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Abstract 

Artificial neural network (ANN) is one of the most widely used methods to develop accurate predictive 

models based on artificial intelligence and machine learning. In the present study, the important practical 

aspects of developing a reliable ANN model e.g. appropriate assignment of the number of neurons, 

number of hidden layers, transfer function, training algorithm, dataset division and initialization of the 

network are discussed. As a case study, predictability of the flash point for a dataset of 740 organic 

compounds using ANNs was investigated. A total number of 484220ANNs were studied to allow covering 

a wide range of parameters affecting the performance of an ANN. Among all studied parameters, the 

number of neurons or layers was found to be the most important parameters to develop a reliable ANN 

with low overfitting risk. To evaluate appropriate number of neurons and layers, a value of equal or 

greater than 10 for the ratio of the training samples to the ANN constants was suggested as a rule of 

thumb. More ever, a strategy for evaluation of the authentic performance of ANNs and deciding about the 

reliability of an ANN model was proposed. 

Based on the introduced considerations, an ANN model was proposed for predicting the flash point of 

pure organic compounds. According to the results, the new model was found to produce the lowest error 

compared to other available models. 

 
Keywords—Artificial neural networks, Predictive models, Group contribution method, QSPR, QSAR, 

Flash point 

 

1. Introduction 

 

Artificial neural network (ANN) is one of the most efficient tools that work based on artificial 
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intelligence and machine learning. ANNs are capable of doing several tasks such as function 

approximation 1, pattern recognition 2, data clustering 3, prediction of time series 4, and so on. To 

provide the best performance, various types of neural networks are developed and characterized 

depending on the application. However, despite their slight differences, all of them follow the 

same basics taken from the learning mechanisms of the biological neural networks 5.  

Model development which is a function approximation problem, is probably the most widely 

used application of the ANNs in chemistry and chemical engineering 6-11. The most appropriate 

ANN for model development is the multilayer network shown in figure 1, known as the 

feedforward neural network. For model development using a multilayer feedforward neural 

network, the input variables are introduced to the network as a vector and are processed by the 

neurons of the first layer. Each neuron in the first layer is connected to all of the input variables 

and for each connection, a weight constant is assigned. The summation of all input variables 

multiplied by their respective weights and a bias constant yields the input of each neuron. A 

transfer function modifies the inputs to result the output of each neuron which is then transmitted 

to the neurons of the next layer to be processed further in the same way.  

 
Figure 1- the configuration of a feedforward neural network 

 

 

To develop an ANN model, the weights, biases and transfer functions are determined in a way 

that each set of inputs result in a final output equivalent to the required property. To do so, using 

a dataset with known input and output data (training dataset), the optimum values for the 

constants are determined through a procedure which is called the training of the network. 

Various training algorithms are developed and can be used for this purpose. With appropriate 
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number of neurons, transfer functions and training algorithm, a multilayer feedforward ANN is 

capable of modeling any linear or non-linear correlation between the input and output 

variables12. 

Two widely used methods which apply ANNs to model chemical compounds properties in 

chemistry and chemical engineering are group contribution method (GCM) and quantitative 

structure property relationship (QSPR). 

According to the GCM, properties of a compound are predicted based on the number and types 

of its constituting functional groups. The simplest form of a GCM based model has the form of:  

 
 

(1) 

where � is the required property, �� and �� are the number of presence and amount of 

contribution of functional group �, respectively, and � is a constant. 

Prediction of properties via equation (1) is known as the Joback method. The Joback method 

typically produces poor results for large datasets. However, these results become considerably 

more accurate when the correlation between functional groups and the required property are 

mapped via ANNs. For example, using a feedforward neural network with one hidden layer 

containing 7 neurons, Albahri could predict the flash points of 375 transportation fuels based on 

the GCM with an average absolute relative error (AARE) of 1.1 %, while the Joback method 

resulted an AARE of 4.3 % for the same dataset and functional groups 13. 

