal distances on trait dissimilarities were significant using both indices, 
whereas the pure effect of spatial distance was nonsignificant using 
both indices (Table 3).

As for species dissimilarities based on both Bray–Curtis and 
Jaccard indices (SpßBRAY and SpßJACC), similar results were found 
(Figure 4, Table 3). The pairwise species compositional dissimilarities 
(SpßBRAY and SpßJACC) significantly increased with the corresponding 
changes in hydrological (Hvdis) and environmental distances (Evdis). 
Further, the relationships between species dissimilarities (TrßBRAY and 
TrßJACC) and hydrological distances (Hvdis) were consistently stronger 
than the relationships with environmental distances (Evdis) (Table 3). 
In contrast, there was no significant spatial distance–decay for both 
indices (p > .05) (Figure 4). According to partial Mantel tests, the pure 
effect of spatial distance was nonsignificant, while the pure effects 

of hydrological and environmental distances on species dissimilarities 
were significant using both indices (Table 3).

4  | DISCUSSION

One of the long-standing tasks in ecology is to explore the factors 
controlling the abundance and distribution patterns of aquatic or‐
ganisms and the causes underlying these patterns. Although the 
relationship between algae community and abiotic factors (e.g., re‐
sources and disturbances), as well as grazers, has been intensively 
investigated, the relative roles of different factors to algal variations 
remain controversial (Wu et al., 2011). For example, some studies 
found that the geographical topography (e.g., altitude, latitude, and 
longitude) and climate were the dominant factors regulating algae 
variation (Bae et al., 2014; Tang, Niu, et al., 2013; Tang, Wu, et al., 
2013; Wu et al., 2014). In contrast, local environmental variables 
(e.g., substrate composition, sediments, nutrients, oxygen contents, 
and biointeraction) were often considered to be the main regulating 

F IGURE  3 Relationship between trait dissimilarities (Bray–Curtis and Jaccard: TrßBRAY and TrßJACC) and hydrological (Hvdis), environmental 
(Evdis), and spatial Euclidean distances (Svdis). The relationships were statistically significant according to the Mantel test (9,999 permutations, 
p < .05, see Table 3). Regression lines based on linear models are shown by solid blue lines, and shaded gray area indicates 95% confidence 
interval of the fit
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factors (Bae et al., 2014; Bussi et al., 2016). Besides, previous stud‐
ies have rarely taken hydrological variables into consideration. This 
might be due to the fact that acquisition of accurate hydrological 
variables needs long-term discharge data at different sampling sites, 
which is often time-consuming (e.g., the measurement of discharge). 
Obtaining data from field hydrological stations is an alternative way, 
but it is normally impossible for every sampling site because of the 
limited numbers of hydrological stations, for instance only six sta‐
tions in our catchment with 59 sampling sites (Figure 1). At this situ‐
ation, a well-proven hydrological modeling would be a good choice 

as it enables to predict long-term discharge variations at different 
sampling sites, as the case in our study area.

In this study, we used hydrological modeling to obtain hydrological 
data for 59 sites and, as expected, found that the hydrological vari‐
ables, for example, skewness of flow (Hv21, Hv36), flood pulse count 
(Hv40, Hv45), and change rate of flow (Hv55), were the most import‐
ant factors affecting both trait and species composition. Hydrological 
conditions are general factors that determine the physical habitat 
conditions and affect (directly or indirectly) many other environmental 
variables that are key factors in pelagic algae community development, 

Index Hvdis Evdis Svdis Hvdisa Evdisa Svdisa

TrßBRAY 0.287*** 0.179*** 0.060* 0.311** 0.218** 0.016

TrßJACC 0.301*** 0.186*** 0.069** 0.327** 0.228** 0.023

SpßBRAY 0.218*** 0.188*** 0.032 0.242** 0.216** −0.013

SpßJACC 0.224*** 0.179*** 0.039 0.247** 0.207** −0.004

aThe pure effect while controlling for the other two distances.
*p < .05, **p < .01, ***p < .001.

