

Using the Raspberry Pi and Docker for Replicable Performance Experiments

Holger Knoche and Holger Eichelberger

University of Kiel and University of Hildesheim

April 13, 2018 @ ICPE

Motivation

Replicability is a fundamental property of scientific experiments.

RasPi and Docker for Replicable Experiments

Motivation

Replicability is a fundamental property of scientific experiments.

But: Replicating performance benchmarks is difficult

Motivation

Replicability is a fundamental property of scientific experiments.

But: Replicating performance benchmarks is difficult

Why? Researchers use the hardware and software environment that happens to be available to them

Research Questions

- RQ 1 Which types of performance experiments can be appropriately replicated on a Pi?
- RQ 2 Can Docker on the Pi facilitate the replicability of performance experiments?
- RQ 3 Can we identify reasons for the response time fluctuations reported in our earlier work?

Agenda

- 1. Introduction \checkmark
- 2. Experimental Results
- 3. Fluctuation Cause Analysis
- 4. Conclusions

RasPi and Docker for Replicable Experiments

Experimental Approach

- 1. ...bought three Raspberry Pi 3 devices
 - ▶ Two (D_1, D_2) from the same retailer within two weeks as a set with an SD card and a power supply
 - ▶ One (D_3) from another retailer a few months later

Experimental Approach

- 1. ...bought three Raspberry Pi 3 devices
 - ▶ Two (D_1, D_2) from the same retailer within two weeks as a set with an SD card and a power supply
 - ▶ One (D_3) from another retailer a few months later
- ...created a master SD card image
 - Based on Raspbian Stretch Lite
 - Included Docker

Experimental Approach

- 1. ...bought three Raspberry Pi 3 devices
 - ▶ Two (D_1, D_2) from the same retailer within two weeks as a set with an SD card and a power supply
 - ▶ One (D_3) from another retailer a few months later
- ...created a master SD card image
 - Based on Raspbian Stretch Lite
 - Included Docker
- 3. ...shared the master image among the authors

Experimental Approach

- 1. ...bought three Raspberry Pi 3 devices
 - ▶ Two (D_1, D_2) from the same retailer within two weeks as a set with an SD card and a power supply
 - ▶ One (D_3) from another retailer a few months later
- ...created a master SD card image
 - Based on Raspbian Stretch Lite
 - Included Docker
- 3. ...shared the master image among the authors
- 4. ...ran the preconfigured benchmarks on the devices

Experiments

Microbenchmarks with the Java Microbenchmark Harness (JMH)

- 4 benchmarks regarding method invocations with different compiler settings
- 2 benchmarks regarding file and network I/O

Experiments

E₁ Microbenchmarks with the Java Microbenchmark Harness (JMH)

- 4 benchmarks regarding method invocations with different compiler settings
- 2 benchmarks regarding file and network I/O
- E₂ Monitoring Overhead Benchmark MooBench

Experiments

- E₁ Microbenchmarks with the Java Microbenchmark Harness (JMH)
 - 4 benchmarks regarding method invocations with different compiler settings
 - 2 benchmarks regarding file and network I/O
- E₂ Monitoring Overhead Benchmark MooBench
- E_3 Web Service built on Spring Boot and JPA
 - Web service and database deployed on different Pi devices
 - Load driver on separate machine

Experiments

E₁ Microbenchmarks with the Java Microbenchmark Harness (JMH)

- 4 benchmarks regarding method invocations with different compiler settings
- 2 benchmarks regarding file and network I/O
- E₂ Monitoring Overhead Benchmark MooBench
- E_3 Web Service built on Spring Boot and JPA
 - Web service and database deployed on different Pi devices
 - Load driver on separate machine
- E₄ Java EE Benchmark SPECjEnterprise 2010

Selected Results from Benchmark 1 (Method Invocation)

Configuration	99.9% Cl Throughput (inv/s)
$D_2 + H_1$, native	[12,314,426 ; 12,329,982]
$D_3 + H_1$, native	[12,307,645 ; 12,320,718]
$D_2 + H_1$, Docker	[12,290,439 ; 12,308,655]

Selected Results from Benchmark 1 (Method Invocation)

