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Abstract

Artificial neural network (ANN) is one of the most widely used methods to develop accurate predictive
models based on artificial intelligence and machine learning. In the present study, the important practical
aspects of developing a reliable ANN model e.g. appropriate assignment of the number of neurons,
number of hidden layers, transfer function, training algorithm, dataset division and initialization of the
network are discussed. As a case study, predictability of the flash point for a dataset of 740 organic
compounds using ANNs was investigated. A total number of 484220ANNs were studied to allow covering
a wide range of parameters affecting the performance of an ANN. Among all studied parameters, the
number of neurons or layers was found to be the most important parameters to develop a reliable ANN
with low overfitting risk. To evaluate appropriate number of neurons and layers, a value of equal or
greater than 10 for the ratio of the training samples to the ANN constants was suggested as a rule of
thumb. More ever, a strategy for evaluation of the authentic performance of ANNs and deciding about the
reliability of an ANN model was proposed.

Based on the introduced considerations, an ANN model was proposed for predicting the flash point of
pure organic compounds. According to the results, the new model was found to produce the lowest error

compar ed to other available models.

Keywords—Artificial neural networks, Predictive models, Group contribution method, QSPR, QSAR,
Flash point

1. Introduction

Artificial neural network (ANN) is one of the mostfficient tools that work based on atrtificial



intelligence and machine learning. ANNs are capalbldoing several tasks such as function
approximatiorT, pattern recognitiof, data clustering, prediction of time seri¢l and so on. To
provide the best performance, various types ofalewatworks are developed and characterized
depending on the application. However, despiter thigght differences, all of them follow the
same basics taken from the learning mechanisntgediblogical neural networKs

Model development which is a function approximatjmoblem, is probably the most widely
used application of the ANNs in chemistry and cleaihengineering™’. The most appropriate
ANN for model development is the multilayer netwoskown in figure 1, known as the
feedforward neural network. For model developmesingi a multilayer feedforward neural
network, the input variables are introduced toribéwvork as a vector and are processed by the
neurons of the first layer. Each neuron in the fager is connected to all of the input variables
and for each connection, a weight constant is aedigThe summation of all input variables
multiplied by their respective weights and a biasistant yields the input of each neuron. A
transfer function modifies the inputs to result thetput of each neuron which is then transmitted

to the neurons of the next layer to be processeldduin the same way.
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Figure 1- the configuration of a feedforward neuralnetwork

To develop an ANN model, the weights, biases aadsfer functions are determined in a way
that each set of inputs result in a final outputieglent to the required property. To do so, using
a dataset with known input and output data (tr@ndataset), the optimum values for the
constants are determined through a procedure wisictalled the training of the network.

Various training algorithms are developed and carused for this purpose. With appropriate



number of neurons, transfer functions and trairdlggprithm, a multilayer feedforward ANN is
capable of modeling any linear or non-linear catieh between the input and output
variables?.

Two widely used methods which apply ANNs to modeemical compounds properties in
chemistry and chemical engineering are group dmution method (GCM) and quantitative
structure property relationship (QSPR).

According to the GCM, properties of a compound @edicted based on the number and types

of its constituting functional groups. The simplEsm of a GCM based model has the form of:

(p=c+2ni(pi, 1)
where ¢ is the required propertyy; and ¢; are the number of presence and amount of
contribution of functional group respectively, and is a constant.

Prediction of properties via equation (1) is knoas1the Joback method. The Joback method
typically produces poor results for large dataskitswever, these results become considerably
more accurate when the correlation between funatignoups and the required property are
mapped via ANNs. For example, using a feedforwazdral network with one hidden layer
containing 7 neurons, Albahri could predict thesfigpoints of 375 transportation fuels based on
the GCM with an average absolute relative er/ARE) of 1.1 %, while the Joback method
resulted amMARE of 4.3 % for the same dataset and functional ggdtp

The group contribution based models which use AN&lg been widely used to predict various
properties such as liquid viscosit§*> thermal conductivity®, infinite dilution activity®’, and
density of ionic liquids®, normal boiling point (NBP}®, flash point (FP)* and melting point

20.