The group contribution based models which use ANNs have been widely used to predict various 

properties such as liquid viscosity 14-15, thermal conductivity 16, infinite dilution activity 17, and 

density of ionic liquids 18,  normal boiling point (NBP) 19, flash point (FP) 13 and melting point 
20. 

Contrary to the classic GCM which only considers the functional groups as contributors to a 

property, the QSPR applies a more extensive set of structure based quantities, known as 

molecular descriptors, to model a property. To develop a QSPR model, the most effective 

molecular descriptors are screened from a pool of numerous calculated descriptors and are used 

as the inputs of the model. ANN based QSPR models have also been extensively used to predict 

various properties e.g. NBP 21, FP 22-24, surface tension 25, ideal gas entropy 26, aqueous solubility 
27, Hildebrand solubility parameter 28 and so on. 

Using several available software tools e.g. Matlab, R, and Neurosolutions, developing an ANN 

model has become considerably straightforward, without requiring any knowledge of its 
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extensive theoretical details. While simplified in practice, ANN models soon become unreliable 

without full consideration of important details e.g. appropriate assignment of the number of 

neurons, number of layers, and training of the network. More ever, selecting appropriate transfer 

function, training algorithm, dataset division and initialization of the network can also 

considerably improve the reliability and performance of an ANN model. The present study 

discusses such details and introduces the practical aspects of developing a robust ANN model. 

As a case study, predicting the flash point (FP) for an extensive dataset via a two layer 

feedforward neural network is investigated. The FP is one of the most important flammability 

properties of chemical compounds in assessment of fire hazards 29, and its predictability via 

ANNs has been widely studied in many works 13, 30-32. 

 

2. Practical aspects of developing ANN models 

 

2.1. Dataset division 

 

The first step in developing an ANN model is to divide the dataset into three subsets, namely 

training, validation and test datasets. The training dataset is used to train the network, where an 

error function which is usually the average absolute relative error or mean squared error is 

minimized with respect to the weight and bias constants in successive iterations. The number of 

compounds needed for training, as discussed later, is the first important factor affecting the 

reliability of an ANN model and determines the number of neurons and layers. 

As the training goes on, the performance of the ANN is continuously improved for the training 

dataset, which simultaneously increases the risk of overfitting as well. Overfitting causes a 

model to yield accurate results for the dataset used for developing that model but poor results for 

the compounds out of this dataset. To prevent overfitting, the performance of the studied ANN is 

simultaneously monitored and validated for an independent dataset which is called the validation 

dataset. An increase in the error function of the validation dataset in several successive iterations 

is an indicator of overfitting and is used as a condition to stop the training. Once a neural 

network is trained, i.e. the optimum values of the weights and biases are determined, the 

performance of the ANN is examined using another independent dataset, known as the test 

dataset. Usually, 60-80 % of the dataset is assigned for training, 10-20% for validation and 10-
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20% to test the model. 

 

2.2. Assigning the number of neurons and hidden layers 

 

After specifying the training, validation and test datasets, selecting the number of layers, number 

of neurons in each layer, type of transfer functions and training algorithm and assigning the 

initial values for the weights and biases are the subsequent steps to develop an ANN model. 

The number of layers and neurons in each layer is one of the most crucial parameters affecting 

the performance and reliability of an ANN model. With a higher number of layers or neurons, an 

ANN typically yields more accurate results and can model more complicated relationships. 

However, this increase in the number of neurons or layers can also highly increase the risk of 

overfitting, simultaneously.  

There are some recommendations to evaluate the appropriate number of hidden layer neurons, 

e.g. setting a number of hidden layer neurons equal to 2/3 of the number of input layer neurons 
33, between the number of neurons in the input and output layers 34, or lower than twice the 

number of neurons in the input layer 35. However, such recommendations don’t seem to be very 

robust as they totally neglect the number of training samples and details of the ANN 

configuration as the most important factors.   