Configuration	99.9% Cl Throughput (inv/s)
$D_2 + H_1$, native	[12,314,426 ; 12,329,982]
$D_3 + H_1$, native	[12,307,645 ; 12,320,718]
$D_2 + H_1$, Docker	[12,290,439 ; 12,308,655]

Selected Results from Benchmark 5 (File I/O)

Setup	99.9% CI Throughput	
$D_2 + H_1$, native	[541,361 ; 566,493]	
$D_3 + H_1$, native	[536,530 ; 561,079]	
$D_2 + H_1$, Docker	[852,325 ; 912,492] •	

E₁: JMH

Selected Results from Benchmark 6 (Network I/O)

Setup	99.9% CI Throughput	
$D_2 + H_1$, native	[192,311 ; 199,128]	
$D_3 + H_1$, native	[192,632 ; 198,823]	
$D_2 + H_1$, Docker	[184,944 ; 192,154]	

E2: MooBench

Selected Results

Experiment	95% CI RT (μs, D ₁)	(<mark>D</mark> 2)	(<i>D</i> ₃)
Baseline	[0.5; 0.5]	[0.5; 0.5]	[0.5; 0.5]

E2: MooBench

Selected Results

Experiment	95% CIRI (μ s, D_1)	(<i>D</i> ₂)	(<i>D</i> ₃)
Baseline	[0.5; 0.5]	[0.5; 0.5]	[0.5; 0.5]
SPASS native	[153.5; 153.5]	[145.0; 145.0]	[151.6; 151.7]
SPASS Docker	[152.0; 152.0]	[147.6;147.8]	[155.0; 155.4]

E2: MooBench

Selected Results

Experiment	95% CI R T (μs, <mark>D</mark> 1)	(<mark>D</mark> 2)	(<i>D</i> ₃)
Baseline	[0.5; 0.5]	[0.5; 0.5]	[0.5; 0.5]
SPASS native	[153.5; 153.5]	[145.0; 145.0]	[151.6; 151.7]
SPASS Docker	[152.0; 152.0]	[147.6;147.8]	[155.0; 155.4]
Kieker native	[118.8; 124.3]	[113.6; 118.3]	[116.2; 121.1]
Kieker Docker	[128.7; 134.2]	[120.8; 125.8]	[118.2;122.8]

E2: MooBench

Experimental Results

E2: MooBench

Experimental Results

E₃: Web Services with JPA

Experimental Results

Selected Results (Updating Service Method)

Setup	95% CI RT (μs)
Web: $D_2 + H_1$, DB: $D_3 + H_2$, native	[354,663 ; 357,726]
Web: $D_3 + H_1$, DB: $D_2 + H_2$, native	[352,361 ; 355,460]
Web: $D_2 + H_1$, DB: $D_3 + H_2$, Docker	[353,324 ; 356,351]
Web: $D_3 + H_1$, DB: $D_2 + H_2$, Docker	[379,799 ; 382,993]
Web: $D_2 + H_2$, DB: $D_3 + H_1$, native	[549,424 ; 553,402]

E₄: SPECjEnterprise 2010

Experimental Results

Results for Method "Create Vehicle" (EJB)

Setup	95% CI RI
Web: $D_2 + H_1$, DB: $D_3 + H_2$, native	[0.228 ; 0.242]
Web: $D_3 + H_1$, DB: $D_2 + H_2$, native	[0.256 ; 0.275]
Web: $D_2 + H_1$, DB: $D_3 + H_2$, Docker	[0.236 ; 0.251]

*E*₄: SPECjEnterprise 2010

Results for Method "Create Vehicle" (EJB)

Setup	95% CI RT
Web: $D_2 + H_1$, DB: $D_3 + H_2$, native	[0.228 ; 0.242]
Web: $D_3 + H_1$, DB: $D_2 + H_2$, native	[0.256 ; 0.275]
Web: $D_2 + H_1$, DB: $D_3 + H_2$, Docker	[0.236 ; 0.251]

Results for Method "Create Vehicle" (WS)

Setup	95% CI RT
Web: $D_2 + H_1$, DB: $D_3 + H_2$, native	[0.411 ; 0.484]
Web: $D_3 + H_1$, DB: $D_2 + H_2$, native	[0.807; 1.012]•
Web: $D_2 + H_1$, DB: $D_3 + H_2$, Docker	[0.641 ; 0.795]