Contrary to the classic GCM which only considers thnctional groups as contributors to a
property, the QSPR applies a more extensive sestroicture based quantities, known as
molecular descriptors, to model a property. To tgvea QSPR model, the most effective
molecular descriptors are screened from a pooluafarous calculated descriptors and are used
as the inputs of the model. ANN based QSPR modeie hlso been extensively used to predict

P?224 surface tensiof, ideal gas entrop¥, aqueous solubility

various properties e.g. NB®, F
2’ Hildebrand solubility parametét and so on.
Using several available software tools e.g. MatRband Neurosolutions, developing an ANN

model has become considerably straightforward, amithrequiring any knowledge of its
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extensive theoretical details. While simplifiedgractice, ANN models soon become unreliable
without full consideration of important detaksg. appropriate assignment of the number of
neurons, number of layers, and training of the netwMore ever, selecting appropriate transfer
function, training algorithm, dataset division amuitialization of the network can also
considerably improve the reliability and performanaf an ANN model. The present study
discusses such details and introduces the praetgpdcts of developing a robust ANN model.
As a case study, predicting the flash point (FR) do extensive dataset via a two layer
feedforward neural network is investigated. Theig®ne of the most important flammability
properties of chemical compounds in assessmenirefhfizards”®, and its predictability via

ANNs has been widely studied in many wotks® 32
2. Practical aspects of developing ANN models
2.1. Dataset division

The first step in developing an ANN model is toidesthe dataset into three subsets, namely
training, validation and test datasets. The trgrdataset is used to train the network, where an
error function which is usually the average absolglative error or mean squared error is
minimized with respect to the weight and bias camist in successive iterations. The number of
compounds needed for training, as discussed lmteahe first important factor affecting the
reliability of an ANN model and determines the nmbf neurons and layers.

As the training goes on, the performance of the ABINontinuously improved for the training
dataset, which simultaneously increases the riskowafrfitting as well. Overfitting causes a
model to yield accurate results for the datasedl isedeveloping that model but poor results for
the compounds out of this dataset. To prevent @iiedf, the performance of the studied ANN is
simultaneously monitored and validated for an imhejent dataset which is called the validation
dataset. An increase in the error function of thkdation dataset in several successive iterations
is an indicator of overfitting and is used as aditbon to stop the training. Once a neural
network is trained, i.e. the optimum values of theights and biases are determined, the
performance of the ANN is examined using anothelerendent dataset, known as the test
dataset. Usually, 60-80 % of the dataset is asdifipretraining, 10-20% for validation and 10-



20% to test the model.
2.2. Assigning the number of neurons and hiddeertay

After specifying the training, validation and testtasets, selecting the number of layers, number
of neurons in each layer, type of transfer fundi@md training algorithm and assigning the
initial values for the weights and biases are thesequent steps to develop an ANN model.

The number of layers and neurons in each layenésad the most crucial parameters affecting
the performance and reliability of an ANN model.thVa higher number of layers or neurons, an
ANN typically yields more accurate results and candel more complicated relationships.
However, this increase in the number of neuronkyers can also highly increase the risk of
overfitting, simultaneously.

There are some recommendations to evaluate thempugte number of hidden layer neurons,
e.g. setting a number of hidden layer neurons efguai3 of the number of input layer neurons
% between the number of neurons in the input artgusdayers®, or lower than twice the
number of neurons in the input lay&r However, such recommendations don’t seem to be ve
robust as they totally neglect the number of trainisamples and details of the ANN
configuration as the most important factors.

Considering an ANN model as a regression problamratio of the training samples to the total
number of ANN constants as suggested by Jacksoregmession modef€, can be used as an
index for determining the appropriate number of roes and layers. For a multilayer
feedforward neural network, if the number of ingatiables idj,, the number of neurons in the
hidden layeti is N;, and the number of layersng, the total number of weight and bias constants

(S) can be calculated via:

n;—1

(2)
S = Van + z NiNi+1 +
i=1

ny
N;.
1

i=

Obviously, the higher the ratio of the training $d@s toS the higher the reliability of the results

obtained by the model. It will be further discussedection 4.2.