Considering an ANN model as a regression problem, the ratio of the training samples to the total 

number of ANN constants as suggested by Jackson for regression models 36, can be used as an 

index for determining the appropriate number of neurons and layers. For a multilayer 

feedforward neural network, if the number of input variables is ��, the number of neurons in the 

hidden layer � is ��, and the number of layers is ��, the total number of weight and bias constants 

(�) can be calculated via: 

 
� = ��	�� + � ���� �

�!"�

�#�
+	���

�!

�#�
	. 

 

(2) 

Obviously, the higher the ratio of the training samples to S, the higher the reliability of the results 

obtained by the model. It will be further discussed in section 4.2. 

 

2.3. Assigning training algorithm and transfer function 
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The applied transfer functions and training algorithm are also other ANN parameters which can 

have impacts on the performance of an ANN 37-38. Some commonly used transfer functions in 

ANN models which are also considered in our study are hyperbolic tangent sigmoid (tansig), 

log-sigmoid (logsig), Hard-limit (hardlim), Positive linear (poslin), and Radial basis (radbas) 

transfer functions for the hidden layers, and linear transfer function (purelin) for the output layer. 

The most widely used training algorithms are reported in table 1. 

 

Table 1- Appropriate training algorithms in model development 39 

Training algorithm Abbreviation 

Levenberg-Marquardt backpropagation  trainlm 
Gradient descent backpropagation traingd 
Resilient backpropagation trainrp 
Scaled conjugate gradient backpropagation trainscg 
BFGS quasi-Newton backpropagation trainbfg 
Conjugate gradient backpropagation with Fletcher-Reeves updates traincgf 
Gradient descent with momentum backpropagation traingdm 

 

2.4. Initialization of the network 

 

Assignment of the initial values for the weight and bias constants (initialization) is the last step 

before we can start training of the network. Initialization is a necessary task as the efficient 

training algorithms, all require some initial values for the weights and biases to optimize them in 

successive iterations via minimizing the error function. The error function which should be 

minimized with respect to the weight and bias constants, typically has several local minima. As a 

result, starting from different initialization states determined by the initial values of the weights 

and biases, we may get to a quite different local minimum and obtain considerably different 

results. Some theoretical approaches on appropriate initialization of an ANN is reviewed by Yam 

and Chow 40. An easy and yet very efficient approach to overcome the problems originated by 

initialization is to repeat the training of the network for various initialization states 41, which will 

be taken in this work to show the effect and importance of initialization and also to overcome the 

discussed problems resulted by initializations.  

 

2.5. Evaluating the reliable performance of an ANN model 
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As discussed before and will be seen in the results, the performance of an ANN highly depends 

on the ANN specifications (applied dataset division, transfer function, training algorithm, 

initialization state and so on). Now the crucially important questions that arise are which ANN  

provides the most reliable model and among all 

different results which can be obtained via each 

ANN configuration using different initialization or 

dataset division states, which one represent the 

authentic performance of that configuration? One 

may argue that the ANN which provides the most 

accurate results for the overall or test dataset is the 

one to choose, however, such data won’t be 

reliable. An excellent performance for the overall 

dataset may be affected by overfitting and for the 

test dataset it can be just the result of a lucky 

dataset division. Another option is to use the 

average of results obtained for all studied 

initialization and dataset division states for an 

ANN. However, average of all results is not always 

informative because as discussed before, due to the 

high number of constants in many ANN models, 

error function typically has several local minima 

and therefore, initialization plays an important role. 