TABLE  3 Results of Mantel and partial 
Mantel test for the correlation between ß 
diversities for traits (Tr) and species (Sp) 
(Bray–Curtis and Jaccard: TrßBRAY, TrßJACC, 
SpßBRAY, and SpßJACC) and hydrological 
(Hvdis), environmental (Evdis), and spatial 
Euclidean distances (Svdis)

F IGURE  4 Relationship between species dissimilarities (Bray–Curtis and Jaccard: SpßBRAY and SpßJACC) and hydrological (Hvdis), 
environmental (Evdis), and spatial Euclidean distances (Svdis). The relationships were statistically significant according to the Mantel test (9,999 
permutations, p < .05, see Table 3). Regression lines based on linear models are shown by solid blue lines, and shaded gray area indicates 95% 
confidence interval of the fit
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such as nutrient delivery, sediment transportation, residence time, 
disturbance intensity, temperature, light availability, and dissolved 
oxygen. That was also the reason why hydrological variables showed 
a higher shared effect with local environmental variables (Figure 2). 
With the large number of available hydrological metrics in use today, 
flow variabilities such as the magnitude, frequency, duration, timing, 
and rate of change in flows were the most important factors regulating 
ecological processes in aquatic ecosystems (Bhat, Jacobs, Hatfield, & 
Graham, 2010). A previous study on the relations among 83 hydro‐
logical metrics and changes in algal communities of the United States 
was consistent with our study and demonstrated the importance of 
hydrological variables to the variance of specific algal community met‐
rics (Steuer, Stensvold, & Gregory, 2010). Moreover, recent studies 
(Qu et al., 2018; Wu et al., 2016), which were in line with our find‐
ing, also found that hydrological conditions played an important role 
in temporal variations of pelagic algae communities. Skewness of 
flows was found to be one of the most consistently dominant indices 
across all stream types and may be a particularly important measure 
of flow condition for certain riverine taxa (Olden & Poff, 2003), for 
example, annual skewness of the flow has been linked to fish mobility 
and colonizing ability (Puckridge, Sheldon, Walker, & Boulton, 1998). 
High-flow event frequency (e.g., flood pulse count and change rate 
of flow), which was found to be transferable across stream type, was 
the most ecologically relevant hydrological condition metrics. Previous 
studies with the aim of characterizing the response of phytoplankton 
to high-flow events have indicated the importance of flow events in 
driving the patterns of phytoplankton distribution (Cook, Holland, & 
Longmore, 2010; Saeck, Hadwen, Rissik, O’Brien, & Burford, 2013). 
However, how does individual hydrological variable affect the pelagic 
algae composition and diversity was still less investigated so far and a 
possible reason was that few studies have the necessary temporal and 
spatial resolution to fully characterize these effects. This also remains a 
need to identify their individual or joint impacts and associated mech‐
anisms in the future studies by means of intensive field campaigns or 
indoor mesocosms. Furthermore, prompted by the importance of hy‐
drological variables to algal communities, we therefore advocate that 
planning for long-term monitoring and biodiversity conservation or 
restoration should include hydrological variables.

Besides, interdisciplinary collaboration between ecology and hy‐
drology warrants further attention as it can advance our knowledge 
in understanding the aquatic organisms in relation to abiotic factors, 
particularly the hydrological conditions. This is in line with combin‐
ing measurement campaigns with coupled abiotic–biotic modeling 
with the aim to improve the abundance/occurrence of biota and their 
ecohydrological drivers. As shown in this study, spatially distributed 
hydrological model studies allow an identification of hydrological con‐
ditions that can be used to describe the abundance and occurrence of 
biota. The results of hydrological models can be used both as input for 
ecological habitat models (Guse, Kail, et al. 2015; Guse, Pfannerstill, 
et al., 2015), to describe the habitat of different biota (Kiesel, Hering, 
Schmalz, & Fohrer, 2009) and for consecutive data analysis based 
on the model results as shown here and a recent study (Kiesel et al., 
2017).

Our results also demonstrated that the spatial factors were less 
important than local hydrological and environmental variables for both 
trait and species composition (Figure 2). For lowland rivers, the ques‐
tion about where do riverine pelagic algae come from is an important 
issue and has long been debated as it directly determines the suitabil‐
ity of pelagic algae-based bioassessment, which were more and more 
frequently used at lowland catchments (Wu, Schmalz, & Fohrer, 2012). 
Historically, it was believed that there was no true riverine plankton 
and the pelagic algae found in rivers were brought from either up‐
stream lentic water bodies or the benthos (Hötzel & Croome, 1999). 
Obviously, if this view was right, the riverine pelagic algae were not 
suitable as a bioindicator because they were flushed or drifted and 
not adapted to the local environmental habitats. As a consequence, 
riverine pelagic algae were less used for biomonitoring than other 
communities, such as periphyton and benthic invertebrates. However, 
recent studies (Centis, Tolotti, & Salmaso, 2010; Wu et al., 2011) have 
argued that the idea of benthic diatom communities being the source 
of the riverine pelagic algae may be too simplistic, and they believed 
that planktonic algal species do reproduce within rivers and many spe‐
cies develop substantial populations in situ. Disentangling the relative 
roles of local and spatial variables on spatial pattern of the community 
is a promising way to understand the source of pelagic algae commu‐
nities. Based on the metacommunity theory (Heino et al., 2015), the 
observed community at a certain point is shaped by two broad catego‐
ries of effects—local and regional (i.e., spatial) effects. Local effects are 
largely due to environmental constraints or species interactions, while 
spatial effects are driven by the flux of organisms from the regional 
species pool (Brown & Swan, 2010). Our results in this study showed 
that the pelagic community in Treene catchment was more affected 
by local effects (e.g., local hydrological and environmental variables) 
than spatial effects as indicated by spatial variables (Figure 2). These 
findings supported the recent studies (Qu et al., 2018; Wu et al., 2011) 
and further emphasized the suitability of lowland pelagic algae as bio‐
indicator for local habitat changes. Nevertheless, factors such as inter‐
action between organisms (niche competition), dispersal ability, and 
species evolution, which were not considered in this study, may have 
reduced the explainable variations. Furthermore, the relative impor‐
tance of different factors may vary among different regions and might 
depend on the spatial extent of the study area.