2.3.Assigning training algorithm and transfer function
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The applied transfer functions and training aldontare also other ANN parameters which can
have impacts on the performance of an ARIN® Some commonly used transfer functions in
ANN models which are also considered in our study layperbolic tangent sigmoidatsig),
log-sigmoid (ogsig), Hard-limit (hardlim), Positive linear goslin), and Radial basisgdbas)
transfer functions for the hidden layers, and linteansfer functiongdurelin) for the output layer.

The most widely used training algorithms are regbih table 1.

Table 1- Appropriate training algorithms in model development™

Training algorithm Abbreviation
Levenberg-Marquardt backpropagation trainlm
Gradient descent backpropagation traingd
Resilient backpropagation trainrp
Scaled conjugate gradient backpropagation trainscg
BFGS quasi-Newton backpropagation trainbfg
Conjugate gradient backpropagation with Fletchezv@e updates traincgf
Gradient descent with momentum backpropagation traingdm

2.4.Initialization of the network

Assignment of the initial values for the weight amds constants (initialization) is the last step
before we can start training of the network. Ihiz&@ion is a necessary task as the efficient
training algorithms, all require some initial vadu®r the weights and biases to optimize them in
successive iterations via minimizing the error fisrt The error function which should be
minimized with respect to the weight and bias camis, typically has several local minima. As a
result, starting from different initialization s¢st determined by the initial values of the weights
and biases, we may get to a quite different locaimum and obtain considerably different
results. Some theoretical approaches on appropmididization of an ANN is reviewed by Yam
and Chow™. An easy and yet very efficient approach to overeahe problems originated by
initialization is to repeat the training of the wetk for various initialization states, which will

be taken in this work to show the effect and imgace of initialization and also to overcome the
discussed problems resulted by initializations.

2.5.Evaluating the reliable performance of an ANN model



As discussed before and will be seen in the resihiésperformance of an ANN highly depends

on the ANN specifications (applied dataset divisidgransfer function, training algorithm,

initialization state and so on). Now the cruciathportant questions that arise are which ANN

Table 2- The constituting functional groups
used in group contribution method
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provides the most reliable model and among all
different results which can be obtained via each
ANN configuration using different initialization or
dataset division states, which one represent the
authentic performance of that configuration? One
may argue that the ANN which provides the most
accurate results for the overall or test datas#tds
one to choose, however, such data won't be
reliable. An excellent performance for the overall
dataset may be affected by overfitting and for the
test dataset it can be just the result of a lucky
dataset division. Another option is to use the
average of results obtained for all studied
initialization and dataset division states for an
ANN. However, average of all results is not always
informative because as discussed before, due to the
high number of constants in many ANN models,
error function typically has several local minima
and therefore, initialization plays an importarero

As a result, it is quite plausible that only a few
initialization states may result in an accurate etod
(see e.g. the results obtained for developed FP
predictive ANNs with 4 neurons, reported in the
supplementary material) and therefore, the average
of all results won’'t represent the authentic
performance of an ANN in most cases. In other

words, a good initialization state may get lost



among several other inappropriate initializaticatest by averaging.

To overcome this issue, in the present study idstéaaveraging the results of all initialization
and dataset division states, for each individuibiization state we retrain the model for several
different dataset division states. The averagellobldained results are then considered as the
authentic performance of that configuration. Talfthe most reliable model, the ANN for which
in most of the repeats the observed errors of taming and test sets are not significantly
different confirmed by available statistical testan be considered as the appropriately trained

and reliable models..
3. Material and method
3.1.Dataset

To develop a robust model, reliability of the da&ttaused for model development plays an
important role. In the present study, the DIPPR 8bHatabase was used to evaluate the
predictability of the FP for an extensive datasgiwe organic compounds. DIPPR 801 provides
evaluated data for several properties is one ofntbst widely used databases to develop FP
predictive models.

To implement a GCM based model, number of preseht®e functional groups listed in table 2
and the experimentally determined data of the NBRewsed as the inputs of the model.