As a result, it is quite plausible that only a few 

initialization states may result in an accurate model 

(see e.g. the results obtained for developed FP 

predictive ANNs with 4 neurons, reported in the 

supplementary material) and therefore, the average 

of all results won’t represent the authentic 

performance of an ANN in most cases. In other 

words, a good initialization state may get lost 

Table 2- The constituting functional groups 
used in group contribution method 

 

  
Functional Group 

 

1 –CH&  

2 –CH'–  

3 >CH–  

4 >C<  

5 ═CH'  

6 ═CH–  

7 ═C<  

8 ═C═  

9 ≡CH  

10 ≡C–  

11 –OH  

12 –O–  
13 >C═O  

14 –CHO (aldehyde)  

15 –COOH (acid)  

16 –COO– (ester)  
17 HCOO– (formate)  

18 –NH'  

19 –NH–  

20 >N–  

21 ═N–  

22 –C≡N  

23 –NO'  

24 –F  

25 –Cl  

26 –Br  

27 –I  

28 –SH  

29 –S–  

30 –CH'– (ring)  

31 –HC<       (ring)  

32 ═CH– (ring)  

33 >C<   (ring)  

34 ═C<   (ring)  

35 –O– (ring)  

36 –OH   (ring)  

37 >C═O (ring)  

38 –NH–  (ring)  

39 >N–   (ring)  

40 ═N–  (ring)  

41 –S– (ring)  

42 -CO-O-CO- (anidride)  
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among several other inappropriate initialization states by averaging. 

To overcome this issue, in the present study instead of averaging the results of all initialization 

and dataset division states, for each individual initialization state we retrain the model for several 

different dataset division states. The average of all obtained results are then considered as the 

authentic performance of that configuration. To find the most reliable model, the ANN for which 

in most of the repeats the observed errors of the training and test sets are not significantly 

different confirmed by available statistical tests, can be considered as the appropriately trained 

and reliable models.. 

 

3. Material and method 

 

3.1. Dataset 

 

 To develop a robust model, reliability of the dataset used for model development plays an 

important role. In the present study, the DIPPR 801 42 database was used to evaluate the 

predictability of the FP for an extensive dataset of pure organic compounds. DIPPR 801 provides 

evaluated data for several properties is one of the most widely used databases to develop FP 

predictive models. 

To implement a GCM based model, number of presence of the functional groups listed in table 2 

and the experimentally determined data of the NBP were used as the inputs of the model.  

Normal boiling point and enthalpy of vaporization have been used is many FP predictive models 
43-46, as both of them represent the volatility and hence, flammability of a fuel 47. In previous 

studies, it was shown that considering a contribution for the NBP in addition to the same 

functional groups listed in table 2, can significantly improve the predictability of the FP 43, 48. 

Among the organic compounds available in the DIPPR database, 740 compounds were available 

for which the reported data for both FP and NBP were experimentally determined. For other 

compounds, as a predicted data were reported for at least one of those properties, they were not 

considered in model development and evaluation. The full list of studied compounds can be 

found as supplementary material. 

 

3.2. Initial implementation of the ANNs 
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To study the various parameters affecting the performance of an ANN, the predictability of the 

FP for the dataset of 740 pure organic compounds from diverse families was initially 

investigated using feedforward neural networks with 1 to 10 neurons in the hidden layer. 75% of 

the dataset was assigned for training, 13% for validation, and 12% to test the ANN models.  

To study the impacts of dataset division on the performance of ANNs, randomly division of the 

dataset was repeated 20 times. To investigate the impacts of various training algorithms, transfer 

functions and initialization states, for each dataset division the trainlm, traingd, trainrp, trainscg,  

trainbfg, traincgf, and traingdm training algorithms and tansig, logsig, hardlim, poslin, and 

radbas transfer functions were examined for 20 different initialization states. An increase in the 

mean squared error of the validation dataset in 6 successive iterations was considered as the 

condition to stop the training. 

Therefore, considering 20 different dataset division states and for each one, assigning 1 to 10 

neurons for the hidden layer, 5 different transfer functions, 7 different training algorithms, and 

20 different initialization states, a total number of 140000 neural networks were initially 

implemented and their performance for FP prediction were evaluated using a Matlab code. The 

performance of the ANNs were reported as percentage average absolute relative errors (AARE%) 

and correlation coefficients (R) defined as: 

 

 

 

 

 

 

where )�*+, and )�,-*. are the experimentally determined and predicted values of FP, 

respectively. 