*E*₄: SPECjEnterprise 2010

Results for Method "Create Vehicle" (EJB)

Setup	95% CI RT
Web: $D_2 + H_1$, DB: $D_3 + H_2$, native	[0.228 ; 0.242]
Web: $D_3 + H_1$, DB: $D_2 + H_2$, native	[0.256 ; 0.275]
Web: $D_2 + H_1$, DB: $D_3 + H_2$, Docker	[0.236 ; 0.251]

Results for Method "Create Vehicle" (WS)

	[0.411 ; 0.484]
Web: $D_3 + H_1$. DB: $D_2 + H_2$. native	1 7 7 1
11001 = 0 111, = = 1 = 2 1112, 1101111	[0.807; 1.012]•
Web: $D_2 + H_1$, DB: $D_3 + H_2$, Docker	[0.641 ; 0.795]

And: Benchmark fails due to insufficient throughput.

SPASS-meter Results Revisited

- ► Results indicate good replicability, but
 - ▶ Already baseline fluctuates $\sigma \approx 8 \cdot \bar{\mu}$, $max \approx 65 \cdot \bar{\mu}$
 - Raw data very noisy, e.g., SPASS-meter

Cause Tree

Experiment	SPASS-meter				
	mean	σ	min	max	peaks
from SSP'18	164.8	44.1	91.9	19,228.7	1,155

Experiment	SPASS-meter				
	mean	σ	min	max	peaks
from SSP'18	164.8	44.1	91.9	19,228.7	1,155
object pools	152.3	142.5	89.8	370,604.0	818
parallel GC	194.4	56.7	110.1	27,715.9	6,901
time measurement	146.3	34.9	88.5	13,034.8	406
one CPU core	492.8	427.1	86.0	13,560.1	37,360

Experiment	SPASS-meter				
	mean	σ	min	max	peaks
from SSP'18	164.8	44.1	91.9	19,228.7	1,155
object pools	152.3	142.5	89.8	370,604.0	818
parallel GC	194.4	56.7	110.1	27,715.9	6,901
time measurement	146.3	34.9	88.5	13,034.8	406
one CPU core	492.8	427.1	86.0	13,560.1	37,360
no recursion	17.6	1.8	11.35	3,361.3	53

Experiment	SPASS-meter				
	mean	σ	min	max	peaks
from SSP'18	164.8	44.1	91.9	19,228.7	1,155
object pools	152.3	142.5	89.8	370,604.0	818
parallel GC	194.4	56.7	110.1	27,715.9	6,901
time measurement	146.3	34.9	88.5	13,034.8	406
one CPU core	492.8	427.1	86.0	13,560.1	37,360
no recursion	17.6	1.8	11.35	3,361.3	53

- Cause appears to be related to the method under test
- ► Effect is also observable on other machines
- ▶ ⇒ Not specific to the Pi

Summary

- RQ1 Which types of performance experiments can be appropriately replicated on a Pi?
 - Pi is well suited for (non I/O intensive) microbenchmarks
 - Macro benchmarks may work, but... peripherals, storage devices
 - Less suited for enterprise-scale benchmarks

Summary

- RQ2 Can Docker on the Pi facilitate the replicability of performance experiments?
 - Docker is a valuable tool,...
 - ..., but may affect performance and variances
- RQ3 Can we identify reasons for the response time fluctuations reported in our earlier work?
 - Yes, cause not specific to the Pi platform

Lessons Learned

- Docker facilitates benchmarks, fosters experimentation
- For I/O-heavy workloads, don't use SD cards
- Additional peripherals may threaten power supply
- Container networking can be tricky
- License issues may impede replication / publication¹

¹Materials on Zenodo: https://doi.org/10.5281/zenodo.1100975

Conclusions

Future Work

Near future

- More experiments on deviations
- Other single-board computers, next Pi generation
- Larger number of devices

Future Work

Near future

- More experiments on deviations
- Other single-board computers, next Pi generation
- Larger number of devices

Not-so-near future

- Foster community practice
- Public benchmark repository for sharing of experiments
- Address license issues impeding replication
- Investigate or develop further suitable platforms