Normal boiling point and enthalpy of vaporizatioavie been used is many FP predictive models
4348 as both of them represent the volatility and heffleeamability of a fuel®’. In previous
studies, it was shown that considering a contrisutior the NBP in addition to the same
functional groups listed in table 2, can signifitgrimprove the predictability of the F 48
Among the organic compounds available in the DIRRRRbase, 740 compounds were available
for which the reported data for both FP and NBPewexperimentally determined. For other
compounds, as a predicted data were reported fleast one of those properties, they were not
considered in model development and evaluation. fllidist of studied compounds can be

found as supplementary material.

3.2. Initial implementation of the ANNs



To study the various parameters affecting the perdoce of an ANN, the predictability of the
FP for the dataset of 740 pure organic compoundsn fdiverse families was initially
investigated using feedforward neural networks Witio 10 neurons in the hidden layer. 75% of
the dataset was assigned for training, 13% fodwa#n, and 12% to test the ANN models.

To study the impacts of dataset division on thdgoerance of ANNs, randomly division of the
dataset was repeated 20 times. To investigatenthadts of various training algorithms, transfer
functions and initialization states, for each datakvision therainlm, traingd, trainrp, trainscg,
trainbfg, traincgf, and traingdm training algorithms andansig, logsig, hardlim, poslin, and
radbas transfer functions were examined for 20 differitialization states. An increase in the
mean squared error of the validation dataset in@essive iterations was considered as the
condition to stop the training.

Therefore, considering 20 different dataset divissbates and for each one, assigning 1 to 10
neurons for the hidden layer, 5 different transterctions, 7 different training algorithms, and
20 different initialization states, a total numbefr 140000 neural networks were initially
implemented and their performance for FP predicti@ne evaluated using a Matlab code. The
performance of the ANNs were reported as percerdagege absolute relative erraPAREY)

and correlation coefficient&R) defined as:

1
AAD =5 Z(b’iref - yipredD! (3)
exp _ _pred
AARE% = ~ ¥, ( e M/ ) x 100, )
R _ Nzyiexpyipred_zyiexpzyipred (5)

IWEOE =Ty VIO -

exp pred

where y. and y;

; are the experimentally determined and predictetiega of FP,

respectively.
For the ANNs which resulted an overd®dARE% of lower than 1.5%, the initially assigned
constants of the network were recorded to be usedvialuation of their authentic performances

as explained in section 2.5 in the next step.

3.3. Evaluation of the authentic performance of ANN



After initially developing 140000 ANN models in tipgevious step, the models which resulted
an AARE% of less than 1.5% were selected to study theinlldi performance, based on the
approach discussed in section 2.5. To do so, tiially assigned weight and bias constants
recorded in the previous step were used to retremselected models for 20 different random
dataset division states. The average of the reBult®0 repeats were considered as the reliable
performance for each configuration and initialieatistate. The two sample t-test method was
used to compare the results obtained for the trgiand test datasets. The models for which the
relative errors of the training and test datase¢sewnot significantly different with 95% of
significance level in at least 19 repeats, weresiciared as reliable models.

4. Results and discussion

4.1 Implementation of ANNs

The effect of various parameters on the performafiem ANN can be observed in the results of
140000 initially developed ANN models reported e tsupplementary material. A quick
overview of the initially obtained results showsttlfior each dataset division state changing one
of the studied parameters i.e. the initializatitates number of hidden layer neurons, training
algorithm or transfer function while the other pasders remain unchanged can yield
considerably different results.

Among all initially studied ANNs, 17211 models yded an overalAARE% of lower than 1.5%
and retrained for 20 different dataset divisiortegdo evaluate their authentic performance, as
discussed before. For each model, the average céat results were calculated and are used
in the next sections to evaluate the effect of gaanlameters. The details of the repeated results

for each configuration are reported in the supplearg material.