For the ANNs which resulted an overall AARE% of lower than 1.5%, the initially assigned 

constants of the network were recorded to be used for evaluation of their authentic performances 

as explained in section 2.5 in the next step. 

 

3.3. Evaluation of the authentic performance of ANNs 

��/ = �
0 	∑23)�-*4 − )�,-*.36, (3) 

��78% =	 �0 	∑ :;
<=>?@"<=@A>B

<=>?@
;C × 100, 

(4) 

7 = 0∑<=>?@<=@A>B"∑<=>?@∑<=@A>B	
G0∑(<=>?@)J"(∑<=>?@)JG0∑(<=@A>B)J"(∑<=@A>B)J

	, (5) 
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After initially developing 140000 ANN models in the previous step, the models which resulted 

an AARE% of less than 1.5% were selected to study their reliable performance, based on the 

approach discussed in section 2.5. To do so, the initially assigned weight and bias constants 

recorded in the previous step were used to retrain the selected models for 20 different random 

dataset division states. The average of the results for 20 repeats were considered as the reliable 

performance for each configuration and initialization state. The two sample t-test method was 

used to compare the results obtained for the training and test datasets. The models for which the 

relative errors of the training and test datasets were not significantly different with 95% of 

significance level in at least 19 repeats, were considered as reliable models. 

4. Results and discussion 

4.1 Implementation of ANNs 

 

The effect of various parameters on the performance of an ANN can be observed in the results of 

140000 initially developed ANN models reported in the supplementary material. A quick 

overview of the initially obtained results shows that for each dataset division state changing one 

of the studied parameters i.e. the initialization state, number of hidden layer neurons, training 

algorithm or transfer function while the other parameters remain unchanged can yield 

considerably different results.  

Among all initially studied ANNs, 17211 models yielded an overall AARE% of lower than 1.5% 

and retrained for 20 different dataset division states to evaluate their authentic performance, as 

discussed before. For each model, the average of 20 repeat results were calculated and are used 

in the next sections to evaluate the effect of each parameters. The details of the repeated results 

for each configuration are reported in the supplementary material.  

 

4.2. The effect of assigned number of hidden layer neurons 

 

As the first important factor, we consider the effect of the number of hidden layer neurons. To do 

so, we exploited the percentage of the initially selected ANNs with overall AARE% of lower than 

1.5% which after retraining for 20 different dataset division states and averaging resulted an 

overall AARE% of lower than 1.5% again. Based on the results reported in table 3, a remarkable 
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difference between the ANNs with one neuron in the hidden layer and other ANNs with higher 

number of neurons can be clearly observed. According to the results, 99.91% of the ANNs with 

1 neuron in the hidden layer which yielded an AARE% of lower than 1.5% in the first step, after 

retraining and averaging yielded an average AARE% of lower than 1.5% again, while for other 

ANNs with higher number of neurons this value was lower than 42%. The same remarkable 

difference can also be observed for the average of standard deviations of AARE% calculated for 

the 20 repeats of each configuration, reported in table 3. 

 

 

 

Table 3- The percentage of initially implemented ANNs which after retraining yielded AARE% of lower than 
1.5% again and the average of standards deviations obtained for 20 repeat of each configuration  
Nr. of hidden layer 

neurons 

Ratio of the ANNs 

which reproduce the 

initially obtained 

results 

Mean of average 

standard deviations in 

20 repeats 

(overall) 

Mean of average 

standard deviations in 

20 repeats (training) 

Mean of average 

standard deviations in 

20 repeats (validation) 

Mean of average 

standard deviations in 

20 repeats (test) 