Another interesting finding showed that trait and species compo‐
sition were both less dependent on spatial factors (Figure 2), which 
contradicted our third hypothesis. As an alternative to species-based 
approaches, use of trait-based approaches in biomonitoring has 
been advocated in recent years, in particular because of the demand 
of mechanistic understanding of biological responses (Baattrup-
Pedersen, Göthe, Riis, Andersen, & Larsen, 2017). Based on previous 
studies (B-Béres et al., 2016; Lange et al., 2016; Passy, 2007; Soininen 
et al., 2016), trait composition would track local environment gradi‐
ents better than species composition and was less dependent on his‐
toric (i.e., spatial) factors, making them better suitable for research on 
global environmental change (Soininen et al., 2016). Nevertheless, 
our finding was rather unexpected compared to a recent similar study 
(Soininen et al., 2016). These differences between findings may be 
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related to the spatial scale of studied areas. In comparison with a single 
catchment of this study, the previous research compared the trait and 
species composition at a global scale (Soininen et al., 2016). Generally, 
for species distribution, the importance of spatial effects increased 
with geographical distance as dispersal limitation, and at large scales, 
spatial effects might outperform local environmental effects (Heino 
et al., 2010; Wu et al., 2014). Therefore, further comparisons between 
trait and species composition in relation to different factors at multis‐
patial scales are greatly needed.

Mantel tests suggested that the importance accounting for the 
among-site differences in species and trait-based beta diversities was 
as follows: hydrological variables > environmental filtering, without 
effects of historic (spatial) factors. Identifying mechanisms underly‐
ing the spatial patterns of biodiversity is another important task in 
community ecology, as these are fundamental to the appropriate 
biodiversity conservation and restoration (Myers et al., 2000; Wang, 
Pan, et al., 2016). Focusing on pelagic algae in a catchment with short 
geographical distances and incorporating multiple factors enabled 
the disentanglement of pure hydrological, environmental, and spatial 
gradients in our study. Our results revealed a clear distance–decay 
of community dissimilarity with increasing hydrological and environ‐
mental distances (Figures 3 and 4, Table 3). However, the relative 
roles of different distance matrices showed considerable variability, 
for instance, the importance of hydrological distance was consistently 
stronger than environmental distance, while importance of spatial dis‐
tance was the lowest (or even nonsignificant). A key implication of 
our findings for biodiversity conservation is that maintaining the in‐
stream flow regime and keeping various habitats among rivers are of 
vital importance.

In conclusion, the present study has revealed the clear important 
role of flow regime (indicated by hydrological variables) in structur‐
ing riverine algae communities and beta diversity patterns, which, in 
particular for beta diversities, has outperformed with local environ‐
mental variables and spatial factors. Our findings further emphasize 
the fundamental importance of considering hydrological variables, 
particularly when planning for long-term monitoring and biodiversity 
conservation or restoration. Although both trait and species composi‐
tion showed significant correlations with hydrological, environmental, 
and spatial variables, respectively, higher variation of trait composition 
(57.0%) than species composition (37.5%) was caught by these fac‐
tors. This emphasizes the merit of applying traits for biomonitoring 
and management of freshwater ecosystems. As our sampling covered 
only one catchment, we admit that the generality of these findings will 
be assessed later by other investigations in different systems. We also 
advocate that researchers should consider multispatial and tempo‐
ral scales explicitly in studies of biodiversity conservation, as pattern 
may change with study scales (Li, Chung, Bae, Kwon, & Park, 2012; 
Soininen, McDonald, & Hillebrand, 2007; Tang, Jia, Jiang, & Cai, 2016).
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