4.2.The effect of assigned number of hidden layer nesiro

As the first important factor, we consider the effef the number of hidden layer neurons. To do
so, we exploited the percentage of the initiallgsid ANNs with overalPAREY% of lower than
1.5% which after retraining for 20 different datagévision states and averaging resulted an

overall AARE% of lower than 1.5% again. Based on the resultsrtegon table 3, a remarkable
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difference between the ANNs with one neuron inhigglen layer and other ANNs with higher
number of neurons can be clearly observed. Accgrtiirthe results, 99.91% of the ANNs with
1 neuron in the hidden layer which yieldedAARE% of lower than 1.5% in the first step, after
retraining and averaging yielded an averAg&E% of lower than 1.5% again, while for other
ANNs with higher number of neurons this value wawdr than 42%. The same remarkable
difference can also be observed for the averagtaoidard deviations &ARE% calculated for

the 20 repeats of each configuration, reportediahet 3.

Table 3- The percentage of initially implemented ANIs which after retraining yielded AARE% of lower than
1.5% again and the average of standards deviatiomabtained for 20 repeat of each configuration

Nr. of hidden layer Ratio of the ANNs Mean of average Mean of average Mean of average Mean of average

neurons which reproduce the standard deviations in standard deviations in standard deviations in standard deviations in
initially obtained 20 repeats 20 repeats (training) 20 repeats (validation) 20 repeats (test)
results (overall)

1 99.91 0.015289 0.039167 0.13143 0.15645

2 41.35 1.1976 1.2049 1.286 1.3726

3 40.74 0.99861 1.0024 1.0813 1.1486

4 40.3 0.90107 0.90617 0.96768 1.0179

5 42.79 0.82164 0.82722 0.87261 0.91792

6 42.92 0.80169 0.80691 0.8547 0.90352

7 42.93 0.78356 0.79009 0.82401 0.86634

8 44.69 0.73719 0.74234 0.7822 0.82574

9 46.85 0.78592 0.79338 0.82743 0.85918

10 46.66 0.76154 0.76925 0.80203 0.83607

Using the average results of 20 repeats and applyie t-test method, for each number of
hidden layer neurons the percentage of reliableatsodere calculated and are depicted in figure
2.
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Fig 2- The percentage of reliable ANNs for eachigmed number of hidden layer neurons.

According to the results, 27.66% of ANNs with 1 r@uin the hidden layer were efficiently
trained, while this value for other ANNs with highmuimber of neurons is lower than 4.3%.
Based on the abovementioned observations, we carhucke that for our case study the optimum
number of hidden layer neurons is one. Considdghegiumber of weight and bias constants for
our case study, for ANNs with one neuron in thedbiulayer the ratio of the number of training
samples to the ANN constants calculated using emué?) is 12.07. This value for ANNs with

2 neurons in hidden layer is 6.1 and for higher benof neurons reduces further.

The observed ratio of the training samples to tmlver of constants for ANNs with one hidden
layer neuron is consistent with the value recomradnaly Kline who suggested a value of least
10 for this ratio to avoid overfitting in regressimodels'.

Therefore for developing reliable ANN models, calesing the number of training samples and
ANN constants, existence of at least 10 sampléisdrraining set for each constant can be used
as a rule of thumb to evaluate the efficient camfigion of ANN model. In other words,
considering the number of training samples, thelvemof layers and neurons should be selected
in a way that the number of constants calculatadequation (2) is one tenth or smaller than the
number of training samples. A literature surveyvghionany models which considerably deviate
from this condition. Some of those models are rigabin table 4.
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Table 4- Examples of lack of sufficient data in théraining dataset in ANN based models

Number of weight Number of compounds Ratio of the training samples to
and bias constants in the training dataset constants

Gharaghei>* 1481 821 0.5¢
Lazzis™ 357 32¢ 0.97
Lazzus™® 369 350 0.95
Valderrama , et.al*¢ 421 399 0.95
Albahri ** 274 33 1.22
Fathi et. al®? 316 550 1.53
Gharagheizt® 536 846 1.58