1 99.91 0.015289 0.039167 0.13143 0.15645 

2         41.35        1.1976        1.2049         1.286        1.3726 

3         40.74       0.99861        1.0024        1.0813        1.1486 

4          40.3       0.90107       0.90617       0.96768        1.0179 

5         42.79       0.82164       0.82722       0.87261       0.91792 

6         42.92       0.80169       0.80691        0.8547       0.90352 

7         42.93       0.78356       0.79009       0.82401       0.86634 

8         44.69       0.73719       0.74234        0.7822       0.82574 

9         46.85       0.78592       0.79338       0.82743       0.85918 

10         46.66       0.76154       0.76925       0.80203       0.83607 

 

  

Using the average results of 20 repeats and applying the t-test method, for each number of 

hidden layer neurons the percentage of reliable models were calculated and are depicted in figure 

2.  
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Fig 2- The percentage of reliable ANNs for each assigned number of hidden layer neurons. 

 

According to the results, 27.66% of ANNs with 1 neuron in the hidden layer were efficiently 

trained, while this value for other ANNs with higher number of neurons is lower than 4.3%. 

Based on the abovementioned observations, we can conclude that for our case study the optimum 

number of hidden layer neurons is one. Considering the number of weight and bias constants for 

our case study, for ANNs with one neuron in the hidden layer the ratio of the number of training 

samples to the ANN constants calculated using equation (2) is 12.07. This value for ANNs with 

2 neurons in hidden layer is 6.1 and for higher number of neurons reduces further. 

The observed ratio of the training samples to the number of constants for ANNs with one hidden 

layer neuron is consistent with the value recommended by Kline who suggested a value of least 

10 for this ratio to avoid overfitting in regression models 49.   

Therefore for developing reliable ANN models, considering the number of training samples and 

ANN constants, existence of at least 10 samples in the training set for each constant can be used 

as a rule of thumb to evaluate the efficient configuration of ANN model. In other words, 

considering the number of training samples, the number of layers and neurons should be selected 

in a way that the number of constants calculated via equation (2) is one tenth or smaller than the 

number of training samples. A literature survey shows many models which considerably deviate 

from this condition. Some of those models are reported in table 4. 
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Table 4- Examples of lack of sufficient data in the training dataset in ANN based models 
 Number of  weight 

and bias constants 
Number of compounds 
in the training dataset 

Ratio of the training samples to 
constants 

Gharagheizi50 1481 821 0.55 
Lazzús 51 353 328 0.93 
Lazzús 30 369 350 0.95 
Valderrama , et.al., 18 421 399 0.95 
Albahri 13 274 335 1.22 
Fathi et. al. 52 316 550 1.53 
Gharagheizi 53 536 846 1.58 
    

 

4.3. Impact of training algorithm and transfer function 

 

The impact of the training algorithm and transfer function was investigated via analyzing the 

performance of efficiently trained models in FP prediction for each combination of training 

algorithm and transfer function. The results are reported in table 5 and show that different 

combinations of training algorithms and transfer functions can yield quite different results. More 

ever, for prediction of FP applying the trainlm training algorithm and logsig transfer function 

seems to be more efficient. 
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4.4. The selected ANN for FP prediction 

 

Among the efficiently trained models, the best performance was observed for an ANN model 

with 1 neuron in the hidden layer, trainlm training algorithm and logsig transfer function. For 

this configuration the average of 20 repeats resulted an AARE% of 1.198, 1.194, 1.195 and 1.122 

and correlation coefficients of 0.9933, 0.9933, 0.9933 and 0.9934, for the overall, training, 

validation and test datasets, respectively. More ever, the relative errors of the training and test 

datasets in none of the 20 repeats were significantly different. For this ANN, the initial values of 

the weight and bias constants are reported in supplementary material. 

The obtained results are compared with those of the most accurate ever proposed models in table 

6. As can be seen in table 6, only one model provides better results than the current model which  

was proposed by Albahri 13. However, the Albahri’s model is developed for a smaller set of 

Table 5- details of reliable ANNs for each combination of transfer function and training algorithm 

Training 

algorithm 

Transfer 

function 

Nr. 

reliable 

models 

AARE% 

(overal) 

AARE % 

(training) 

AARE % 

(validation) 

AARE % 

(test) 

Training 

algorithm 

Transfer 

function 

Nr. 

reliable 

models 

AARE % 

(overal) 

AARE % 

(training) 

AARE % 

(validation) 

AARE % 

(test) 

trainlm logsig 70 1.57 1.57 1.57 1.58 trainbfg logsig 51 2.08 2.06 2.12 2.12 

trainlm tansig 56 1.88 1.87 1.89 1.89 trainbfg tansig 3 8.74 8.74 8.6 8.88 

trainlm hardlim 0     trainbfg hardlim 0     

trainlm poslin 73 1.61 1.61 1.62 1.61 trainbfg poslin 46 8.01 8 8.02 8.05 

trainlm radbas 25 5.09 5.07 5.15 5.18 trainbfg radbas 1 5.61 5.61 5.61 5.61 

traingd logsig 0     traincgf logsig 23 4.86 4.86 4.78 4.92 

traingd tansig 0     traincgf tansig 16 4.18 4.18 4.16 4.24 

traingd hardlim 0     traincgf hardlim 0     

traingd poslin 0     traincgf poslin 80 4.84 4.84 4.81 4.88 

traingd radbas 0     traincgf radbas 5 6.34 6.34 6.24 6.48 

trainrp logsig 6 3.58 3.57 3.62 3.59 traingdm logsig 0     

trainrp tansig 0     traingdm tansig 0     

trainrp hardlim 0     traingdm hardlim 0     

trainrp poslin 12 6.94 6.95 6.89 6.95 traingdm poslin 0     

trainrp radbas 0     traingdm radbas 0     

trainscg logsig 23 1.76 1.75 1.78 1.81        

trainscg tansig 13 2.94 2.94 2.93 2.94        

trainscg hardlim 0            

trainscg poslin 44 3.08 3.07 3.11 3.12        

trainscg radbas 1 1.47 1.47 1.47 1.47        
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chemicals which are transportation fuels and the diversity of the chemical families is lower than 

the dataset studied in the present work. Furthermore, as discussed before for the Albahri’s model 

the ratio of training samples to constants is 1.22 which implies a high risk of overfitting in that 

model.  

To remind the importance of the approach used to evaluate the authentic performance of ANNs, 

it should be noted that among the initially developed models an overall AARE% as low as 0.72% 

was also observed for an ANN with 10 neurons in the hidden layer which is resulted by 

overfitting. 

Among initially developed ANNs, we can also find a model with 9 neurons in hidden layer for 

which the AARE% of the test and training dataset were not significantly different and yielded an 

overall AARE% as low as 0.84%. However after retraining this model using other dataset 

division states, we find that this model wouldn’t reproduce such excellent results anymore, 

which implies that the initially obtained results is clearly affected by overfitting. This confirms 

the importance of the proposed approach for evaluating the authentic performance of each 

model.  

Table 6- Comparison of the results of the developed model with other accurate models reported in the 
literature  

Model Method No. data AAD (k) AARE (%) Max. AARE (%) R 

The new model (overall) GCM+ ANN 740 - 1.198 - 0.9933 
Alibakhshi et.al. 43 Semi- empirical 740 4.066 1.225 9.81 0.9934 