4.3.Impact of training algorithm and transfer function

The impact of the training algorithm and transfendtion was investigated via analyzing the
performance of efficiently trained models in FP dxcéon for each combination of training

algorithm and transfer function. The results arported in table 5 and show that different
combinations of training algorithms and transferdiions can yield quite different results. More
ever, for prediction of FP applying thieainlm training algorithm andogsig transfer function

seems to be more efficient.
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Table 5- details of reliable ANNs for each combinabn of transfer function and training algorithm

Training
algorithm
trainlm
trainlm
trainlm
trainlm
trainlm
traingd
traingd
traingd
traingd
traingd
trainrp
trainrp
trainrp
trainrp
trainrp
trainscg
trainscg
trainscg
trainscg

trainscg

Transfer
function
logsig
tansig
hardlim
poslin
radbas
logsig
tansig
hardlim
poslin
radbas
logsig
tansig
hardlim
poslin
radbas
logsig
tansig
hardlim
poslin

radbas

Nr.
reliable
models

70

56

0

73

25

12

0

23

13

0

44

1

AARE%
(overal)

157

1.88

161

5.09

AARE %
(training)

157

1.87

161

5.07

AARE %
(validation)

1.57

1.89

1.62

5.15

AARE %
(test)

1.58

1.89

161

5.18

3.59

6.95

1.81

2.94

3.12

147

Training
algorithm
trainbfg
trainbfg
trainbfg
trainbfg
trainbfg
traincgf
traincgf
traincgf
traincgf
traincgf
traingdm
traingdm
traingdm
traingdm

traingdm

Transfer
function
logsig
tansig
hardlim
poslin
radbas
logsig
tansig
hardlim
poslin
radbas
logsig
tansig
hardlim
poslin

radbas

Nr.
reliable
models

51

3

0

46

1

23

16

0

80

AARE %
(overal)

2.08

8.74

8.01
5.61
4.86

4.18

4.84
6.34

AARE %
(training)

2.06

484

6.34

AARE %
(validation)

212

8.6

8.02
5.61
4.78

4.16

4.81

6.24

AARE %
(test)

2.12

8.88

8.05
5.61
4.92

4.24

4.88

4.4.The selected ANN for FP prediction

Among the efficiently trained models, the best perfance was observed for an ANN model

with 1 neuron in the hidden laydrainim training algorithm andogsig transfer function. For

this configuration the average of 20 repeats redldhAARE% of 1.198, 1.194, 1.195 and 1.122
and correlation coefficients of 0.9933, 0.9933,983® and 0.9934, for the overall, training,

validation and test datasets, respectively. Mormer,ethe relative errors of the training and test

datasets in none of the 20 repeats were significdifferent. For this ANN, the initial values of

the weight and bias constants are reported in supgitary material.

The obtained results are compared with those ofibgt accurate ever proposed models in table

6. As can be seen in table 6, only one model pesvizktter results than the current model which

was proposed by Albahff. However, the Albahri’'s model is developed forraafler set of
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chemicals which are transportation fuels and tkerdity of the chemical families is lower than
the dataset studied in the present work. Furthezpaw discussed before for the Albahri’'s model
the ratio of training samples to constants is Whh implies a high risk of overfitting in that
model.

To remind the importance of the approach used &tuate the authentic performance of ANNS,
it should be noted that among the initially develdpnodels an overadARE% as low as 0.72%
was also observed for an ANN with 10 neurons in hidden layer which is resulted by
overfitting.

Among initially developed ANNs, we can also findr@del with 9 neurons in hidden layer for
which theAAREY of the test and training dataset were not sigaifity different and yielded an
overall AARE% as low as 0.84%. However after retraining thisdelousing other dataset
division states, we find that this model wouldréproduce such excellent results anymore,
which implies that the initially obtained resultsdlearly affected by overfitting. This confirms
the importance of the proposed approach for evalgiahe authentic performance of each

model.