Alibakhshi et. al. 48  740 4.11 1.23 9.49 0.9935 

Albahri 13 GCM+ANN 375 3.55 1.1 6.62 0.9961 

Rowley et al. 54 Correlation (KLM+NBP) 1062 4.65 1.32 – – 

Lazzús 30 GCM+ANN+ PSO 505 6.2 1.8 8.6 – 

Catoire &Naudet 55 Correlation (KLM+NBP) 600 6.36 1.84 – – 

Mathieu 56 Correlation 92 3.75 1.37 5.4 0.9922 

Pan et al. 57  92 3.75 1.38 10.18 0.9907 

Keshavarz and 
Ghanbarzadeh58 

Correlation 173 6.35 2.21 12.8 0.9899 

Mathieu and Alaime 59 - 488 8.6 - - - 

Rowley et al. 60 Correlation (KLM+NBP) 1062 9.68 2.84 – – 

Tetteh et al. 32 QSPR+ANN 400 9.59 – – – 

Hukkerikar et al. 61 GC   512 10.66 3.27 – 0.89 
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5. Conclusion  

In the present study we studied various parameters which can affect the reliability and 

performance of ANN models. Among all affecting parameters, appropriate selection of the 

number of neurons and hidden layers seems to be the highest priority which should be 

determined based on the number of training samples. The results show that considering the ratio 

of the training samples to ANN constants can be used as an index for evaluating the appropriate 

number of neurons and layers. Our results suggest a value of greater than 10 for this ratio which 

has already been suggested for regression models elsewhere too. The second crucially important 

strategy in developing reliable ANN models is to study various initialization states for the ANNs 

and for each one, repeating the randomly division of the dataset and use the average of those 

repeats as the authentic performance obtained for each initialization state. Comparing the relative 

errors of training and test datasets in different repeats using appropriate statistical tests can be 

used to find the efficiently trained ANNs.  

Considering various combinations of training algorithm and transfer functions to find the best 

combination of those parameters is also another efficient strategy to find more efficient ANN 

models.   
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Mathieu44 QSPR 230 12 – – 0.943 

Keshavarz et al. 62 Correlation 548 12.1 – – – 

Katritzky et al. 31 QSPR+ANN 758 12.6 – – 0.989 

Khaje and Modarres 63 ANFIS 95 11.5 31.1 1500 0.986 

Khaje and Modarres 63 GFA 95 13.08 25.8 966.75 0.98 

Chen et. al. 64 QSPR 230 – – 22.9 0.964 

Hshieh65 Correlation (NBP) 494 – – – 0.966 

Bagheri et al. Bagheri, 
2012 #33} 

QSPR 1651 19.31 5.94 – 0.94 

Katritzky et al.  66 QSPR 271 – – – 0.91 

Patil67 Correlation (NBP) 593 – – 7.5 0.90 
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- The present study introduces the important practical aspects of developing a reliable 
artificial neural network (ANN) model including appropriate assignment of the number 
of neurons, number of hidden layers, transfer functions, training algorithm, dataset 
division and initialization of the network. 
 

- Predictability of the flash point for a dataset of 740 organic compounds is studied for a 
total number of 484220 different ANNs to allow covering a wide range of parameters 
affecting the performance of an ANN. 
 

- As a rule of thumb for evaluating the appropriate number of neurons and layers, it is 
suggested to select the number of neurons and layers in a way that the ratio of the training 
samples to the ANN constants be equal or greater than 10. 
 
 

- A strategy for evaluation of the authentic performance of an ANN model is proposed 
which suggests repeating the training of each configuration with same initially assigned 
weight and bias constants several times for different dataset division states and using the 
average of all repeats as the authentic performance of that initialization and 
configuration. 
 

- The models retrained for similar initialization and configuration but different data set 
division states for which the observed errors of the training and test sets are not 
significantly different in most of the repeats confirmed by statistical tests (two sample t-
test in the current work) can be considered as the appropriately trained models and their 
results can be used reliably.  
 
 

- Based on the introduced considerations, an ANN model is proposed for predicting the 
flash point of pure organic compounds from diverse chemical families. According to the 
results obtained for 740 compounds, the new model was found to produce the lowest 
errors for flash point prediction compared to other available models. 

View publication statsView publication stats

https://www.researchgate.net/publication/325038345