Table 6- Comparison of the results of the developedodel with other accurate models reported in the
literature

Model Method No.data  AAD (k) AARE (%) Max. AARE (%) R

The new model (overal) GCM+ ANN 740 - 1.198 - 0.9933
Alibakhshi et.al. © Semi- empirical 740 4.066 1.225 9.81 0.9934
Alibakhshi et. al. 4 740 411 1.23 9.49 0.9935
Albahri GCM+ANN 375 3.55 1.1 6.62 0.9961
Rowley et al.>* Correlation AH,+NBP) 1062 4.65 1.32 - -
Lazzus™* GCM+ANN+ PSO 505 6.2 1.8 8.6 =
Catoire &Naudet *° Correlation AH,+NBP) 600 6.36 1.84 - -
Mathieu ¢ Correlation 92 3.75 1.37 5.4 0.9922
Pan et al.*’ 92 3.75 1.38 10.18 0.9907
Keshavarz and Correlation 173 6.35 2.21 12.8 0.9899
Ghanbarzadel®

Mathieu and Alaime ¢ 488 8.6

Rowley et al.% Correlation AH,+NBP) 1062 9.68 2.84 = =

Tetteh et al.* QSPR+ANN 400 9.59 - - -
Hukkerikar et al. 5 GC* 512 10.66 3.27 = 0.89
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Mathieu* QSPR 230 12 - - 0.943

Keshavarz et al 2 Correlation 548 12.1 - - -
Katritzky et al. 3! QSPR+ANN 758 12.6 - - 0.989
Khaje and Modarres * ANFIS 95 115 31.1 1500 0.986
Khaje and Modarres GFA 95 13.08 25.8 966.75 0.98
Chen et. al* QSPR 230 - - 22.9 0.964
Hshieh®™ Correlation (NBP) 494 - - - 0.966
Bagheri et al. Bagheri, QSPR 1651 19.31 5.94 - 0.94
2012 #33}

Katritzky et al. QSPR 271 - - S 0.91
Patil® Correlation (NBP) 593 - = 7.5 0.90

5. Conclusion
In the present study we studied various parametdrch can affect the reliability and
performance of ANN models. Among all affecting paeders, appropriate selection of the
number of neurons and hidden layers seems to behitjteest priority which should be
determined based on the number of training samples.results show that considering the ratio
of the training samples to ANN constants can bel asean index for evaluating the appropriate
number of neurons and layers. Our results suggeslua of greater than 10 for this ratio which
has already been suggested for regression modelwtetre too. The second crucially important
strategy in developing reliable ANN models is tadst various initialization states for the ANNs
and for each one, repeating the randomly divisibthe dataset and use the average of those
repeats as the authentic performance obtainedafdr imitialization state. Comparing the relative
errors of training and test datasets in differapeats using appropriate statistical tests can be
used to find the efficiently trained ANNSs.
Considering various combinations of training altor and transfer functions to find the best
combination of those parameters is also anothérieit strategy to find more efficient ANN
models.
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initial weights (input to hidden layer)
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initial weight (hidden to outinitial bias (hidden layer) initial bias (output layer)
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The present study introduces the important practical aspects of developing a reliable
artificial neural network (ANN) model including appropriate assignment of the number
of neurons, number of hidden layers, transfer functions, training algorithm, dataset
division and initialization of the network.

Predictability of the flash point for a dataset of 740 organic compounds is studied for a
total number of 484220 different ANNSs to alow covering a wide range of parameters
affecting the performance of an ANN.

As a rule of thumb for evauating the appropriate number of neurons and layers, it is
suggested to select the number of neurons and layersin away that the ratio of the training
samplesto the ANN constants be equal or greater than 10.

A strategy for evaluation of the authentic performance of an ANN model is proposed
which suggests repeating the training of each configuration with same initially assigned
weight and bias constants several times for different dataset division states and using the
average of al repeats as the authentic performance of that initialization and
configuration.

The models retrained for similar initialization and configuration but different data set
division states for which the observed errors of the training and test sets are not
significantly different in most of the repeats confirmed by statistical tests (two sample t-
test in the current work) can be considered as the appropriately trained models and their
results can be used reliably.

Based on the introduced considerations, an ANN model is proposed for predicting the
flash point of pure organic compounds from diverse chemical families. According to the
results obtained for 740 compounds, the new model was found to produce the lowest
errors for flash point prediction compared to other available models.
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